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1. Introduction
Consider the following stochastic optimization problem:

inf
u∈8

l(u) + E[ f (u ∧ Ξ)], (1)

where u is the decision vector, Ξ is a random vector,
and ∧ is a componentwise minimum operator. This
problem has broad applications in both inventory
management and revenue management (see Chen et al.
2018 and the references therein). Chen et al. (2018)
studied a special case of problem (1) where l(u) � 0,
and Ξ has independent components. They show that
the objective function may not be convex in u even if
the function f is jointly convex, and they develop
a transformation technique to convert the original
problem to an equivalent convex optimization prob-
lem. In this paper, we generalize the results in Chen
et al. (2018) along several directions. Instead of restricting
to the case where Ξ has independent components, we
allow the components of Ξ to be positively dependent,
which extends the applications of our model but at the
same time creates significant difficulties for the analy-
sis. We include an additional term, l(u), in the objective
function, which allows us to incorporate a two-part fee
cost structure. Furthermore, we can incorporate the
decision maker’s risk attitude into the model. We dem-
onstrate the application of the transformation tech-
nique through an inventory substitution model with

dependent random supply capacities and a two-part
fee cost structure. We conduct numerical studies based
on the transformed problem to show that ignoring
capacity dependence can be very costly for the firm.
To formally set up the mathematical model, in this

paper we use� to denote the real space and] to denote
the set of integers. We use ^ to denote either � or ]
for convenience. Define �̄ � �∪ {+∞}. Component-
wise minimum and maximum operators are denoted
by ∧ and ∨, respectively. The indicator function of
any set 9 ⊆ ^n, denoted by δ9, is defined as δ9(x) � 0
for x ∈ 9 and +∞ otherwise. We use uppercase letters
(e.g., Ξ) to denote random vectors and lowercase letters
(e.g., ξ) for their realizations. Given a randomvectorΞ �
(Ξ1, . . . ,Ξn), we use - � Supp(Ξ) to denote the sup-
port of this random vector. Throughout this paper, we
use “decreasing” and “increasing” in a weak sense.

2. Transformation Technique
We start with the following unconstrained optimiza-
tion problem:

τ∗ � inf
u∈^n

l(u) + E[ f (u ∧ Ξ)], (2)

where l : ^n → �̄, f : ^n → �̄, Ξ is a random vector
with support- � ∏n

j�1-j, and-j ∈ ^ for all j � 1, . . . ,n.
We assume that when ^ � �, f is Borel measurable on
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�n and -j is a Borel measurable subset of � for all
j � 1, . . . , n. One important application of problem (2)
(with an additional nonnegative constraint of the de-
cision vector) is an inventorymanagement problemwith
random supply capacities. A firmwants tominimize the
expected total cost by choosing the ordering quantities
before the random capacities are realized. The effective
inventory level after receiving the orders is the mini-
mum of the ordering quantities and the realized sup-
ply capacities. Different from Chen et al. (2018), we
include the cost term l(u) in the objective function. This
term allows a more general cost structure. In practice,
the firm’s ordering cost may depend on the received
quantity as well as the quantity she initially ordered, so
that the ordering cost has a two-part fee structure, which
allows the cost consequence of the supply uncertainties
to be shared between the supplier and the firm who
orders. This two-part fee cost structure has been studied
for inventory control models with random yield (see
Henig and Gerchak 1990 and Federgruen and Yang
2011). Interestingly, to the best of our knowledge, no
paper studying inventory control models with random
capacities has considered this two-part fee structure.
Moreover, we do not need to assume that the random
vector Ξ has independent components. It is quite
common in reality that the capacities of different
suppliers can depend on each other.

One technical challenge of problem (2) is that even
though the function l(·) and f (·) are jointly convex,
the objective function may not be convex in u. There-
fore, the main purpose of this section is to develop a
transformation technique to convert the original prob-
lem to an equivalent convex minimization problem.

Our transformation technique requires that the
function l(·) be increasing (by “increasing,” we mean
componentwise increasing) and the components of
random vector Ξ be positively dependent. We begin
by providing the definition of stochastically increasing
functions, which will be used to define positively de-
pendent random variables.

Definition 1 (Topkis 1998, p. 159). Let {Ft(w) : t ∈ T} be
a collection of distribution functions on �n that are
indexed by a parameter t, with t contained in a subset T
of �m. If

∫
h(w)dFt(w) is increasing in t on T for each

increasing real-valued function h(w) on �n, then Ft(w)
is stochastically increasing in t on T.

Definition 2. Random variables Ξ1,Ξ2, . . . ,Ξn are pos-
itively dependent if for all j � 1, . . . , n, the joint distri-
bution of Ξ1, . . . ,Ξj−1,Ξj+1, . . . Ξn conditioned on Ξj �
ξj, denoted by F̃j(ξ−j|ξj), is stochastically increasing in
ξj ∈ -j.

It is well known that a collection of distribution
functions {Ft(w) : t ∈ T} on �1 is stochastically in-
creasing in t on a subset T of�m if and only if 1 − Ft(w)

is increasing in t on T for each w in �1. Therefore, if
there are only two random variables Ξ1 and Ξ2, then
they are positively dependent if for j � 1, 2, the dis-
tribution of Ξj conditioned on Ξ3−j � ξ3−j is decreasing
in ξ3−j for any ξj. Similar concepts are also used in Li
et al. (2013) and Feng et al. (2019) when studying
multisourcing problems. In the following lemma, we
provide an example where the random vector has
positively dependent components.

Lemma 1. Let X1, . . . ,Xn be independent log-concave
random variables,1 and X � (X1, . . . ,Xn). Let A � (aij) be
an m × n matrix with nonnegative entries. Then the random
vector Ξ � AX has positively dependent components.

The proofs of all the results can be found in the
supplemental material (Appendix EC.1). Many com-
monly used continuous and discrete random variables
are log-concave, such as normal, exponential, uniform,
logistics, binomial, Poisson, etc.

Theorem 1. Suppose that (T1.a) the objective function
of (2) is lower semicontinuous and goes to +∞ when
|u| → +∞, (T1.b) f is componentwise convex (compo-
nentwise discrete convex if ^ � ]), and (T1.c) l(u) is
increasing.2

(i) If the random vector Ξ has independent components,
then problem (2) has the same optimal objective value as the
following problem:

inf l(u) + E[f (v(Ξ))]
s.t. v(ξ) � (v1(ξ1), . . . , vn(ξn)) ∈ ^n,

v(ξ) ≤ ξ ∀ξ ∈ -,
v(ξ) ≤ u ∀ξ ∈ -.

(3)

(ii) If Ξ1,Ξ2, . . . ,Ξn are positively dependent, and the
function f is supermodular, then problem (2) has the same
optimal objective value as the following problem:

inf l(u) + E[f (v(Ξ))]
s.t. v(ξ) � (v1(ξ1), . . . , vn(ξn)) ∈ ^n,

v(ξ) ≤ ξ ∀ξ ∈ -,
v(ξ) ≤ u ∀ξ ∈ -,
vj(ξj) is increasing ∀j � 1, . . . , n.

(4)

In the above theorem, assumption (T1.a) ensures that
the optimization problem admits finite optimal solu-
tions. Consider the inventory application with random
supply capacities Ξ, where the firm wants to minimize
the total expected inventory cost by choosing the op-
timal ordering quantities u. Assumption (T1.a) requires
that the total cost goes to infinity if the ordering
quantity goes to infinity. Assumption (T1.b) imposes
some convexity property of the inventory cost function,
which is commonly assumed in the literature. As-
sumption (T1.c) ensures that the ordering cost function
is increasing in the ordering quantity, which usually
holds in practical scenarios. In part (i) we present the
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equivalent transformation when Ξ has independent
components. Notice that we omit the requirement that
v(·) is measurable in the formulation for brevity. For the
rest of the paper, we require that v(·) is measurable in all
of our formulations and therefore omit it for brevity. In
part (ii) we consider the case where the components of Ξ
are positively dependent. In this case, we need to fur-
ther assume that the function f is supermodular. Super-
modularity of inventory costs usually occurs when
products or sourcing channels are substitutes for each
other, such as the inventory transshipment model in
Hu et al. (2008) and the dual sourcing model in Chen
et al. (2018). Later we will present an inventory sub-
stitution problem with random supply capacities as an
application.

We provide intuition why l(·) needs to be increasing.
Consider an unconstrained problem with n � 1. The
original optimization problem is

min
u

l(u) + E[ f (u ∧ Ξ)].
Because the function l(·) is increasing, we know that the
optimal solution u* ≤ û, where û ∈ argminu f (u). The
transformed problem is

min l(u) + E[ f (v(Ξ))]
s.t. v(ξ) ≤ ξ ∀ξ ∈ -,

v(ξ) ≤ u ∀ξ ∈ -.

We want v(ξ) to be as close to û as possible. For given
u ≤ û, it will push v(ξ) to be equal to u ∧ ξ. On the other
hand, if the function l(·) is not increasing, then the
optimal solution u* may be greater than û. In this case
the optimal solution for the transformed problem
may be v(ξ) � û ∧ ξ for some ξ ∈ -, which results in
a smaller objective value.

Given Theorem 1, if functions l(·) and f (·) are jointly
convex, then the transformed problem (4) is a convex
minimization problem. Note that if l(u) � 0, the optimal
solution of the transformed problem (4)may not directly
provide us with an optimal solution of the original
problem (2). Nevertheless, we can construct an optimal
solution of the original problem based on an optimal
solution (u*, v*) of the transformed problem according
to a similar procedure in Chen et al. (2018). For the first
component, let S � {ξ1|v*1(ξ1)< ξ1, ξ1 ∈ -1}. If Pr(S)> 0,
then randomly pick ξ̂1 ∈ S and define û1 � v*1(ξ̂1). If
Pr(S) � 0, let û1 � ξ̄1. Repeating this process for each
component j � 1, . . . ,n, we can obtain an optimal so-
lution û � (û1, . . . , ûn) for the original problem.

Theorem 1, part (ii) requires that the random vector
has positively dependent components. We provide an
example showing that if this condition does not hold,
then the transformation may not work. Consider
min(u1,u2)∈�2 E[ f (u1 ∧ Ξ1,u2 ∧ Ξ2)], where

f (u1,u2) � 2u21 + 2u1u2 + 2u22 − 8u1 − 2u2,

which is a convex and supermodular function. The
random variable Ξ1 can take values 0 or 2, and Ξ2 can
take values 1 or 3. The probability mass function is
Pr(Ξ1 � 0,Ξ2 � 3) � 0.5,Pr(Ξ1 � 2,Ξ2 � 1) � 0.5. Hence,
Ξ1 and Ξ2 are not positively dependent. The optimal
solution of the original problem is u∗1 � 2,u∗2 � 0, and the
optimal objective value is −4. However, for the trans-
formed problem, the optimal solution is v1(Ξ1 � 0) � 0,
v1(Ξ1 � 2) � 2,v2(Ξ2 � 1) � −0.5,v2(Ξ2 � 3 � 0.5, and
the optimal objective value is −4.5. In this example, the
transformed problem does not yield the same optimal
value as the original problem. It remains an open
question whether we can derive a convex reformu-
lation for a more general dependence structure.
In the following we introduce constraints into

problem (2) and consider a more general optimization
problem as follows:

inf
u∈8

l(u) + E[ f (u ∧ Ξ)], (5)

where f : ^n → �̄ and 8 ⊆ ^n. Define ξj � ess
inf{ξj|ξ ∈ -}, �ξj � ess sup{ξj|ξ ∈ -}, ξ � [ξ1, . . . , ξn]|, �ξ �
[ξ̄1, . . . , ξ̄n]|, and

9 � {u ∧ ξ : u ∈ 8, ξ ≤ ξ ≤ ξ̄, ξ ∈ ^n}. (6)

The following assumption identifies conditions un-
der which the equivalent transformation in Theorem 1
can be generalized to constrained optimization
problems.

Assumption 1.
(A1.a) For any u ∈ ^n such that u ∧ ξ ∈ 9 ∀ξ ∈ -, there

exists u′ ∈ 8,u′ ≤ u such that u′ ∧ ξ � u ∧ ξ ∀ξ ∈ -.
(A1.b) The indicator function of the set 9 is compo-

nentwise convex (componentwise discrete convex if ^ � ]).
(A1.c) The indicator function of the set9 is supermodular.

Parts (A1.a) and (A1.b) are similar to those from
assumption 1 in Chen et al. (2018). Part (A1.c) is needed
for our transformation when random variables are
positively dependent. We provide a lemma with con-
ditions under which the indicator function of 9 is
supermodular.

Lemma 2. If the set9 can be represented as {v : ψi(v) ≤ 0},
where functions ψi : ^n → �̄ are all monotone, then the
indicator function of the set 9 is supermodular.

The transformation technique for constrained prob-
lems is summarized in the following theorem.

Theorem 2. Consider the optimization problem (5), where
f : ^n → �̄, l : ^n → �̄ satisfy assumptions (T1.a), (T1.b),
and (T1.c) in Theorem 1.

(i) Suppose that parts (A1.a) and (A1.b) of Assumption 1
are satisfied. If the random vector Ξ has independent
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components, then problem (5) and the following optimization
problem have the same optimal objective value:

inf l(u) + E[ f (v(Ξ))]
s.t. v(ξ) � (v1(ξ1), . . . , vn(ξn)) ∈ ^n,

v(ξ) ≤ ξ ∀ξ ∈ -,
v(ξ) ≤ u ∀ξ ∈ -.

(7)

(ii) Suppose that Assumption 1 is satisfied. If Ξ1,Ξ2, . . . ,
Ξn are positively dependent, and the function f is super-
modular, then problem (5) and the following optimization
problem have the same optimal objective value:

inf l(u) + E[ f (v(Ξ))]
s.t. v(ξ) � (v1(ξ1), . . . , vn(ξn)) ∈ 9 ∀ξ ∈ -,

v(ξ) ≤ ξ ∀ξ ∈ -,
v(ξ) ≤ u ∀ξ ∈ -,
vj(ξj) is increasing ∀j � 1, . . . ,n.

(8)

Notice that in Theorem 2 we do not include the
original constraint set u ∈ 8 in the transformed prob-
lem (7) or (8). Instead, we require that the added de-
cisions v(ξ) ∈ 9 ∀ξ ∈ -. If we explicitly include u ∈ 8
in the transformed problem, then we can relax the
assumption on the function l by requiring that l(u) is
increasing only for u ∈ 8.

The conditions in Assumption 1 may not be straight-
forward to check. Therefore, in the following lemma we
provide an example with linear constraints that satisfies
Assumption 1. Later we will demonstrate an application
of our transformation technique, and its constraints
satisfy the conditions we present below.

Lemma 3. Assume that 8 � {u|Au ≤ b,u ≥ u}, where
b, u are given constant vectors; A � (aij) is a matrix with
nonnegative entries. In addition, ξ ≥ u ∀ξ ∈ -. Then
Assumption 1 is satisfied.

Preservation of Structural Properties
Similar to Chen et al. (2018), we can show that some
structural properties can be preserved when consid-
ering the following parameterized optimization
problem:

g(x, z) � inf
u:(x,z,u)∈!

l(x, z,u) + E[ f (x,u ∧ (z + Ξ))], (9)

where f (·, ·) : ^m ×^n → �̄, l(·, ·, ·) : ^m ×^n ×^n →
�̄, x ∈ ^m, z ∈ ^n, and a set ! ⊆ ^m ×^n ×^n is
nonempty. Our transformation technique can be used
to establish preservation properties of function g and
the monotonicity property of the optimal solution.
Define a set

!Ξ � {(x, z,w)|w � u ∧ (z + ξ), (x, z,u) ∈ !, ξ ∈ -}.
Similar to Assumption 1, we specify the following
condition.

Assumption 2.
(A2.a) For any (x, z,u) such that (x, z,u ∧ (z + ξ)) ∈

!Ξ ∀ξ ∈ -, there exists (x, z,u′) ∈ !,u′ ≤ u such that
u′ ∧ (z + ξ) � u ∧ (z + ξ) ∀ξ ∈ -.
(A2.b) The indicator function of the set !Ξ is compo-

nentwise convex in w (componentwise discrete convex if
^ � ]).
(A2.c) The indicator function of the set !Ξ is super-

modular in w.

Note that when Ξ has positively dependent compo-
nents, we require f to be supermodular in Theorems 1
and 2. In this case, we restrict our attention to n � 2
(i.e., u ∈ ^2, z ∈ ^2) when studying the preservation
and monotonic properties for dependent Ξ. (The result
cannot be generalized to cases with n ≥ 3.) To facili-
tate the presentation, define ũ � (ũ1, ũ2) � (u1,−u2),
z̃ � (z̃1, z̃2) � (z1,−z2), Ξ̃ � (Ξ̃1, Ξ̃2) � (Ξ1,−Ξ2), !̃ � {(x,
z1, z2,u1,u2)|(x, z1,−z2,u1,−u2) ∈ !}, !̃Ξ � {(x, z1, z2,
w1,w2)|(x, z1,−z2,w1,−w2) ∈ !Ξ}. Define new func-
tions f̃ (x,u1,u2) � f (x,u1,−u2), l̃(x, z1, z2,u1, u2) � l(x, z1,
−z2, u1,−u2), and g̃(x, z1, z2) � g(x, z1,−z2). Then prob-
lem (9) can be equivalently reformulated as

g̃(x, z̃) � inf
ũ:(x,z̃,ũ)∈!̃

l̃(x, z̃, ũ)
+ E[ f̃ (x, ũ1 ∧ (z̃1 + Ξ̃1), ũ2 ∨ (z̃2 + Ξ̃2))]. (10)

The following theorem summarizes the preservation
properties of the optimal value function.

Theorem 3. Consider the optimization problem (9), where
f and l satisfy assumptions (T1.a), (T1.b), and (T1.c) in
Theorem 1 for any given x.

(i) Suppose that parts (A2.a) and (A2.b) of Assump-
tion 2 are satisfied. If the random vector Ξ has independent
components, then

(ia) if functions f , l, and the set !Ξ are convex, then g
is also convex; and

(ib) if functions f and l are submodular, and !Ξ is
a lattice, then g is submodular.

(ii) Suppose that n � 2, and Assumption 2 is satisfied. If
Ξ1,Ξ2 are positively dependent, and the function f (x,u1,u2)
is supermodular in (u1,u2) for any x, then we have the
following results:

(iia) If functions f , l, and the set!Ξ are convex, then g
is also convex.

(iib) If functions f̃ and l̃ are submodular, and !̃Ξ is
a lattice, then g̃ is submodular.

The following theorem characterizes the monoto-
nicity properties of the solution set. We omit the proof
because it is similar to that for theorem 4 of Chen
et al. (2018).

Theorem 4. Consider the optimization problem (9), where f
and l satisfy the assumptions (T1.a), (T1.b), and (T1.c) in
Theorem 1 for any given x. Let 8*(x, z) and 8̃*(x, z̃) denote
the optimal solution sets of (9) and (10), respectively. If !,
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!Ξ are closed, and, in addition, uj ≤ zj + ξ̄j, j � 1, 2, then we
have the following results:

(i) Suppose that parts (A2.a) and (A2.b) of Assump-
tion 2 are satisfied. If the random vector Ξ has independent
components, functions f and l are submodular, and !,!Ξ

are lattices, then 8*(x, z) is increasing in (x, z). There exist
a greatest element and a least element in 8*(x, z), which are
increasing in (x, z).

(ii) Suppose that n � 2, and Assumption 2 is satisfied. If
Ξ1,Ξ2 are positively dependent, the function f is super-
modular, f̃ and l̃ are submodular, and !̃, !̃Ξ are lattices, then
8̃*(x, z̃) is increasing in (x, z̃). There exist a greatest element
and a least element in 8̃*(x, z̃), which are increasing in (x, z̃).
Incorporating Risk Attitude
Our transformation technique above depends on the
assumption that the decision maker’s objective is to
minimize the expected cost (or, equivalently, to
maximize the expected profit). However, not all de-
cision makers are risk neutral in real life. To capture
the decision maker’s risk attitude, it is suitable to
incorporate a risk measure into the model. Introduced
by Rockafellar and Uryasev (2000), conditional value-
at-risk (CVaR) is a commonly used risk measure in
practice. There are a number of studies that address
operations management problems using CVaR (see
Chen et al. 2009 and the references therein).

The CVaR of a random variable with confidence level
α is defined as the mean of the generalized α-tail dis-
tribution. In the following we present an equivalent
definition through a convex optimization problem that
is more convenient to work on:

CVaRα(X) � inf
λ∈�

{λ + 1
1 − α

E[(x − λ)+]},

where α ∈ [0, 1) is the degree of risk aversion. The larger
α is, the more risk averse the decision maker is. Under
the CVaR criterion, the optimization problem becomes

inf
u∈8

CVaRα[l(u) + f (u ∧ Ξ)]. (11)

CVaR is a special case of a more general class of risk
measure, called the distortion risk measure, which is
commonly used in portfolio optimization and risk al-
location in finance as the decision criterion (see McNeil
et al. 2015). A distortion risk measure ρ(·) can be re-
presented as a weighted average of CVaRs with dif-
ferent degrees of risk aversion; that is,

ρ(X) �
∫ 1

0
CVaRα(X)dμ(α),

where μ(·) is a probability measure function. A decision
maker with a distortion measure faces the following
optimization problem:

inf
u∈8

ρ[l(u) + f (u ∧ Ξ)]. (12)

Notice that when μ(·) is concentrated at one α, problem
(12) reduces to (11).

Theorem 5. Consider the optimization problem (12), where
functions f and l satisfy assumptions (T1.a), (T1.b), and
(T1.c) in Theorem 1. Let g(u, λ, α) � λ + 1

1−α ( f (u) − λ)+.
Define the constraint set 9 according to (6).

(i) Suppose that parts (A1.a) and (A1.b) of Assumption 1
are satisfied. If the random vector Ξ has independent com-
ponents, then problem (12) and the following optimization
problem have the same optimal objective value:

inf l(u) + E
∫

1

0
g(v(Ξ), λ(α), α)dμ(α)

[ ]

s.t. v(ξ) � (v1(ξ1), . . . , vn(ξn)) ∈ 9 ∀ξ ∈ -,

v(ξ) ≤ ξ ∀ξ ∈ -,

v(ξ) ≤ u ∀ξ ∈ -,

λ(α) ∈ � ∀α ∈ [0, 1).

(13)

(ii) Suppose that Assumption 1 is satisfied. If the random
vector Ξ has positively dependent components, f is con-
tinuously differentiable, and ∂f

∂ui
∂f
∂uj

≥ 0 ∀u ∈ 8, then prob-

lem (12) and the following optimization problem have the
same optimal objective value:

inf l(u) + E
∫ 1

0
g(v(Ξ), λ(α), α)dμ(α)

[ ]

s.t. v(ξ) � (v1(ξ1), . . . , vn(ξn)) ∈ 9 ∀ξ ∈ -,

v(ξ) ≤ ξ ∀ξ ∈ -,

v(ξ) ≤ u ∀ξ ∈ -,

vj(ξj) is increasing ∀ξj ∈ -j,

λ(α) ∈ � ∀α ∈ [0, 1).

(14)

In the above formulations, λ(·) is required to be
measurable. In part (ii) we require that ∂f

∂ui
∂f
∂uj

≥ 0 ∀u ∈ 8.
One example is that the function f is monotone. Another
example is that f (u1, . . . ,un) � φ(∑n

i�1 ψi(u)), where
functions ψi : �n → �̄ are either all increasing or all
decreasing.

3. An Application: Inventory Substitution
with Random Supply Capacities

Inventory models with substitution have been studied
in Bassok et al. (1999), Netessine et al. (2002), Rao et al.
(2004), Shumsky and Zhang (2009), and Yu et al. (2015),
among others. But none of these papers considered
random capacities. In this section, we study a single-
period multiproduct inventory model with downward
substitution and random capacities.
The firm manages N types of products to satisfy

customer demands. The products are indexed by i �
1, . . . ,N with product 1 having the highest quality.
There is a demand class corresponding to each product,
indexed by j � 1, . . . ,N. If any demand class j cannot
be satisfied, products with higher quality (i ≥ j) can
be used for substitution. At the beginning of each
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period, the firm observes the initial inventory level,
denoted by x � (x1, . . . , xN)|. Then the firm decides the
target order-up-to inventory levels y � (y1, . . . , yN)|.
This target inventory level y is not necessarily achieved
because of random supply capacities. We model the
random supply capacity of product i as a random
variable Ki. Let K � (K1, . . . ,KN)|. Therefore, after the
capacity is realized and the order is received, the actual
inventory level of product i is yi ∧ (xi + ki), where ki
denotes the realization of Ki.

Next, the demands D � (D1, . . . ,DN)| are observed,
and the firm makes the substitution decision. We use
wij to denote the amount of substitution of product i
to demand j, ui to denote the leftover inventory of
product i, and uj to denote the shortage of demand j.
The unit substitution cost to use product i to satisfy
demand j is sij, the unit shortage cost for demand j is
pj, and the unit holding cost for product i is hi. We allow
hi to be negative when the unit salvage value exceeds
the unit holding cost. We assume that the demands
are independent of capacities, whereas the random
capacities of different products can depend on each
other. The firm’s objective is to minimize the expected
total costs. The problem formulation is as follows:

min
y≥x E[c(x, y,K) + L(y ∧ (x + K)|D)], (15)

where

L(y|d) � min
∑N
i�1

hiui +
∑N
j�1

pju′j +
∑N
i�1

∑N
j�i

sijwij,

s.t.
∑j

i�1
wij + u′j � dj, ∀j � 1, . . . ,N,

∑n
j�i

wij + ui � yi, ∀i � 1, . . . ,N,

wij,ui,u′j ≥ 0, ∀i � 1, . . . ,N, j � 1, . . . ,N.

(16)

In (15), c(x, y, k) is the total ordering cost, which de-
pends on the initial inventory x, the target inventory
level y, and the realized capacity k. We assume that the
ordering cost has a two-part fee structure. The first part
of the ordering cost is proportional to the quantity
actually received, which is y ∧ (x + k) − x, whereas
the second part is proportional to the quantity ini-
tially ordered, which is y − x. Hence, c(x, y, k) � c|e (y∧
(x + k) − x) + c|o (y − x). The two-part cost structure in-
cludes, as special cases, that setting where the firm
pays only for the effective units (co � 0) or where it pays
exclusively for all ordered units (ce � 0), and it al-
lows the cost consequence of capacity uncertainties
to be shared between the supplier and the retailer.
The second term L(y|d) represents the inventory
holding and shortage costs as well as the sub-
stitution costs given the inventory level and realized

demands. Define g(y) � c|e y + E[L(y|D)]; then (15) is
equivalent to

min
y≥x E[g(y ∧ (x + K))] + c|o y − (c|o + c|e )x. (17)

The next theorem presents an equivalent transforma-
tion of problem (17).

Theorem 6. Problem (17) is equivalent to the following
problem (we remove the term (c|o + c|e )x in the objective
because it does not affect the optimal solution):

min E[ g(v(K))] + c|o y
s.t. v(k) � (v1(k1), . . . , vn(kn)) ∀k ∈ _,

vi(ki) ≥ xi, ∀ki ∈ _i,∀i � 1, . . . ,N,

vi(ki) ≤ xi + ki ∀ki ∈ _i,∀i � 1, . . . ,N,

vi(ki) ≤ yi, ∀ki ∈ _i,∀i � 1, . . . ,N,

vi(ki) is increasing, ∀i � 1, . . . ,N.

(18)

The transformed problem (18) can be formulated as
a three-stage stochastic program and solved via various
approximation methods, such as scenario approxi-
mation or the piecewise linear decision rule approxi-
mation (Georghiou et al. 2011). We have conducted
numerical studies to show that ignoring the capacity
dependence can be very costly for the firm. The details
are relegated to the Online Appendix EC.2.
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Endnotes
1A continuous randomvariableX is log-concave if the logarithmof its
density function f (x) is concave. A discrete random variable X with
support on the set of nonnegative integers is log-concave if {i ≥ 0 :
pi � Pr(X � i)> 0} is a set of consecutive integers and p2i ≥ pi−1pi+1 for
all i ≥ 1.
2During the revision of this paper, we become aware of Feng et al.
(2019), who independently studied a special case of our Theorem 1
with l(u) � 0.
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