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Abstract. A newsvendor game allows the players to collaborate on inventory pooling
and share the resulting total cost. There are several possible ways to allocate the cost.
Previous studies have focused on the core of the game. It is known that the core of the
newsvendor game is nonempty, and one can use duality theory in stochastic programming
to construct an allocation—referred to as the dual-based allocation—belonging to the
core. Yet, an allocation that lies in the core does not necessarily guarantee the unhindered
formation of a coalition, as some existing members’ allocated costs may increase when
new members are added in the process. In this work, we use the concept of population
monotonic allocation scheme (PMAS), which requires the cost allocated to every member
of a coalition to decrease as the coalition grows, to study allocation schemes in a growing
population. We show that when the demands faced by the newsvendors are independent,
log-concavity of their distributions is sufficient to guarantee the existence of a PMAS.
Specifically, for continuous demands, log-concavity ensures that the game is convex, which
in turn implies a PMAS exists. We also show that under the same condition the dual-based
allocation scheme is a PMAS. For discrete and log-concave demands, however, the game
may no longer be convex, but we manage to show that, even so, the dual-based allocation
scheme is a PMAS. When the demands are dependent, the game is in general not convex.
We derive a sufficient condition based on the dependence structure, measured by the
copula, to ensure that the dual-based allocation scheme is still a PMAS. We also include
an example of a game with no PMAS.
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1. Introduction

is a cooperative of more than 3,200 pharmacies in

Farmers in New York State are surely aware that coop-
eration by pooling demand and coordinating produc-
tion can help them all. As has been reported in the
New York Times (see Shattuck 2014), the state has been
“a haven for dairy cooperatives,” and more recently,
witnessed the growth of Adriondack Grazers, a grass-
fed beef cooperative started in 2012, to more than
40 farms across the states boundaries. These cooper-
atives enable farmers to leverage economies of scale
to weather market uncertainties without giving up
individual ownerships. The benefits are evidently not
the best-kept secrets that are only known to farm-
ing communities: similar practices are also observed
in other places like the pharmaceutical and retailing
industries. For example, Good Neighbor Pharmacy
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America; Affiliated Foods Midwest supplies more than
850 independent retailers in the 12 Midwestern states
with a full line of grocery products.

Cooperative game theory lays out a theoretical
framework for analyzing cooperation among inde-
pendent producers. The newsvendor model captures
fundamental tradeoffs between the costs of excessive
supply and shortage, inevitably caused by demand
uncertainty. Hence, to develop a general understand-
ing of cooperative relationships in broadly defined
supply chain systems exemplified by the aforemen-
tioned cooperatives, the newsvendor game is a natural
first step. In this game, cooperatives are referred to as
coalitions, who solve a single newsvendor problem for
setting a production quantity to serve demands of all
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participants. An essential issue of the game is to find
an adequate allocation to distribute the expected cost
of the coalition to individual participants. Substantial
progress has been made on the study of this problem
but many important questions remain to be answered.

In a cooperative game, the core for a coalition is
defined as the set of allocations under which no partic-
ipant can derive a better payoff from leaving the coali-
tion, either individually or as a subgroup. Determining
whether the core for the grand coalition (i.e., the coali-
tion of all potential participants) is empty is a primary
focus in cooperative game theory. It has been shown in
the literature that for newsvendor games, the core for
the grand coalition is not empty. Thus, it is possible to
form a stable cooperative relationship of all producers.
Nevertheless, for this possibility to become a reality,
the existence of allocations in the core is not sufficient.

First, one needs to discover what these allocations
actually are. The dual-based allocation rule formulated
in Chen and Zhang (2009) fits this purpose. Their result
is of special importance not only because the dual-
based allocation rule results in a simple closed-form
solution, but also because it is shown in Montrucchio
and Scarsini (2007) that for a continuum of players, the
dual-based allocation is the only element in the core
under a nonatomic condition on the demand. More-
over, under some conditions the core of the newsven-
dor game with finite players shrinks to this single allo-
cation as the number of players increases.

Second, as in the case of Adriondack Grazers, large
cooperatives usually do not form overnight but expand
gradually. As another example, Ocean Spray, a leading
cooperative in the cranberry industry, started off with
only three berry growers in 1930, and took many years
to reach more than 700 members across North America
as of today (Jesse and Rogers 2006). When a coalition is
governed by consensus, its expansion has to be agreed
upon by each of its existing members. An allocation
in the core gives no incentive for any subset of mem-
bers to leave a coalition, but it does not guarantee that
none of them will be negatively affected by admitting
a new member, and thus may not lead to a unanimous
agreement for expansion.

To study incentives for coalition expansion, it is suit-
able to consider the notion of a population mono-
tonic allocation scheme (PMAS) defined by Sprumont
(1990). A PMAS is an allocation scheme that applies
to all coalitions in a cooperative game. Under a PMAS,
each time a coalition adds a new member, every current
member will be allocated a (weakly) larger benefit, or
in cases like the newsvendor game, a (weakly) smaller
cost. Obviously, allocations under such a scheme must
be in the core of the game that keeps the grand coali-
tion stable. Given the essential role played by the
newsvendor model in production and inventory the-
ory, to develop a fundamental understanding of the

formation of growing cooperative relationships in sup-
ply chains, it is critically important to investigate con-
ditions for the existence of a PMAS in newsvendor
games and identify widely applicable instances of such
schemes. Nevertheless, to the best of our knowledge,
these issues have not been directly addressed in the
literature. The purpose of our paper is to fill this gap
by developing a broad set of pertinent results and dis-
cussing underlying insights.

Our investigation shows that when demands are
independent, in a broad set of instances of the news-
vendor game, a PMAS exists and the dual-based allo-
cation rule results in a PMAS, ensuring not only the
stability of the grand coalition but also a smooth path
toward its formation. When demands are dependent,
the monotonic property of the dual-based allocation
rule is largely determined by the degree to which
demands of individual participants depend on each
other. These messages are conveyed by our derivation
of the following major results.

1. When demands are independent and continuous
random variables, then a PMAS exists under mild con-
ditions. In particular, if the demands of all players
have log-concave probability density functions, then
the game is convex, and we can further show that the
dual-based allocation rule leads to a PMAS. It is worth
noting that our convexity result includes several suf-
ficient conditions in the newsvendor game literature
(see Section 2 for more details) as special cases.

2. When demands are independent and discrete ran-
dom variables, the log-concavity of the probability
mass function does not imply the game is convex,
but still guarantees that the dual-based allocation rule
results in a PMAS. Log-concavity, a property satisfied
by many commonly used distributions such as normal,
exponential, uniform, Poisson, and so forth, together
with independence ensures the existence of a PMAS
regardless of whether demands are continuous or dis-
crete.

3. When demands are dependent, the newsvendor
game is not convex, except for a few special cases; for
example, when demands follow a permutation sym-
metric multivariate normal distribution. We develop
a sufficient condition under which a PMAS can be
derived from the dual-based allocation rule. The con-
dition is based on the copula of the demand distribu-
tion, which can be reduced to properties of correlation
coefficients when specialized to normally distributed
demands. We also complement these general results
with studies on some special cases, and we provide a
counterexample to show that, in certain cases, there is
no PMAS.

In the rest of the paper, we give a brief review of
related work in Section 2, formally define relevant con-
cepts and models in Section 3, analyze the game with
independent and dependent demands in Sections 4
and 5, respectively, and conclude the paper in Section 6.



2144

Chen et al.: Population Monotonicity in Newsvendor Games
Management Science, 2019, vol. 65, no. 5, pp. 2142-2160, © 2019 INFORMS

2. Literature Review

Eppen (1979) is the first work that quantifies cost
savings from the risk pooling effect when newsven-
dors at different locations consolidate their demands.
Hartman et al. (2000) later formalize the situation into
a newsvendor game and show that the core of such
a game is nonempty for various special cases of the
demands. This result has been generalized in a variety
of ways: Miiller et al. (2002) and Slikker et al. (2001)
independently show that a newsvendor game always
has a nonempty core if all demands have finite means.
Montrucchio and Scarsini (2007) prove that the core is
nonempty for newsvendor games with infinitely many
players. Slikker et al. (2005) extend the results under
the basic newsvendor setting to a general newsven-
dor situation by allowing nonidentical costs and trans-
shipment costs. Ozen et al. (2008) consider a distri-
bution system with multiple warehouses and show
that the associated cooperative game has a nonempty
core. Based on duality theory, Chen and Zhang (2009)
develop a unified approach for a class of inventory cen-
tralization games. They prove the nonemptiness of the
core in these games and present a dual-based alloca-
tion rule to obtain an element in the core. This allo-
cation rule has been applied to many other inventory
problems (see Chen 2009, Zhang 2009, Chen and Chen
2013, Toriello and Uhan 2014, Chen and Zhang 2016,
among others).

These papers focus exclusively on the nonemptiness
of the core. However, it has been recognized in various
contexts that an allocation should be able to accommo-
date variations in population. Thomson (1983, p. 319)
emphasizes that “all of the original agents should share
in the new responsibilities of the group” and intro-
duces an axiom of monotonicity for fair division prob-
lems with a changing number of agents. In an analy-
sis of quasi-linear social choice problems, Chun (1986)
develops a solidarity axiom which requires that all
agents in a coalition to be affected in the same direction
when a new agent enters.

The concept of a PMAS for cooperative games fol-
lows the same spirit. As is shown in Sprumont (1990),
a convex game always has a PMAS. Therefore, one
may establish the existence of a PMAS in a newsven-
dor game by proving the game is convex. On the lat-
ter issue, Slikker et al. (2001) prove that a newsven-
dor game is convex if demands are independent and
follow normal distributions. Ozen et al. (2011) prove
that a newsvendor game with three players is convex
when demands are identical, independent, and uni-
formly distributed. They also show that a newsven-
dor game is convex when demands are independent
and symmetric with unimodal distributions, and the
optimal fractile is 1/2. In this paper, in the process of
showing the existence of a PMAS, we establish that a

newsvendor game is convex when demands are inde-
pendent and continuous random variables with log-
concave density functions. This condition is new and
includes several existing results in the literature as spe-
cial cases. As is exemplified by the discussion in Slikker
et al. (2001) and Ozen et al. (2011), a newsvendor
game with dependent demands is not always con-
vex. Montrucchio and Scarsini (2007) provide the only
positive result we can find in the literature, which
shows that a game is convex if demands follow a per-
mutation symmetric multivariate normal distribution.
In our paper, we show that for a large class of newsven-
dor games with dependent demands, a PMAS exists
even though the game is not convex.

To put our work in a broader context, we briefly
summarize relevant discussions on PMAS in other
cooperative games in the operations management and
economics literature. Potters and Sudholter (1999)
establish that a modified nucleolus in a class of air-
port games is a PMAS. Meca et al. (2004) show that
in joint replenishment games, a PMAS can be reached
through a proportional allocation rule. Norde et al.
(2004) provide an algorithm that computes a PMAS for
minimum cost spanning tree games. He et al. (2012)
study joint replenishment games and characterize con-
ditions under which the game is convex, and therefore
a PMAS exists. Karsten and Basten (2014) consider a
spare parts pooling game where each firm faces a Pois-
son demand process. They show that the proportional
allocation of the total cost to different firms according
to their demand rates is a PMAS. It turns out that our
dual-based allocation rule reduces to this proportional
allocation rule when demands are independent and
Poisson distributed. Moulin and Shenker (2001) study
a mechanism design problem in which a service is pro-
duced for a set of agents and costs are shared among
them. They show that when the cost sharing method
is population monotonic, then each agent is willing to
truthfully reveal his willingness to pay.

Finally, it is helpful to distinguish a PMAS as dis-
cussed in this paper from the concept of farsighted
stability defined in Chwe (1994). The latter notion also
concerns coalition formation, and has found many
applications in supply chain management (see SoSic
2006, Nagarajan and Sosic 2007, Nagarajan and Bassok
2008, Nagarajan and So$ic 2009). We refer the readers
to Nagarajan and Sosi¢ (2008) for a review. We empha-
size here two key differences. First, farsighted stabil-
ity is usually associated with the question of, given a
coalition structure, whether a path of coalitional defec-
tions is possible. Population monotonicity, on the other
hand, is concerned with the question of, when a grow-
ing path of coalitions is specified, whether the forma-
tion of coalitions along the path can be sustained. Sec-
ond, it is commonly observed in various applications
that even if an allocation is not in the core, the stability
of a coalition may still be guaranteed from a farsighted
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perspective. Comparatively, the consideration of pop-
ulation monotonicity argues that even if an allocation
is in the core, it may not guarantee the formation of the
coalition.

3. Problem Formulation

A cooperative game is defined by a finite set of players
N ={1,...,n} and a characteristic function ¢(S), S C N.
A subset of players S, S C N is referred to as a coalition
and the set of all players N is called the grand coalition.
The characteristic function is a mapping from the set
of all coalitions, 2V, to the set of real numbers, R. For a
given game (N, c), we denote the size of coalition S € N
by |S|. Note that |[N| = n. For any x € R, we denote
max{x,0} by x*.

We consider a situation where there are N newsven-
dors selling an identical item, with the same per-unit
holding cost /i and shortage cost p. For simplicity, we
assume zero ordering cost. Since the game with zero
ordering cost is strategically equivalent' to the one
with constant per-unit ordering cost (see p. 145 of Choi
2012), all our results can be extended to the latter case.

Let X; with E[X;] < oo be the random demand faced
by player i, i € N and

Xs=> X,
i€S

be the total demand of coalition S € N. The newsven-
dor game is defined as (N, c), where the characteristic
function ¢(S) is the minimum expected cost that can be
attained by coalition S when all newsvendors in coali-
tion S jointly choose a supply quantity g to serve their
demands Xjs. In other words, c(S) is the optimal value
of the following newsvendor model with inputs p, k,
and Xg:

c(S)=r§1§gl{E[h(q—Xs)*+P(Xs—q)*]}, SCN. (1)

Let F¢(-) be the cumulative distribution of Xz and
denote 7 :=p/(p + h). The solution of the newsvendor
problem is a classic result (Arrow et al. 1951). When X
is a continuous random variable, the optimal solution
to (1) is
g5 =F5' (1), @
When X is a discrete random variable (through-
out the paper, we assume the demand modeled by a
discrete random variable has nonnegative integer sup-
port), the optimal solution to (1) satisfies

Fs_(q5) <t < Fs(q3),

where F¢_(x) :=1lim,,_,, Fs(x —1/m) with F;_(0) =0.
The core of a game is the set of real vectors (/;);cy =
(l4,...,1,) such that
Z I;=c(N) and Z I;<c(S) forany SCN.
ieN i€S
Under these conditions, the optimal cost of the grand
coalition is fully allocated to individual players in a
way that no subgroup of players can lower their total

allocated cost by forming their own smaller coalition.
A core allocation, which may not exist in some games,
is necessary to keep the grand coalition stable.

As is defined in Sprumont (1990), a population mo-
notonic allocation scheme (PMAS) is a general scheme
that determines the cost distribution not just for the
grand coalition, but also for every possible coalition in
a given game. We denote by [; ¢ the amount of cost allo-
cated to player i in coalition S. An allocation scheme?
(I; §)ies, scn is @ PMAS if and only if

DilLis=c(S) forallSCN 3)

i€eS
and

l;s>1;r forallieSand T, where SCTCN. (4)

Equation (3) mandates full cost allocation in every
coalition, and Equation (4) requires that no member
of an existing coalition can benefit individually from
forming a smaller coalition. Observe that (3) and (4)
together ensure (I; 5);s is in the core of the game (S, c)
for any S € N. Under a PMAS, no member of an exist-
ing coalition can benefit individually from forming a
smaller coalition with others, which is a more strin-
gent requirement than being in the core. The latter only
requires the smaller coalition will not be better off as
a whole. As mentioned earlier, a PMAS gives every
player an incentive to expand his coalition to an ever-
larger one.

One way of establishing the existence of a PMAS
for a game (N, c) is to show that the game is convex.
In other words, the characteristic function satisfies

c(SU{j}) —c(S)=c(TU{j}) —c(T),
VSCTCN\{j},jeN. (5

This means that the marginal cost of adding a new
player to a coalition decreases as the coalition grows.
Sprumont (1990) demonstrates that a convex game
always has a PMAS, and specifically, the Shapley value
as well as all extreme points of the core result in
PMASes. Unfortunately, newsvendor games are not
convex in general (see Hartman et al. 2000, Slikker et al.
2001, Ozen et al. 201 1).

An alternative and more direct approach is to ver-
ify (3) and (4) for a specific allocation scheme. For
this approach, we focus our study on the dual-based
allocation rule formulated in Chen and Zhang (2009).
This rule has two appealing properties. First, the dual-
based allocation can be constructed by solving the
dual of a stochastic linear program and admits a sim-
ple closed-form solution. Other well-known allocation
rules such as the nucleolus (which also lies in the
core) or the Shapley value (which may not lie in the
core if the game is not convex) are both analytically
and computationally complicated. Second, the dual-
based allocation is the only element in the core in a
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nonatomic newsvendor game where there is a contin-
uum of players and each one of them has a negligible
weight. Moreover, under some conditions the core of
the newsvendor game with finite players shrinks to
this single allocation as the number of players increases
(Montrucchio and Scarsini 2007).

Given a newsvendor game, the dual-based allocation
rule results in the following allocation scheme (which
we will simply refer to as the dual-based allocation
scheme),

lis =E[ns(0)Xi(w)], €S,

for each S € N. Here w € Q, the sample space of de-
mands (X4, ..., X,), and
~h, i Xs(w) < g5,
ms(@)=p=1, if Xs(w) =45,
P, if Xs(w) > g5,
where
_P—(p+hFs (q5)
Fs(qy) = Fs-(q5)

and the choice of 1 is immaterial when F¢(q3) = Fs_(q5)-

if Fs(q5) > Fs_(q5),

4. Independent Demands

In this section, we consider newsvendor games in
which all demands are independent. It turns out that
log-concave random variables play an important role
in our results. We start by defining continuous and dis-
crete log-concave random variables.

Definition 1. A continuous random variable X is log-
concave if the logarithm of its density function f(x) is
concave.

Definition 2. Let X be a random variable with support
on the set of non-negative integers. Denote the proba-
bility mass function p; = P(X =1i), i > 0. Then X is log-
concave if {i > 0: p; > 0} is a set of consecutive integers’
and p? > p;_4p;,, foralli >1.

By Definition 1, if a continuous random variable
is log-concave, its support must be connected. As is
shown in Ibragimov (1956), a continuous random vari-
able X is log-concave if and only if the corresponding
distribution function F(x) is strongly unimodal, that is,
a convolution of F(x) with any unimodal distribution
function is unimodal. Clearly this means F(x) itself is
unimodal. For discrete random variables, Keilson and
Gerber (1971) establish a similar equivalence between
log-concavity of the probability mass function and
strong unimodality of the distribution function. Log-
concave probability distributions constitute a broad
class of distributions including many commonly used
ones such as normal, exponential, uniform, logistic,

and so forth, and have wide applications in economics
(see, e.g., Bagnoli and Bergstrom 2005, Moulin and
Shenker 2001).

While Definitions 1 and 2 impose similar constraints
on the shape of the distribution, they are quite different
in the sense that one cannot use the limit of continu-
ous log-concave distributions to approximate a discrete
case nor vice versa, and hence a separate analysis is
necessary. We first present our results for continuous
random variables.

Proposition 1. Suppose the players’” demands X, ..., X,
are independent continuous random variables with log-con-
cave distribution functions. Then the newsvendor game is a
convex game.*

Instead of checking the inequality (5) directly, we
employ a perturbation argument in the proof of Propo-
sition 1. Let 1(X;) = c(S) represent the total cost for
coalition S when the total demand is Xg. Then for any
S €T € N\{j} the inequality (5) to ensure (N,c) is a
convex game can be rewritten as Y(X + Z) — ¢(X) =
YX+Y+2Z)-¢(X+Y), where X=X, Y =X — X,
Z = X;. The inequality holds if ¢(X + aY + BZ) is sub-
modular in a, § for a, § > 0.

Remark 1. Slikker et al. (2001) prove that a newsven-
dor game is convex if demands are independent and
follow normal distributions. Ozen et al. (2011) prove
that a newsvendor game with three players is convex
when demands are identical, independent, and uni-
formly distributed. Proposition 1 includes the previous
conditions as special cases. Ozen et al. (2011, p. 39) also
conjecture that “newsvendor games with three players
all having independent uniform demands should be
convex.” Note that Proposition 1 not only confirms this
conjecture, but also shows that the convexity holds for
much more general distributions beyond uniform and
for any number of players.

Remark 2. By Proposition 3 in Sprumont (1990), all
extreme points of the core (referred to as “extended
vectors of marginal contribution” in Sprumont 1990)
lead to PMASes. Therefore, the allocation under Shap-
ley value, which is a convex combination of the extreme
points, also results in a PMAS for the newsvendor
games that satisfy the condition in Proposition 1.

Interestingly, the condition in Proposition 1 is also
sufficient to guarantee that the dual-based allocation
scheme is a PMAS. When X;,..., X, are all indepen-
dent and continuous random variables, Xg = ;.5 X;
for S € N is also a continuous random variable. This
allows us to simplify the dual solution 74(w) as

(@) ~h, if Xs(w) <q5,
Tlc\l) =
s p, if Xg(w) > g3
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Therefore, for any i € S € N, the allocated cost is
given as

l; s = E[ns(@)X;(w)] = —hE[Xil{xs<q;}] +PE[Xi1{X52q;}]~
(6)

We have the following result.

Proposition 2. Suppose the players” demands X, ..., X,
are independent continuous random variables with log-con-
cave distribution functions. Then the dual-based allocation
scheme is a PMAS.

Similar to the proof of Proposition 1, we prove
Proposition 2 by a perturbation analysis. It is sufficient
to show that for any subset S C N, any player i € S, and
any player j, j ¢ S, the inequality [; ¢ > [; 5,(;, holds. We
denote [;(D) as the cost allocated to a player i € N when
the player is in a coalition with total demand D. Then
the inequality /; s > [; 5(;, is the same as [(X +Y) >
L(X+Y+Z), where X =X, Y =X; - X;, Z=X;. Define
g(6) =1;(X+Y +06Z). We then prove the proposition by
showing ¢(0) > g(1).

When demands are discrete random variables, it
becomes difficult to reach the existence of a PMAS
through the path of convexity. In fact, an example from
Slikker et al. (2001) shows that the newsvendor game
is not convex even when demands follow identical
Bernoulli distributions, the simplest log-concave dis-
crete distributions. In their example, the Shapley value
still leads to a PMAS. Our next example demonstrates
that the Shapley value need not result in a PMAS when
demands follow independent Bernoulli distributions.

Example 1. Let N={1,2,3},p=0.6, h =04, X;, X,, X;
can take values 0 or 1 with probabilities P(X; =0)=0.3,
P(X,=0)=0.7, P(X,=0)=0.7.

In Table 1, the first column lists all possible coali-
tions. The second and third columns, respectively, give
the optimal order quantity g5 and the minimum cost
¢(S) for each coalition. Columns 4-6 show the costs
allocated to all players according to the Shapley value,
and columns 7-9 present these costs under the dual-
based allocation rule. Figures in Table 1 are rounded
such that the allocations add up to the total cost. From
this table we can observe that even though all demands

Table 1. Calculations for Example 1

Shapley value Dual-based
S 95 ¢S  @is Pas Pss L L Ly
{1,2,3} 1 0.327 0.0756 0.1257 0.1257 0.0888 0.1191 0.1191
{1,2} 1 021 0.075 0.135 0.0905 0.1195
{2,3} 1 025 0.125 0.125 0.125 0.125
{1,3} 1 021 0.075 0.135  0.0905 0.1195
{1} 1 012 0.12 0.12
{2} 0 0.18 0.18 0.18
{3} 0 0.18 0.18 0.18

follow log-concave distributions, the game is not con-
vex because

c({1,3}) —c({1}) <c({1,2,3}) - c({1,2}).

Since the game is not convex, the Shapley value does
not necessarily result in a PMAS. Indeed, in this exam-
ple the allocation under the Shapley value is not even in
the core because ¢, (1 5 3y + @3 (1,2,3y > ¢({2,3}), and the
allocated cost for each player does not always decrease
when a new member joins since ¢; (153 > @1 (1,2
However, one can easily verify that in this example the
dual-based allocation specifies a PMAS, and Proposi-
tion 3 shows that this is not a coincidence.

Proposition 3. Suppose X, ..., X, are independent dis-
crete random variables and are log-concave. Then the dual-
based allocation scheme is a PMAS.

When demands are discrete, the dual-based alloca-
tion scheme is given by

lis= _hE[Xil{qu*S}] + PE[Xil{X5>q;}]
+ (p - n)E[Xil{XS:q”S}]/ i€ S/ S - N/ (7)

where
_P—(p+h)E_(q5)
Fgy)—F_(q5)

Comparing Equation (7) with (6), there is an additional
term in (7) corresponding to the case where there is
a strictly positive probability that the total demand of
the coalition is equal to the optimal ordering quantity.

Different from the proof of Proposition 2, [;(X +Y +
0Z)is no longer differentiable in 6 when X, Y and Z are
discrete random variables. Therefore, when we analyze
the monotonicity of /;(X +Y + 6Z) with respect to 6, we
demonstrate that for any 0 > 0, there exists € > 0 such
that for any € € [0, €]

LX+Y+(0+e)Z)<(X+Y+0627).

As a corollary to Proposition 3, when demands fol-
low independent Poisson distributions, the dual-based
allocation rule reduces to a simple rule that fully allo-
cates the cost of a coalition in proportion to the mean
demands of its participants.

Corollary 1. Suppose X, ..., X, are independent Poisson
random variables. Then the dual-based allocation scheme is
given by

A
li = : C(S)/
o 2ikes M

where X; ~ Poisson(A;), for i € N, and it is a PMAS.

VieS,SCN,

In the case discussed in the corollary, the cost per
unit of expected demand of coalition S, ¢(S)/Xes Ars
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Table 2. Calculations for Example 2

S s c(S) L Ls Ly s
{1,2,3} 2 0.5 0.0625 0.375 0.0625
{1,2} 2 0.45 0.05 0.4

{2,3} 2 0.45 0.4 0.05
{1,3} 1 0.25 0.125 0.125
{1} 1 0.2 0.2

{2} 2 0.4 0.4

{3} 1 0.2 0.2

always decreases with the addition of a new member.
Under the proportional allocation rule, the cost of each
existing member of S is reduced uniformly at the same
rate. The corollary is consistent with an earlier result
of Karsten and Basten (2014), who show that the pro-
portional allocation rule results in a PMAS in a simi-
lar game with Poisson demands. We demonstrate that
the proportional rule can originate from a more gen-
eral allocation rule, which in many other cases may
not preserve proportionality but sustains population
monotonicity.

Propositions 2 and 3 assure that when demands are
log-concave, regardless whether the distribution is con-
tinuous or discrete, the dual-based allocation scheme is
a PMAS. Naturally one may ask whether this allocation
scheme is always population monotonic, even without
log-concave distributions. Example 2 gives a negative
answer.

Example 2. Consider three players with independent
demands X;, X, and X;. Suppose that X, can take val-
ues 0 or 1 with equal probability, X, can take values 0
or 2 with equal probability, and X; can be 0 or 1 with
equal probability. Notice that X, is not log-concave
since its support is not an interval of consecutive inte-
gers. Assume p = 0.6, h = 0.4. For each coalition S, we
list the optimal ordering quantity g, the total cost c(S),
and the dual-based allocation ; 5 for each player i € S
in Table 2.

In this case, when players 1 and 2 cooperate, the cost
allocated to player 1 is 0.05. If player 3 joins the coali-
tion, player 1’s allocated cost increases to 0.0625. There-
fore, the dual-based allocation scheme in this example
is not a PMAS.

5. Dependent Demands

When players in a newsvendor game have dependent
demands, establishing the existence of a PMAS by
proving convexity is a very narrow path. It is not clear
how prevalent convexity is among games with depen-
dent demands, and characterizing conditions for such
an occurrence is also difficult. To the best of our knowl-
edge, the only known sufficient condition for the con-
vexity of newsvendor games with dependent demands
is given in Montrucchio and Scarsini (2007), which

requires all players” demands to be permutation sym-
metric (see Definition 3), and follow a multivariate nor-
mal distribution.

In this section, we follow an alternative path to iden-
tify a large family of newsvendor games in which it
is feasible to implement a PMAS. In particular, we
focus on developing conditions for the dual-based
allocation scheme to be population monotonic. We
start by considering the aforementioned permutation
symmetric demand distribution, defined as follows
Hartman et al. (2000).

Definition 3. A joint distribution F of n random vari-
ables is permutation symmetric if, for all (x,...,x,)
€ R" and any permutation 7 of (1,2,...,n), F(xy,x,,
v X)) =F(n X0, X0 )

With permutation symmetric demand distributions,
individual identities play no role in determining the
total cost of any coalition. One thus may naturally con-
sider allocating the cost of a coalition evenly to each of
its members. Proposition 4 shows that this equal allo-
cation rule is a specialization of the dual-based alloca-
tion rule to this type of demand distributions, and is
population monotonic.

Proposition 4. If X,,..., X, have a permutation symmet-
ric joint distribution, then the dual-based allocation scheme
is given by

_c%

sl
and it is a PMAS.

Slikker et al. (2001) show that permutation symme-
try does not guarantee the convexity of a newsvendor
game if demands are not normally distributed. There-
fore, Proposition 4 extends the existence of a PMAS
beyond the domain of convex newsvendor games. To
address a more general family of games, we need
to consider the degree of dependence among the
demands. Our discussion will be restricted to contin-
uous demands and we use the concept of copula to
measure the dependency among random variables.

Consider a random vector (X, ..., X,). Let F denote
the joint cumulative distribution and F; denote the
marginal cumulative distribution function for ran-
dom variable X;,i =1,...,n. Then the random vec-
tor (U,,...,U,) = (Fi(Xy),...,F,(X,)) has uniformly
distributed marginal distributions. The copula of
(Xy,...,X,)is defined as the joint cumulative distribu-
tion function of (U, ..., U,).

Definition 4. The copula C: [0, 1]" + [0, 1] for a random
vector (X;,...,X,) is defined as the function such that

VieS,SCN,

Cluy,...,u,)=F(xy,...,x,),

where u; =F;(x;)) Vi=1,...,n.
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The copula of two random variables X and Y mea-
sures the degree of their dependence. The larger the
copula is, the higher the positive dependency between
X and Y. If C; and C, are copulas, we say that C; is
smaller than C, and write C; < C, if C;(u,v) < C,(u,v)
for all (u,v) € [0,1]%. This partial order is called the con-
cordance ordering (Nelsen 2006). The following propo-
sition reveals a connection between population mono-
tonicity of the dual-based allocation scheme and the
degree of dependence between a player’s demand, X;,
i € S, and the total demand of a coalition, Xg, S C N.

Proposition 5. Let C; (-, -) denote the copula of X; and X,
fori€Sand S C N. The dual-based allocation scheme is a
PMAS for the newsvendor game if for any SC T,

Cir(u,7)<C;s(u,7), Yuel01].

The dual-based allocation scheme is not a PMAS if there
exists S C T such that

Cir(u,1)>C; 5(u,7), Yuelo,1]

Proposition 5 shows that the dual-based allocation
scheme is a PMAS if C; 1 < C; s for all S C T. This gen-
eral condition based on the concordance ordering of
copulas reduces to more specific conditions for certain
special cases, which we discuss next.

In the first case, demands are comonotonic. A set
ACR" is comonotonic if for any x,y € A, either
x<y or y<x, where x < y represents x; < y; for
alli=1,2,...,n. A random vector X =(X;,...,X,) is
comonotonic if it has comonotonic support. Comono-
tonicity represents a strong positive dependence.
When two random variables are comonotonic, their
copula is C(u,v) = min{u,v}. The comonotonicity
of the demands then implies C; s(u,v) = C; 7(u,v) =
min{u,v} for all S C T, giving rise to the following
result.

Corollary 2. In newsvendor games with comonotonic de-
mands, the dual-based allocation scheme is a PMAS.

In our second case, demands follow a multivari-
ate normal distribution. We will refer to this type of
newsvendor game as a “Gaussian Newsvendor Game.”
We denote by p;, 0, p;; with i,j € N, i # j the means,
standard deviations, and correlation coefficients of the
demand distributions, respectively.

The total demand of a coalition S € N and that of any
one of its members have a bivariate normal distribution
with correlation coefficient

Cov(X;, Xs)

0i+ 2 jsi jes Pij0

2
\/Zjes 07 +2 2k, jes,kes PjkTj0k

p(X;, Xs) =

, 1€8S.

®)

Interestingly, the concordance ordering of the bivari-
ate normal copulas, which is the copula of the bivari-
ate standard normal distributions, is equivalent to the
ordering of the correlation coefficient as the Lemma 1
shows.

Lemma 1 (Meyer (2013)). Let C(u, v; p) denote the bivari-
ate normal copula with correlation coefficient p. We have

C(u,v;py) < C(u,v; p,) if and only if p; < p,.

Applying Lemma 1 to Proposition 4 leads to the fol-
lowing proposition.

Proposition 6. Let S C N be a proper subset of players in a
Gaussian Newsvendor Game, and j € N, j € S. Then under
the dual-based allocation scheme, I; s > 1; 5y, i.e., player
i €S is allocated a lower expected cost in coalition S U {j}
than in coalition S if and only if

p(Xi, Xsugiy) < p(Xi, Xs)- )

Hence the dual-based allocation scheme is a PMAS if and
only if

p(X;, Xr) < p(X;,Xs), forall ieSand ScTCN.

(10)

Proposition 6 completely characterizes the class of
Gaussian Newsvendor Games in which the dual-based
allocation scheme is a PMAS. Observe that the nor-
mal distribution characterized by (10) is not necessarily
permutation symmetric. So the proposition suggests
the possibility that a PMAS exists in some Gaussian
Newsvendor Games that are not convex. Example 3
demonstrates such a case.

Example 3. Suppose N ={1,2,3},p=h =1, and

X, 0\ (100 10 -10
X, [~xf[0],| 10 100 -20
X, 0/ \-10 —20 100

We conclude that the dual-based allocation scheme
is a PMAS in this game by verifying that (9) holds for
each coalition S € {1,2,3}, playeri € S, and j ¢ S. Here
values of p(X;,Xs), SC N and i € S are determined
by (8), using the covariance matrix of the example as
inputs.

To show the game is not convex, observe that the
total costs of different coalitions are optimal values
of newsvendor models with the same cost parameters
and different Gaussian demand distributions. It fol-
lows that ¢(S) = o5 where ¥ is a constant indepen-
dent of S (see Zipkin 2000, Hartman and Dror 2005).
One can compute that

c({1,3}) — c({3}) = #(V180 — V100) < F# (V260 — V160)
= C({1/2/3}) - C({Z,S}),

which violates the definition of a convex game.
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To show the effectiveness of applying Proposition 6
to Gaussian Newsvendor Games, we develop the fol-
lowing analysis on a couple of representative special
cases.

Special Case 1. We have shown that either indepen-
dent log-concave or permutation symmetric demand
distributions are sufficient for the dual-based alloca-
tion scheme to be population monotonic. In Gaussian
Newsvendor Games, independence implies p;; =0 for
all i,j € N (i # j) and permutation-symmetry can be
attained by letting 0, =0 foralli € N and p; ; = p for
all i,j € N, i # j. We combine these two conditions
to define a class of Gaussian Newsvendor Games as
follows.

The set of players N is divided into two nonempty
and mutually exclusive subsets N, and N;. All players’
demands are normally distributed with the same stan-
dard deviation o; =1 (i € N). Demand correlation only
exists between players in set N,, referred to as the set of
“relatives.” The demand of a player in set N,, referred
to as the set of “strangers,” is uncorrelated with that of
any other players. The correlation coefficient is

_JP
pij = {O,

where p # 0 and for the covariance matrix to be positive
semi-definite, p > —1/(|N,|-1).

i,jeEN,, i#];
ieN;,jeN,i#],

Proposition 7. Let S C N be a coalition in the Gaussian
Newsvendor Game, and j & S.
If j € N,, then

p(Xi,XSU{j}) <p(X;,Xg) forallies. 11

Hence player i € S is always allocated a lower cost in coali-
tion SU{j} than in S.

If j €N,, then

* for each i € SN N, the inequality (11) holds and the
allocated cost to player i is lower in coalition S U {j}, if and
only if p = p(S), where p(S) =-1/(2|N, N S|) <0.

e for each i € SN N,, the inequality (11) holds and the
allocated cost to player i is lower in coalition S U {j} if
and only if p(S) < p < p(S), where p(S) € (-1/(IN, N
S| —1),p(S)) and p(S) € (0,1) are values depending only
on |S|and [N, NS|.

Proposition 7 shows that if a stranger joins the co-
alition, all existing players’ allocated costs will not
increase for any p; if a relative joins the coalition, addi-
tional requirements on p need to be imposed to ensure
that all existing players are not worse off. To under-
stand this discrepancy, first note that admitting a new
player allows more risk pooling in a coalition. This
benefit is shared equally among existing members of
the coalition if the newcomer is a stranger with its
demand uncorrelated with that of any other player.

However, if the newcomer is a relative, then the benefit
will not be uniformly shared because of the asymme-
try of demand correlation between different types of
coalition members and the new entrant.

The previous discussion implies that in this type of
game, the dual-based allocation scheme is not a PMAS
when the relatives have a strong positive correlation
or a strong negative correlation. Hence one should not
expect that players will cooperate fully on every path of
growing coalitions. Nevertheless, the grand coalition
may still be formed along specific paths. For instance,
consider a path that starts with a coalition of all play-
ers i € N, in phase 1 and admits players in N, in
phase 2. The dual-based allocation scheme is popula-
tion monotonic during the first phase since X;, i € N,
have a permutation symmetric distribution. The allo-
cation scheme remains a PMAS in the second phase
since (11) applies to all players i € N,. The specific path
along which a grand coalition can be formed is referred
to as a population monotonic path scheme (PMPS) in
the literature (see Ciftci et al. 2010). The existence of
a PMPS is a weaker condition than the existence of a
PMAS. The concept of a PMPS is suitable for the sit-
uation where an effective way to establish the grand
coalition can be specified (usually by a third party).
For example, Cruijssen et al. (2010) utilize this solution
concept to study a game in which shippers outsource
their logistics to a service provider who can choose the
most suitable sequence to propose offers of allocating
generated savings to shippers. On the other hand, a
PMAS guarantees the formation of a grand coalition
without the guidance of a third party, which is the
main focus of our paper.

Special Case 2. Another interesting case is Gaussian
Newsvendor Games with “systematic risk.” In this
game, the demand of every player i € N can be decom-
posed into

X;=Y;+Z, ieN, (12)

where Y}, i € N and Z are mutually independent nor-
mal random variables. The randomness of Z poses a
“systematic risk,” since the quantity is a common part
of every player’s demand. Without loss of generality,
we normalize the variance of Z to unity and denote
those of Y; by 7. We also denote s = |S|. Then the vari-
ances and correlation coefficients of the demands are

var(X;)=o0?+1, i€N and

o7 +s

2 2
Ao +1 /Z;‘es a; + 52

Proposition 8. In a Gaussian Newsvendor Game with de-
mands defined by (12), for any coalition S C N, let i € S and
k¢S If p(X;, Xs) 2 p(X;, Xsuiry), then

p(X;, Xs) = , SCN,i€Ss.

P(Xers) > p(Xj/XSU{k}) for any j €S such that 01.2 S(f;’.)
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Figure 1. (Color online) Range of Variances to Ensure a PMAS
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Moreover, there exists a threshold 6; s > 0 such that
p(X;, Xs) 2 p(X;, Xsugy) ifand only if 0, > 6 5.

The first part of Proposition 8 shows that in this
game with “systematic risk,” if it ever happens that
demand correlation between a member and the coali-
tion increases after adding a new member, it will hap-
pen first to the member with the least variance in his
demand. This suggests that members with more “sta-
ble” demands are usually bottlenecks on the path of
growing a coalition. The second part indicates that the
dual-based allocation scheme is a PMAS only in games
where each player’s individual variance exceeds a cer-
tain threshold.

Figure 1 shows a game with three players, where the
variance of player 3’s demand is fixed at 0.1, 0.5, and
2, corresponding to the left, middle, and right panels,
respectively. The red region in each panel represents
combinations of demand variances of players 1 and
2 under which the dual-based allocation scheme is a
PMAS. When the variance of player 3 is small, as is the
case with the leftmost panel, variances of players 1 and
2 also have to be small, or player 3 will have a higher
costin coalition {1, 2,3} than in coalitions {1,3} and /or
{2,3}. Similarly, the rightmost panel shows that when
player 3’s demand has a high variance, those of play-
ers 1 and 2 must also be high, or they will also face a
cost increase. The middle panel shows the intermediate
case.

6. Open Problems, Initial Explorations,

and Future Challenges

We have studied newsvendor games with a focus
on the population monotonicity of allocation rules.
We identified sufficient conditions for a newsvendor
game to be convex and for the dual-based alloca-
tion scheme to be a PMAS, respectively. By discussing
applications of these conditions, we shed interesting
insights on players’ incentives to expand a cooperative
relationship.

0 P P P P
0 02040608 10 12 14 16 1.8 2.0

0 n n n n n n n n n
0 0204 06 08 10 12 14 16 1.8 2.0

2 2
a4 a4

While substantial new progress has been made here,
our work also gives rise to a host of interesting new
problems, ranging from algorithmic challenges to the-
oretical possibilities. Solving these problems is well
beyond the scope of this paper. Nevertheless, to inspire
future research, we highlight a few difficult issues and
share initial findings.

Computational Complexity. In theory, the conditions
developed in this paper can be applied to determine
if the dual-based allocation scheme is a PMAS of a
newsvendor game. However, in many cases, especially
in the presence of demand dependency, computational
complexity can be a major obstacle to testing these
conditions.

Take the Gaussian Newsvendor Game as an exam-
ple. For the general case, Proposition 6 requires test-
ing (9) for all S € N and i € S. The number of in-
equalities grows exponentially with the number of
players. Finding a uniformly applicable procedure to
cut through the complexity is desirable but difficult.
Our progress so far has been limited to a few interest-
ing cases with particular exploitable structures.

Proposition 9. Consider a Gaussian Newsvendor Game
with n players.

o If the game is of the form of Special Case 1, the complex-
ity of verifying the dual-based allocation scheme is a PMAS
is O(n);

o Ifthe game is of the form of Special Case 2, the complex-
ity of verifying the dual-based allocation scheme is a PMAS
is O(n?).

Going beyond Gaussian Newsvendor Game, we may
rely on comparisons of copulas, suggested in Proposi-
tion 5, to test population monotonicity, an even harder
problem that calls for more innovative approaches.

Beyond the Convex Game and the Dual-Based Alloca-
tion Scheme. Convex games ensure the existence of a
PMAS. When a newsvendor game is not convex, we
provide conditions to ensure that the dual-based allo-
cation scheme is a PMAS. One may then ask the fol-
lowing: When a newsvendor game is not convex and
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Table 3. Calculations for Example 4

S X 7% c(S)
{1}, {2}, {3} u(0,1) 1/2 1/4
(1,2,3) A(1,2) 3/2 1/4
1,2} %0,2) 1 12
{1,3}, {2,3} 1 1 0

the dual-based allocation scheme is not a PMAS, is it
still possible that a PMAS exists? The answer, as we
demonstrate by the following example, is yes.

Example 4. Consider a newsvendor game of three
players. Let p = h = 1. Assume that player 1’s demand
X, ~U(0,1), where %U(a, b) represents the uniform dis-
tribution over [a,b]. Let X, = X; and X; =1- X;. For
each SC N, Xs, g5, and ¢(S) can be determined as
shown in Table 3:

The game is not convex because c({2,3}) — c¢({3})
< c({1,2,3}) = ¢({1,3}). The dual-based allocation
scheme cannot be a PMAS in this case. Any coalition
with two players is permutation symmetric, and thus
as Proposition 4 concludes, the scheme always allo-
cates an equal amount of the total cost to each player.
Hence

ls=c(8)/2=0, i=1,2,3 and S={1,3},{2,3}.

Since ¢({1,2,3}) > 0, some player has to incur a posi-
tive cost in the grand coalition. Thus, expanding either
coalition {1,3} or {2,3} will cause at least one player’s
cost to go up.

In this case, permutation symmetry in a coalition
leads to allocation symmetry because any potential
participants that have not joined are ignored. Deviat-
ing from this basic feature of the dual-based allocation
scheme may save population monotonicity. Note that
in this game, it makes no difference to player 3 which of
the other two players to cooperate with first. If player 3
exercises his bargaining power that comes with this
flexibility to minimize his cost in a two-player coali-
tion, then the allocation scheme specified in Table 4
will emerge as a PMAS.

Example 4 makes it imperative to develop generally
applicable PMASes other than the dual-based alloca-
tion scheme or relying on the notion of a convex game.

Table 4. A Population Monotonic Allocation Scheme

S c(S) L s b Ly s

{1,2,3} 1/4 1/4 1/4 -1/4
{1,2} 1/2 1/4 1/4

{2,3} 0 1/4 -1/4
{1,3} 0 1/4 -1/4
{1} 1/4 1/4

{2} 1/4 1/4

{3} 1/4 1/4

Existence of a PMAS. So far we have identified various
cases of newsvendor games in which a PMAS exists.
But a PMAS is not guaranteed to exist for all newsven-
dor games. We provide an example with no PMAS.

The game has four players with demands X; ~
%0,1), X, =X;, X3=X,=1-X;. Assume p >0, h > 0.
Since ¢({1,3}) =0 and c({1,2,3}) > 0, player 2 has to
bear a strictly positive cost in the latter coalition to
keep it stable. For the same reason, in coalition {2, 3,4},
player 3’s cost should also be strictly positive. Thus to
meet the definition of PMAS, both players 2 and 3 have
to pay a strictly positive cost in coalition {2,3}, which
is a part of coalitions of {1,2,3} and {2,3,4}. This is
not possible since c({2,3}) =0.

It might be unsettling to learn that a PMAS is not
guaranteed for some newsvendor games. This fact
implies that there are natural limits on the growth of
cooperative relationships in supply chains. It is impor-
tant to understand those limits and thus to characterize
those games that do have a PMAS and those that do
not. In addition, interesting and surprising technical
results may surface from such exercises.
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Appendix A
Proof of Proposition 1
Recall the condition (5) to ensure convex games and

c(S)= Z lis= —hE[Xsl{X5<qg}] + PE[Xsl{XSZq;}]

i€S

=-hE[Xs]+(h +p)E[X51{X52q§}],

with g5 = F;'(7). Let (Xs) = ¢(S) represent the total cost
for coalition S when the total demand is Xg. Then for any
S €T € N\{j} the convex game condition (5) can be rewritten
as (X +Z)—p(X) > (X +Y +Z)— (X +Y), where X = X,
Y = X; — X;, Z = X;. The inequality holds if ¢(X + aY + pZ)
is submodular in «, § for a, f > 0.

Notice that (X + aY +pZ)=-hE[X +aY + BZ] +(h +p)-
E[(X + aY + BZ)1 (x+av+p2)2q(a,p1y ), Where q(a, B) is the opti-
mal ordering quantity when the total demand is X +aY + Z.
Clearly, the first term —hE[X + aY + BZ] is submodular in
(a, B). Therefore, we only need to show that g(a, f) = E[(X +
aY + BZ)(x1av+p7)2q(a,p] 15 submodular. Let f(x,y,z) be
the joint p.d.f of X,Y and Z, and L(y,z) = f(q(a, B) —ay —
Bz,y,z). Then

s p= [ [/ (v +ay+2)f(x,1,2) d"] s
x2q(a, p)-ay—pz (A1)

/[/ f(x,y,z)dx]dydz:l—f.
x2q(a,p)-ay—pz

and

(A2)
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From (A.1),

dg _ _
Bew=[|[ weyai-gap
d
. (ﬁ((x,ﬂ) - y)L(y,z)] dydz. (A.3)

Differentiating on both sides of (A.2) with respect to a
results in

d
_/(ﬁ(a’ﬁ)_y)L(y,Z)dydz:0. (A4)

By applying (A4) to (A3), it follows (dg/da)(a,p) =
f[foq((x,ﬁ)—ay—,Bz ]/f(x/ Y, Z) dx] dde Hence,

op

By differentiating on both sides of (A.2) with respect to g,
—J((@q/9B) (e, B) — z)L(y, z) dydz = 0, which leads to

2? d
= [y SHap-z)iw e @

a_q /zL(y,z)dydz
I /L(y,z)dydz ’

By the right hand side of (A.5) with (A.6), (9*¢/(dadp)) -
(a,B) = =A/(JL(y,z)dydz), where A = (fyL(y,z)dydz) -
(/zL(y,z)dydz) - ([ L(y, z) dydz)(f yzL(y, z) dydz).

Note that

([ st 2ravaz ([ =121 v
=% (/ZlL(}/er1)dy1d21)(/yzL(yz,zz)dyzdzz)
+ (/ZZL(]/Z/ZZ)d]/Zdzz)(/ ylL(yl,zl)dyldzl)];
(/ yzL(y,Z)dde)(/ L(y,z)dydz)
% (/ylzlL(yer1)dy1dZ1)(/L(yz,zz)dyzdzz)
+ (/ yzzzL(yz,zz)dyzdzz)(/ L(yl,zl)dyldzl)].

Thus, we can rewrite A as

(a,p)= (A.6)

1
A:z/_(yZ_yl)(zz_Zl)L(yllZl)L(yZlZZ)dyldzldyZdZZ

1
= 5/ =(¥2 = y1)(z2 — 2)L(y1,71)
(y2=y1)(22-21)<0

1
L(Yp, 25) Ay dz dyrdz, + E/ (=)
(y2—y1)(22-21)20
(2o = 2)L(y1, 21)L(Y2, 25) dy,dz,dy,dz,
1
= 5/ =(¥2 = y1)(z2 — 2)L(y1,71)
(y2-y1)(22-21)<0
1
“L(Y2,20) dy1dz dy,dz, + 5 / —(y1— 1)
(y1-y2)(22-21)20

(25 = 21)L(Y2, 21)L(y1, 22) dyrdz,dy,dz,,

where in the last equality we simply switched the notations
y, and y, in the second term. Hence, combining the two
terms we have

AZE/ “(Y2—y1)(z—271)
(y2=y1)(22-21)<0

[L(y1,21)L(Ya, 20) = L(Y2, 21)L(Y1, 22) Ay d 2, dy,d z,.

Now, we see that a sufficient condition for A > 0 is for
(2= y1)(z2—21) <0, L(y1, 20)L(Y2, 22) = L(y2, 21)L(y1, 25) 2 0.
In other words, A > 0 if logL(y,z) is submodular in
(y,2z). Indeed, by independence of X,Y,Z, logL(y,z) =
log f(q(a, ) — ay ~ B2)) + log fy (y) +log f,(2). Since when
all demands have log-concave distributions, the sum of
demands is also log-concave, i.e., X is log-concave. Hence,
log fx(q(a, B) — ay — Bz)) is submodular in (v, z) for a, > 0.
Therefore, A > 0 and g(a, f) is submodular in @ and § for
a, B >0, which completes our proof.

Proof of Proposition 2

Similar to the idea of the proof for Proposition 1, we employ
a perturbation analysis. It is sufficient to show that for any
SCN,i€S, j¢S, the inequality [; s > I; 5, holds. We use
I;(D) to denote the cost allocated to player i when the total
demand is D. Then the inequality [; s > I; 5,(;y is the same as
LX+Y)2[(X+Y+Z), where X=X, Y =X; - X;, Z=X.
We establish the inequality by showing that [;(X+Y +0Z)isa
decreasing function of 6 for 6 > 0. Let F(x, y,z) and f(x,y,z)
denote the joint c.d.f. and p.d.f. of X, Y and Z. Then, the
optimal order quantity for the coalition S U {;}, denoted as
(), should satisfy

/ dF(x,y,z)=1.
x+y+062<q(0)

Meanwhile, the cost allocated to player i according to
the dual-based allocation scheme is [;(X + Y + 6Z) =
—hE[X1 xsysoz<qon] + PEIX U xsysozzqon] = PEIX] = (p + h) -
E[X1(xiv+sz<q0)- Equivalently, we show that g(6) :=
E[X1(x4y+57<q(5)y] 18 increasing in 6. Since

(A7)

g(0)= xf(x,y,z)dxdydz

x+y+062<4q(0)
=fx[/ flx,y,z)dy|dxdz,
y<q(0)-6z—x

we then have

%:/x(Z—Z—z)f(x,q(é)—éz—x,z)dxdz. (A.8)

To check dg/dd > 0, observe from (A.7) that [(dgq/dd —z) -
f(x,q(6)—06z—x,z)dxdz=0,and thus dq/do=(fz f(x,q(6)—
0z—x,z)dxdz)(f f(x,q(6)— 6z — x,z) dxdz). Denote L(x, z) =
f(x,q(8) — 6z — x, z), we then obtain

dg/dé:/x[(/zL(x,z)dxdz)
/(/L(x,z)dxdz) —Z]L(x,z)dxdz
:A/(/L(x,z)dxdz),
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where A := (fzL(x,z)dxdz)(fxL(x,z)dxdz) — (fxz
L(x,z)dxdz)(f L(x,z)dxdz). In the following, we show that
A >0, which then implies dg/d6 > 0. Note that

(/ zL(x,z)dxdz) (/ xL(x,z)dxdz)
= %[(/zlL(xl,zl)dxldzl)(/x2L(x2,zz)dx2dzz)
+ (/ZZL(xz,zz)dxzdzz) (/ le(xl,zl)dxldzl)];

(/ sz(x,z)dxdz) (/ L(x,z)dxdz)
= %[(/ xlzlL(xl,zl)dxldzl)(/ L(x2,zz)dx2dzz)
+ (/xZZZL(xZ,zz)dxzdzz) (/L(x],zl)dxldz])].

Following similar steps as in the proof of Proposition 1,
we can rewrite A as A = (1/2) fix,—x;)zp-z)20 —(X2 = X1) -
(22 = z9)[L(xy, 21)L(xy, 25) = L(x5, 21)L(xy, 25) | dxy d 2y dxpd z,.

Now, we see that a sufficient condition for A > 0 is
(xy = x1)(z5 = 21) <0, L(x;,21)L(x;,25) — L(xp,21)L(x1, 25)
> 0. In other words, A > 0 if logL(x,z) is submodular.
When demands of all players are independent, then X,Y
and Z are independent. Consequently, we have log L(x, z) =
log fx(x) +log fy(q(6) — 6z —x) +1og f,(z), where fx(-), fy()
and f,(-) are the p.d.f for X,Y and Z, respectively. Requir-
ing logL(x,z) to be submodular is equivalent to requiring
(0*1og fv(q(6) — 6z — x))/(9x9z) < 0, i.e., fy(+) is log-concave.
Since when all demands have log-concave distributions, the
sum of demands is also log-concave, i.e., Y is log-concave,
this completes our proof.

Proof of Proposition 3

In this proof, we first consider the case where demand has
finite support. Later we will extend our proof to include the
case where demands can have infinite support. Similar to the
proof of Proposition 2, let X denote the demand faced by
the player under study, i.e., X := X, forsomei€S,SCN, Y
denote the sum of demands faced by the rest of players in
the coalition, i.e., Y := 3, tes X; and Z be the demand faced
by the new incoming player, i.e., Z := X; for some j ¢ S. We
use /;(D) to denote the cost allocated to player i when the
total demand is D. Employing a perturbation analysis, we
are going to show that for any 6 > 0, there exists € > 0 such
that for any € € (0,€], [(X+Y +(0+€)Z) <[;(X+Y +6Z).
In other words, for any 6 > 0, the function [;(X +Y +0Z) is
locally decreasing in .

Suppose that random variables X and Y can take values
in {x,: m=1,...,M} and {y,: n =1,...,N}, respectively.
With a slight abuse of notation, suppose Z can take values in
{z;:j=1,...,]} and X +Y can take values in {u;: i=1,...,I}.
We assume, w1th0ut loss of generality, that the sequences x
Y, U;, 2j are all ordered from the smallest to the largest.

mrs

Given 6 > 0, we define € > 0 as follows. Let & =
min; ey, jsjr Kl(zj,z/-,)/(zj - zj,), where
©1(z;,2j)
—zj)-0(z;—z;), if[6(zj—z;)1-06(z;—2;)>0,

if [6(z; —z;)1 - 06(z; —z;) =0,

_Jfo(z
-1

and [x] represents the smallest integer that is greater than or
equal to x. Let
o KZ(M,,M /Zj,Z)
T el et z;— 2

’

where

K2(“1/ 1/Z]/Z )
)i +06z) = (up +062z)|,  if [(w; +0z;) — (uy + 02j)| > 0,
"] 4o, if |(u; +62;) = (uy +62;)| = 0.

Note that the objective functions in the definitions of €, and
€, are strictly positive over a finite set of points. Therefore,
€,,€, >0 and we can choose € > 0 such that € < min{é,, €,}.

We explain why we need € < é; here. The reason why we
need € < &, will become clear later. If u; + (6 + €)z; = u; +
(6 +€)zj for some € € (0, €], then we must have u; = u;, and
zj =zj (or equivalently i = i’ and j = j’). To see this, without
loss of generality assume z; > z;. Because € < &, (6 +¢€) -
(zj —z) cannot be an integer. Since u; —u; is an integer, there
does not exist any u;, uy, zj, z; satisfying (0+e)z;—zp) -
(1/[ uz’) 0.

Let g and g, denote the optimal order quantity when the
total demand is X +Y + 0Z and X + Y + (6 + €)Z, respectively,
where € € (0, €]. Then there exists a unique pair (i*, j*), such
that g. = u;. + (0 + €)z;., where u;. = x,, +y, for some m,n.
Notice that {(i,): u; + 0z; = u; + 6z;-} need not be a sin-
gleton. Let 7 = {(f,f): Ui +0z; =y + 02z, U; > U, 2; < 2},
L=A(, ) uy +0zp = up +0zj, Uy <uje,z; >z} We index
the elements in # by k € {1, .. K} and the elements in & by
le{l,...,L}.

To facilitate the analysis and simplify the comparison
of allocated costs /;(X +Y + (6 + €)Z) and [(X + Y + 6Z),

jr

we define U*:{(mnj) xm+yn—ul,z]—z}, u, =
{(mrnrj):xm""yn: zk/ Z]k} (lk/]k)E% k= 1 Kr Ull:
{m,n,j):x,+y,= Uy ,z =zj } (i,jpeZ,1=1 L.More—

over, let U = UK, uk, U=U.Uu,u=uuv u U U’. Notice
that U consists of all possible (m, 1, j) such that x,, +y, +0z; =
Up+ 62 . And U can be divided into three scenarios, namely
us, ua and U’, based on whether Zj=2j, 2; <Zj OF Z; > z;,
respectively. Then U can be further d1V1ded into U, forke #,
and U’ is divided into U] for [ € Z.

Let P, ,,; = P(X =x,,Y =y, Z =z;). We then deﬁne
some probabilities corresponding to the sets U*, U,
and U: P = P(X +Y =up,Z =zp) = T, u, peur P
Pk - P(X +Y = ulk/ = ka) = Z(m,n,j)el:lkpm,n,]'/k =
1,...,K, P/=PX+Y= ”i;/Z = Zj;) = Z(m,n,j)eu; Pm,n,jll =
1, ..., L. Similarly, we define the following expecta-
tions: E* = E[Xl(X+Y=lli»,Z=Z7w}] = Z(m n,j)elu* xmpm n,j’ Ek =

m,n,js

E[Xl{X+Y=u;k,Z=sz}] = Z(m,n,j)eflk m n, ]/k =1,...,K, E; =
E[Xl{X+Y:u/ Z=z ,}] = Z(m n, j)eu’x Pm,n,]rl = 1/"'/L' Since
Elk,k =1,. K and U], = .,L are dis]omt sets,

then we have P = Z(m n j)ell Pm nj = Zk 1Pk, P =
Z(m n,j)el’ Pm n,j 2 E Z(m n, j)el X Pm,n,] Zk:l Ek’

= S, n, pett’ Xm P, Zz LE;. Define P%,P2,P as the
probabihty that the total demand X + Y + 6Z is strictly less
than, less than or equal to, and equal to u;. + 6z ., respectively.
In other words, P =P(X +Y +0Z < u; + 62]-*), PY=P(X+
Y +0Z <up+0z;), P2=P(X+Y +0Z = u; +6z;.). Similarly,
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deﬁnePe PS,PEasPE=P(X+Y+(0+€)Z <u; +(6+e)z ),

P(X+Y+(6+e)Z<u + (0 +€)zj), Pe —P(X+Y+
(6 +€)Z =u; + (0 +€)z;). Before we compare the costs, we
need the followmg lemma

—P% =P, P% - PS =P’ In addition, q = u;. +0z;..

Proof of Lemma 2. we first show that {X + Y + 6Z < u;. +
0z} C{X+Y+(0+€)Z <u; +(6+€)z;}. This is equivalent to

Lemma 2. P¢

{(, ) u;+0z; <uy + 06z}
C{G, j)ru+(0+e)z; <up+(0+e€)z;} (A9)
For any (i, ) satistying u; + 6z; < u; + 6z;., we have u; +
0z; <upu+0zp + e(zj* - zj). To see this, if z; > z;, then clearly
uj+06z; <up + 0z +€(z;. - z;) since € > 0. If 2% < z;, then by
definition of &,, we have € < &, < (u}+ 62; —(u;+0z;))/(z; —z;).
Therefore, u; + 6z; < u;- + 0z + €(z;- — z;). This proves (A.9).
Similarly if u; + 6z; > u; + 0z, then u; + 6z; > u; + 6z, +
€(zj« — z;). Therefore, we have
{G ) u+(0+e)z; <up +(0+€)z;}
—{@, ) u; +06z; <uy + 6z}
={@, j):u; +(0+e€)z; <up +(0+€)zp,
={@, j):u; +(0+e€)z; <up +(0+€)zp,

U +0z; 2 up +06z;}
u;+0z;=u;+0z}
={(@i, j): zj <zj., u; + 0z; = u; + 6z}

Notice that P¢ = P*, P2 = P* + P + P’, together with P¢ —
PY = P we obtain P2 — P< = P’. Since the optimal order quan-
tity when the total demand is X + Y + (5 + €)Z satisfies g, =
U+ (0+€)zj, wehave PS < T < PS. Recall that T =p/(p + 1)
is the critical fractile, Hence, P? < © < PY. Therefore, the opti-
mal ordering quantity when the total demand is X + Y +
0Z is given by q = u;. + 6z;.. This completes the proof of
Lemma2. O

Now we are ready to compare the allocated costs. When
the demand is X +Y +0Z, the cost allocated to player i accord-
ing to the dual-based allocation scheme is [;(X +Y + 6Z) =
PE(X) = (p+ ME[X1x yroz<q] = NE[X1(xiv452-4y), where n=
(p—(p+h)P(X+Y+0Z<q))/P(X+Y+0Z=gq). Similarly, we
can obtain the cost allocated to player X when the demand
changes to X + Y + (0 +€)Z as follows: [;(X+Y + (6 +€)Z) =
PE(X) = (p + WE[X1x1visvez<q03] = NeEIX L xivsisrez200 )
where n.=(p-(p+hP(X+Y+ (0 +€)Z<q.))/P(X+Y+
(6 +€)Z = g.). Using the notation introduced earlier and the
fact g = u;. + 0z} proved in Lemma 2, we have the following
observations: r)/(p+h) (- PO)/(P*+P+P) n./(p+h)=(t—
P9)/P*, E[X1(xsy+oz-qy] = E +E+E CERX Y xavi@rez=0 1 = EY
E[Xl{X+Y+(b+6)Z<qE ] E[Xl{X+Y+bZ<q}] E

Therefore, the cost difference is

LX+Y+(0+e)Z)-1;,(X+Y+0Z)
=—(p+ h){E[Xl{X+Y+(6+e)Z<qE}] = E[X1x1v+57<q}]

MNe

n
+h E[Xl{X+Y+(6+e)Z=qC}] -

p+h
. T—P¢ T —P?
=—(p+h){E+ “E* - —
v ){ pr P +P+P
- E+P
=—(p+h)E+—E'-—F—
b ){ P~ P*+DP+P
==(p+h)g(é),

+ v E [Xl(X+Y+6Z=q}]}

(E+E + E’)}

(E+E + E’)}

where g(&) = E + (§/P)E* = ((€ + P)/(P* + P + P))(E +
E*+E’), & =1-P¢,and &+ P =7 — P since P$ — P = P due to
Lemma 2. We also have & € [0,P*] since 0 < 7 —PS < PS — PS
= P*. Because g(¢) is linear in &, we only need to show that
g(0) > 0 and g(P*) = 0. Notice that g(0) > 0 is equivalent to

E(P"+P)-DP(E"+E) >0, (A.10)
and g(P) > 0 is equivalent to
P(E+E)-E(P+P)>0. (A.11)

In order to prove inequalities (A.10) and (A.11), we present
an important property of log-concave random variables.

Lemma 3. If X and Y are independent log-concave random vari-
ables, then u +— E[X | X +Y = u] is increasing.

Lemma 3 is a special case of Theorem 1 in Efron (1965).
Using Lemma 3, we can prove the following lemma.

Lemma4. EP’—PE' >0, E*P’ —= P*E’ >0, EP* = PE* > 0.

Proof of Lemma 4. we only show that EP’—PE’ > 0, the other
two inequalities follow similarly.

K L
EP'-PE' =" > (E,P]-D,E])
k=1 I=1
. (E. E
P -=
‘ ’(Pk Py

M-I

1

M 1M 1
Mh T

P PIE[X | X +Y =u; |- E[X| X+ Y =uy])

[\

o o=

= I
T
I

The third equality is due to E; /P, = E[X | X +Y = u;,Z=
z; ]=E[X| X+Y =u; ] since X and Z are independent of each
other. Similarly we have Ej/P/ =E[X | X +Y = ui;]. The last
inequality is because of Lemma 3. This completes the proof
of Lemma4. O

Inequalities (A.10) and (A.11) follow immediately from
Lemma 4. This completes the proof when every demand has
a finite support.

In the following we extend our result to the case where
demands can have infinite support. The idea of the proof is to
use a sequence of finite support random variables to approx-
imate the one with infinite support. We start with the case
where only one of the random variables Xj, ..., X,, has infi-
nite support. Without loss of generality, we assume X := X;
has infinite support for some i € N. The truncation of a non-
negative random variable X at level k > 0, denoted as Xk is
defined with the probability mass function

P(X=x)
Mk !
0, if x >k,

if x <k
() = st

where the normalizing constant M = X, P(X = x).

With this truncation, if X is log-concave, then Xk is
also log-concave (see Theorem 7 of Bagnoli and Bergstrom
2005), and since M, T1 as k — oo, we have lim,_,, fx(x) =
P(X =x) = fx(x), for any x > 0.

Let X% be the total demands faced by S after one replaces
X; by XK. If i ¢ S, clearly X§ = X, for any k > 0. Denote
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Y = Yjes,j=iX; if i € S. Then for g > 0, P(X’SC =9q) =
JP(XE = X)P(Y = g — x) = (/M) ™" F p(x = x) -
P(Y g — x). Note that when k > g, we have P(X’S‘ =q)=
(/M) 2! P(X = x)P(Y = q — x) = P(Xs = q)/M,. Conse-
quently, Fxg (9) = Fx,(q) for any g > 0 and when k > g, Fxg(q)
is monotonically decreasing in k.
We denote the optimal order quantities by coalition S
before and after the truncation of X by g5 and g%. We have
the following lemma.

Lemma 5. There exists K, such that for k > K, g% = q5.

Proof of Lemma 5. For simplicity, we suppress the depen-
dence on S and let F(-):=Fx(-), Ff(-):= FXé(')’ q":=q5 and
q* := g%. The optimal order quantities ¢* and ¢* then must
satisfy the inequalities

F_(q")<t<F(q"),
F¥(g") <t <FX(g"), Vk.

(A.12a)
(A.12b)

It is possible that q* (or ¢*) satisfying (A.12a) (or (A.12b))
is not unique. In fact, there can be at most two consecutive
integers satisfying (A.12a) (or (A.12b)) under which the opti-
mal costs are the same. We assume here that when there are
multiple solutions, we pick the smallest one.

We first prove that the sequence of solutions {g*: k > 0}
is bounded above by g*. Suppose, on the contrary, g > ¢
for some k. Note that we must have k > g*, since F¥(k) =1 >
7. As a result, T > FX(g*) > F**1(g¥) > --- > F_(g*). On the
other hand, F_(q*) < F(g") < F_(¢*) < F¥(¢*) < 7, where the
second inequality is by the assumption g* > g*. Clearly, this
contradicts (A.12a). Thus, g* < g* for all k.

Next, we show that ¢* is monotonically increasing in k.
For convenience, we assume without loss of generality that
k > q* so that F¥(q) is decreasing in k for any g < 4*. Suppose
g* > g**1 for some k. Then, by a similar argument, we have

Ff—%—l(qk-%—l) < Fk+1(qk+1) < Ffﬂ(qk) < Fﬁ(qk) <,

which contradicts with (A.12b). Therefore, g* is increasing
in k. By boundedness and the fact that 4% can only take inte-
gers, there must be some K and § < q* such that g* = 7 for any
k>K.

Finally, we show that § = 4. In fact, for any k > K, we have
F*(7) < T < F¥(§). Taking limit with respect to k on both sides,
we have F_(7) < t < F(7), which shows § = g*. This completes
the proof of Lemma 5. O

For the rest of the proof, we simply assume that k>K
such that gf=g;. Similar to before, we denote the cost
allocated to player i in S before and after truncation as
l;s and I, respectively, which are given by I, s =pE[X]-
(h+ P)E[Xl{qu, H=((p-(p+MPX+Y <q5)/P(X+Y =
qs))E[Xl{xwqu}] and l,',s :PE[Xk] —(h +p)E[Xk1{Xk+qu’;}] -
((p—(p+h)P(Xk+Y<q’S‘))/P(X"+Y:q’;))E[X"l{XhY:qg}]. We
next show that lim,ﬁwlf.‘/S =1; . First note that E[X] —-E[XK]=
(1-1/Mp) 2k xP(X = x) + Zops1 XP(X =x) Since E[X] is
finite, we have >, ¥P(X=x)—0. On the other hand, since
>F_yxP(X=x)— E[X] <00, we have (1-1/M,)Xf_ xP(X=
x)—0. Therefore, lim,_, ., E[X*]=E[X].

Similarly, we prove convergence of the rest of the terms
one by one as follows:

P(XF+Y = q5)

A}IkZP(X X)P(Y =q5—x) > P(X+Y =q});

P(XF+Y <qt)

g~
A}IZZP(X X)P(Y=g-x)—P(X+Y <qi);
k q=0 x=0

1
= —kZXP(X )P(Y =q5 —x) = E[ X1 xpygy
x=0

E[X 1{X"+YSq’§}]
15

q
=— xP(X =x)P(Y =g —x) - E[X1 2.
M, < < q {(X+Y<qy)

Therefore, lim, _,, ll s =1; 5. We can show, in the same way,
that lim,_, l] s=1lysforany j#i,j€S, and lim;_,, c*(S) :=
limy_, oo (Zjes l],s) = ¢(S). By the result for the finite support
case, we know (I¥ )5 scn is a PMAS. Consequently,

l,s=lim I} VSCTCN,

Zl g = hm Z lk = hm ck(S)=¢(S),

j€s

2 lim If =1,

VSCN.

Therefore, (I 5)jes, scn is a PMAS as well.

We remark that in the previous proof, the finite support
condition of X;, j # i, j € N is not used until the last step.
As a result, when there are more than one demands having
infinite support, we can prove this result via induction—
truncating one of the random variables with infinite support
following the previous process and then invoking the induc-
tion hypothesis at the last step. This completes the proof of
Proposition 3.

Proof of Corollary 1

The total demand for the coalition S is Xg = X X; ~
Poisson(Ag), where Ag = ;s A;. According to the dual-based
allocation scheme, we can write the cost allocated to player i
under the coalition S as [; s = pE[X;] = (h + p)E[Xil(qug}] -
nE[X;1 (x s=q;}]' where g; denotes the optimal ordering
quantity for the coalition S and = (p — (p + h)P(Xs <
75 —1))/P(Xs = g5). Now we can write the cost as

li s =pE[X;] = (h+p)E[X; | X5 < q5]P(Xs < q5)
—NE[X; | X5 =q5]P(Xs = q5)
q5-1
=pE[X;]—(h+p) D E[X;| X5 = jIP(Xs =)
=0

- nE[X; | X5 = q5]P(Xs = q3).

Note that the total cost can be written in a similar way:
c(S) = pE[Xs] = (h + p)E[Xs | X5 < q5]P(Xs < q5) — nE[X; |
X5 =q5]P(Xs = q5). With X; being Poisson, X; conditioned on
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Xs = j follows the binomial distribution: Binomial(j, A;/Ag).
Thus, E[X; | Xs=j]=jA;/Ag and

95-1

A N e A :
L = pEIXi]=(h+p) 27 j7-P(Xs =) = g5 5-1P(Xs = 5)
j=0 S S

q5-1

A . N *
= pAi+ 35| =0+ p) 25 jP(Xs = ) = gsnP(Xs = 45)
S j=0

= A+ Q—;[c(a ~PE[X]]
1
= /\—SC(S)

In order to show that [;+ < [; 5, for any S C T, it is suffi-
cient to show that c(T)/Zer Ax < ¢(S)/ Zges Ax- Recall that
¢(S) = min, E[¢(q, Xs)] := ming E[h(g — Xs)* + p(Xs — q)*].
The function defined by ¢(Xs) = min, E[¢(q, Xs)] can be
shown to be positive homogeneous (see Miiller et al. 2002).
Consequently, c(S)/Zes A = ming E[¢(q, Xg/Zkes Ar)], and
it is equivalent to verify ming E[¢(q, X1/ Zper Ar)] <
min, E[¢(q, Xs/Zges Ar)]- From Example 3.A.32 in Shaked
and Shanthikumar (2007), it follows that X;/Xer Ax <ex
X/ Xkes Ay, where <., denotes the convex order of ran-

dom variables. Since ¢(g, -) is convex, we then have for any

q, Elo(q, X7/ Zker A)] < E[@(q, X5/ Zkes Ax)], and our claim
holds.

Proof of Proposition 4

Forany SC N and i,j € S, since X; and X; are permutation
symmetric, we have [; g = E[X;(w)75(w)] = E[X;(w)5(w)]
=1js. By Zics li,s =¢(S5), ;s = c(S)/IS|.

For SCTCN,letl; 1 =c(T)/|T|. We know that [; 1 is in the
core of T. Thatis, forany SC T, X;cs [; 7 =[S[(c(T)/IT]) < c(S).
We then have forany i € S I; 1 =c(T)/|T| < c(S)/|S| =1; 5. This
proves that (I; 5);cs scn is a PMAS.

Proof of Proposition 5
We firstly present the following lemma, which will be used
in the proof of Proposition 5.

Lemma 6. The dual-based allocation for player i in coalition S is
given by

1
+h [ ci,s(u,p%) /qb(u)du+Hl.,
where .
d Fy.
O(u) = 7= = — L (Fy (1)) >0,

and

1(1-1)1 u>Fy. -
Hi:(p+h)'/0( i ({P(‘;'(O” % du—nE[X].

Proof of Lemma 6. Consider any coalition S. By Definition 4
we have C; 5(u,7) = P(X; < x, X5 < q), where u = Fy (x), 7=
Fy,(q)=p/(p + h), and q is the optimal ordering quantity.
The dual-based allocation for player i is —hE[X;]+ (p + ) -
E[X;1{x,>p]- Notice that adding more players into the

coalition only affects the term E[X;1x, ] in the cost alloca-
tion. Define G(x) = [, 1,2, fx, x; (¥, ) dy. Then

E[X;l{xszq}]:/ xG(x)dx

:[:xG(x)dx+/0me(x)dx
=/:xd(/:cG(z)dz)—/wad(/me(z)dz)
=x[;c;(z)dzL—[:[;G(z)dzdx
—x/xmc(z)dz:+/0w/ch(z)dzdx
0 pr o pe
:—‘/?‘/wG(z)dzdx+‘/0 / G(z)dzdx

=—/ P(XiSX,stq)dx

+/ P(X;=2x,Xg>q)dx.
0

And we have P(X; <x,Xs>q)=P(X;<x)-P(X;<x,X5<9)
=u—-C;su,1), and P(X; 2 x,Xs 2gq)=1-u -7+
C;s(u,1). Let ¢p(u) =du/dx = (dFXi/dx)(F)}}(u)). We have

Fx.(0)

E[X A xeq] =l (Cosu, 1) =) /() du+ fp (1 =1~
T+C; s(u, 7))/ Pp(u)) du = f[;((1- O usry, o) +Ci s (1, 7) =)/
¢(u)) du. Therefore, the allocated cost for player i is (p + h) -
fol Cis(u,p/(p+h))/p(u)du+(p+h) fol(((l - T)l{uzFX[(O)} —u)/
¢(u))du — hE[X;]. The last two terms do not depend on
coalition S. O

Proposition 5 follows easily from Lemma 6. Consider a
player i and two coalitions S and T where i € S, i € T and
SCT. I Cyplu,p/(p + W) < Cy s, p/(p + 1), Vi €[0,1],
then according to Lemma 6 the allocated cost for player i
in coalition T is smaller than or equal to that in coalition S.
Similarly, if C; +(u,p/(p + 1)) > C; s(u,p/(p+h)), Vue[0,1],
then the cost allocated for player i in coalition T is greater
than that in coalition S.

Proof of Corollary 2

Notice that when two random variables U; and U, are
comonotonic, the copula is given by C(u;, u,) = P(F;(U;) <
uqy, Fi(U,) < u,) = min(uy, u,). When all the demands are
comonotonic, the demand of any player of interest and the
total demand of any coalition are also comonotonic (Miiller
et al. 2002). Then it follows from Proposition 5 that the allo-
cated cost does not change when adding more players, ensur-
ing that the dual-based allocation scheme is a PMAS.

Proof of Proposition 6

Consider any player i and coalition S with i € S, we have
that X; and X; are both normally distributed. Let Z =
(Xi — px,)/ox, and Z = (X5 — py,)/0x,, where uy and oy
denote the mean and standard deviation of a random vari-
able X, respectively. Then both Z and Z are standard nor-
mal random variables and the correlation coefficients satisfy
Px; x5 = Pz, z- It then follows from Proposition 5 and Lemma 1
that the allocated cost of the player with demand X decreases
when adding new members if and only if the resulting cor-
relation coefficient does not increase.
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Proof of Proposition 7
If j € N, one can easily verify that (11) always holds.

In the following let s = |S| and m =|N, N S|.

If jeN,,i € SNN;, then Cov(X;, X;) = Cov(X;, Xsy(jy) = 1.
And 02 =5+ p(m —1)m, ogu{j} =s+1+ pm(m+1). We need
ogu(.} > o3, which is equivalent to p > —1/2m = p(S).

If jeN,, i€ SNN,, then

p(X;, Xs)=(1+(m-1)p)/{/s + m(m—1)p, and
p(X;, Xsugjy) = (L +mp) /s +1+m(m+1)p.

We need (1 + (m — 1)p)/y/s+m(m—-1)p > (1 + mp)/
s +1+m(m+1)p. After rearranging the terms we have

flp)= 1+ (m=1)p)*(s + 1+ m(m +1)p)

—(1+mp)*(s +m(m—1)p) = 0. (A.13)
Observe that f(p) is a polynomial function of degree 3,
and lim_,., f(p) = —oo, lim,_,_, f(p) =0, f(0) =1, f(1) =
@m+1)(m-s)<0, f(-1/(m -1)) =—(s —m)/(m —1)*> <0,
f(-1/2m))=(2m +1)2s —m +1))/(8m*) >0, -1/(m - 1) <
—1/(2m). Therefore, there exist p(S) € (-1/(m —1),-1/(2m))
and 0 < j(S) < 1 such that (A.13) holds if and only if p(S) <
p < p(S). Finally, we remark that even though f(p) will be-
come positive when p is sufficiently small, recall that we
have restricted p > —1/(|N,| — 1) to guarantee the covariance
matrix to be positive semi-definite and because —1/(m —1) <
—-1/(]N,| = 1) we do not need to consider the region below
-1/(m-1).

Proof of Proposition 8
Givenanyi€SCN,

p(Xir Xs) - p(Xir Xsu{k}) =

1 ( o2+ )
\/a$+1 \/Z,ES o7+ 07+ (s +1)?

Sies 07 + 07+ (s +1)? ) 1
Yies 07 + 52 0?+s)
The inequality p(X;, Xs) 2 p(X;, X)) is equivalent

t0 1/(0} + ) < \[(Sies 0F +07 + (5 + D)/ (Spes 07 +57) = 1.
Clearly if p(X;,Xs) 2 p(X;, Xsuqy), then for any j e S
such that o7 < alz., we have 1/(0}2 +55) < 1/(07 +5) <

\/(Z,ES 07 +0; +(s +1)?)/(Zjes 07 +5%) — 1. Therefore, (13)
holds.

For the second part of the proposition, we first prove by
contradiction that if 0? > max{o?: j €S, j # i}, then we must
have p(X;, X5 1)) < p(X;, Xs). If not, then the proof of (13)
implies that p(X;, Xsy() > p(X;, X) for any j € S. By Propo-
sition 6 we know that Xcs!; supy > Zies li s = ¢(S), which
means that the dual-based allocation scheme for S U {k} is
not in the core since all players in S are worse off after player
k joins and will want to deviate from S U {k} and form S. This
contradicts the fact that the dual-based allocation is always
in the core. Therefore, for the rest of the proof we only need
to consider the case where 07 < max{a]?: jes,j#i}.

In the following we show that there exists a threshold &; s
such that p(X;, Xguqy) < p(X;, Xs) if and only if 0; 2 G, 5.
Notice that

P(Xi/Xs)— ,D(Xz‘/XSU{k})
o +s

—|
\/‘7;'2+1 \/21650?4'52 \/Zjesa]?+a£+(s+1)z

f(o?) = (af+s)/ /Z;o]?+sz—(0i2+s+1)
je

/\/Zo?+oi+(s+1)2‘

ol +s+1

Let

jes

Then we only need to show that f(o?) is increasing in 7 > 0.
To further simplify notation, let 1= 07 +5,a = 3 g i a]? +52—
$,b=Ycs ji of +07 +5 + 5% Then we only need to show that

n/yn+a—(n+1)/yn+b+1 has a positive derivative with
respect to 1. The derivative is given by (n+2a)/(2(n +a)*?) -

(n+1+2b)/(2(n + 1+ b)*?). We need to show that (n+1+
2b)/(n+1+b)*? < (n+2a)/(n+a)*?. Since 0? <max{o?: j €S,
j # i}, we have 1 < 2a. Hence, the derivative of (1 + 2x)/
(n + x)*? with respect to x is negative when a < x < b. There-
fore, (n+2b)/(n+ b)*? < (n+2a)/(n+a)*?. It is easy to see
that (n+1+2b)(n+b) <(n+2b)(n+1+b). Hence, (n+1+
2b)(n + b)*? < (n + 2b)(1 + 1 + b)*2, which is equivalent to
(n+1+2b)/(n+1+b)*? < (n+2b)/(n+b)*? In conclusion,
(n+1+2b)/(n+1+b)*% < (n+2b)/(n+b)*? < (n+2a)/
(+a)*?. This completes the proof.

Proof of Proposition 9

Firstly consider Special Case 1. Recall from the proof of
Proposition 7 that the largest possible value of [N, N S| is
IN,| =1, since j € N, and j ¢ S. Hence, we only need p >
—0.5/(|N,| —1) to ensure that in any coalition any player who
is a stranger will not have increased cost after adding a rela-
tive. For the case where j € N,, i € N,, notice that the left hand
side of (A.13) is decreasing in s. Hence, we only need to check
whether (A.13) holds for any m < s = n. Since there are at
most n inequalities to be checked, the overall computational
complexity is O(n).

Then we consider Special Case 2. To ensure that the dual-
based allocation scheme is a PMAS, it is sufficient to show
that for any i € S and S U {k},k ¢ S, we have p(X;, Xsy(;) <
p(X;, X5), which is equivalent to

0% +s
i . (A.14)

o7 +s+1
<
JZ]‘ES O-/2+(7i+(s+1)2 \/ZjES 012__;’_52

In the following we provide a method to check the inequali-
ties (A.14) in O(n?) time. After rearranging (A.14) we have

o2 +s+1 Z]-650]2+Gi+(s+1)2
> < 5 (A.15)
o;+s > jes 0 +s
Notice that the right hand side is increasing in o} and

decreasing in oj?. We can sort {0%,j =1,...,n}. For any

player i, we use 02, > 6(22) > 20 to denote the sorted

= (n-1)
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elements of {a? |1<j<mn,j#i}.Givenany s =2,...,n -1, Table B.1. The List of 6 Possible Cases
choose S = {d?} U {0'(21), 0(22), ... ,0(25_1)} and o7 = O'(Zn_l),
- - su{j) s TU{) T
then (A.15) holds if and only if (07 + 5 +1)/(07 + 5) <
o2 + 02+ 02+ (s+1)2)/ (252t 02 + 02 +52). There-  Casel Y Y Y Y
=1 7)) i (n-1) J=17()) i C 2 9 Kt ‘
fore, for each i € N, it is sufficient to verify O(n) inequalities ase Y Y Y
and the overall computational complexity is O(n?) Case3 u v 4 14
’ Case 4 Y N Y N
Case 5 N N N N
Appendix B Case 6 N N Y N

We are able to extend the result in Proposition 1 to the set-
ting where there is a fixed ordering cost and a linear ordering
cost. In this setting, the newsvendor game is (N, cx) and the
characteristic function is given by cg(S) = min,;o{K1 .oy +
E[h(g—Xs)* +p(Xs—9)*]}, S € N, where K is the fixed order-
ing cost. We assume zero linear ordering cost without loss of
generality.

Proposition 10. Suppose the players’ demands X, ..., X, are in-
dependent continuous random variables with log-concave distribu-
tion functions, and X; > 0 for all i € N. Then the newsvendor game
(N, ck) is a convex game.

Proof of Proposition 10. In the following, we use ¢y() to
denote the characteristic cost function of the game with
zero ordering cost. Proposition 1 has established that under
the condition of independent, continuous and log-concave
demands, one has

co(SU{j}) —co(S) —co(TU{j})+co(T) =0, VSCT,j¢T.
(B.1)

We claim here that under the same condition and an addi-

tional technical requirement that X; > 0 for all i € N, the

inequalities

ck(SU{j}) = cx(S) = cx(TU () + cx(T) 20, VSCT,jeT,

(B.2)
hold for any K > 0, which in turn implies the convexity of the
game (N, cy).

The requirement of X; > 0,i € N implies that when no
order is placed, the cost for coalition S is pE[X;]. Hence, we
can write ¢ (S) = min{pE[Xs], K+ ¢((S)}. To further simplify
the exposition, define ¢”'(S) = pE[X;], ¢¥(S) = K + ¢o(S), and
let g5, g7 be the optimal ordering quantities of coalitions S
and T. The superscripts ', % are used to emphasize the costs
corresponding to the scenarios with no ordering and a posi-
tive ordering, respectively.

Our proof of (B.2) proceeds by discussing whether there
is a positive amount of order placed in each of the coalitions
S, SU{j}, T and T U {j}. To reduce the number of possible
cases, we use Lemma 1 from Chen (2009) which states that
qgs < qy for any S C T. It is then impossible that, say, coalition
S orders a positive amount but coalition S U {j} chooses not
to order. We summarize all possible cases in Table B.1. In the
following, we prove that (B.2) holds for each case in Table B.1.

Case 1. Since for each of the coalitions S, SU {j}, T and
T U{j} the ordering quantity is positive, (B.2) can be reduced
to c¥(SU{j})—c¥(S) - c*(TU{j})+c¥(T) =0, which holds
due to the definition that ¢¥(S) = K + ¢,(S) and (B.1).

Case 2. Since the optimal order quantity for coalition S is
zero, we have ¢”(S) < ¢%(S). It follows that ¢, (S U {j}) —
cx(8) —cx(TU{j}) +cx(T)=c*(SU{j})—c"(S)—c/(TU{j}+
c/(T) = c?(SU{j})—c?(S)-c¥ (T U{j})+c¥(T) =0, where
the last inequality is because of (B.1).

Case 3. By definition AcK(S U {j}) — ck(S) - cx(TU {j}) +
cx(T) = c"(SU{j}) = c"(S) = (T U{j}) +c?(T) = pE[X;] -
cHTU{j}) +c?(T)=pE[X;] = co(T U {j}) + co(T). It remains
to show that pE[X;] = ¢o(T U {j}) + ¢o(T) > 0. Recall g7 is
the optimal ordering quantity for coalition T. Hence, ¢,(T) =
hE[(q7 — X7)"] + pE[(Xr — q7)*] and ¢o(T U {j}) < hE[(97 -
Xr = X;)*]+pE[(Xy + X; —q7)*]. Notice that hE[(q; — X7)*] -
hE[(q*T—XT—X]-)*] >0and pE[(XT—q})*]+pE[Xj]—pE[(XT+
X;—q7)"] 2 0. Therefore, pE[X;] — co(T U {j}) + ¢o(T) > 0.

Case 4. The proof is similar to Case 3, we omit the details
for brevity.

Case 5. Since all demands are independent, we have cy(S U

(/D =ex(8) =T U +c(T) = (SU{j}) —c () - (TU
{ih+c"(T) = pE[Xs + X, - Xs = Xy — X; + X7] = 0.

Case 6. Since the optimal order quantity for coalition T U
{j} is positive, we have ¢%(T U {j}) < ¢*(T U {j}). It follows
that ¢ (S U {]}) - cx(S) - c(T U {j}) + (1) = ¢ (S U {j})
¢V (8)=cHTU{jP+e" (T) > ¢ (SU{jP—c" (8) e (TU{jP)+
c"(T)=0. O

One may ask the following question: For the game (N, ci)
which satisfies the conditions in Proposition 10, does the
dual-based allocation result in a PMAS? While Chen and
Zhang (2009) have constructed a dual-based allocation that is
in the core for newsvendor games with a fixed ordering cost,
unlike the case of linear ordering cost, the dual-based allo-
cation may not be unique. When comparing the dual-based
allocations with another one in a larger coalition, it is unclear
which allocation one should choose. This creates difficulties
even for numerical explorations as the nonuniqueness issue
can be present in all of the coalitions. Therefore, no definite
answer can be drawn at this point.

Endnotes

1One can refer to Peleg and Sudhdlter (2007) for the definition of
strategic equivalence. In our paper, the strategic equivalence ensures
that the game with zero ordering cost is convex/has a PMAS if and
only if the game with constant per-unit ordering cost is convex/has
a PMAS.

2We use the word “allocation” to refer to a cost vector that specifies
the cost allocated to each player given a particular coalition; we use
“allocation scheme” to refer to a cost vector that specifies the cost
allocated to each player for every coalition; we use “allocation rule”
to refer to a function that assigns a cost vector to a game.

3The definition on p- 109 of Dharmadhikari and Joag-dev (1988)
omits this condition and therefore is not complete.

4This result can be generalized to allow a fixed ordering cost. For
details, see Appendix B.
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