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Abstract— Multi-scale spectrum sensing is proposed to
overcome the cost of full network state information on the
spectrum occupancy of primary users (PUs) in dense multi-cell
cognitive networks. Secondary users (SUs) estimate the local spec-
trum occupancies and aggregate them hierarchically to estimate
spectrum occupancy at multiple spatial scales. Thus, SUs obtain
fine-grained estimates of spectrum occupancies of nearby cells,
more relevant to scheduling tasks, and coarse-grained estimates
of those of distant cells. An agglomerative clustering algorithm
is proposed to design a cost-effective aggregation tree, matched
to the structure of interference, robust to local estimation errors,
and delays. Given these multi-scale estimates, the SU traffic is
adapted in a decentralized fashion in each cell, to optimize the
trade-off among SU cell throughput, interference caused to PUs,
and mutual SU interference. Numerical evaluations demonstrate
a small degradation in SU cell throughput (up to 15% for a 0 dB
interference-to-noise ratio experienced at PUs) compared to a
scheme with full network state information, using only one-third
of the cost incurred in the exchange of spectrum estimates. The
proposed interference-matched design is shown to significantly
outperform a random tree design, by providing more relevant
information for network control, and a state-of-the-art consensus-
based algorithm, which does not leverage the spatio-temporal
structure of interference across the network.

Index Terms— Spectrum sensing, cognitive radio, interference
management, dense networks.

I. INTRODUCTION

THE recent proliferation of mobile devices has been expo-

nential in number as well as heterogeneity [4], demanding
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new tools for the design of agile wireless networks [5]. Fifth-

generation (5G) cellular systems will meet this challenge in

part by deploying dense, heterogeneous networks, which must

flexibly adapt to time-varying network conditions. Cognitive

radios [6] have the potential to improve spectral efficiency by

enabling secondary users (SUs) to exploit resource gaps left

by legacy primary users (PUs) [7]. However, estimating these

resource gaps in real-time becomes increasingly challenging

with the increasing network densification, due to the signaling

overhead required to learn the network state [8]. Furthermore,

network densification results in irregular network topologies.

These features demand effective interference management to

fully leverage spatio-temporal spectrum access opportunities.

To meet this challenge, we develop and analyze spectrum

utilization and interference management techniques for dense

cognitive radios with irregular interference patterns. We con-

sider a multi-cell network with a set of PUs and a dense set

of opportunistic SUs, which seek access to locally unoccupied

spectrum. The SUs must estimate the channel occupancy of

the PUs across the network based on local measurements.

In principle, these measurements can be collected at a fusion

center [9]–[11], but centralized estimation may incur unac-

ceptable delays and overhead [8], [12]. To reduce this cost

and provide a form of coordination, neighboring cells may

inform each other of spectrum they are occupying [13];

however, this scheme cannot manage interference beyond

the cell neighborhood, which may be significant in dense

topologies.

We address this challenge by designing a cost-effective

multi-scale solution to detect and leverage spatio-temporal

spectrum access opportunities across the network, by exploit-

ing the structure and irregularities of interference. To do so,

note that the interference caused by a given SU depends on its

position in the network, as depicted in Fig. 1: PUs closer to

this SU will experience stronger interference than PUs farther

away. Therefore, such SU should estimate more accurately

the state of nearby PUs, in order to perform more informed

local control decisions to access the spectrum or remain idle.

In contrast, the state of PUs farther away, which experience

less interference from such SU, is less relevant to these control

decisions, hence coarser spectrum estimates may suffice. With

this in mind, the goal of our formulation is the design of

a cost-effective spectrum sensing architecture to aid local

network control, which enables each SU to estimate the

spectrum occupancy at different spatial scales (hence the name
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Fig. 1. System model (see notation in Sec. III).

“multi-scale”), so as to possess an accurate and fine-grained

estimate of the occupancy of PUs in the vicinity, and coarser

estimates of the occupancy states of PUs farther away. To

achieve this goal, we use a hierarchical estimation approach

resilient to delays and errors in the information exchange

and estimation processes, inspired by [14] in the context

of averaging consensus [15]: local measurements are fused

hierarchically up a tree, which provides aggregate spectrum

occupancy information for clusters of cells at larger and larger

spatial scales. Thus, SUs acquire precise information on the

spectrum occupancies of nearby cells – these cells are more

susceptible to interference caused by nearby SUs – and coarse,

aggregate information on the occupancies of faraway cells.

By generating spectrum occupancy estimates at multiple spa-

tial scales (i.e., multi-scale), this scheme permits an efficient

trade-off of estimation quality, cost of aggregation, estimation

delay, and provides a cost-effective means to acquire infor-

mation most relevant to network control. We derive the ideal

estimator of the global spectrum occupancy from the multi-

scale measurements, and we design the SU traffic in each cell

in a decentralized fashion so as to maximize a trade-off among

SU cell throughput, interference caused to PUs, and mutual

SU interference.

To tailor the aggregation tree to the interference pattern of

the network, we design an agglomerative clustering algorithm

[16, Ch. 14]. We measure the end-to-end performance in terms

of the trade-off among SU cell throughput, interference to PUs,

and the cost efficiency of aggregation. We show numerically

that our design achieves a small degradation in SU cell

throughput (up to 15% under a reference interference-to-noise

ratio of 0dB experienced at PUs) compared to a scheme with

full network state information, while incurring only one-third

of the cost in the aggregation of spectrum estimates across

the network. We show that the proposed interference-matched

tree design based on agglomerative clustering significantly

outperforms a random tree design, thus demonstrating that

it provides more relevant information for network control.

Finally, we compare our proposed design with the state-of-

the-art consensus-based algorithm [17], originally designed

for single-cell systems without temporal dynamics in the

PU spectrum occupancy, and we demonstrate the superiority

of our scheme thanks to its ability to leverage the spa-

tial and temporal dynamics of interference in the network

and to provide more meaningful information for network

control.

Related Work

Consensus-based schemes for spectrum estimation have

been proposed in [8], [17]–[19]: [8] proposes a mechanism

to select only the SUs with the best detection performance to

reduce the overhead of spectrum sensing; while [19] focuses

on the design of diffusion methods. Cooperative schemes

with data fusion have been proposed in [9]–[11]: [9] investi-

gates the optimal voting rule and optimal detection threshold;

[10] proposes a robust scheme to filter out abnormal measure-

ments, such as malicious or unreliable sensors; [11] analyses

and compares hard and soft combining schemes in heteroge-

neous networks. However, all these works focus on a scenario

with a single PU pair (one cell) and no temporal dynamics

in the PU spectrum occupancy state. Instead, we investigate

spectrum sensing in multi-cell networks with multiple PU pairs

and with temporal dynamics in the PU occupancy state, giving

rise to both spatial and temporal spectrum access opportu-

nities. Similar opportunities have been explored in [20], but

in the context of a single PU, and without consideration

of SU scheduling decisions. In contrast, in our paper we

investigate the impact of spectrum sensing on scheduling

decisions of SUs.

Another important difference with respect to [8], [9],

and [17]–[19] (with the exception of [20]) is that we model

temporal dynamics in the occupancy states of each PU, as a

result of PUs joining and leaving the network at random

times; in time-varying settings, the performance of spectrum

estimation may be severely affected by delays in the prop-

agation of estimates across the network, so that spectrum

estimates may become outdated. We develop a hierarchical

estimation approach that compensates for these propagation

delays. A setting with temporal dynamics has been proposed

in [20] and [21] for a single-cell system, but without consid-

eration of delays.

Finally, [22] capitalizes on sparsity due to the narrow-

band frequency use, and to sparsely located active radios,

and develops estimators to enable identification of the

(un)used frequency bands at arbitrary locations; differently

from this work, we develop techniques to track the activity

of PUs, and use this information to schedule transmissions

of SUs, hence we investigate the interplay between esti-

mation and scheduling tasks, and the role of network state

information.

We summarize the contributions of this paper as follows:

1) We propose a hierarchical framework to aggregate net-

work state information (NSI) over a multi-cell wireless

network, with a generic interference pattern among cells,

which enables spectrum estimation at multiple spatial

scales, most informative to network control. We study

its performance in terms of the trade-off between the

SU cell throughput and the interference caused to the

PUs. We design the optimal SU traffic in each cell in a

decentralized fashion, so as to manage the interference

caused to other PUs and SUs.
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TABLE I

TABLE OF NOTATION

2) We show that the belief of the spectrum occupancy vec-

tor is statistically independent across subsets of cells at

different spatial scales, and uniform within each subset

(Theorem 1), up to a correction factor that accounts for

mismatches in the aggregation delays. This result greatly

facilitates the estimation of the interference caused to

PUs (Lemma 3).

3) We address the design of the hierarchical aggregation

tree under a constraint on the aggregation cost based on

agglomerative clustering [16, Ch. 14] (Algorithm 1).

Our analysis demonstrates that multi-scale spectrum estima-

tion using hierarchical aggregation matched to the structure of

interference is a much more cost-effective solution than fine-

grained network state estimation, and provides more valuable

information for network control. Additionally, it demonstrates

the importance of leveraging the spatial and temporal dynam-

ics of interference arising in dense multi-cell systems, made

possible by our multi-scale strategy; in contrast, consensus-

based strategies, which average out the spectrum estimate over

multiple cells and over time, are unable to achieve this goal

and perform poorly in dense multi-cell systems.

This paper is organized as follows. In Sec. II, we present

the system model. In Sec. III, we present the proposed local

and multi-scale estimation algorithms, whose performance is

analyzed in Sec. IV. In Sec. V, we address the tree design.

In Sec. VI, we present numerical results and, in Sec. VII,

we conclude this paper. The main proofs are provided in the

Appendix. Table I provides the main parameters and metrics.

II. SYSTEM MODEL

A. Network Model

We consider the network depicted in Fig. 1, composed

of a multi-cell network of PUs with NC cells operating in

downlink, indexed by C≡{1, 2, . . . , NC}, and an unlicensed

network of SUs. The receivers are located in the same cell as

their transmitters, so that they receive from the closest access

point. Transmissions are slotted and occur over frames. Let

t be the frame index, and bi,t∈{0, 1} be the PU spectrum

occupancy of cell i∈C during frame t, with bi,t = 1 if occupied

and bi,t = 0 otherwise. We suppose that {bi,t, t ≥ 0, i ∈ C}
are independent and identically distributed (i.i.d.) across cells

and evolve according to a two-state Markov chain, as a result

of PUs joining and leaving the network at random times.

We define the transition probabilities as

ν1 � P(bi,t+1 = 1|bi,t = 0), ν0 � P(bi,t+1 = 0|bi,t = 1),

where µ�1−ν1−ν0 is the memory of the Markov chain, which

dictates the rate of convergence to its steady-state distribution.

Hence, πB�P(bi,t = 1) = ν1

1−µ at steady-state. We denote the

state of the network at time t as bt = (b1,t, b2,t, . . . , bNC,t).
We assume that PUs and SUs coexist in the same spectrum

band. Let Mi,t be the number of SUs in cell i at time t, which

may vary over time as a result of SUs joining and leaving the

network. We collect Mi,t in the vector Mt.

Assumption 1: {Mt,t≥0} are i.i.d. across cells, stationary

and independent of {bt,t≥0}, that is

P
(
bt = b̃t,Mt = M̃t, ∀t ∈ T

)
=

∏

i

P
(
bi,t = b̃i,t, t∈T

)

×P
(
Mi,t = M̃i,t, t∈T

)
(independence),

P
(
Mi,t = M̃i,t, t∈T

)
=P

(
Mi,t−δ = M̃i,t, t∈T

)
(stationarity).

where T is a time interval and δ > 0 is a delay. Additionally,

Mi,t > 0, ∀i, t (dense network). �

Assumption 1 guarantees that spectrum estimates are “sta-

tistically symmetric” [23], i.e., they exhibit the same statistical

properties at different cells and delay scales. An example

which obeys Assumption 1 is when Mi,t is a Markov chain

taking values from Mi,t > 0, i.i.d. across cells. The SUs

opportunistically access the spectrum to maximize their own

cell throughput, while at the same time limiting the interfer-

ence caused to other SUs and to the PUs. Their access decision

is governed by the local SU access traffic ai,t∈[0, Mi,t] for

SUs in cell i. We assume an uncoordinated SU access strategy

so that, given ai,t, all the Mi,t SUs in cell i access the

channel with probability ai,t/Mi,t, independently of each
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other.1 Therefore, ai,t represents the expected number of SU

transmissions in cell i. We let at = (a1,t, a2,t, . . . , aNC ,t).
Transmissions of SUs and PUs generate interference to

each other. We denote the interference to noise ratio (INR)

generated by the activity of a transmitter in cell i to a receiver

in j as φi,j≥0, collected into the symmetric (due to channel

reciprocity) matrix Φ∈R
NC×NC . Typically,

[φi,j ]dB = [Ptx]dBm − [N0Wtot]dBm

− [Lref ]dB − αi,j [di,j/dref ]dB (1)

(see, e.g., [24]), where Ptx is the transmission power, common

to all PUs and SUs, N0 is the noise power spectral density

and Wtot is the signal bandwidth; Lref is the large-scale

pathloss at a reference distance dref , based on Friis’ free

space pathloss formula, and [di,j/dref ]αi,j is the distance

dependent component, with di,j and αi,j the distance and

pathloss exponent between cells i and j. We assume that the

intended receiver of each PU or SU transmission is located

within the cell radius, so that φi,i is the SNR to the intended

receiver in cell i. In practice, the large-scale pathloss exhibits

variations as transmitter or receiver are moved within the cell

coverage. Thus, φi,j can be interpreted as an average of these

pathloss variations, or a low resolution approximation of the

large-scale pathloss map. This is a good approximation due

to the small cell sizes arising in dense cell deployments,

as considered in this paper. In Sec. VI (Fig. 5), we will

demonstrate its robustness in a more realistic setting.

B. Network Performance Metrics

We label each SU as (j, n), denoting the nth SU in cell j.

Let vj,n,t ∈ {0, 1} be the indicator of whether SU (j, n)
transmits based on the probabilistic access decision outlined

above; this is stacked in the vector vt. If the reference

SU (i, 1) transmits, the signal received by the corresponding

SU receiver is

yi,1(t) =
√

φi,ih
(s)
i,1 (t)x

(s)
i,1 (t) + wi,1(t) + ni,1(t), (2)

where we have defined the interference signal

wi,1(t) �
∑

(j,n) �=(i,1)

√

φj,ih
(s)
j,n(t)vj,n,tx

(s)
j,n(t)

+

NC∑

j=1

√

φj,ih
(p)
j (t)bj,tx

(p)
j (t), (3)

h
(s)
j,n(t) is the fading channel between SU (j, n) and the

reference SU (i, 1), with x
(s)
j,n(t) the unit energy transmitted

signal; h
(p)
j (t) is the fading channel between PU j (transmit-

ting in downlink) and SU (i, 1), with x
(p)
j (t) the unit energy

transmitted signal; φj,i is the large-scale pathloss between

cells j and i, see (1); ni,1(t)∼CN (0, 1) is circular Gaussian

noise; we assume Rayleigh fading, so that h
(s)
j,n(t), h

(p)
j (t) ∼

CN (0, 1). The transmission is successful if and only if the

1We assume that Mi,t is known in cell i, and a local control channel is
available to regulate the local SU traffic ai,t .

SINR exceeds a threshold SINRth; we then obtain the success

probability of SU (i, 1), conditional on vt and bt,

ρi,1(vt,bt) = P

(

φi,i|h(s)
i,1 (t)|2

1 + |wi,1(t)|2
> SINRth

∣
∣
∣
∣
∣
vt,bt

)

. (4)

Noting that wi,1(t)|(vt,bt) is circular Gaussian with zero

mean and variance

E[|wi,1(t)|2|vt,bt] �

NC∑

j=1

φj,iηj +

NC∑

j=1

φj,ibj,t − φi,i, (5)

where ηj �
∑Mj,t

n=1 vj,n,t is the number of SUs that attempt

spectrum access in cell j, we obtain

ρi(vt,bt)=
e−SINRth/φi,i

1+SINRth

[
∑NC

j=1
φj,i

φi,i
ηj +

∑NC

j=1
φj,i

φi,i
bj,t − 1

]

.

Then, the throughput in cell i, conditional on the SU traffic at

and PU network state bt, is obtained by noting that each of the

ηi SUs succeed with probability ρi; hence, taking the expec-

tation with respect to the number of SUs performing spectrum

access, ηj∼BMj,t
(aj,t/Mj,t) (binomial random variable with

probability aj,t/Mj,t and Mj,t trials), we obtain

ri,t(at,bt) (6)

� Eη

⎡

⎣
ηi exp

{

− 1
φi,i

SINRth

}

1+SINRth

[
∑NC

j=1
φj,i

φi,i
ηj−1+

∑NC

j=1
φj,i

φi,i
bj,t

]

∣
∣
∣
∣
∣
∣

at,bt

⎤

⎦

= Eη,η̂i

⎡

⎣
ai,t exp

{

− 1
φi,i

SINRth

}

1+SINRth

[

η̂i+
∑

j �=i
φj,i

φi,i
ηj+

∑NC

j=1
φj,i

φi,i
bj,t

]

∣
∣
∣
∣
∣
∣

at,bt

⎤

⎦,

where the second equality is obtained by the change of

variable η̂i = ηi − 1, with η̂i∼B(ai,t/Mi,t, Mi,t − 1). The

computation of the SU cell throughput using this formula

has high complexity, due to the outer expectation. Therefore,

we resort to a lower bound. Noting that the argument of the

expectation is a convex function of ηj , ∀j and η̂i, Jensen’s

inequality yields

ri,t(at,bt)

≥
ai,t exp

{

− 1
φi,i

SINRth

}

1 + SINRth

∑NC

j=1
φj,i

φi,i
(aj,t + bj,t) − SINRth

ai,t

Mi,t

.

Cell i selects ai,t based on partial NSI, denoted by the local

belief πi,t(b) that bt = b. Taking the expectation over bt

conditional on πi,t and using Jensen’s inequality, we obtain

E [ri,t(at,bt)|πi,t]

≥
ai,t exp

{

− 1
φi,i

SINRth

}

1 + SINRth

[
ai,t(1 − M−1

i,t ) + IP,i(πi,t) + IS,i(t)
]

� r̂i,t(ai,t, IP,i(πi,t)), (7)

where we have defined

IS,i(t)�
∑

j �=i

φj,i

φi,i
aj,t, (8)

IP,i(πi,t)�E

⎡

⎣

NC∑

j=1

φj,i

φi,i
bj,t

∣
∣
∣
∣
∣
∣

πi,t

⎤

⎦=

NC∑

j=1

φj,i

φi,i
P (bj,t =1|πi,t). (9)
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The terms IS,i(t) and IP,i(πi,t) represent, respectively, an esti-

mate of the interference strength caused by SUs and PUs

operating in the rest of the network to the reference SU

in cell i. Additionally, due to channel reciprocity and the

resulting symmetry on Φ, IP,i(πi,t) represents an estimate of

the interference strength caused by the reference SU to the

rest of the PU network.

Herein, we use r̂i,t in (7) to characterize the performance

of the SUs. Since this is a lower bound to the actual SU

cell throughput, using r̂i,t as a metric provides performance

guarantees. Note that the performance depends upon the

network-wide SU activity at via IS,i(t); in turn, each aj,t is

decided based on the local belief πj,t, which may be unknown

to the SUs in cell i (which operate under a different belief

πi,t). Therefore, maximization of r̂i,t(ai,t, IP,i(πi,t)) can be

characterized as a decentralized decision problem, which does

not admit polynomial time algorithms [25]. To achieve low

computational complexity, we relax the decentralized decision

process by assuming that IS,i(t) is known to cell i in slot t.
This assumption is based on the following practical arguments:

due to the Markov chain dynamics of bt, at varies slowly

over time, hence IS,i(t) can be estimated by averaging the

SU traffic over time; additionally, the spatial variations of

at are averaged out in the spatial domain since IS,i(t) is a

weighted sum of aj,t across cells, yielding slow variations

on IS,i(t) due to mean-field effects. In Sec. IV, we will

present an approach to estimate IS,i(t) and IP,i(πi,t) based

on hierarchical information exchange over the SU network.

We define the average INR experienced by the PUs as a

result of the activity of the SUs as

INR(at,bt) �
1

NCπB

NC∑

j=1

NC∑

i=1

ai,tφi,jbj,t, (10)

where NCπB is the average number of active PUs at steady-

state. In fact, the expected number of SUs transmitting in cell

i is ai,t, so that ai,tφi,j is the overall interference caused by

SUs in cell i to the PU in cell j. INR(at,bt) is then obtained

by averaging this effect over the network. Herein, we isolate

the contribution due to the SUs in cell i on (10), yielding

ιP,i(ai,t,bt) �
1

πB
ai,t

NC∑

j=1

φi,jbj,t, (11)

so that INR(at,bt) � 1
NC

∑NC

i=1 ιP,i(ai,t,bt). By computing

the expectation with respect to the local belief πi,t and using

the symmetry of Φ, we then obtain

ιP,i(ai,t, IP,i(πi,t)) � E[ιP,i(ai,t,bt)|πi,t]

=
1

πB
ai,tφi,iIP,i(πi,t). (12)

Since the goal of SUs is to maximize their own cell

throughput, while minimizing their interference to the PUs,

we define the local utility as a payoff minus cost function,

ui,t(ai,t, IP,i(πi,t))

� r̂i,t(ai,t, IP,i(πi,t)) − λιP,i(ai,t, IP,i(πi,t)), (13)

where λ>0 is a cost parameter which balances the two

competing goals. Given πi,t, the goal of the SUs in cell i is to

design ai,t so as to maximize ui,t(ai,t, IP,i(πi,t)). Since this

is a concave function of ai,t (as can be seen by inspection),

we obtain the optimal SU traffic

a∗
i,t(IP,i(πi,t)) � arg max

ai,t∈[0,Mi,t]

ui,t(ai,t, IP,i(πi,t))

=

[√
1 + SINRth [IP,i(πi,t) + IS,i(t)]

SINRth(1 − 1/Mi,t)
(14)

×
( √

πBe
−

SINRth
2φi,i

√

λφi,iIP,i(πi,t)
−
√

1+SINRth [IP,i(πi,t) + IS,i(t)]

)]Mi,t

0

,

where [·]m0 = min{max{·, 0}, m} denotes the projection

operation onto the interval [0, m]. It can be shown by inspec-

tion that both a∗
i,t and u∗

i,t are non-increasing functions of

IP,i(πi,t), so that, as the PU activity increases (IP,i(πi,t)
increases), the SU activity and the local utility both decrease;

when IP,i(πi,t) is above a certain threshold, then a∗
i,t = 0

and u∗
i,t(IP,i(πi,t)) = 0; indeed, in this case the PU network

experiences high activity, hence SUs remain idle to avoid

interfering. Additionally, u∗
i,t(IP,i(πi,t)) is a convex function

of IP,i(πi,t). Then, by Jensen’s inequality,

u∗
i,t(IP,i(πi,t)) ≤

∑

b∈{0,1}NC

πi,t(b)u∗
i,t(IP,i(Ib)), (15)

where Ib is the Kronecker delta function centered at b, reflect-

ing the special case when bt is known, so that u∗
i,t(IP,i(Ib))

represents the utility achieved when bt = b, known. Conse-

quently, the expected network utility is maximized when bt is

known (full NSI). Thus, the SUs should, possibly, obtain full

NSI in order to achieve the best performance. To approach

this goal, the SUs in cell i should obtain bt in a timely

fashion. To this end, the SUs in cell j 	=i should report the

local and current spectrum state bj,t to the SUs in cell i via

information exchange, potentially over multiple hops. Since

this needs to be done over the entire network (i.e., for every

pair (i, j) ∈ C2), the associated overhead may be impractical

in dense multi-cell network deployments. Additionally, these

spectrum estimates may be noisy and delayed, hence they

may become outdated and not informative for network control.

In order to reduce the overhead of full-NSI, we now develop

a scheme to estimate spectrum occupancy based on delayed,

noisy, and aggregate (vs timely, noise-free and fine-grained)

spectrum measurements over the network.

III. LOCAL AND MULTI-SCALE

ESTIMATION ALGORITHMS

In this section, we propose a method to estimate IP,i(πi,t)
and IS,i(t) at cell i based on hierarchical information

exchange. To this end, SUs exchange estimates of the local

PU spectrum occupancy bi,t, denoted as b̂i,t, as well as the

local SU traffic decision variable ai,t. For conciseness, we will

focus on the estimation of IP,i(πi,t) in this section; however,

the same technique can be applied straightforwardly to the

estimation of IS,i(t) as well. In fact, IP,i(πi,t) and IS,i(t)
have the same structure – they both are a weighted sum of the

respective local variables E[bi,t|πi,t] and ai,t, with weights
φj,i

φi,i
, see (8)-(9), hence they can be similarly estimated.
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A. Aggregation Tree

To reduce the cost of acquisition of NSI, we propose

a multi-scale approach to spectrum sensing. To this end,

we partition the cell grid into P sets Cp, p = 1, . . . , P ,

and define a tree on each Cp, designed in Sec. V. Since

each edge in the tree incurs delay, P disconnected trees are

equivalent to a single tree where the edges connecting each

of the P subtrees to the root have infinite delay (and thus,

provide outdated, non-informative NSI). Hence, without loss

of generality, we assume P = 1 where, possibly, some edges

incur infinite delay.

Level-0 contains the leaves, represented by the cells C.

To each cell, we associate the singleton set C(0)
i ≡{i}, i∈C.2

At level-1, let C(1)
k , 1≤k≤n(1) be a partition of C into n(1)≤|C|

non-empty subsets, each associated to a cluster head k. The

set of n(1) level-1 cluster heads is denoted as H(1). Hence,

C(1)
k is the set of cells associated to the level-1 cluster head

k∈H(1), see Fig. 1.

Recursively, at level-L, let H(L) be the set of level-L
cluster heads, with L≥1. If |H(L)| = 1, then we have

defined a tree with depth D = L. Otherwise, we define

a partition of H(L) into n(L+1)≤|H(L)| non-empty subsets

H(L)
m , m = 1, . . . , n(L+1), each associated to a level-(L + 1)

cluster head, collected in the set H(L+1)≡{1, . . . , n(L+1)}. Let

C(L+1)
m be the set of cells associated to level-(L + 1) cluster

head m ∈ H(L+1). This is obtained recursively as

C(L+1)
m =

⋃

k∈H
(L)
m

C(L)
k , ∀m ∈ H(L+1). (16)

We are now ready to state some important definitions.

Definition 1: We define the hierarchical distance (h-

distance) between cells i, j∈C as

Λi,j � min
{

L ≥ 0 : i, j ∈ C(L)
m , ∃m ∈ H(L)

}

. �

In other words, Λi,j is the smallest level of the cluster

containing both i and j. It follows that the h-distance between

cell i and itself is Λi,i = 0, and it is symmetric (Λi,j = Λj,i).

Definition 2: Let D(L)
i be the set of cells at h-distance L

from cell i: D(0)
i ≡{i}, and, for all m ∈ H(L), k ∈ H(L−1)

m ,

i ∈ C(L−1)
k (then, k is the level-(L− 1) cluster head of cell i)

D(L)
i ≡ C(L)

m \ C(L−1)
k , L > 0. �

In fact, C(L)
m contains all cells at h-distance (from cell i)

less than (or equal to) L. Thus, we obtain D(L)
i by removing

from C(L)
m all cells at h-distance less than (or equal to) L− 1,

C(L−1)
k (note that this is a subset of C(L)

m , since k ∈ H(L−1)
m ).

For example, with reference to Fig. 1, D(0)
1 ≡ {1} (cell 1 is

at h-distance 0 from itself), D(1)
1 ≡ {2, 5, 6} (cells 2, 5 and 6

are at h-distance 1 from cell 1), D(2)
1 ≡ {3, 4, 7, 8} (cells 3,

4, 7 and 8 are at h-distance 2 from cell 1).

2Note that C
(0)
i represents cell i, containing Mi,t>0 SUs (Assumption 1).

B. Local Estimation

The first portion of the frame is used by SUs for spectrum

sensing, the remaining portion for data communication. Thus,

spectrum sensing does not suffer from SU interference.

Remark 1: This frame structure requires accurate synchro-

nization among SUs, achievable using techniques developed

in [26]. Loss of synchronization may cause overlap between

the sensing and communication phases; herein, we assume that

the duration of the sensing phase is sufficiently larger than

synchronization errors, so that this overlap is negligible.

In the spectrum sensing portion of frame t, Mi,t SUs in cell

i estimate bi,t. Each of the Mi,t SUs observe the local state

bi,t through a binary asymmetric channel, BC(ǫF , ǫM ), where

ǫF is the false-alarm probability (bi,t = 0 is detected as being

occupied) and ǫM is the mis-detection probability (bi,t = 1
is detected as being unused). In practice, each SU measures

the received energy level and compares it to a threshold; the

value of this threshold entails a trade-off between ǫF and ǫM .

We assume that these Mi,t spectrum measurements are i.i.d.

across SUs (given bi,t). In principle, ǫF , ǫM may vary over

cells and time, but for simplicity we treat them as constant.

Then, these measurements are fused at a local fusion center

at the cell level,3 and then up the hierarchy, using an out-

of-band channel which does not interfere with PUs. Thus, the

number of measurements that detect (possibly, with errors) the

spectrum as occupied in cell i, denoted as ξi,t∈{0, . . . , Mi,t},

is a sufficient statistic to estimate bi,t. Let

b̄i,t � P(bi,t = 1|past measurements)

be the prior probability of occupancy of cell i, time t, given

measurements collected up to t (excluded). After collecting

the Mi,t measurements, the cell head estimates bi,t as

b̂i,t � P(bi,t = 1|past measurements, ξi,t = ξ)

=
b̄i,tP(ξi,t =ξ|bi,t =1)

b̄i,tP(ξi,t =ξ|bi,t =1)+(1− b̄i,t)P(ξi,t =ξ|bi,t =0)
,

where the second step follows from Bayes’ rule. Note that

[ξi,t|bi,t = 1]∼BMj,t
(1 − ǫM ) and [ξi,t|bi,t = 0]∼BMj,t

(ǫF ).
Thus, we obtain

b̂i,t =
b̄i,t (1 − ǫM )

ξ
ǫ
Mi,t−ξ
M

b̄i,t (1 − ǫM )
ξ
ǫ
Mi,t−ξ
M + (1 − b̄i,t)ǫ

ξ
F (1 − ǫF )

Mi,t−ξ
.

Given b̂i,t, the prior probability in the next frame is obtained

based on the spectrum occupancy dynamics as

b̄i,t+1 � P(bi,t+1 = 1|past measurements, ξi,t = ξ)

= (1 − ν0)b̂i,t + ν1(1 − b̂i,t) = (1 − µ)πB + µb̂i,t.

C. Hierarchical Information Exchange Over the Tree

In the previous section, we discussed the local estimation

at the cell level. We now describe the hierarchical fusion

of local estimates to collect multi-scale NSI. This fusion is

3The optimal design of decision threshold, local estimators, fusion rules,
are outside the scope of this paper and can be found in other prior work, such
as [9]–[11], for the case of a single-cell.
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Fig. 2. Aggregation process referred to Fig. 1, and aggregate estimates relative to cell 1.

patterned after hierarchical averaging [14], a technique for

scalar average consensus in wireless networks.

The aggregation process running at each node is depicted

in Fig. 2. The cell head, after the local spectrum sensing

in frame t, has a local spectrum estimate b̂i,t. These local

estimates are fused up the hierarchy, incurring delay. Let

δ
(L)
i ≥ 0 be the delay to propagate the spectrum estimate of

cell i all the way up to its level-L cluster head n. It includes

the local processing time at each intermediate level-l clus-

ter head traversed before reaching the level-L cluster head,

as well as the delay to traverse the links (possibly, multi-hop)

connecting successive cluster heads. We assume that δ
(L)
i is

an integer, multiple of the frame duration; in fact, scheduling

of SUs transmissions in the data communication phase is done

immediately after spectrum sensing, hence a spectrum estimate

with non-integer delay δ
(L)
i can only be used for scheduling

decisions with delay ⌈δ(L)
i ⌉. In the special case when δ

(L)
i = 0,

the estimate of cell i becomes immediately available to the

level-L cluster head; if δ
(L)
i = 1, it becomes available for

data communication in the following frame, and so on.

We assume that δ
(L)
i ≤δ

(L+1)
i , i.e., the delay augments

as the local spectrum estimates are aggregated at higher

levels. More precisely, let ∆
(L−1)
m be the delay between the

level-(L − 1) cluster head m, and its level-L cluster head n,

with m ∈ H(L−1)
n . We can thus express δ

(L)
i as

δ
(L)
i = δ

(L−1)
i + ∆

(L−1)
hi

=

L∑

l=1

∆
(l−1)
hi

, (17)

where h
(l)
i is the level-l cluster head of cell i. By the end of

the spectrum sensing phase, the level-1 cluster head m∈H(1)

receives the spectrum estimates from its cluster C(1)
m : b̂

i,t−δ
(1)
i

is received from cell i∈C(1)
m with delay δ

(1)
i ≥0. These are

aggregated at the level-1 cluster head as

S
(1)
m,t �

∑

i∈C
(1)
m

b̂
i,t−δ

(1)
i

, ∀m ∈ H(1), (18)

each with its own delay. This process continues up the

hierarchy: the level-L cluster head m∈H(L) receives S
(L−1)
k,t−δ

from the level-(L − 1) cluster heads k∈H(L−1)
m connected to

it, with delay ∆
(L−1)
k , and aggregates them as

S
(L)
m,t =

∑

k∈H
(L−1)
m

S
(L−1)
k,t−∆k

, (19)

each with its own delay ∆
(L−1)
k . Importantly, these delays may

differ from each other, hence S
(L)
m,t does not truly reflect the

aggregate spectrum at a given time. For this reason we denote

S
(L)
m,t as the delay mismatched aggregate spectrum estimate at

level-L cluster head m. The next lemma relates S
(L)
m,t to the

local estimates.

Lemma 1: Let m ∈ H(L) be a level-L cluster head. Then,

S
(L)
m,t =

∑

j∈C
(L)
m

b̂
j,t−δ

(L)
j

. (20)

Proof: See Appendix A. �

Despite mismatched delays, in Sec. IV we show that cell i
can compensate them via prediction.

Remark 2: Note that the aggregation process runs in a

decentralized fashion at each node: level-L cluster head m
needs only information about the set of level-(L − 1) cluster

heads connected to it, k∈H(L−1)
m , and the delays ∆

(L−1)
k . This

information is available at each node during tree formation;

delays may be estimated using time-stamps associated with the

control packets. The aggregation process has low complexity:

each cluster-head simply aggregates the delay mismatched

aggregate spectrum estimates from the lower level cluster

heads connected to it, and transmits this aggregate estimate

to its higher level cluster head.

Eventually, the aggregate spectrum measurements are fused

at the root (level-D) as

S
(D)
1,t =

∑

k∈H
(D−1)
1

S
(D−1)
k,t−∆k

=
∑

j∈C

b̂
j,t−δ

(D)
j

, (21)
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where we used Lemma 1 and C(D)
1 ≡C. Upon reaching level-D

and each of the lower levels, the aggregate spectrum estimates

are propagated down to the individual cells i∈C over the tree.4

Therefore, at the beginning of frame t, the SUs in cell i
receive the delay mismatched aggregate spectrum estimates

from their level-L cluster heads h
(L)
i , L = 0, . . . , D,

⎧

⎨

⎩

S
(0)
i,t = b̂i,t,

S
(L)
hi,t

=
∑

j∈C
(L)
hi

b̂
j,t−δ

(L)
j

, 1 ≤ L < D,

where we remind that C(L)
hi

is the set of cells associated to

h
(L)
i at level L, and δ

(L)
j is the delay for the estimate of bj,t

to propagate to the level-L cluster head h
(L)
i . From this set

of measurements, cell i can compute the aggregate spectrum

estimate of the cells at all h-distances from itself as
{

σ
(0)
i,t � S

(0)
hi,t

= b̂i,t,

σ
(L)
i,t � S

(L)
hi,t

− S
(L−1)
hi,t−∆hi

, 1 ≤ L ≤ D.
(22)

To interpret σ
(L)
i,t as the aggregate estimate at h-distance L

from cell i, note that Lemma 1 yields

σ
(L)
i,t =

∑

j∈C
(L)
hi

b̂
j,t−δ

(L)
j

−
∑

j∈C
(L−1)
hi

b̂
j,t−δ

(L−1)
j −∆

(L−1)
hi

.

Since i, j∈C(L−1)
hi

share the same level-(L−1) and -L cluster

heads, h
(L−1)
i and h

(L)
i , (17) yields

δ
(L−1)
j + ∆

(L−1)
hi

= δ
(L)
j .

Then, ∀ L = 1, 2, . . . , D, using Definition 2 we obtain

σ
(L)
i,t =

∑

j∈C
(L)
hi

b̂
j,t−δ

(L)
j

−
∑

j∈C
(L−1)
hi

b̂
j,t−δ

(L)
j

=
∑

j∈D
(L)
i

b̂
j,t−δ

(L)
j

, (23)

so that σ
(L)
i,t represents the delay mismatched aggregate spec-

trum estimate of cells at h-distance L from cell i (j∈D(L)
i ).

Thus, with this method, the SUs in cell i can compute the delay

mismatched aggregate estimate at multiple scales correspond-

ing to different h-distances, given delayed measurements.

Notably, only aggregate and delayed estimates are available,

rather than timely information on the state of each cell. These

are used to update the belief πi,t in Sec. IV.

IV. ANALYSIS

Given past and current delayed spectrum estimates across

all h-distances, σi,τ = (σ
(0)
i,τ , σ

(1)
i,τ , . . . , σ

(D)
i,τ ), τ = 0, . . . , t,

the form of the local belief πi,t is provided in the following

theorem.

Theorem 1: Given σi,τ , τ = 0, 1, . . . , t, we have

πi,t(b)=

D∏

L=0

P

(

bj,t = bj, ∀j ∈D(L)
i |σ(L)

i,τ , ∀τ = 0, . . . , t
)

, (24)

4We include the propagation delay from the cluster head back to the single

cells in δ
(L)
i .

where, letting x =
∑

j∈D
(L)
i

bj ,

P

(

bj,t = bj, ∀j ∈ D(L)
i

∣
∣
∣σ

(L)
i,τ , ∀τ = 0, . . . , t

)

=

|D
(L)
i |

∑

x=0

P

( ∑

j∈D
(L)
i

b
j,t−δ

(L)
j

= x
∣
∣
∣σ

(L)
i,τ , ∀τ = 0, . . . , t

)

︸ ︷︷ ︸

A

× x!|D(L)
i − x|!

|D(L)
i |!

︸ ︷︷ ︸

B

∑

b̃j ,j∈D
(L)
i

χ
( ∑

l∈D
(L)
i

b̃l = x
)

︸ ︷︷ ︸

C

×
∏

l∈D
(L)
i

[

πB + µδ
(L)
l

(

b̃l − πB

)]bl

︸ ︷︷ ︸

D

×
[

1 − πB − µδ
(L)
l

(

b̃l − πB

)]1−bl

︸ ︷︷ ︸

E

, (25)

where χ(·) is the indicator function. Additionally,

E

( ∑

j∈D
(L)
i

b
j,t−δ

(L)
j

∣
∣
∣σ

(L)
i,τ , ∀τ = 0, . . . , t

)

= σ
(L)
i,t . (26)

Proof: See Appendix B. �

We note the following facts related to Theorem 1:

1) Equation (24) implies that πi,t is statistically indepen-

dent across the subsets of cells at different h-distances

from cell i; this result follows from Assumption 1, which

guarantees independence of spectrum occupancies and

spectrum sensing across cells.

2) Equation (25) contains five terms. “A” is the proba-

bility distribution of the delay mismatched aggregate

spectrum occupancy given past estimates. “B” is the

probability of a specific realization of b
j,t−δ

(L)
j

, j∈D(L)
i ,

given that its aggregate equals x, whereas “C” is the

marginal over all these realizations; since there are

|D(L)
i |!/x!/(|D(L)

i |−x)! combinations of such spectrum

occupancies, Assumption 1 implies that they are uni-

formly distributed, yielding “B”.5 Finally, terms “D”

and “E” represent the δ
(L)
l steps transition probability

from b
l−δ

(L)
l

= b̃l to bj,t = 1 and bj,t = 0, respectively.

3) Equation (26) states that the expected delay mismatched

aggregate occupancy over D(L)
i equals σ

(L)
i,t , indepen-

dently of past spectrum estimates. However, its prob-

ability distribution (“A” in (25)) does depend on past

estimates.

4) In general, the term “A” in (25) cannot be computed

in closed form, except in some special cases (e.g.,

noiseless measurements [2]). However, we will now

show that a closed-form expression is not required to

compute IP,i(πi,t), hence the expected utility in cell i
via (13). To this end, in the next lemma we compute

P(bj,t = 1|πi,t) in closed form.

5If Assumption 1 does not hold, estimates of aggregate occupancies could
provide information as to favor certain realizations over others, for instance,
by leveraging different temporal correlations at different cells.
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Lemma 2: For j ∈ D(L)
i , we have

P(bj,t = 1|πi,t) = πB + µδ
(L)
j

(

σ
(L)
i,t

|D
(L)
i |

− πB

)

. (27)

Proof: See Appendix C. �

We now compute IP,i(πi,t). Partitioning C based on the

h-distances from i, (9) yields

IP,i(πi,t) �

D∑

L=0

∑

j∈D
(L)
i

φj,i

φi,i
P (bj,t = 1|πi,t) . (28)

Then, substituting (27) in (28) and letting
⎧

⎪⎪⎨

⎪⎪⎩

Φtot,i �
∑

j∈C

φj,i

φi,i
,

Φ
(L)
del,i �

∑

j∈D
(L)
i

µδ
(L)
j

φj,i

φi,i

(29)

be the total mutual interference generated between the SUs in

cell i and the PU network (Φtot,i), and the delay compensated

mutual interference generated between cell i and the cells

at h-distance L from cell i (Φ
(L)
del,i), we obtain the following

lemma.

Lemma 3: The expected PU activity experienced in cell i
is given by

IP,i(σi,t) � πBΦtot,i +

D∑

L=0

(

σ
(L)
i,t

|D(L)
i |

− πB

)

Φ
(L)
del,i. (30)

Above, for convenience, we have expressed the dependence

of IP,i(·) on σi,t, rather than on πi,t. Thus, the local util-

ity (13) can be computed accordingly. Note that IP,i(σi,t)
depends on the clustering of cells across multiple spatial

scales that affect the delay mismatched aggregate spectrum

estimates σ
(L)
i,t , hence on the tree employed for hierarchical

information exchange. In the next section, we propose a tree

design matched to the structure of interference.

V. TREE DESIGN

The network utility depends crucially on the tree employed

for information exchange. Its optimization over all possible

trees is a combinatorial problem with high complexity. Thus,

we use agglomerative clustering, developed in [16, Ch. 14],

in which a tree is built by successively combining smaller

clusters based on a “closeness” metric, that we now develop.

Note that in our problem the goal is for cell i to estimate

the INR generated to the PUs as accurately as possible,
∑NC

j=1
φj,i

φi,i
bj,t. This estimate is denoted as IP,i(πi,t), see (9).

In fact, given IP,i(πi,t), SUs in cell i can schedule the optimal

SU traffic a∗
i,t(IP,i(πi,t)) via (15), hence the optimal utility

via (13). With the hierarchical information exchange described

in the previous section, this estimate is given by (30).

Therefore, the goal is to design the tree in such a way as to

estimate
∑NC

j=1
φj,i

φi,i
bj,t as accurately as possible via IP,i(σi,t)

in (30). At the same time, since all cells share the same tree,

such design should take into account this goal across all cells.

We develop a heuristic metric to attain this goal. To this

end, we notice the following facts: 1) since higher levels

correspond to larger and larger clusters over which spectrum

estimates are aggregated (for instance, with reference to Fig. 1,

|D(0)
1 | = 1, |D(1)

1 | = 3 and |D(2)
1 | = 4 at h-distances 0, 1, 2,

respectively), higher levels correspond to coarser estimates of

spectrum occupancy, whereas lower levels correspond to fine-

grained estimates; 2) from (30), it is apparent that terms with

larger Φ
(L)
del,i affect more strongly IP,i(σi,t). Therefore, cluster

aggregation resulting in larger Φ
(L)
del,i should occur at lower

hierarchical levels, associated with fine-grained estimation.

Taking these facts into account, we denote the “aggregation”

metric between n, m∈H(L) as

Γ(L)
n,m = µ∆n,m

[
∑

i∈C
(L)
n

∑

j∈C
(L)
m

µδ
(L)
j

φj,i

φi,i
+

∑

i∈C
(L)
m

∑

j∈C
(L)
n

µδ
(L)
j

φj,i

φi,i

]

.

(31)

Γ
(L)
n,m represents the benefit of aggregating together the clusters

associated to level-L cluster-heads m and n, C(L)
m and C(L)

n ,

respectively, into one level-(L + 1) cluster, and ∆n,m is the

additional delay incurred to aggregate them.6 In fact, if such

aggregation occurs, from the perspective of cell i ∈ C(L)
n , C(L)

m

will become the set of cells at h-distance L + 1 from cell i,
D(L+1)

i ≡ C(L)
m , so that, letting δ

(L+1)
j = ∆n,m + δ

(L)
j as in

(17), the first term associated to i in (31) is equivalent to

∑

j∈C
(L)
m

µ∆n,m+δ
(L)
j

φj,i

φi,i
= Φ

(L+1)
del,i . (32)

The second term in (31) has a similar interpretation, relative to

cell i ∈ C(L)
m . Thus, the aggregation metric Γ

(L)
n,m corresponds

to
∑

i∈C
(L)
n

Φ
(L+1)
del,i +

∑

i∈C
(L)
m

Φ
(L+1)
del,i , if clusters C(L)

n and C(L)
m

are aggregated together. As justified previously, this quantity

should be made as large as possible in order to maximize the

informativeness of the aggregation of estimates.

In addition, we want to limit the cost incurred to send mea-

surements up and down the hierarchy. Assuming that estimates

are transmitted via multi-hop, the cost will be proportional to

the distance between clusters. Thus, each time we combine two

clusters C(L)
n and C(L)

m to form the tree, we incur an additional

aggregation cost per cell Cn,m, defined as

Cn,m =
1

NC
max

i∈C
(L)
n ,j∈C

(L)
m

di,j , (33)

representing the worst-case aggregation cost, where di,j is the

distance between cells i and j.

The algorithm proceeds as shown in Algorithm 1. We ini-

tialize it with the NC sets containing the single cells,

C(0)
i = {i}, i = 1, 2, . . . , NC , and aggregation cost (per cell)

Ccell = 0. Then, at each level-L, we iterate over all cluster

pairs, pairing those with highest aggregation metric Γ. This

forms the set of level-(L + 1) clusters; we update the delays

accordingly and update Ccell by adding C
(L)
n∗,m∗ . If the number

of clusters at level-L happens to be odd, one cluster may not be

paired, in which case it forms its own level-(L+1) cluster, and

the delay remains unchanged. The algorithm proceeds until

6∆n,m can be chosen, for instance, based on the number of hops traversed
to aggregate estimates at the upper level (L+1). This number is approximately
proportional to the distance between cluster heads n and m.
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Algorithm 1 Hierarchical Aggregation Tree Construction

input : Cells C, interference matrix Φ, max cost Cmax

(per cell)

output: A hierarchy of clusters C(L)
k , k ∈ H(L), L =

1, . . . , D, delays δ
(L)
i , and aggregation cost Ccell

Initialize: L←0, H(L)←C, C(0)
i ←{i}, δ

(0)
i = 0, ∀i∈C,

Ccell = 0;

repeat

∆n,m, Cn,m, ∀n, m ∈ H(L), n 	= m (delays and cost

are computed, e.g., ∝#hops);

F (L)←{(n, m)∈H(L)2 : n, 	=m, Ccell + Cn,m≤Cmax}
(set of unpaired feasible pairs);

if |F (L)| = 0 (cost exceeded) then
terminate

H(L+1) ← ∅, knext ← 1 (empty set of next level

cluster heads and cluster head counter);

H(L)
unp ← H(L) (set of unpaired cluster heads);

while |F (L)| > 0 do

(n∗, m∗)← argmax
(n,m)∈F(L)

Γ
(L)
n,m (find unpaired feasible

cluster pair with max Γ, see (31));

H(L+1) ← H(L+1) ∪ {knext},

C(L+1)
knext

← C(L)
n∗ ∪ C(L)

m∗ ;

δ
(L+1)
i = δ

(L)
i + ∆n∗,m∗ , ∀i∈C(L+1)

knext
,

Ccell←Ccell + Cn∗,m∗ (update delay and cost);

H(L)
unp ← H(L)

unp \ {n∗, m∗} (remove paired clusters);

F (L) ← {(n, m)∈H(L)
unp ×H(L)

unp :
n, 	=m, Ccell+Cn,m≤Cmax} (updated feasible pairs);

knext ← knext + 1 ;

forall the k ∈ H(L)
unp (unpaired clusters incur excessive

cost, “pair” each with itself) do

H(L+1) ← H(L+1) ∪ {knext}, C(L+1)
knext

← C(L)
k ;

δ
(L+1)
i = δ

(L)
i , ∀i ∈ C(L+1)

knext
(no additional

delay/cost);

knext ← knext + 1 ;

L ← L + 1 (Proceed to the next level);

until termination;

either: (1) the cluster C(L)
1 contains the entire network, i.e.,

a tree has been formed, or (2) Ccell > Cmax, i.e., the allowed

cost is exceeded. Agglomerative clustering has complexity

O(N2
C log(NC)), where the term N2

C owes to searching over

all pairs of clusters, and the term log(NC) is related to

the tree depth, which is logarithmic in the number of cells

[16, Ch. 14]. In the next section, we will compare our scheme

with the consensus-based scheme [17]: this scheme requires

a “connected” graph to achieve consensus, whose complexity

is O(N3
Cd), with d being the desired degree of each node in

the graph [27]. Therefore, by leveraging the tree structure, our

tree construction is more computationally efficient. However,

tree design will be executed only at initialization, or when the

network topology changes, which is infrequent in fixed cellular

networks as considered in this work, hence it is not expected

to have a significant impact on the long-term performance.

VI. NUMERICAL RESULTS

In this section, we provide numerical results based on

Monte Carlo simulations. We adopt a model with stochastic

blockage [28]: rectangular blockages of fixed height and width

are placed randomly on the boundaries between cells. Each

blockage has width 1 and height 5, and is randomly placed.

We say that links between cells i, j are line of sight (LOS) if

the line segment connecting the centers of cells i and j does

not intersect any blockage object. Otherwise, such links are

said to be non-LOS (NLOS). Accordingly, we define LOS and

NLOS large-scale pathloss exponents αL = 2.1 and αN = 3.3,

respectively. These values were derived experimentally

in [24, Table I] at a reference frequency of 2GHz.

In the simulations, we consider a 16 × 16 cells network

over an area of 1.6km × 1.6km. We set the parameters as

follows: SINR decoding threshold SINRth = 5dB, noise

power spectral density N0 = −173dBm/Hz, bandwidth

Wtot = 20MHz, ν1 = 0.005, ν0 = 0.095, hence πB = 0.05
and µ = 0.9. The interference matrix Φ is calculated as

in (1), where Ptx = −11dBm is the transmission power,

common to all PUs and SUs, Lref = 74dB is the large-scale

pathloss based on Friis’ free space propagation, calculated at

a reference distance dref = 50m (equal to the average cell

radius); αi,j = αL if there is LOS between the centers of

cells i and j, otherwise, αi,j = αN in case of NLOS (path

obstructed by blockage).

We assume that local estimation is error-free (ǫF = ǫM = 0)

and Mi,t≫1, ∀i, t, corresponding to a dense setup with large

number of SUs. In this work, we do not consider the overhead

of local spectrum sensing within each cell, which can be

severe in dense networks and may be reduced by using

decentralized techniques to select the most informative SUs,

such as in [8]; these considerations are outside the scope of

this paper, and are left for future work. We average the results

over 200 realizations of the blockage model. For each one

of these, we generate a sequence of 1000 frames to generate

the Markov process {bt, t ≥ 0}. We consider the following

schemes:

• a scheme with the interference-based tree (IBT) gener-

ated with Algorithm 1 by leveraging the specific structure

of interference, delays and aggregation costs;

• a scheme with a random tree (RT), in which the “max

Γ” cluster association in Algorithm 1 is replaced with a

random association. The aim of using this scheme is to

test the importance of generating a tree matched to the

structure of interference;

• a scheme with full (but delayed) NSI (Full-NSI); since

this scheme represents the best we can do, provided that

we can afford the cost of acquisition of full NSI, it will

be used to evaluate the sub-optimality of the proposed

IBT in terms of the trade-off between SU cell throughput

and interference to PUs;

• an uncoordinated scheme where SUs access the spectrum

with constant probability ptx, i.i.d. over time and across

SUs (Uncoordinated).
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Fig. 3. SU cell throughput versus average INR experienced at PUs, cost constraint Cmax = ∞.

We assume that the delay to propagate spectrum measurements

between cells i and j is proportional to their distance, i.e.,

δi,j = γdi,j , where γ is varied in [0, 1].
In order to separate the effects of blockages, delay, and cost

of aggregation on the performance, we evaluate the impact

of: 1) Blockages, but no delay nor cost constraint (γ = 0,

Cmax = ∞, Fig. 3(a)); 2) Delay, with one blockage but no

cost constraint (1 blockage, Cmax = ∞, Fig. 3(b)); 3) Cost

of aggregation, with one blockage and no delay (1 blockages,

γ = 0, Fig. 4). In all these figures, unless otherwise stated,

we evaluate the lower bound to the SU cell throughput, given

by (7) and the INR experienced at the PUs (both averaged

over cells and over time). We vary the parameter λ in the

utility function (13) and the SU access probability ptx in

the “Uncoordinated” scheme, to obtain the desired trade-off

between SU cell throughput and INR.

In Fig. 3(a), we notice that, for all schemes, the presence

of blockages improves the performance. In fact, blockages

provide a form of interference mitigation. By comparing the

schemes with each other, the best performance is obtained

with Full-NSI. In fact, each cell can leverage the most refined

information on the interference pattern. However, as we will

see in Fig. 4, this comes at a huge cost to propagate NSI

over the network. Remarkably, IBT incurs only a 15% (for

6 blockages) and 10% (for no blockages) performance degra-

dation with respect to Full-NSI, for a reference INR of 0dB

(this result becomes more remarkable when comparing the

aggregation costs in Fig. 4). Additionally, RT incurs a severe

performance degradation with respect to IBT (60% and 30%

degradation for 6 blockages and no blockages, respectively, for

a reference INR of 0dB); this fact highlights the importance

of designing a tree matched to the structure of interference,

as done in Algorithm 1, and validates our choice of the Γ met-

ric used to associate clusters in the algorithm, defined in (31).

Finally, we observe that the “Uncoordinated” scheme performs

the worst, since it does not adapt the SU transmissions to

interference.

In Fig. 3(b), we evaluate the impact of delay (note that

“Uncoordinated” is not affected by delays). As expected,

the SU cell throughput decreases as the delay augments.

This follows from the fact that delayed spectrum estimates

represent less accurately the actual spectrum occupancy, and

may become outdated, and thus less informative for scheduling

decisions of SUs. However, the performance degradation is

minimal. In fact, the spectrum occupancy varies slowly over

time: the expected duration of a period during which the

spectrum is occupied by a PU is 1/ν0≃10 frames, hence

only the spectrum estimates received with delay larger than

10 become non informative; these estimates, in turn, cor-

respond to cells that are farther away from the reference

cell, hence less susceptible to interference caused by the

reference cell.7 We notice a similar trend as in Fig. 3(a) in

terms of the comparison among the schemes employed.

In Fig. 4, we evaluate the trade-off between aggregation cost

and performance. To this end:
• We vary the cost constraint Cmax in Algorithm 1 to obtain

a trade-off for IBT and RT; we use a “worst-case” cost

evaluation with multi-hop, given by (33).

• To evaluate Full-NSI, each cell collects partial but fine-

grained NSI up to a certain radius; larger radius cor-

responds to more comprehensive NSI but larger cost;

using multi-hop for NSI aggregation, the cost equals

approximately the number of cells within the radius.

This scheme borrows from [13], where each cell informs

neighboring ones of the resource blocks used by its users.

We notice that IBT achieves a much better trade-off than

Full-NSI: it enables SUs to gather relevant information for

scheduling decisions, with minimal cost in the exchange of

state information. In fact, by aggregating NSI at multiple

layers, as opposed to maintaining fine-grained NSI, IBT retains

the gains of partial NSI, but at a much smaller cost of

aggregation. In particular, for a reference SU cell throughput

of 0.6Mbps, IBT incurs one-third of the cost of aggregation of

Full-CSI. On the other hand, RT does not improve as the cost

increases; in fact, the random tree construction in RT results

7We remind that the delay to propagate spectrum measurements between
cells i and j is δi,j = γdi,j , hence only farther cells are affected by large
delays.
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Fig. 4. Impact of aggregation cost on the SU cell throughput, with 0dB
maximum constraint on the average INR caused to PUs. 1 blockage; no delay.

in information exchange which is not matched to the structure

of interference, hence less informative to network control.

So far, in our analysis and numerical evaluation we have

assumed that large-scale pathloss is calculated between cell

centers, and collected in the INR matrix Φ. However, large-

scale pathloss between a transmitter and a receiver depends

on their mutual position within their respective cell. Addition-

ally, we used the SU cell throughput lower bound (7). This

motivates us to evaluate the performance in a more realistic

scenario, where these assumptions are relaxed. In Fig. 5, we

evaluate a realistic scenario with the following features:

• We generate 100 independent realizations of the network

topology with NC = 256 PU cells; in each realization,

the transmitter-receiver pairs are deployed randomly over

an area of 1.6km × 1.6km; an irregular cell topology

is thus defined based on minimum distance; 10 SUs

are deployed randomly in each cell (each with its own

receiver).

• The large-scale pathloss is computed between each trans-

mitter and receiver based on their relative distance,

as in (1). The INR matrix Φ is computed relative to

the cell centers. This is used to construct the hierarchical

aggregation tree (Algorithm 1), to estimate IS,i(t) and

IP,i(πi,t) as in (8) and (9), hence to compute the optimal

SU traffic a∗
i,t as in (15). However, the performance

is evaluated under the actual distance-dependent large-

scale pathloss and the realization of the Rayleigh fading

process, as described in the next item.

• For each realization of the network topology, we generate

1000 frames with random SU access decisions; the PU

spectrum occupancy process bt evolves according to the

Markov process described in Sec. II, with ν1 = 0.005,

ν0 = 0.095; in each frame, the channel is generated

according to the distance-dependent large-scale pathloss

and Rayleigh fading distribution, independent over time

and across users, as described in the signal model (2).

The SINR is then computed at each SU and PU receiver,

and the transmission is declared successful if and only if

SINR>SINRth = 5dB. The SU and PU cell through-

Fig. 5. Simulation with random topology and realistic large-scale pathloss.
Comparison with “consensus” scheme [17].

puts are then averaged out over the 1000 frames and

100 realizations of the network topology.
In addition to IBT, RT, Full-CSI and Uncoordinated schemes

mentioned previously, we also evaluate the performance of

the consensus-based scheme [17]. We set the degree of each

node (cell head) to be d = 5, based on which we generate a

connected graph [27]. This scheme was originally designed for

a single PU cell system without temporal dynamics in the PU

spectrum occupancy, and therefore it is not optimized to our

model, with multiple cells and temporal dynamics of spectrum

occupancy in each cell. We argue that a consensus-based

scheme, such as [17], is not well suited to capture the spatial

distribution of interference, nor the temporal dynamics, due

to the averaging process of consensus in both the spatial and

temporal dimensions. Instead, our scheme allows each SU to

estimate accurately the state of nearer cells, to which interfer-

ence will be stronger, and to track more efficiently their tem-

poral dynamics. Our numerical evaluation in Fig. 5 confirms

this observation: the consensus strategy performs poorly, with

performance close to the “Uncoordinated” scheme. On the

other hand, the performance of IBT is very close to that of

Full-NSI and significantly outperforms the “Uncoordinated”

scheme. This evaluation confirms that, despite the approxima-

tion introduced in the INR matrix Φ∈R
NC×NC , our multi-

scale spectrum estimation positively informs network control.

VII. CONCLUSIONS

In this paper, we have proposed a multi-scale approach to

spectrum sensing in cognitive cellular networks. To reduce the

cost of acquisition of NSI, we have proposed a hierarchical

scheme to obtain aggregate state information at multiple

scales, at each cell. We have studied analytically the per-

formance of the aggregation scheme in terms of the trade-

off among the SU cell throughput, the interference generated

by their activity to PUs, and the mutual interference of SUs.

We have accounted for aggregation delays, local estimation

errors, as well as the cost of aggregation. We have proposed

an agglomerative clustering algorithm to find a multi-scale

aggregation tree, matched to the structure of interference.

We have shown that our proposed design achieves performance
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close to that with full NSI, using only one-third of the cost of

exchange of spectrum estimates over the network.

APPENDIX A

PROOF OF LEMMA 1

Proof: We prove it by induction. At level-1, (20) holds

by definition, see (18). Now, let L>1 and assume (20) holds

at level-(L − 1). The induction hypothesis in (19) implies

S
(L)
m,t =

∑

k∈H
(L−1)
m

∑

j∈C
(L−1)
k

b̂
j,t−δ

(L−1)
j −∆

(L)
k

. (34)

Then, using (17) we obtain

S
(L)
m,t =

∑

k∈H
(L−1)
m

∑

j∈C
(L−1)
k

b̂
j,t−δ

(L)
j

=
∑

j∈C
(L)
m

b̂
j,t−δ

(L)
j

, (35)

where the last step follows from (16). The induction step,

hence the lemma, are thus proved. �

APPENDIX B

PROOF OF THEOREM 1

Proof: Let t ≥ 0. Eq. (24) follows from the fact that σ
(L)
i,t

is independent of bj,τ , ∀τ ≤ t for j /∈ D(L)
i , and from the fact

that (bj,τ , Mj,τ , ξj,τ ), τ ≤ t are independent across cells.

We now prove (25) for a given set D(L)
i and h-distance L.

With a slight abuse of notation, “∀j” should be intended as

“∀j∈D(L)
i ”, and “

∑

j” as “
∑

j∈D
(L)
i

”. Using (23),

P

(

bj,t = bj , ∀j
∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

=P

(

bj,t =bj , ∀j
∣
∣
∣

∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ ≤ t

)

.

We can rewrite it as the marginal with respect to b
j,t−δ

(L)
j

, ∀j

and
∑

j b
j,t−δ

(L)
j

= x, yielding

P

(

bj,t = bj , ∀j
∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

(36)

=

|D
(L)
i |

∑

x=0

∑

(b̃
j,t−δ

(L)
j

)∀j

P

(

bj,t = bj, ∀j
∣
∣
∣bj,t−δ

(L)
j

= b̃
j,t−δ

(L)
j

, ∀j,

∑

j

b
j,t−δ

(L)
j

= x,
∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ ≤ t

)

(D;E)

×P

(

b
j,t−δ

(L)
j

= b̃
j,t−δ

(L)
j

, ∀j
∣
∣
∣

∑

j

b
j,t−δ

(L)
j

= x,

∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ ≤ t

)

(B;C)

×P

(∑

j

b
j,t−δ

(L)
j

= x
∣
∣
∣

∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ≤t

)

. (A)

Using the fact that {bj,t} is Markov and i.i.d. across cells, for

the term (D;E) we obtain

P

(

bj,t = bj , ∀j
∣
∣
∣bj,t−δ

(L)
j

= b̃
j,t−δ

(L)
j

, ∀j,
∑

j

b
j,t−δ

(L)
j

= x,
∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ ≤ t

)

=
∏

j

P

(

bj,t = bj

∣
∣
∣bj,t−δ

(L)
j

= b̃
j,t−δ

(L)
j

)

, (37)

since bj,t is independent of all other quantities given b
j,t−δ

(L)
j

.

In particular, the probability term in (37) is the δ
(L)
j steps

transition probability of the Markov chain {bj,τ , ∀τ}, i.e.,

P

(

bj,t = bj

∣
∣
∣bj,t−δ

(L)
j

= b̃j

)

=
[

πB +µδ
(L)
j

(

b̃j−πB

)]bj
[

1−πB−µδ
(L)
j

(

b̃j−πB

)]1−bj

.

which is equivalent to the terms D and E in (25). Next, letting

b
(δ)
t = (b

j,t−δ
(L)
j

)∀j , we show that the term (B;C) is equivalent

to B and C in (25). In fact,

P

(

b
(δ)
t = b̃

∣
∣
∣

∑

j

b
(δ)
j,t = x,

∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ ≤ t

)

= χ
(∑

j

b̃j = x
)x!(|D(L)

i | − x)!

|D(L)
i |!

. (38)

We obtain (25) by substituting (37)-(38) into (36).

To see (38), first note that, if
∑

j b̃j 	= x, then

(38) must be zero, since we are conditioning on
∑

j b
(δ)
j,t = x. Thus, we focus on the case

∑

j b̃j = x.

Let sj = (Mj,τ , ξj,τ )
∀j,−δ

(L)
j ≤τ≤t−δ

(L)
j

and s̃j be a specific

realization of the estimation process. From the expression

of the local estimator, we note that b̂j,τ is a function of

(b̂j,τ−1, Mj,τ , ξj,τ ). Then, by induction, b̂j,τ is a function of

(Mj,τ ′ , ξj,τ ′)
−δ

(L)
j ≤τ ′≤τ

(and thus of sj), denoted as

b̂j,τ = g
τ+δ

(L)
j

(sj).

Note that the subscript τ + δ
(L)
j signifies that the first τ +

δ
(L)
j + 1 samples of (Mj,τ ′, ξj,τ ′) are used to compute b̂j,τ ,

since −δ
(L)
j ≤ τ ′ ≤ τ . Importantly, b̂j,τ depends on the cell

index j only through δ
(L)
j and sj , so that

∑

j

b̂
j,τ−δ

(L)
j

=
∑

j

gτ (sj).

Let BS be the set of tuples (b, s) such that

∑

j

bj = x,
∑

j

gτ (sj) = o(L)
τ , ∀0 ≤ τ ≤ t.

Using this definition, we write the left hand side of (38) as

P

(

b
(δ)
t = b̃

∣
∣
∣

∑

j

bj = x,
∑

j

b̂
j,τ−δ

(L)
j

= o(L)
τ , ∀τ ≤ t

)

= P

(

b
(δ)
t = b̃

∣
∣
∣(b

(δ)
t , s) ∈ BS

)

. (39)

Consider a permutation P : D(L)
i �→ D(L)

i of the elements in

the set D(L)
i . Thus,

⎧

⎨

⎩

∑

j
gτ (sP(j)) =

∑

j
gτ (sj),

∑

j
bP(j) =

∑

j
bj = x.

(40)

By definition of BS, if (b, s)∈BS then, under any permu-

tation, (bP , sP)∈BS, where bP = (bP(j))∀j and sP =
(sP(j))∀j . We can thus partition BS into |U| sets, BSu, u ∈ U ,
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where U is a set of indexes, such that BSu contains all and

only the permutations of its elements, that is
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(b, s) ∈ BSu ⇔ (bP , sP) ∈ BSu, ∀P ,

(b(1), s(1)) ∈ BSu, (b(1), s(1)) 	= (b
(2)
P , s

(2)
P ), ∀P

⇒ (b
(2)
P , s

(2)
P ) /∈ BSu,

∪u∈UBSu ≡ BS, BSu1 ∩ BSu2 ≡ ∅, ∀u1 	= u2.

(41)

By marginalizing with respect to the realization of the

sequence (b, s), we then obtain

P

(

b
(δ)
t = b̃

∣
∣
∣(b

(δ)
t , s) ∈ BS

)

=
∑

u∈U

∑

(b̄,s̄)∈BSu

χ(b̃= b̄)P
(
(b

(δ)
t , s)=(b̄, s̄)

∣
∣
∣(b

(δ)
t , s) ∈ BSu

)

×P
(
(b

(δ)
t , s) ∈ BSu

∣
∣
∣(b

(δ)
t , s) ∈ BS

)
. (42)

Let (b(1), s(1))∈BSu and (b(2), s(2))∈BSu. By definition of

BSu, we have that (b(2), s(2)) = (b
(1)
P , s

(1)
P ) under some per-

mutation P . Since {(bj,τ , Mj,τ , ξj,τ ),−δ
(L)
j ≤ τ ≤ t−δ

(L)
j } is

stationary over time and i.i.d. across cells, by permuting this

sequence across cells, we obtain a sequence with the same

probability of occurrence; in other words,

P

(

(b
(δ)
t , s)=(b(1), s(1))

∣
∣
∣(b

(δ)
t , s) ∈ BSu

)

= P

(

(b
(δ)
t , s)=(b(2), s(2))

∣
∣
∣(b

(δ)
t , s) ∈ BSu

)

= P

(

(b
(δ)
t , s)=(b

(1)
P , s

(1)
P )

∣
∣
∣(b

(δ)
t , s) ∈ BSu

)

, ∀P . (43)

Hence, (b
(δ)
t , s) has uniform distribution over the set BSu,

and we must have

P

(

(b
(δ)
t , s)=(b(1), s(1))

∣
∣
∣(b

(δ)
t , s)∈BSu

)

=
1

|BSu|
=

1

|D(L)
i |!

,

corresponding to all possible permutations. Substituting in

(42), we then obtain

P

(

b
(δ)
t = b̃

∣
∣
∣(b

(δ)
t , s) ∈ BS

)

=
1

|D(L)
i |!

∑

u∈U

∑

(b̄,s̄)∈BSu

χ
(

b̃ = b̄

)

×P
(
(b

(δ)
t , s)∈BSu

∣
∣
∣(b

(δ)
t , s)∈BS

)
. (44)

Since there are exactly x!(|D(L)
i | − x)! combinations of

(b
(δ)
t , s) within BSu such that b

(δ)
t = b̃ (since

∑

j b̃j = x
by assumption), we obtain

∑

(b̄,s̄)∈BSu

χ(b̃ = b̄) = x!(|D(L)
i | − x)!. (45)

Substituting in (44), we finally obtain

P

(

b
(δ)
t = b̃

∣
∣
∣(b

(δ)
t , s) ∈ BS

)

=
x!(|D(L)

i | − x)!

|D(L)
i |!

∑

u∈U

P

(

(b
(δ)
t , s) ∈ BSu

∣
∣
∣(b

(δ)
t , s) ∈ BS

)

=
x!(|D(L)

i | − x)!

|D(L)
i |!

, (46)

which proves (38) when
∑

j b̃j = x. Eq. (25) is thus proved.

To conclude the proof of Theorem 1, we prove (26).

We rewrite the left hand side of (26) as

Θ � E

(∑

j

b
(δ)
j,t

∣
∣
∣

∑

j

gτ (sj) = o(L)
τ , 0≤τ≤t

)

. (47)

Now, assume a genie-aided case which directly observes the

sequence s, rather than the aggregates
∑

j gτ (sj), ∀0 ≤ τ ≤ t.
Using the notation of the previous part of the proof, let s̃ be

a specific realization such that
∑

j gτ (s̃j) = o
(L)
τ , ∀0≤τ≤t.

In the genie aided case, by the linearity of expectation we

obtain

E

(∑

j

b
(δ)
j,t

∣
∣
∣s = s̃

)

=
∑

j

P

(

b
(δ)
j,t = 1

∣
∣
∣ s = s̃

)

.

Since b
(δ)
j,t is statistically independent of sj′ for j′ 	= j given

sj , by definition of sj it follows that

E

(∑

j

b
(δ)
j,t

∣
∣
∣s = s̃

)

=
∑

j

P

(

b
(δ)
j,t = 1

∣
∣
∣ sj = s̃j

)

=
∑

j

P

(

b
(δ)
j,t =1

∣
∣
∣(Mj,τ , ξjτ)=(M̃j,τ , ξ̃jτ ), −δ

(L)
j ≤τ ≤ t −δ

(L)
j

)

=
∑

j

b̂
j,t−δ

(L)
j

� gt(s).

Thus, gt(s) is sufficient to compute the posterior expecta-

tion of
∑

j b
(δ)
j,t in the genie-aided case. Since gt(s) is also

available in the non-genie-aided case, it must be the case that

Θ = gt(s) as well, yielding (26) via (23). The theorem is thus

proved. �

APPENDIX C

PROOF OF LEMMA 2

Proof: Let 0≤L≤D and j ∈ D(L)
i . Using (24) we obtain

P(bj,t = 1|πi,t)=
∑

b

χ(bj = 1)πi,t(b) (48)

=
∑

bj′ ,∀j′∈D
(L)
i

χ(bj = 1)P
(

bj′,t =bj′, ∀j′∈D(L)
i

∣
∣
∣σ

(L)
i,τ =o(L)

τ ,∀τ ≤ t
)

.

Since we are considering only the cells in the set D(L)
i ,

with a slight abuse of notation, “∀j” should be intended as

“∀j∈D(L)
i ”; “

∑

j” as “
∑

j∈D
(L)
i

”; and vectors are restricted

to their indices in D(L)
i . Let b

(δ)
t = (b

j,t−δ
(L)
j

)∀j . Using (25),

we can rewrite (49) as

P(bj,t = 1|πi,t) =
∑

b̃

P(bj,t = 1|b(δ)
j,t = b̃j)

×P

(

b
(δ)
t = b̃

∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

, (49)

where

P(bj,t = 1|b(δ)
j,t = b̃j) = πB + µδ

(L)
j

(

b̃j − πB

)

.
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(δ
(L)
j steps transition probability to bj,t = 1) and

P

(

b
(δ)
t = b̃

∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

=

|D
(L)
i |

∑

x=0

P

(∑

j

b
(δ)
j,t = x

∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

× x!(|D(L)
i | − x)!

|D(L)
i |!

χ
(∑

j

b̃j = x
)

. (50)

Thus, we obtain

P(bj,t = 1|πi,t) = πB(1 − µδ
(L)
j )

+ µδ
(L)
j

∑

b̃

b̃jP

(

b
(δ)
t = b̃

∣
∣
∣ σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

. (51)

Now, using (50) we obtain

∑

b̃

b̃jP

(

b
(δ)
t = b̃

∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

=

|D
(L)
i |

∑

x=1

P

(∑

j′

bj′ = x
∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

× x!(|D(L)
i | − x)!

|D(L)
i |!

∑

b̃

b̃jχ
(∑

j′

b̃j′ = x
)

. (52)

Note that the sum over x starts from x = 1 instead of x = 0.

In fact, if x = 0, then b̃ = 0 and b̃j = 0, which does not

contribute to (52). Finally, since there are |D(L)
i | − 1 over

x − 1 possible combinations of vectors b̃ ∈ {0, 1}|D(L)
i | such

that b̃j = 1 and
∑

j′ b̃j′ = x, we obtain

x!(|D(L)
i | − x)!

|D(L)
i |!

∑

b̃

b̃jχ
(∑

j′

b̃j′ = x
)

=
x

|D(L)
i |

,

hence
∑

b̃

b̃jP

(

b
(δ)
t = b̃

∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ ≤ t
)

=
1

|D(L)
i |

|D
(L)
i |

∑

x=0

xP

(∑

j′

bj′ = x
∣
∣
∣σ

(L)
i,τ = o(L)

τ , ∀τ≤t
)

=
o
(L)
t

|D(L)
i |

, (53)

where in the last step we used (26). The lemma is thus proved

by substituting (53) into (51). �
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