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Abstract— Multi-scale spectrum sensing is proposed to
overcome the cost of full network state information on the
spectrum occupancy of primary users (PUs) in dense multi-cell
cognitive networks. Secondary users (SUs) estimate the local spec-
trum occupancies and aggregate them hierarchically to estimate
spectrum occupancy at multiple spatial scales. Thus, SUs obtain
fine-grained estimates of spectrum occupancies of nearby cells,
more relevant to scheduling tasks, and coarse-grained estimates
of those of distant cells. An agglomerative clustering algorithm
is proposed to design a cost-effective aggregation tree, matched
to the structure of interference, robust to local estimation errors,
and delays. Given these multi-scale estimates, the SU traffic is
adapted in a decentralized fashion in each cell, to optimize the
trade-off among SU cell throughput, interference caused to PUs,
and mutual SU interference. Numerical evaluations demonstrate
a small degradation in SU cell throughput (up to 15% for a 0 dB
interference-to-noise ratio experienced at PUs) compared to a
scheme with full network state information, using only one-third
of the cost incurred in the exchange of spectrum estimates. The
proposed interference-matched design is shown to significantly
outperform a random tree design, by providing more relevant
information for network control, and a state-of-the-art consensus-
based algorithm, which does not leverage the spatio-temporal
structure of interference across the network.

Index Terms— Spectrum sensing, cognitive radio, interference
management, dense networks.

..JJ. INTRQDUCTJON .
T HE recent prohfératlon 0 mo%llle devices has been expo-

nential in number as well as heterogeneity [4], demanding
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new tools for the design of agile wireless networks [5]. Fifth-
generation (5G) cellular systems will meet this challenge in
part by deploying dense, heterogeneous networks, which must
flexibly adapt to time-varying network conditions. Cognitive
radios [6] have the potential to improve spectral efficiency by
enabling secondary users (SUs) to exploit resource gaps left
by legacy primary users (PUs) [7]. However, estimating these
resource gaps in real-time becomes increasingly challenging
with the increasing network densification, due to the signaling
overhead required to learn the network state [8]. Furthermore,
network densification results in irregular network topologies.
These features demand effective interference management to
fully leverage spatio-temporal spectrum access opportunities.

To meet this challenge, we develop and analyze spectrum
utilization and interference management techniques for dense
cognitive radios with irregular interference patterns. We con-
sider a multi-cell network with a set of PUs and a dense set
of opportunistic SUs, which seek access to locally unoccupied
spectrum. The SUs must estimate the channel occupancy of
the PUs across the network based on local measurements.
In principle, these measurements can be collected at a fusion
center [9]-[11], but centralized estimation may incur unac-
ceptable delays and overhead [8], [12]. To reduce this cost
and provide a form of coordination, neighboring cells may
inform each other of spectrum they are occupying [13];
however, this scheme cannot manage interference beyond
the cell neighborhood, which may be significant in dense
topologies.

We address this challenge by designing a cost-effective
multi-scale solution to detect and leverage spatio-temporal
spectrum access opportunities across the network, by exploit-
ing the structure and irregularities of interference. To do so,
note that the interference caused by a given SU depends on its
position in the network, as depicted in Fig. 1: PUs closer to
this SU will experience stronger interference than PUs farther
away. Therefore, such SU should estimate more accurately
the state of nearby PUs, in order to perform more informed
local control decisions to access the spectrum or remain idle.
In contrast, the state of PUs farther away, which experience
less interference from such SU, is less relevant to these control
decisions, hence coarser spectrum estimates may suffice. With
this in mind, the goal of our formulation is the design of
a cost-effective spectrum sensing architecture to aid local
network control, which enables each SU to estimate the
spectrum occupancy at different spatial scales (hence the name
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“multi-scale”), so as to possess an accurate and fine-grained
estimate of the occupancy of PUs in the vicinity, and coarser
estimates of the occupancy states of PUs farther away. To
achieve this goal, we use a hierarchical estimation approach
resilient to delays and errors in the information exchange
and estimation processes, inspired by [14] in the context
of averaging consensus [15]: local measurements are fused
hierarchically up a tree, which provides aggregate spectrum
occupancy information for clusters of cells at larger and larger
spatial scales. Thus, SUs acquire precise information on the
spectrum occupancies of nearby cells — these cells are more
susceptible to interference caused by nearby SUs — and coarse,
aggregate information on the occupancies of faraway cells.
By generating spectrum occupancy estimates at multiple spa-
tial scales (i.e., multi-scale), this scheme permits an efficient
trade-off of estimation quality, cost of aggregation, estimation
delay, and provides a cost-effective means to acquire infor-
mation most relevant to network control. We derive the ideal
estimator of the global spectrum occupancy from the multi-
scale measurements, and we design the SU traffic in each cell
in a decentralized fashion so as to maximize a trade-off among
SU cell throughput, interference caused to PUs, and mutual
SU interference.

To tailor the aggregation tree to the interference pattern of
the network, we design an agglomerative clustering algorithm
[16, Ch. 14]. We measure the end-to-end performance in terms
of the trade-off among SU cell throughput, interference to PUs,
and the cost efficiency of aggregation. We show numerically
that our design achieves a small degradation in SU cell
throughput (up to 15% under a reference interference-to-noise
ratio of OdB experienced at PUs) compared to a scheme with
full network state information, while incurring only one-third
of the cost in the aggregation of spectrum estimates across
the network. We show that the proposed interference-matched
tree design based on agglomerative clustering significantly
outperforms a random tree design, thus demonstrating that
it provides more relevant information for network control.
Finally, we compare our proposed design with the state-of-
the-art consensus-based algorithm [17], originally designed
for single-cell systems without temporal dynamics in the
PU spectrum occupancy, and we demonstrate the superiority
of our scheme thanks to its ability to leverage the spa-
tial and temporal dynamics of interference in the network
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and to provide more meaningful information for network
control.

Related Work

Consensus-based schemes for spectrum estimation have
been proposed in [8], [17]-[19]: [8] proposes a mechanism
to select only the SUs with the best detection performance to
reduce the overhead of spectrum sensing; while [19] focuses
on the design of diffusion methods. Cooperative schemes
with data fusion have been proposed in [9]-[11]: [9] investi-
gates the optimal voting rule and optimal detection threshold;
[10] proposes a robust scheme to filter out abnormal measure-
ments, such as malicious or unreliable sensors; [11] analyses
and compares hard and soft combining schemes in heteroge-
neous networks. However, all these works focus on a scenario
with a single PU pair (one cell) and no temporal dynamics
in the PU spectrum occupancy state. Instead, we investigate
spectrum sensing in multi-cell networks with multiple PU pairs
and with temporal dynamics in the PU occupancy state, giving
rise to both spatial and temporal spectrum access opportu-
nities. Similar opportunities have been explored in [20], but
in the context of a single PU, and without consideration
of SU scheduling decisions. In contrast, in our paper we
investigate the impact of spectrum sensing on scheduling
decisions of SUs.

Another important difference with respect to [8], [9],
and [17]-[19] (with the exception of [20]) is that we model
temporal dynamics in the occupancy states of each PU, as a
result of PUs joining and leaving the network at random
times; in time-varying settings, the performance of spectrum
estimation may be severely affected by delays in the prop-
agation of estimates across the network, so that spectrum
estimates may become outdated. We develop a hierarchical
estimation approach that compensates for these propagation
delays. A setting with temporal dynamics has been proposed
in [20] and [21] for a single-cell system, but without consid-
eration of delays.

Finally, [22] capitalizes on sparsity due to the narrow-
band frequency use, and to sparsely located active radios,
and develops estimators to enable identification of the
(un)used frequency bands at arbitrary locations; differently
from this work, we develop techniques to track the activity
of PUs, and use this information to schedule transmissions
of SUs, hence we investigate the interplay between esti-
mation and scheduling tasks, and the role of network state
information.

We summarize the contributions of this paper as follows:

1) We propose a hierarchical framework to aggregate net-

work state information (NSI) over a multi-cell wireless
network, with a generic interference pattern among cells,
which enables spectrum estimation at multiple spatial
scales, most informative to network control. We study
its performance in terms of the trade-off between the
SU cell throughput and the interference caused to the
PUs. We design the optimal SU traffic in each cell in a
decentralized fashion, so as to manage the interference
caused to other PUs and SUs.



MICHELUSI et al.: MULTI-SCALE SPECTRUM SENSING IN DENSE MULTI-CELL COGNITIVE NETWORKS

2675

TABLE I
TABLE OF NOTATION

C | set of cells, with |[C] = N¢ b+ | occupancy state of cell ¢ at time ¢, €{0,1}
wp | steady-state distribution P(b; + = 1) p | memory of the Markov chain {b;,t > 0}
¢i,; | INR generated by tx in cell ¢ to rx in j, cf. (1)| a;; | SU traffic in cell ¢ at time ¢, €[0, M; ]
M, ¢ | # of SUs in cell 7 at time ¢ Bn(p)| Binomial with N trials and probability p
HE) | Jevel-L cluster heads Hg‘ ) level-L cluster heads associated to meH (L+D)
C,iL) cells associated to k € HD) A;; | h-distance between cells 7 and j, cf. Def. 1

DgL) cells at h-distance L from cell ¢, cf. Def. 2

651“) delay from cell 7 to level-L cluster head N delay between meHEY

and its upper level-L cluster head n
Bi,t local estimate at cell ¢ JE? delay mismatched aggregate estimate at

h-distance L from cell i, cf. (25)
74, | SU cell ¢ throughput lower bound, cf. (7) Is(t)| estimated SU interference at cell ¢, cf. (8)
tp,; | INR caused by SUs in cell ¢, cf. (11)-(12) Ip; | estimated PU interference at cell 7, cf. (9)
u;,¢ | utility function, cf. (13) m;,¢ | local belief in cell ¢

2) We show that the belief of the spectrum occupancy vec-
tor is statistically independent across subsets of cells at
different spatial scales, and uniform within each subset
(Theorem 1), up to a correction factor that accounts for
mismatches in the aggregation delays. This result greatly
facilitates the estimation of the interference caused to
PUs (Lemma 3).

3) We address the design of the hierarchical aggregation
tree under a constraint on the aggregation cost based on
agglomerative clustering [16, Ch. 14] (Algorithm 1).

Our analysis demonstrates that multi-scale spectrum estima-
tion using hierarchical aggregation matched to the structure of
interference is a much more cost-effective solution than fine-
grained network state estimation, and provides more valuable
information for network control. Additionally, it demonstrates
the importance of leveraging the spatial and temporal dynam-
ics of interference arising in dense multi-cell systems, made
possible by our multi-scale strategy; in contrast, consensus-
based strategies, which average out the spectrum estimate over
multiple cells and over time, are unable to achieve this goal
and perform poorly in dense multi-cell systems.

This paper is organized as follows. In Sec. II, we present
the system model. In Sec. III, we present the proposed local
and multi-scale estimation algorithms, whose performance is
analyzed in Sec. IV. In Sec. V, we address the tree design.
In Sec. VI, we present numerical results and, in Sec. VII,
we conclude this paper. The main proofs are provided in the
Appendix. Table I provides the main parameters and metrics.

II. SYSTEM MODEL
A. Network Model

We consider the network depicted in Fig. 1, composed
of a multi-cell network of PUs with N cells operating in
downlink, indexed by C={1,2,..., N¢}, and an unlicensed
network of SUs. The receivers are located in the same cell as
their transmitters, so that they receive from the closest access
point. Transmissions are slotted and occur over frames. Let
t be the frame index, and b; ;€{0,1} be the PU spectrum
occupancy of cell ¢€C during frame ¢, with b; ; = 1 if occupied

and b; ; = 0 otherwise. We suppose that {b; ;,t > 0,7 € C}
are independent and identically distributed (i.i.d.) across cells
and evolve according to a two-state Markov chain, as a result
of PUs joining and leaving the network at random times.
We define the transition probabilities as

v1 £ P(bigs1 = 1bir =0), v £ P(bisy1 = 0lbis = 1),

where uél — vy —1 1s the memory of the Markov chain, which
dictates the rate of convergence to its steady-state distribution.
Hence, wBéP(bi,t =1)= l’fu at steady-state. We denote the
state of the network at time ¢ as by = (b1,,b24,...,bNg t)-

We assume that PUs and SUs coexist in the same spectrum
band. Let M; ; be the number of SUs in cell 4 at time ¢, which
may vary over time as a result of SUs joining and leaving the
network. We collect M; , in the vector M.

Assumption 1: {M,t>0} are i.i.d. across cells, stationary

and independent of {b;,t>0}, that is

P(b; = by, M; = My, ¥t € T) = [[P(biy = bi, tT)

x P(M;, = M; 4, teT) (independence),
P(M;, = M; 4, teT)=P(Mi—5 = M; 4, teT) (stationarity).

where 7 is a time interval and § > 0 is a delay. Additionally,
M, > 0,Vi,t (dense network). O

Assumption 1 guarantees that spectrum estimates are “sta-
tistically symmetric” [23], i.e., they exhibit the same statistical
properties at different cells and delay scales. An example
which obeys Assumption 1 is when M;; is a Markov chain
taking values from M;, > 0, ii.d. across cells. The SUs
opportunistically access the spectrum to maximize their own
cell throughput, while at the same time limiting the interfer-
ence caused to other SUs and to the PUs. Their access decision
is governed by the local SU access traffic a;€[0, M, ] for
SUs in cell . We assume an uncoordinated SU access strategy
so that, given a;y, all the M;, SUs in cell ¢ access the
channel with probability a;:/M; ., independently of each
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other.! Therefore, a;; represents the expected number of SU
transmissions in cell 7. We let a; = (a1,¢, a2, ..., AN 1)-

Transmissions of SUs and PUs generate interference to
each other. We denote the interference to noise ratio (INR)
generated by the activity of a transmitter in cell ¢ to a receiver
in j as ¢; ;>0, collected into the symmetric (due to channel
reciprocity) matrix ®cRNe*Ne | Typically,

[0i,5]aB = [Piz]aBm — [NoWiot]aBm
— [LyeflaB — @i,j(dij/dreflaB (1)

(see, e.g., [24]), where P, is the transmission power, common
to all PUs and SUs, Ny is the noise power spectral density
and Wy, is the signal bandwidth; L,.; is the large-scale
pathloss at a reference distance d,.y, based on Friis’ free
space pathloss formula, and [d; ;/d,cf]**9 is the distance
dependent component, with d; ; and «;; the distance and
pathloss exponent between cells ¢ and j. We assume that the
intended receiver of each PU or SU transmission is located
within the cell radius, so that ¢; ; is the SNR to the intended
receiver in cell . In practice, the large-scale pathloss exhibits
variations as transmitter or receiver are moved within the cell
coverage. Thus, ¢; ; can be interpreted as an average of these
pathloss variations, or a low resolution approximation of the
large-scale pathloss map. This is a good approximation due
to the small cell sizes arising in dense cell deployments,
as considered in this paper. In Sec. VI (Fig. 5), we will
demonstrate its robustness in a more realistic setting.

B. Network Performance Metrics

We label each SU as (j,n), denoting the nth SU in cell j.
Let v, € {0,1} be the indicator of whether SU (j,n)
transmits based on the probabilistic access decision outlined
above; this is stacked in the vector v;. If the reference
SU (i,1) transmits, the signal received by the corresponding
SU receiver is

yia(t +wia(t)+ni1(t), ()

=\ zh§81 t)x; f

where we have defined the interference signal

ST VBl )i (1)

(4 ")#(i 1

+ Z\/%h(p)

wia(t) =

2P (t), 3)

(s) . . .
h;7(t) is the fading channel between SU (j,n) and the
reference SU (i,1), with x(s)( t) the unit energy transmitted
signal; h;p ) (t) is the fading channel between PU j (transmit-
ting in downlink) and SU (4, 1), with a:(p )() the unit energy
transmitted signal; ¢;; is the large- scale pathloss between
cells j and i, see (1); n;1(t)~CN(0,1) is circular Gaussian
noise; we assume Rayleigh fading, so that h;f,)l(t), h§p () ~
CN(0,1). The transmission is successful if and only if the

'We assume that M; ¢ is known in cell ¢, and a local control channel is
available to regulate the local SU traffic a; ¢.
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SINR exceeds a threshold SINR},; we then obtain the success
probability of SU (7, 1), conditional on v; and by,
() (412
biilhy 1 (2)]
pii(vi,by) =P 1712
1+ |wi,1 (2)]

Noting that w; 1 (t)|(v¢,by) is circular Gaussian with zero
mean and variance

> SINRyp

Vhbt)- “4)

_ Ne Ne
EN b+ Y bibje — biir (5)

j=1 j=1

E[[wi,1 (t)]?|ve, be]

where 7; 2 S22t 4, 1 is the number of SUs that attempt

spectrum access in cell j, we obtain
o~ SINRuw, /¢i.i

Pi(vt; bt)

1+5INRa, [Za L G200 gy — 1]
Then, the throughput in cell 7, conditional on the SU traffic a,
and PU network state by, is obtained by noting that each of the
n; SUs succeed with probability p;; hence, taking the expec-
tation with respect to the number of SUs performing spectrum
access, 1;~Bu; ,(a;:/M;,) (binomial random variable with
probability a; ; /MN and M, ; trials), we obtain

Tit (at; bt) (6)
7; €Xp {—L SINRth} ‘

1 SINR S0 20,14 5006 220
@ ¢ €Xp {—f SINRth} ‘

L SINRu i+ 20+ 506, 2020 ]|
where the second equality is obtained by the change of
variable 7’Ah = N — 1, with ﬁiNB(ai,t/Mi,hMi,t — 1) The
computation of the SU cell throughput using this formula
has high complexity, due to the outer expectation. Therefore,
we resort to a lower bound. Noting that the argument of the
expectation is a convex function of 7;,Vj and 7);, Jensen’s
inequality yields

Tit (au bt)

A
:En at7bt

= E”]:’fh‘

at;bt ’

;¢ €xXp {—%SINRth}
>
1 + SINRp zj,vgl j; (aji+bjs) —
Cell ¢ selects a;; based on partial NSI, denoted by the local

belief 7; .(b) that b, = b. Taking the expectation over by
conditional on 7; ; and using Jensen’s inequality, we obtain

E [H,t(au bt)|77i,t]

SINRyp 2t

@ €XP {—#SINRth}
S
= 1+ SINRin [aie(1 = M;}') + Ipi(mi) + Is,i(t)]
Pit(aie, Ipi(Tig)), (7

where we have defined

Islt Z‘i’“aﬂ, ®)

J7#i
Z d)j z Z¢j K

IPZ '/th ]tTr'Lt jt*1|7rzt) (9)
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The terms Ig ;(t) and Ip;(m, ;) represent, respectively, an esti-
mate of the interference strength caused by SUs and PUs
operating in the rest of the network to the reference SU
in cell ¢. Additionally, due to channel reciprocity and the
resulting symmetry on ®, Ip;(m; ;) represents an estimate of
the interference strength caused by the reference SU to the
rest of the PU network.

Herein, we use 7;; in (7) to characterize the performance
of the SUs. Since this is a lower bound to the actual SU
cell throughput, using 7; ; as a metric provides performance
guarantees. Note that the performance depends upon the
network-wide SU activity a; via Is;(t); in turn, each a,, is
decided based on the local belief 7;;, which may be unknown
to the SUs in cell ¢ (which operate under a different belief
m;.+). Therefore, maximization of #; ¢(a; ¢, Ip;(m+)) can be
characterized as a decentralized decision problem, which does
not admit polynomial time algorithms [25]. To achieve low
computational complexity, we relax the decentralized decision
process by assuming that Ig ;(¢) is known to cell 7 in slot ¢.
This assumption is based on the following practical arguments:
due to the Markov chain dynamics of b,, a; varies slowly
over time, hence Ig;(t) can be estimated by averaging the
SU traffic over time; additionally, the spatial variations of
a, are averaged out in the spatial domain since Ig;(t) is a
weighted sum of a;; across cells, yielding slow variations
on Ig;(t) due to mean-field effects. In Sec. IV, we will
present an approach to estimate Ig;(t) and Ip,(m; ;) based
on hierarchical information exchange over the SU network.

We define the average INR experienced by the PUs as a
result of the activity of the SUs as

N¢c Ne

INR(at,bt) é N oTB Zzaz td)z,] 5.ty

7j=11i=1

(10)

where Nomp is the average number of active PUs at steady-
state. In fact, the expected number of SUs transmitting in cell
118 a4, so that a; ¢, ; is the overall interference caused by
SUs in cell 4 to the PU in cell j. INR(a¢, by) is then obtained
by averaging this effect over the network. Herein, we isolate
the contribution due to the SUs in cell < on (10), yielding

LP,i(ai,t;bt é (lthQf)m 5.t (11)

so that INR(ay, by) = 5 Ne qu(az ¢,b;). By computing
the expectation with respect to the local belief 7; ; and using

the symmetry of ®, we then obtain
tpi(@it, Ipi(mie)) £ Elepi(ais, by)|mi]

1
= —ai1¢iilpi(mit). (12)
T

Since the goal of SUs is to maximize their own cell
throughput, while minimizing their interference to the PUs,
we define the local utility as a payoff minus cost function,

wi(ai, Ipi(mit))
2 (@i Ipi(mie)) — Aepilaie, Ipi(mie)),

where A>0 is a cost parameter which balances the two
competing goals. Given 7; ¢, the goal of the SUs in cell ¢ is to

13)
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design a;,; so as to maximize w;¢(a; ¢, Ip;(miy)). Since this
is a concave function of a;; (as can be seen by inspection),
we obtain the optimal SU traffic

aj,(Ipi(mie)) & argmax w(aie, Ipi(miyt))
ai+ €[0,M; ¢

T+ SINR, [Tp,i(mig) + Is,i(1)]
SINR, (1 — 1/M; ;)

(14)

M; ¢

- \/1+SINRth Upi(mie) + IS,z‘(t)])] )

0

% TBE

VA ilpi(Ti)
where [ = min{max{-,0},m} denotes the projection
operation onto the interval [0, m]. It can be shown by inspec-
tion that both a;, and u;, are non-increasing functions of
Ip(miy), so that as the PU activity increases (Ip;(m; )
increases), the SU activity and the local utility both decrease;
when Ip;(m; ;) is above a certain threshold, then a} =0
and u; ,(Ip;(m;¢)) = 0; indeed, in this case the PU network
experiences high activity, hence SUs remain idle to avoid
interfering. Additionally, u;,(Ip (7)) is a convex function
of Ip;(m;+). Then, by Jensen’s inequality,

ul (Ipi(mie)) < Y mie(d)ul (Ipi(Ts)),
be{0,1}Nc

15)

where 7y, is the Kronecker delta function centered at b, reflect-
ing the special case when by is known, so that u;,(Ip;(Zy))
represents the utility achieved when b, = b, known. Conse-
quently, the expected network utility is maximized when by is
known (full NSI). Thus, the SUs should, possibly, obtain full
NSI in order to achieve the best performance. To approach
this goal, the SUs in cell ¢ should obtain b; in a timely
fashion. To this end, the SUs in cell j#i should report the
local and current spectrum state b;; to the SUs in cell 7 via
information exchange, potentially over multiple hops. Since
this needs to be done over the entire network (i.e., for every
pair (i,) € C?), the associated overhead may be impractical
in dense multi-cell network deployments. Additionally, these
spectrum estimates may be noisy and delayed, hence they
may become outdated and not informative for network control.
In order to reduce the overhead of full-NSI, we now develop
a scheme to estimate spectrum occupancy based on delayed,
noisy, and aggregate (vs timely, noise-free and fine-grained)
spectrum measurements over the network.

III. LOCAL AND MULTI-SCALE
ESTIMATION ALGORITHMS

In this section, we propose a method to estimate Ip;(m; ;)
and Ig;(t) at cell ¢ based on hierarchical information
exchange. To this end, SUs exchange estimates of the local
PU spectrum occupancy b; ¢, denoted as Blt as well as the
local SU traffic decision variable a; ;. For conciseness, we will
focus on the estimation of Ip;(m; ) in this section; however,
the same technique can be applied straightforwardly to the
estimation of Ig;(¢) as well. In fact, Ip;(m; ) and Ig;(t)
have the same structure — they both are a weighted sum of the
respective local variables E[b; ;|7 ;] and a;,, with weights
¢’ L see (8)-(9), hence they can be similarly estimated.
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A. Aggregation Tree

To reduce the cost of acquisition of NSI, we propose
a multi-scale approach to spectrum sensing. To this end,
we partition the cell grid into P sets Cp,p = 1,...,P,
and define a tree on each C,, designed in Sec. V. Since
each edge in the tree incurs delay, P disconnected trees are
equivalent to a single tree where the edges connecting each
of the P subtrees to the root have infinite delay (and thus,
provide outdated, non-informative NSI). Hence, without loss
of generality, we assume P = 1 where, possibly, some edges
incur infinite delay.

Level-0 contains the leaves, represented by the cells C.
To each cell, we associate the singleton set c§°>z{z‘},z‘ec.2
At level-1, let C,(Cl), 1<k<n) be a partition of C into n")<|C|
non-empty subsets, each associated to a cluster head k. The
set of n(1) level-1 cluster heads is denoted as H(»). Hence,
C,E,l) is the set of cells associated to the level-1 cluster head
keHW), see Fig. 1.

Recursively, at level-L, let HL) be the set of level-L
cluster heads, with L>1. If |H(L)| = 1, then we have
defined a tree with depth D = L. Otherwise, we define
a partition of HX) into nE*+D <|H(E)| non-empty subsets

HE m =1,... ,nED), each associated to a level-(L + 1)
cluster head, collected in the set H(F*D={1,... nE+D} Let

CSETY be the set of cells associated to level-(L + 1) cluster
head m € H(E+1). This is obtained recursively as

= |J o, vmenH,

ker(D

(16)

We are now ready to state some important definitions.
Definition 1: We define the hierarchical distance (h-
distance) between cells i, j€C as

Asj émin{LZO:z’,jecr(nL)vgmgH(L)}. -

In other words, A;; is the smallest level of the cluster
containing both ¢ and j. It follows that the h-distance between
cell 7 and itself is A; ; = 0, and it is symmetric (A; ; = A; ;).

Definition 2: Let DgL) be the set of cells at h-distance L
from cell i: D§O)E{i}, and, for all m € HE), k e HE™Y,
i€ C,(CLfl) (then, k is the level-(L — 1) cluster head of cell ¢)

PP =cB\ ¢tV L>o. O

In fact, C,(,LL ) contains all cells at h-distance (from cell 7)
less than (or equal to) L. Thus, we obtain D§L) by removing
from Cf(,f) all cells at h-distance less than (or equal to) L — 1,
C,E,L_l) (note that this is a subset of C,(,LL), since k € H%_l)).
For example, with reference to Fig. 1, D§O) = {1} (cell 1 is
at h-distance 0 from itself), Dgl) ={2,5,6} (cells 2, 5 and 6
are at h-distance 1 from cell 1), DEQ) = {3,4,7,8} (cells 3,
4,7 and 8 are at h-distance 2 from cell 1).

2Note that C;O) represents cell ¢, containing M; >0 SUs (Assumption 1).
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B. Local Estimation

The first portion of the frame is used by SUs for spectrum
sensing, the remaining portion for data communication. Thus,
spectrum sensing does not suffer from SU interference.

Remark 1: This frame structure requires accurate synchro-
nization among SUs, achievable using techniques developed
in [26]. Loss of synchronization may cause overlap between
the sensing and communication phases; herein, we assume that
the duration of the sensing phase is sufficiently larger than
synchronization errors, so that this overlap is negligible.

In the spectrum sensing portion of frame ¢, M; ; SUs in cell
1 estimate b; ;. Each of the M, ; SUs observe the local state
b; ¢ through a binary asymmetric channel, BC(ep, €as), where
er is the false-alarm probability (b; ; = O is detected as being
occupied) and €, is the mis-detection probability (b;; = 1
is detected as being unused). In practice, each SU measures
the received energy level and compares it to a threshold; the
value of this threshold entails a trade-off between e and €j,.
We assume that these M;, spectrum measurements are i.i.d.
across SUs (given b; ). In principle, er, ) may vary over
cells and time, but for simplicity we treat them as constant.

Then, these measurements are fused at a local fusion center
at the cell level,> and then up the hierarchy, using an out-
of-band channel which does not interfere with PUs. Thus, the
number of measurements that detect (possibly, with errors) the
spectrum as occupied in cell 7, denoted as &; ;€{0, ..., M; ;},
is a sufficient statistic to estimate b; ;. Let

Bi,t = P(b; ; = 1|past measurements)

be the prior probability of occupancy of cell i, time ¢, given
measurements collected up to ¢t (excluded). After collecting
the M, ; measurements, the cell head estimates b; + as

I;i,t £ P(b;; = 1|past measurements, &; ; = £)
B bi P& =Elbi=1)
b P& =Elbi s =1) 4+ (1—b; ¢ )P(&i s =E|bi s =0)’
where the second step follows from Bayes’ rule. Note that

€i,tlbie = 1~Bur, (1 — enr) and [§4[bi = 0]~Bus, , (€F)-
Thus, we obtain

Bi = Bi,t (1— EM)5 iﬁgi’t_g .

U b (L—en) et T (1= D) (1 —ep)™iE
Given ZA)M, the prior probability in the next frame is obtained
based on the spectrum occupancy dynamics as

bit+1 = P(b; 441 = 1|past measurements, &; ; = &)

= (1= v)biy +11(1 —biy) = (1 — p)wp + pbiy.

C. Hierarchical Information Exchange Over the Tree

In the previous section, we discussed the local estimation
at the cell level. We now describe the hierarchical fusion
of local estimates to collect multi-scale NSI. This fusion is

3The optimal design of decision threshold, local estimators, fusion rules,
are outside the scope of this paper and can be found in other prior work, such
as [9]-[11], for the case of a single-cell.
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Fig. 2. Aggregation process referred to Fig. 1, and aggregate estimates relative to cell 1.

patterned after hierarchical averaging [14], a technique for
scalar average consensus in wireless networks.

The aggregation process running at each node is depicted
in Fig. 2. The cell head, after the local spectrum sensing
in frame ¢, has a local spectrum estimate IA)M. These local
estimates are fused up the hierarchy, incurring delay. Let
6§L) > 0 be the delay to propagate the spectrum estimate of
cell 7 all the way up to its level-L cluster head n. It includes
the local processing time at each intermediate level-I clus-
ter head traversed before reaching the level-L cluster head,
as well as the delay to traverse the links (possibly, multi-hop)
connecting successive cluster heads. We assume that (51@) is
an integer, multiple of the frame duration; in fact, scheduling
of SUs transmissions in the data communication phase is done
immediately after spectrum sensing, hence a spectrum estimate
with non-integer delay 5 can only be used for scheduling
decisions with delay (6§L 1. In the special case when 6§L) =0,
the estimate of cell ¢ becomes immediately available to the
level-L cluster head; if 6§L) = 1, it becomes available for
data communication in the following frame, and so on.

We assume that 5§L)§5§L+1), i.e., the delay augments
as the local spectrum estimates are aggregated at higher
levels. More precisely, let A% Y be the delay between the
level-(L — ) cluster head m, and its level-L cluster head n,

with m € ™. We can thus express (51@) as

ot = s Ay a7

L
- Z Agiil)’
=1

where hgl) is the level-l cluster head of cell ¢. By the end of

the spectrum sensing phase, the level-1 cluster head meH (")

receives the spectrum estimates from its cluster Cp, W i t—s

is received from cell zGCm with delay 5(1 >(0. These are
aggregated at the level-1 cluster head as

1
7(71)15— Z bt 6(1), VmG'H
zECSi)

(18)

each with its own delay. This process continues up the
hierarchy: the level-L cluster head mGH(L) recelves st fot— }5)

from the level-(L — 1) cluster heads keHSE™
it, with delay Aff_l), and aggregates them as

> S

keHED

connected to

S — (19)

m,

each with its own delay Aff_l). Importantly, these delays may
differ from each other, hence S,(,ﬁ 1 does not truly reflect the
aggregate spectrum at a given time. For this reason we denote
S (Lt as the delay mismatched aggregate spectrum estimate at

level-L cluster head m. The next lemma relates S,, (L ) to the
local estimates.
Lemma 1: Let m € HX) be a level-L cluster head. Then,

ot =D by, (20)
jeesy)
Proof: See Appendix A. g

Despite mismatched delays, in Sec. IV we show that cell ¢
can compensate them via prediction.

Remark 2: Note that the aggregation process runs in a
decentralized fashion at each node: level-L cluster head m
needs only information about the set of level-(L — 1) cluster
heads connected to it, k€H'X ), and the delays A;L_l). This
information is available at each node during tree formation;
delays may be estimated using time-stamps associated with the
control packets. The aggregation process has low complexity:
each cluster-head simply aggregates the delay mismatched
aggregate spectrum estimates from the lower level cluster
heads connected to it, and transmits this aggregate estimate
to its higher level cluster head.

Eventually, the aggregate spectrum measurements are fused
at the root (level-D) as

>

D—1
keH{P™Y

gP-1

(D)
S kt A T

Zb]t 6(D)’

jec

21
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where we used Lemma 1 and C§D)EC . Upon reaching level-D
and each of the lower levels, the aggregate spectrum estimates
are propagated down to the individual cells i€C over the tree.*

Therefore, at the beginning of frame ¢, the SUs in cell ¢
receive the delay mismatched ag%regate spectrum estimates
from their level-L cluster heads h,””,L =0,...,D,

Sz(?f) = Bi,tv
(L) _ 7
Shit = Zjecé? bj,tféﬁ.”’ 1<L<D,

where we remind that C( ) is the set of cells associated to
h( ) at level L, and 5( ) is the delay for the estimate of b, ;

to propagate to the level—L cluster head h§L). From this set
of measurements, cell ¢ can compute the aggregate spectrum
estimate of the cells at all h-distances from itself as

0 0
’Eﬁi ; S(<L)> - bl&’ 1
A _
S Shi,thhi7

22
1<L<D. 22)

To interpret O'( ) as the aggregate estimate at h-distance L
from cell i, note that Lemma 1 yields

(L) _ Z b _
Ot = bj,t*ésL)

S g s
jec,i? ject™ '
Since ¢ ]GC share the same level-(L — 1) and -L cluster
heads, h (L— 1) and hi , (17) yields
(L—-1) (L=1) _ (L)
6j + A} = 5]' .
Then,V L = 1,2,..., D, using Definition 2 we obtain
Z bj t— 6(L> Z b] t— 6(L) Z b] t— 6(L)’ (23)
jees jeeft—v jeD!™

so that oﬁ) represents the delay mismatched aggregate spec-

trum estimate of cells at h-distance L from cell ¢ (5 GDZ(L)).
Thus, with this method, the SUs in cell ¢ can compute the delay
mismatched aggregate estimate at multiple scales correspond-
ing to different h-distances, given delayed measurements.
Notably, only aggregate and delayed estimates are available,
rather than timely information on the state of each cell. These
are used to update the belief m; ; in Sec. IV.

IV. ANALYSIS

Given past and current delayed spectrum estimates across
i R () R € §) (D) _
all h-distances, o, = (0, ,0,,,...,0,. ), T = 0,...,1,

the form of the local belief ; ; is provided in the following
theorem.

Theorem 1: Given o;,,7 =0,1,...,t, we have
D
(b H]P(jﬁb],vj eDPoH) vr=o, ,t), (24)
L=0

4We include the propagation delay from the cluster head back to the single
cells in JEL)
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where, letting v = Z]ED@) b,

P(bﬂ_bj,v] e D)

()VT—O )

D"
Z ( Z b. 5 zxogﬁ),VT:O,...,t)
2=0 " jep®)
A
(L)
z!|D; — ! ~
M 5 (D)
P bjep™  1ept)
B
c
(L) /=~ by
X H [773 + (bl - WB)}
1ept)
: D
s (= 1-b;
x [1=mp =" (h-m8)] (25)
E
where x(-) is the indicator function. Additionally,
L
E( Y b s o =0, t) =alD . 26)
jeD™)
Proof: See Appendix B. 0

We note the following facts related to Theorem 1:

1) Equation (24) implies that m; ; is statistically indepen-
dent across the subsets of cells at different h-distances
from cell ¢; this result follows from Assumption 1, which
guarantees independence of spectrum occupancies and
spectrum sensing across cells.

2) Equation (25) contains five terms. “A” is the proba-
bility distribution of the delay mismatched aggregate
spectrum occupancy given past estimates. “B” is the
probability of a specific realization of b 15 jED( )

given that its aggregate equals z, whereas “C” is the
marginal over all these realizations; since there are
|D§L)|!/x!/(|D§L) | — 2)! combinations of such spectrum
occupancies, Assumption 1 implies that they are uni-
formly distributed, yielding “B”.5 Finally, terms “D”
and “E” represent the 6l(L) steps transition probability
from b s = =b to bj+ =1 and b, = 0, respectively.

3) Equatlon (26) states that the expected delay mismatched
aggregate occupancy over DE ) equals oﬁ), indepen-
dently of past spectrum estimates. However, its prob-
ability distribution (“A” in (25)) does depend on past
estimates.

4) In general, the term “A” in (25) cannot be computed
in closed form, except in some special cases (e.g.,
noiseless measurements [2]). However, we will now
show that a closed-form expression is not required to
compute Ip;(m; ), hence the expected utility in cell i
via (13). To this end, in the next lemma we compute
P(b;+ = 1|m; ) in closed form.

SIf Assumption 1 does not hold, estimates of aggregate occupancies could
provide information as to favor certain realizations over others, for instance,
by leveraging different temporal correlations at different cells.
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(L)

Lemma 2: For j € D;”’, we have

5(1‘) (L)
P(bj s = 1|mis) = 7 + p —75|. 7)

|D<L>|

Proof: See Appendix C. (]
We now compute Ip;(m; ). Partitioning C based on the
h-distances from i, (9) yields

Ipi(mis) 2 LI (b =1lmig) . (28)

Then, substituting (27) in (28) and letting
a Gji

Zjec (bz i ’

(L) a 52 i
(I)del i Z eD(L) e (bi,i
be the total mutual interference generated between the SUs in
cell 7 and the PU network (® ), and the delay compensated
mutual interference generated between cell 7 and the cells
at h-distance L from cell ¢ (@éﬁﬂi), we obtain the following
lemma.

Lemma 3: The expected PU activity experienced in cell ¢
is given by

D (L)
Ipi(0it) = TpProt,i + Z <| (L)| - 7TB> (b((iil)z

L=0

(I)tot,i
(29)

(30)

Above, for convenience, we have expressed the dependence
of Ip;(-) on o4, rather than on ;. Thus, the local util-
ity (13) can be computed accordingly. Note that Ip (o)
depends on the clustering of cells across multiple spatial
scales that affect the delay mismatched aggregate spectrum
estimates Jﬁ) , hence on the tree employed for hierarchical
information exchange. In the next section, we propose a tree
design matched to the structure of interference.

V. TREE DESIGN

The network utility depends crucially on the tree employed
for information exchange. Its optimization over all possible
trees is a combinatorial problem with high complexity. Thus,
we use agglomerative clustering, developed in [16, Ch. 14],
in which a tree is built by successively combining smaller
clusters based on a “closeness” metric, that we now develop.

Note that in our problem the goal is for cell ¢ to estimate
the INR generated to the PUs as accurately as possible,
Zjvcl f;J D,.+. This estimate is denoted as Ip;(m; ), see (9).
In fact, given Ip;(m;+), SUs in cell ¢ can schedule the optimal
SU traffic a},(Ip;(m;)) via (15), hence the optimal utility
via (13). With the hierarchical information exchange described
in the previous section, this estimate is given by (30).

Therefore, the goal is to design the tree in such a way as to
estimate 327 224, as accurately as possible via Ip; (o ;)

=1 @; ; 2t y p P,i\Oit
in (30). At the same time, since all cells share the same tree,
such design should take into account this goal across all cells.
We develop a heuristic metric to attain this goal. To this
end, we notice the following facts: 1) since higher levels
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correspond to larger and larger clusters over which spectrum
estimates are aggregated (for instance, with reference to Fig. 1,
|D§0)| =1, |D§1)| = 3 and |D§2)| = 4 at h-distances 0, 1, 2,
respectively), higher levels correspond to coarser estimates of
spectrum occupancy, whereas lower levels correspond to fine-
grained estimates; 2) from (30), it is apparent that terms with
larger @éﬁf’ ; affect more strongly Ip;(o; ;). Therefore, cluster
aggregation resulting in larger @gil)z should occur at lower
hierarchical levels, associated with fine-grained estimation.
Taking these facts into account, we denote the “aggregation”
metric between n, meH L) as

Z Z 5<L>¢w Z Z E(L)(b]l.

iect® jectH iec'?) jec™

F(L) _

n,m

(€19

Pﬁ% represents the benefit of aggregating together the clusters
associated to level-L cluster-heads m and n, C,(,LL ) and Cr(lL),
respectively, into one level-(L + 1) cluster, and A,, ,, is the
additional delay incurred to aggregate them.® In fact, if such
aggregation occurs, from the perspective of cell i € C,(ZL), C,(,LL )
will become the set of cells at h-distance L + 1 from cell i,
D§L+1) = CT(,%), so that, letting (5]@“) =Aym+ 6§L> as in
(17), the first term associated to ¢ in (31) is equivalent to

S bt bii _ g
Gii

jeels

(L+1)

deli (32)

The second term in (31) has a similar interpretation, relative to
cell i € C(L) Thus, the aggregation metric F%Ly)n corresponds
0 cow @éﬁfgl T2 i) <I>((ie1 ; Y. if clusters 5" and C{)
are aggregated together As Justlﬁed previously, this quantity
should be made as large as possible in order to maximize the
informativeness of the aggregation of estimates.

In addition, we want to limit the cost incurred to send mea-
surements up and down the hierarchy. Assuming that estimates
are transmitted via multi-hop, the cost will be proportional to
the distance between clusters. Thus, each time we combine two
clusters CT(,,L) and C7(nl,/) to form the tree, we incur an additional
aggregation cost per cell Cy, ,,, defined as

1
Cn,m = A7

N¢ ; X <L>di’j’
C ieCy’ ,jeCm

(33)
representing the worst-case aggregation cost, where d; ; is the
distance between cells ¢ and j.

The algorithm proceeds as shown in Algorithm 1. We ini-
tialize it with the N¢ sets containing the single cells,
Ci(o) = {i},i =1,2,..., N¢, and aggregation cost (per cell)
Ceen = 0. Then, at each level-L, we iterate over all cluster
pairs, pairing those with highest aggregation metric I'. This
forms the set of level-(L + 1) clusters; we update the delays
accordingly and update C.q; by adding C,(ZL)m If the number
of clusters at level-L happens to be odd, one cluster may not be
paired, in which case it forms its own level-(L+1) cluster, and
the delay remains unchanged. The algorithm proceeds until

GAn,m can be chosen, for instance, based on the number of hops traversed
to aggregate estimates at the upper level (L+-1). This number is approximately
proportional to the distance between cluster heads n and m.



2682

Algorithm 1 Hierarchical Aggregation Tree Construction

input : Cells C, interference matrix ®, max cost Cpax
(per cell)
output: A hierarchy of clusters C,iL), ke HD), [ =

1,...,D, delays (51@), and aggregation cost Ccep

Initialize: L—0, H(X)—C, (¥ —{i}, 6\° = 0,viec,
Ccell =05

repeat
Apmy Cpom, V,m € H(L),n = m (delays and cost
are computed, e.g., oc#hops);
}—'(L)<—{(n, m)eH(L)Q in, ;ém, Ccell + Cn,mgcmax}
(set of unpaired feasible pairs);
if |F)| =0 (cost exceeded) then
L terminate
HEAD — g, knext < 1 (empty set of next level
cluster heads and cluster head counter);
%)p — HE) (set of unpaired cluster heads);
while |F()| > 0 do
(n*, m*)« argmax I‘%Lzl (find unpaired feasible
(n,m)eF L)
cluster pair with max I', see (31));
HEAD — HEAD U (e},
cEth et el

P
knea m* >

5§L+1) = 5§L) + An*,m,*» ViGC]iL+1)7

CeenCeen + Cp+ m+ (update dZ:l%/ and cost);
Hq(ﬁb)p — Hq%)p \ {n*, m*} (remove paired clusters);
FE — {(n,m)€Miiny x Him :

n, #m, Ceen+Chm <Chax } (updated feasible pairs);
kneat < knewt +1 3

forall the k € Hq(ﬁ,,)p (unpaired clusters incur excessive
cost, “pair” each with itself) do
HELAL) (L) {kneat}, C](CLH) - CI(CL) .
o) = 5t vie ¢tV (no additional
delay/cost);
knezt — knemt + ]- 5
L «— L 4+ 1 (Proceed to the next level);
until termination;

either: (1) the cluster C%L) contains the entire network, ie.,
a tree has been formed, or (2) Ceenn > Chax, i.€., the allowed
cost is exceeded. Agglomerative clustering has complexity
O(NZ&1og(Nc¢)), where the term N2 owes to searching over
all pairs of clusters, and the term log(N¢) is related to
the tree depth, which is logarithmic in the number of cells
[16, Ch. 14]. In the next section, we will compare our scheme
with the consensus-based scheme [17]: this scheme requires
a “connected” graph to achieve consensus, whose complexity
is O(NZd), with d being the desired degree of each node in
the graph [27]. Therefore, by leveraging the tree structure, our
tree construction is more computationally efficient. However,
tree design will be executed only at initialization, or when the
network topology changes, which is infrequent in fixed cellular
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networks as considered in this work, hence it is not expected
to have a significant impact on the long-term performance.

VI. NUMERICAL RESULTS

In this section, we provide numerical results based on
Monte Carlo simulations. We adopt a model with stochastic
blockage [28]: rectangular blockages of fixed height and width
are placed randomly on the boundaries between cells. Each
blockage has width 1 and height 5, and is randomly placed.
We say that links between cells i, j are line of sight (LOS) if
the line segment connecting the centers of cells ¢ and 7 does
not intersect any blockage object. Otherwise, such links are
said to be non-LOS (NLOS). Accordingly, we define LOS and
NLOS large-scale pathloss exponents oy, = 2.1 and oy = 3.3,
respectively. These values were derived experimentally
in [24, Table I] at a reference frequency of 2GHz.

In the simulations, we consider a 16 x 16 cells network
over an area of 1.6km x 1.6km. We set the parameters as
follows: SINR decoding threshold SINRy, = 5dB, noise
power spectral density Ny = —173dBm/Hz, bandwidth
Wiot = 20MHz, 11 = 0.005, v = 0.095, hence mg = 0.05
and g = 0.9. The interference matrix ® is calculated as
in (1), where P, = —11dBm is the transmission power,
common to all PUs and SUs, L.y = 74dB is the large-scale
pathloss based on Friis’ free space propagation, calculated at
a reference distance d,.y = 50m (equal to the average cell
radius); oy ; = o if there is LOS between the centers of
cells 4 and j, otherwise, a; ; = an in case of NLOS (path
obstructed by blockage).

We assume that local estimation is error-free (e = €3y = 0)
and M; ,>1,Vi,t, corresponding to a dense setup with large
number of SUs. In this work, we do not consider the overhead
of local spectrum sensing within each cell, which can be
severe in dense networks and may be reduced by using
decentralized techniques to select the most informative SUs,
such as in [8]; these considerations are outside the scope of
this paper, and are left for future work. We average the results
over 200 realizations of the blockage model. For each one
of these, we generate a sequence of 1000 frames to generate
the Markov process {b;,t > 0}. We consider the following
schemes:

o a scheme with the interference-based tree (IBT) gener-
ated with Algorithm 1 by leveraging the specific structure
of interference, delays and aggregation costs;

o a scheme with a random tree (RT), in which the “max
I cluster association in Algorithm 1 is replaced with a
random association. The aim of using this scheme is to
test the importance of generating a tree matched to the
structure of interference;

¢ a scheme with full (but delayed) NSI (Full-NSI); since
this scheme represents the best we can do, provided that
we can afford the cost of acquisition of full NSI, it will
be used to evaluate the sub-optimality of the proposed
IBT in terms of the trade-off between SU cell throughput
and interference to PUs;

¢ an uncoordinated scheme where SUs access the spectrum
with constant probability py,, i.i.d. over time and across
SUs (Uncoordinated).
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Fig. 3.

We assume that the delay to propagate spectrum measurements
between cells ¢ and j is proportional to their distance, i.e.,
d;,; = vd; ;, where +y is varied in [0, 1].

In order to separate the effects of blockages, delay, and cost
of aggregation on the performance, we evaluate the impact
of: 1) Blockages, but no delay nor cost constraint (y = 0,
Cmax = 00, Fig. 3(a)); 2) Delay, with one blockage but no
cost constraint (1 blockage, Ciax = 00, Fig. 3(b)); 3) Cost
of aggregation, with one blockage and no delay (1 blockages,
v = 0, Fig. 4). In all these figures, unless otherwise stated,
we evaluate the lower bound to the SU cell throughput, given
by (7) and the INR experienced at the PUs (both averaged
over cells and over time). We vary the parameter A in the
utility function (13) and the SU access probability py, in
the “Uncoordinated” scheme, to obtain the desired trade-off
between SU cell throughput and INR.

In Fig. 3(a), we notice that, for all schemes, the presence
of blockages improves the performance. In fact, blockages
provide a form of interference mitigation. By comparing the
schemes with each other, the best performance is obtained
with Full-NSI. In fact, each cell can leverage the most refined
information on the interference pattern. However, as we will
see in Fig. 4, this comes at a huge cost to propagate NSI
over the network. Remarkably, IBT incurs only a 15% (for
6 blockages) and 10% (for no blockages) performance degra-
dation with respect to Full-NSI, for a reference INR of 0dB
(this result becomes more remarkable when comparing the
aggregation costs in Fig. 4). Additionally, RT incurs a severe
performance degradation with respect to IBT (60% and 30%
degradation for 6 blockages and no blockages, respectively, for
a reference INR of 0dB); this fact highlights the importance
of designing a tree matched to the structure of interference,
as done in Algorithm 1, and validates our choice of the I" met-
ric used to associate clusters in the algorithm, defined in (31).
Finally, we observe that the “Uncoordinated” scheme performs
the worst, since it does not adapt the SU transmissions to
interference.

In Fig. 3(b), we evaluate the impact of delay (note that
“Uncoordinated” is not affected by delays). As expected,
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(b) Impact of delay, 1 blockage.

SU cell throughput versus average INR experienced at PUs, cost constraint Crnax = 00.

the SU cell throughput decreases as the delay augments.
This follows from the fact that delayed spectrum estimates
represent less accurately the actual spectrum occupancy, and
may become outdated, and thus less informative for scheduling
decisions of SUs. However, the performance degradation is
minimal. In fact, the spectrum occupancy varies slowly over
time: the expected duration of a period during which the
spectrum is occupied by a PU is 1/1y~10 frames, hence
only the spectrum estimates received with delay larger than
10 become non informative; these estimates, in turn, cor-
respond to cells that are farther away from the reference
cell, hence less susceptible to interference caused by the
reference cell.” We notice a similar trend as in Fig. 3(a) in
terms of the comparison among the schemes employed.

In Fig. 4, we evaluate the trade-off between aggregation cost

and performance. To this end:
o We vary the cost constraint C,.x in Algorithm 1 to obtain

a trade-off for IBT and RT; we use a “worst-case” cost
evaluation with multi-hop, given by (33).

o To evaluate Full-NSI, each cell collects partial but fine-
grained NSI up to a certain radius; larger radius cor-
responds to more comprehensive NSI but larger cost;
using multi-hop for NSI aggregation, the cost equals
approximately the number of cells within the radius.
This scheme borrows from [13], where each cell informs
neighboring ones of the resource blocks used by its users.

We notice that IBT achieves a much better trade-off than
Full-NSI: it enables SUs to gather relevant information for
scheduling decisions, with minimal cost in the exchange of
state information. In fact, by aggregating NSI at multiple
layers, as opposed to maintaining fine-grained NSI, IBT retains
the gains of partial NSI, but at a much smaller cost of
aggregation. In particular, for a reference SU cell throughput
of 0.6Mbps, IBT incurs one-third of the cost of aggregation of
Full-CSI. On the other hand, RT does not improve as the cost
increases; in fact, the random tree construction in RT results

7We remind that the delay to propagate spectrum measurements between
cells 7 and j is 0;,;j = 7d; ;, hence only farther cells are affected by large
delays.
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Fig. 4. Impact of aggregation cost on the SU cell throughput, with 0dB
maximum constraint on the average INR caused to PUs. 1 blockage; no delay.

in information exchange which is not matched to the structure
of interference, hence less informative to network control.
So far, in our analysis and numerical evaluation we have
assumed that large-scale pathloss is calculated between cell
centers, and collected in the INR matrix ®. However, large-
scale pathloss between a transmitter and a receiver depends
on their mutual position within their respective cell. Addition-
ally, we used the SU cell throughput lower bound (7). This
motivates us to evaluate the performance in a more realistic
scenario, where these assumptions are relaxed. In Fig. 5, we
evaluate a realistic scenario with the following features:

o We generate 100 independent realizations of the network
topology with No = 256 PU cells; in each realization,
the transmitter-receiver pairs are deployed randomly over
an area of 1.6km x 1.6km; an irregular cell topology
is thus defined based on minimum distance; 10 SUs
are deployed randomly in each cell (each with its own
receiver).

o The large-scale pathloss is computed between each trans-
mitter and receiver based on their relative distance,
as in (1). The INR matrix ® is computed relative to
the cell centers. This is used to construct the hierarchical
aggregation tree (Algorithm 1), to estimate Ig;(¢) and
Ip;(m; ) as in (8) and (9), hence to compute the optimal
SU traffic a;t as in (15). However, the performance
is evaluated under the actual distance-dependent large-
scale pathloss and the realization of the Rayleigh fading
process, as described in the next item.

o For each realization of the network topology, we generate
1000 frames with random SU access decisions; the PU
spectrum occupancy process b; evolves according to the
Markov process described in Sec. II, with ;1 = 0.005,
vy = 0.095; in each frame, the channel is generated
according to the distance-dependent large-scale pathloss
and Rayleigh fading distribution, independent over time
and across users, as described in the signal model (2).
The SINR is then computed at each SU and PU receiver,
and the transmission is declared successful if and only if
SINR>SINRy, = 5dB. The SU and PU cell through-
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Fig. 5. Simulation with random topology and realistic large-scale pathloss.
Comparison with “consensus” scheme [17].

puts are then averaged out over the 1000 frames and

100 realizations of the network topology.
In addition to IBT, RT, Full-CSI and Uncoordinated schemes

mentioned previously, we also evaluate the performance of
the consensus-based scheme [17]. We set the degree of each
node (cell head) to be d = 5, based on which we generate a
connected graph [27]. This scheme was originally designed for
a single PU cell system without temporal dynamics in the PU
spectrum occupancy, and therefore it is not optimized to our
model, with multiple cells and temporal dynamics of spectrum
occupancy in each cell. We argue that a consensus-based
scheme, such as [17], is not well suited to capture the spatial
distribution of interference, nor the temporal dynamics, due
to the averaging process of consensus in both the spatial and
temporal dimensions. Instead, our scheme allows each SU to
estimate accurately the state of nearer cells, to which interfer-
ence will be stronger, and to track more efficiently their tem-
poral dynamics. Our numerical evaluation in Fig. 5 confirms
this observation: the consensus strategy performs poorly, with
performance close to the “Uncoordinated” scheme. On the
other hand, the performance of IBT is very close to that of
Full-NSI and significantly outperforms the “Uncoordinated”
scheme. This evaluation confirms that, despite the approxima-
tion introduced in the INR matrix ®cRNe*xNe  our multi-
scale spectrum estimation positively informs network control.

VII. CONCLUSIONS

In this paper, we have proposed a multi-scale approach to
spectrum sensing in cognitive cellular networks. To reduce the
cost of acquisition of NSI, we have proposed a hierarchical
scheme to obtain aggregate state information at multiple
scales, at each cell. We have studied analytically the per-
formance of the aggregation scheme in terms of the trade-
off among the SU cell throughput, the interference generated
by their activity to PUs, and the mutual interference of SUs.
We have accounted for aggregation delays, local estimation
errors, as well as the cost of aggregation. We have proposed
an agglomerative clustering algorithm to find a multi-scale
aggregation tree, matched to the structure of interference.
We have shown that our proposed design achieves performance
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close to that with full NSI, using only one-third of the cost of
exchange of spectrum estimates over the network.

APPENDIX A
PROOF OF LEMMA 1

Proof: 'We prove it by induction. At level-1, (20) holds

by definition, see (18). Now, let L>1 and assume (20) holds
at level-(L — 1). The induction hypothesis in (19) implies

L) 72
St = E E bj T CERIINCE (34)
keHGE ™Y jecthTh

Then, using (17) we obtain

- ¥ %

m,t
keHG ™Y jec Y

BM_&J(L) = > BM_(SJ(L), (35)
jeesy

where the last step follows from (16). The induction step,
hence the lemma, are thus proved. O

APPENDIX B
PROOF OF THEOREM 1

Proof: Lett > 0. Eq. (24) follows from the fact that a( )

is independent of b; ,, VT < t for j ¢ D§ ), and from the fact
that (b, -, M +,&;+), 7 < t are independent across cells.

We now prove (25) for a given set DZ(L) and h-distance L.
With a slight abuse of notation, “Vj” should be intended as
(13 - L " 13 2" (13 " s

VJEDE ) , and Zj as jep® Using (23),
P (b = bj,vg"a;ﬁ) = oF),vr <1)

:]P(bj,t:bjavj‘ Zgjﬁ_égm =oP) vr < t).
j J

We can rewrite it as the marginal with respect to bj7 o Yj

and ), bj,t—éﬁ-” = z, yielding

]P’(b», —b,, L),VTSt) (36)
i)

-y Z P(bj,t - bj,\fj‘bﬂ_é]m =b;, 500,V
=0 (}

Zb]t o =@ Zbﬂ s = o) ¥r <t) (D)
x P(bﬂ_é]@) = j7t_5§_L>,\fj‘ ij,t—65“ —z,
Zbﬂ s = o), vr <)
x ]P’(Z by g = Db, s = ol vr<t). (a)
J J

Using the fact that {b;,} is Markov and i.i.d. across cells, for
the term (D:E) we obtain

IP(bM - wj}bj’tfw = b, 0,
ijt s = Z
J
— HP( =

‘ gl = b-t,é(m)a
I J

(B;C)

5 = O_(,_L),VT < t)
J

(37
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since b; ¢+ is independent of all other quantities given b], RO
=95

In particular, the probability term in (37) is the 6§L) steps
transition probability of the Markov chain {b; -,V7}, ie.,

P (b =b; b, s = )

e (o) Trmom” (5, m)] "

which is equivalent to the terms D and F in (25). Next, letting
bgé) = (b] 5(L))Vj, we show that the term (B;C) is equivalent

to B and C in (25). In fact,

P(b{” =B Y0 =2.3"b, w0 = o vr <1)
j Oy

x!( D( )| —x)!
(b =) PRI
Z D)
We obtain (25) by substituting (37)-(38) into (36).
To see (38), first note that, if Z bj # w, then

(38) must be zero, since we are condltlomng on
> bjt = . Thus, we focus on the case }_; b, =
Let s; = ( M; -, &, T)v] 5(L)<7_<f 5(L) and s; be a specific
realization of the estimation process From the expression
of the local estimator, we note that bjT is a function of
(b]T 1, Mj +,&; +). Then, by induction, b -+ is a function of
(M; - ’5377’)755.”9'9 (and thus of s;), denoted as

bjr = 97_+5J(_L) (Sj).

Note that the subscript 7 + 6§L) signifies that the first 7 +
6§L) + 1 samples of (M, &) are used to compute bj .,
since —6§-L) < 7/ < 7. Importantly, bj.~ depends on the cell
index j only through 6§L) and s;, so that

YIRS S
J J
Let BS be the set of tuples (b, s) such that
dobi=a ) g(s) =
J J
Using this definition, we write the left hand side of (38) as
]P(bi‘” - B‘ Slby=a 3 by = ol vr < t)
j j

—P (bﬁ‘” ~b ‘(bg‘”, s) € BS). (39)

o) Vo< 1<t

Consider a permutation P : DEL) — DEL) of the elements in
the set DgL). Thus,

Z], gr(sp@5)) = Zj 9-(85),
Zj bp(j) = Zj bj =X.

By definition of BS, if (b,s)€BS then, under any permu-
tation, (bp,sp)eBS, where bp = (bp(j))v; and sp =
(sp(5))v;- We can thus partition BS into [U| sets, BS,,u € U,

(40)
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where U/ is a set of indexes, such that BS, contains all and
only the permutations of its elements, that is

(b,s) € BS, & (bp, sp) € BS,, VP,

(bW, sM) € BS,, (bM,sM) # (b,
= b %)) ¢ BS,,

UncuBSy = BS, BSu, NBS., =0, Yuy # us.

By marginalizing with respect to the realization of the
sequence (b, s), we then obtain

(2))’ VP @)

P (bg‘” b ‘(bﬁ‘s), s) € Bs)
=2 >
u€U (b,5)€BS,

x P((b{",s) € BS,,

JP((b{”,5)=(b,5)|(b{"),5) € BS.)

(b{”,s) € BS). (42)

Let (b s(1))eBS, and (b?), 5(2))688 By definition of
BS.,, we have that (b(?),s(?)) = (b(1 ) under some per-
mutation P. Since {(bj,-, M; +,&5,7), —5( b <7<t- 5( )} is
stationary over time and i.i.d. across cells by permutmg this
sequence across cells, we obtain a sequence with the same
probability of occurrence; in other words,

P (b, 5)=(b),s1) \(b“) s) € BS,)
P ((b,5)= (b, 5®) |(bf’
((b(é)

Hence, (bﬁd),s) has uniform distribution over the set BS,,
and we must have

P ((6”,5)=(b,51) | (b, 8)eBS.) =

eBS)

b s3) [(b7,5) € BS.), vP. (43)

IR
BSu| (D)

corresponding to all possible permutations. Substituting in
(42), we then obtain

P (bf" = B‘ (b{”,5) € BS)
D<L> PIEDY (b:b)
| u€U (b,5)EBS,,
x P((b{"),5)eBS., |(bi",s)€BS). (44)
Since there are exactly x!(|D§L)| — z)! combinations of
(bgé),s) within BS,, such that bgé) = b (since ), b; =z
by assumption), we obtain
> x(b=b)=al(D"| - ). (45)
(b,5)EBS.
Substituting in (44), we finally obtain
P (b" =b|(b{",s) € BS)
27| - ) © 0
=—t - P((b,”’,s) € BS,|(b;',s) € BS
|,D§L)|! 1%{ (( i S) u|(by”,8) )
(D] — )
_ oD - o) o
D!
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which proves (38) when Zj Bj = x. Eq. (25) is thus proved.
To conclude the proof of Theorem 1, we prove (26).
We rewrite the left hand side of (26) as

6= E(Zb(é)‘ ZgT(s

Now, assume a genie-aided case which directly observes the
sequence s, rather than the aggregates >, g-(s;), V0 < 7 <.
Using the notation of the previous part of the proof let S be
a specific realization such that ) g-(3;) = ot vo<r<t.
In the genie aided case, by the linearity of expectation we
obtain

J) = ob), Ongt). (47)

B(Y bs=5) => P (b)) =1|s=3).
J J

Since b;ist) is statistically independent of s; for j' # j given
54, by definition of s; it follows that

E(beg‘s:g) Z]P’( b =
J

:ZP(b;fi:l‘( jﬁ,gﬁ:
J

= Zéj}tﬂg;m £ gi(s).
i

Thus, ¢.(s) is sufficient to compute the posterior expecta-
tion of >, bg-f;t) in the genie-aided case. Since g¢;(s) is also
available in the non-genie-aided case, it must be the case that
O = ¢,(s) as well, yielding (26) via (23). The theorem is thus
proved. 0

APPENDIX C
PROOF OF LEMMA 2

Proof: Let 0<L<D and j € DEL). Using (24) we obtain
ZX (bj = 1)m;+(b)

= 3 Xy =1) (bft_b vj'eDD <L>=o§L>,ngt).

b VjreD™

IP( it = 1|7T’Lt (48)

Since we are considering only the cells in the set DEL),

with a slight abuse of notation, “V;” should be intended as
o (L)ss, « 5 « 5. .
VieD; 7 4y ;7 as Zj ep® and vectors are restricted

to their indices in D§L). Let bgé) = (b, ,_s))v;- Using (25),
we can rewrite (49) as !

=Y Py =108 = b))
b

xP(b,ﬁ‘s) :B‘o

]P)(bj’t = ]-|7Ti,t)

(ﬁ) = Os_L),VT < t), (49)

where

~ (L) /~
P(bj: = 1|b§-i) b;) =g + pu’i (bj - 7TB) .
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(5§L) steps transition probability to b;, = 1) and

P(bg) = B}Ugﬁ_) = oll) vr < t)

(L)
- X F(SH el =t <)
=0 j
XM (Zb ) (50)

(L)
)

Thus, we obtain

5
P(bj,e = 1|7Tzf) =mp(1 — s )

+1% S0P (b = b‘ o) = oF) yr <t). (1)
b

Now, using (50) we obtain
Z BjP(bg) = B‘Oéﬁ) = O(TL),VT < t)
b

ID{M|

Z P(ij/ = afolt) = olh),vr < t)
XMZ gX(Zb’*x) (52)
b

L
D))

Note that the sum over x starts from x = 1 instead of z = 0.
In fact, if z = 0, then b = 0 and b; = 0, which does not
contribute to (52). Finally, since there are |D( )| 1 over

x — 1 possible combinations of vectors b € {0, 1}‘D I such
that b] =1 and Zj, bj/ = x, we obtain

(D] - 2)! _
|'D(L)|| zb:b_]x(zb'—l‘) - |’D§L)|7
hence

> 0P(bf” = B‘UE? = oh),vr <)
b

D)
1 - I
:W ZmP(Zb/—x‘ —o()VT<t>
| 1 | =0 3’
(L)
Oy
= —=, (53)
L
D]
where in the last step we used (26). The lemma is thus proved
by substituting (53) into (51). U
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