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Abstract

We study a dynamic pricing problem of a firm facing stochastic reference price effect.
Randomness is incorporated in the formation of reference prices to capture either con-
sumers’ heterogeneity or exogenous factors that affect consumers’ memory processes.
We apply the stochastic optimal control theory to the problem and derive an explicit
expression for the optimal pricing strategy. The explicit expression allows us to obtain
the distribution of the steady-state reference price. We compare the expected steady-
state reference price to the steady-state reference price in a model with deterministic
reference price effect, and we find that the former one is always higher. Our numerical
study shows that the two steady-state reference prices can have opposite sensitivity
to the problem parameters and the relative difference between the two can be very
significant.
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1 Introduction

In an effort to better capture the relationship between demand and prices in a
market with repeated purchases, the concept of reference price has been developed
and examined through extensive empirical studies in the economics and marketing
literature (see [1], for a review). It argues that consumers form price expectations,
called reference price, from information such as prices they observed in their past
purchasing occasions. Consumers then make their purchasing decisions based on the
relative magnitude of the reference price and the current selling price. A purchasing
instance is perceived by consumers as gains or losses depending on whether the selling
price is considered as discounts or surcharges relative to the reference price. Gains
induce consumers to buy while losses deter them from purchasing.

Since the notion of reference price is a subjective construction, which cannot be
directly measured from transaction records, a large amount of literature is devoted to
the formation of reference prices. Briesch et al. [2] provided a comprehensive review
of different reference price models and empirically compare them using scanner panel
data for various product categories. They found that in four categories the memory-
based reference price model, in which reference price is assumed to be a weighted
average of past encountered prices, performs the best.

The empirical evidences of reference price effect have motivated researchers to
study how a firm should set its price when facing reference price-dependent demand.
Greenleaf [3] analyzed the impact of reference price effect on a single-period promo-
tion. Specifically, the author argued how the reference price effect creates a trade-off
between additional short-term profits and a better long-term prospect. In a discrete-time
framework, Kopalle et al. [4] numerically demonstrated several structural properties
of the optimal pricing strategies under asymmetric reference price effect. Popescu
and Wu [5] formally proved that when demands are loss/gain neutral or loss-averse,
a constant pricing strategy is optimal in the long run, while [6] showed in a special
case of gain-seeking demands that a cyclic skimming pricing strategy is optimal in
the long run. A constant pricing strategy was also found to be optimal with loss-
averse demands but under a different reference price model based on peak-end rule
in Nasiry and Popescu [7]. Chen et al. [8] further developed efficient algorithms to
compute the optimal prices. In a continuous-time framework, Fibich et al. [9] provided
an explicit solution to the optimal prices using optimal control theory and using the
explicit expression they also arrive at the conclusion that constant prices are optimal
in the long run.

Most of the previous literature on reference price models and the corresponding
dynamic pricing problems assumes a deterministic reference price model. That is, if
a firm can figure out consumers’ initial reference price, and was given a price path
the firm can perfectly predict all the future reference prices of consumers, who are
assumed to be homogeneous over time. However, there are two common features
of the market that a deterministic reference price model does not capture. First, a
consumer population is rarely homogeneous over time. Indeed, it was pointed out in
Wang [10] that different consumer groups often visit the store at different times and it
was found in Krishnamurthi et al. [11] that different consumer groups, say brand loyal
consumers and brand switchers, can make different purchasing decisions. Second,
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Dynamic Pricing with Stochastic Reference Price Effect 109

even if the firm is facing a single homogeneous consumer group over time, there are
many exogenous factors like advertisement activities and competitors’ prices that can
influence consumers’ memory processes. For instance, it was argued in Rajendran and
Tellis [12] that consumers’ reference price may also be affected by contextual effects,
i.e., other prices consumers observe at the time of purchase.

In this paper, we try to incorporate consumers’ temporal heterogeneity as well as
the exogenous shocks to describe the more complex consumer behavior by modeling
the evolution of reference prices as a random process. We assume that at any given
time point, the firm is able to observe the incoming type of consumers group as well
as the exogenous factors like advertising activities, competitors prices, etc. That is,
the firm can figure out the current reference price of consumers. However, given a
price path, due to heterogeneity and exogenous shocks, the firm is unable to perfectly
predict future reference prices. Instead, it only has the knowledge of the distributions
of the future reference prices.

We analyze a dynamic pricing problem with the above stochastic reference price
model in a continuous-time framework. Applying stochastic optimal control theory,
we derive an explicit expression for the optimal pricing strategy. The reference prices
under the optimal pricing strategy converge in distribution to a steady-state reference
price whose distribution is given explicitly. The expected steady-state reference price
is compared to the steady-state reference price in the deterministic reference price
model analyzed by Fibich et al. [9]. Interestingly, we find that the expected steady-
state reference price is always higher than its deterministic counterpart. Our results
suggest that in the long run it is always beneficial for the firm to have, on average, a
higher price compared to the deterministic model in order to deal with the uncertainties
in consumers’ future reference prices. Our numerical study further shows that as
consumers adapt to the new price information at a faster rate or the magnitude of
reference price effects decreases, the deterministic steady-state reference price always
grows while the expected steady-state reference price can become smaller; i.e., they
have opposite sensitivity to problem parameters.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
model of stochastic reference price effect in a continuous-time framework. Explicit
expressions to the optimal pricing strategy as well as the distribution of the steady-
state reference price are obtained in Sect. 3. Section 4 compares in detail the expected
steady-state reference price to the steady-state reference price in the deterministic
reference price model. Finally, we conclude in Sect. 5.

2 Model
We first introduce, in a continuous-time framework, the exponential smoothing
model, a widely used reference price model in the literature (see, for instance, [9]) to

describe the evolution of consumers’ reference prices. Given a price path p(t) and an
initial reference price ry, the reference price at time ¢ is given by:

t
r(t) =e ¥ [ro + oz/ e‘”p(s)dsj| , 1>0, 2.1
0
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110 X.Chenetal.

where o > 0 is interpreted as the “memory factor.” The larger the memory factor «,
the faster consumers incorporate new price information. Alternatively, one can rewrite
(2.1) in differential form as

dr = a[p(t) — r(t)]de, 22)
r(0) = rop.
The intuition behind this differential form is quite clear: Reference price starts at an
initial value r(, and at a constant rate «, it would drift to close the gap p(#) —r(¢). The
resulting 7 (¢) is a deterministic process. That is, given an initial reference price ro and
a price path p(7), a firm is able to determine perfectly the reference price at any given
time.

In a real market, however, a firm may encounter heterogeneous consumer groups at
different points of time and consumers’ memory processes can be affected by various
exogenous factors like advertisements, price information of other products, etc. In
other words, in reality, a firm only has a general knowledge about the trend or drift
of the reference price process but is unable to predict perfectly the future reference
prices. In our study, we try to incorporate consumers’ temporal heterogeneity as well
as exogenous shocks to describe the more complex behavior of the consumer popu-
lation. Specifically, we extend the above reference price dynamics using a stochastic
differential equation(SDE) (see [13], for a reference on the topic of SDE) to model
the reference price evolution process:

dr(t) = a[p(t) —r(t)]dt + o/r(t)dW(2), 2.3)

where W () denotes a standard Wiener process and reference price r(¢) is now a
stochastic process. At any given time, it yields a probability distribution over all
possible reference prices.

There are two main considerations in our choice of models. From a modeling
perspective, we want a model that can give a good approximation in terms of cap-
turing consumers’ heterogeneity as well as exogenous factors. To model consumer
heterogeneity, incorporating randomness is a common practice used in economics and
marketing (see [14], for instance). One possible way is to assume « to be random.
However, it is easy to see that if the price is a predetermined constant, i.e., p(t) = p,
for all + > 0, the variance of r(¢) will go to zero as t — oo. That is, the firm can
eliminate such heterogeneity in consumers’ reference prices by employing a constant
pricing strategy. While this could be plausible in some scenario, we believe, in gen-
eral, variability in consumers’ perception of prices should persist under commonly
seen pricing strategies. On the other hand, variability in reference prices always exists
(unless p(t) = O for all ¢) in (2.3). In addition, (2.3) has the nice property that the
probability of r(#) going negative is always zero. To model exogenous factors, one
usually adds a random shock to represent those exogenous factors. The square-root
diffusion process (2.3) has the additional merit of allowing a reference price level-
dependent variance. It predicts that the variance of the »(¢) gets smaller as r(¢) itself
becomes smaller.
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Dynamic Pricing with Stochastic Reference Price Effect 1

From an analysis perspective, the square-root diffusion process (2.3) can provide
analytical tractability and has found applications ranging from term-structure model-
ing [15] to option pricing [16]. In our application, in particular, it enables a closed-form
solution and results in a simple steady-state distribution. As a result, we are able to
compare analytically the expected steady state to the steady state derived from the
deterministic reference price model.

Note that for a predetermined price path p(¢), dE[r(¢)] = a[p(¢t) — E[r(¢)]]dz.
That is, if the firm pre-commits to a price path that is independent of the realization
of randomness, then the evolution of the expected reference prices coincides with the
deterministic model (2.2) used in Fibich et al. [9]. We illustrate in Fig. 1 a sample path
of (2.3) as well as E[r(¢)] under a constant pricing strategy with two price levels: the
high price pg = 0.92 and the low price pr. = 0.29, respectively. In Fig. 1, we take
the initial reference price rg = p“;’pL = 0.605, « = 0.5 and ¢ = 0.2. One can see
that 7 (¢) has a higher variance under py than under pp, which reflects the square-root
diffusion term in (2.3).

Given the above dynamics, we introduce the dynamic pricing problem. The demand
rate function is given as:

D(r,p)=b—ap—n-(p—r). 2.4)

The first part of this represents a normal linear demand function, and the second
part is the reference price effect. n > 0 controls the magnitude of this effect. When
p(t) < r(t), consumers perceive the deal as a gain and demand would rise. On the
contrary, when p(t) > r(t), consumers perceive it as aloss and demand would fall. We
remark here that for tractability, we have assumed the demand to be loss/gain neutral;
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Fig.1 E[r(t)] and sample paths of r(¢) under py = 0.92 and py, = 0.29, respectively
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112 X.Chenetal.

i.e., market’s responses to gain and loss are of the same magnitude. While both loss-
averse and gain-seeking behaviors are observed in the literature (see [1] for a review),
it was also pointed out in Bell and Lattin [17] that such behavior asymmetries are not a
universal phenomenon and may be a consequence of not taking consumer heterogene-
ity into account. In particular, Bell and Lattin [17] found that in five of the 11 product
categories, one can not reject the hypothesis of loss/gain neutral after incorporating
consumer heterogeneity. Therefore, we believe the loss/gain neutral assumption along
with our reference price dynamics (2.3), which accounts for consumer heterogeneity,
can provide a good approximation in some scenarios.
Given the demand rate, revenue would accumulate at the following rate:

F@r,p)=(p—-0cD@,p)=(p—0clb—ap—n(p—r)], (2.5)

where ¢ is the marginal cost. With an initial condition r(0) = rp, our goal is to
maximize the total discounted profit over an infinite horizon:

V(rg) = max E [/Ooe_y’F(r(t), P(t))dt} ,
p(t) 0

s.t. dr(t) = a[p(@) —r@®)]dt + o+/r@)dW (1), (2.6)

where y is the discount factor.

3 Explicit Solution and Steady State

We adopt a dynamic programming approach. The Hamilton—Jacobi—-Bellman (HIB)
equation to problem (2.6) can then be written as

2 2
dV(r)+0 d V(r)}‘ G

V(r)= F(r, — .
yV(r) m}gX{ r,p) +alp—r)— SRR
Readers are referred to Miranda and Fackler [18], for instance, for an intuitive deriva-
tion of the HIB equation (3.1). We denote p*(r) to be the optimal solution to (3.1)
and r*(¢) to be the reference price path under p*(r) which satisfies the SDE

dr*(t) = a[p*(r* (1)) — r*(@)]dt + o/r*(t)dW (1).

Note here that we are seeking a state feedback solution p*(r) since, as we have
mentioned in Introduction, we assume that the firm has the ability to measure or
observe the realization of consumers’ reference price and can set a price accordingly.

Alternatively, if the firm cannot observe the realization of consumers’ refer-
ence price, then he can only choose a predetermined price path {p(7)} such that
E[ [y e Y F(r(1), p(t))dt] is maximized and we call the solution {popen-loop(?)}
in this case as the open-loop solution. Clearly, by Fubini’s theorem and the linearity
of F(r, p) in r, we have
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E [ / TR, p(r))dr] _ / Y e EE O p)d,
0 0

where
dEr(t) = a[p(t) — Er(t)]dt.

That is, finding the optimal open-loop solution reduces to the deterministic model
studied in Fibich et al. [9] and we denote the expected value under the open-loop
solution as Vopen-loop (7).

In comparison, we give in the following proposition an explicit expression to the
optimal state feedback solution p*(r).

Proposition 3.1 The optimal solution p*(r) to the HIB equation (3.1) is given by

_n+2aQ oR+Db c

*(r) = r -, 3.2
PO= e T2 T2 G
where Q and R are given by
y 2a+n a+n
= - A,
Q 2a2(61+77)+ 20 202
b 2 - A 22 2
R— +C(a+n)+0(a+n) Y n b+ca+0(a+n)
o a? Y+ A 200 Y+ A

and A is

2
A= y2+2a—a(y+a)+yn.
n+a

A few monotonic properties are immediate from the explicit expression in (3.2). First,
it is easy to verify that Q > 0 and consequently p*(r) is increasing in r. This confirms
the intuition that when consumers have a higher reference price, the firm can take
advantage of this by pricing at a higher level. In addition, it is easy to see that the
slope (n + 2aQ)/(2(a + 1)) < 1. With some algebraic calculations, one can verify
that for fixed reference price r, p*(r) is increasing in the marginal cost ¢ and the
market size b, which is again quite intuitive. Lastly, since the constant R is increasing
in o2, the optimal price is also increasing in 2. This provides a new insight that it is
always beneficial for the firm to price higher if the firm is facing larger uncertainties
in consumers’ future reference prices. To simplify our notations, we let ¢ = 0 for the
rest of the section; all our results generalize to the case for ¢ > 0.

Substituting (3.2) into the reference price dynamics (2.3), we have the following
SDE characterizing the evolution of r*(¢):

* _ 200 —2a —n % aR+Db ”
dr*(t) = « |:—2(a i, re(t) + —Z(a n 77)} dt 4+ o/r*(t)dW(t)
= A — @) + o/ r*@)dW (), (3.3)

@ Springer



114 X.Chenetal.

where
2a +1n —20Q oaR+D

s H=a .

2(a+n) 2xna+m)
Interestingly, under the optimal pricing strategy, the reference price dynamics (3.3) is
again a square-root diffusion process. Similar to the previous literature, we are inter-
ested in the long-run behavior of the optimal prices as well as the resulting reference
price path. Specifically, what will *(¢) be as ¢ goes to infinity? Proposition 3.2 gives
a complete answer to this question.

Proposition 3.2 The optimal reference price path r*(t) converges in distribution to
the steady state, denoted as R}. The density of R} is

2
Fre(r) = (2 /o 2)H1lo P20ufo? =1, =2rA o>
s C2iu/0?) ’

where T'(-) is the Gamma function. That is, R} follows a Gamma distribution with a
shape parameter 2Aju/o* and a rate parameter 2./ .

Proposition 3.2 not only claims the convergence to a steady state, but also gives an
explicit expression for the steady-state distribution in terms of problem parameters.
Our result differs from previous literature in the sense that the steady state R} is a
random variable rather than a deterministic value. This confirms our motivation in
modeling consumer heterogeneity: Even under optimal pricing strategy, variability in
consumers’ reference prices still persists.

Figure 2 illustrates the steady-state distributions under different levels of «. In
Fig. 2, we have fixedc = 0,b = 10,a/b = 0.8, n/b = 0.5, y = 0.01 and o2 =0.2.
One can see that as « grows, the spread of the distribution shrinks. Intuitively, this is
due to the fact that as o grows, the drift term in (2.3) will have a relatively stronger
effect compared to the diffusion term and result in less variance. In other words, if
consumers in the population adapts to the new price information at a faster rate, then
the variability in their perception of the fair prices can be reduced.

Using Proposition 3.2, we can easily compute the expected steady-state reference
price as well as the variance of steady-state reference price. Their explicit expressions
are summarized in the following corollary.

Corollary 3.3 The expected steady-state reference price ri = E[R(] is given by

2
o a—+ A 2a +
rf=n=rp+y [ n(g__>+ n]’
aly +a)+yn| «o 2 2 2

where 1}, is the steady state in the deterministic problem ( o2 =0):

(y +a)b

*

rp=———.
2a(y +a)+yn

The variance of steady-state reference price is given by

var(R¥) = %az.
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Fig.2 Shape of f R (r) under different o

We remark here that rj is exactly the steady state derived by Fibich et al. [9] in
the deterministic reference price model. Clearly, when o = 0, our model reduces
to the deterministic model in Fibich et al. [9] and r] agrees with their solution.
When ¢ > 0, on the other hand, it is easy to verify that rJ > r},. That is, the
expected steady-state reference price is always higher than the steady-state reference
price when there is no randomness. This result is in sharp contrast with the intuition
developed in some previous pricing literature. Recall in Fig. 1 that a higher price
induces a higher variability in reference price and consequently higher variability in
demands. Such variability in demands are undesirable in many settings. For exam-
ple, in a joint inventory and pricing setting, by comparing the optimal price with the
riskless price (the price obtained from deterministic demands), the optimal price is
always set in a way such that variability in demands is reduced [19]. In our dynamic
pricing problem, however, the firm does not need to worry about the risk of mismatch
between supply and demand and demand variability will not be a concern. On the
contrary, it will bring more opportunities to the firm since higher variability in refer-
ence prices will allow the firm to take advantage of the possible high reference price
level.

4 Numerical Study

This section numerically examines the impact of stochastic reference price on the
expected steady-state reference prices and the optimal values. We provide insights
into the magnitude of markups that the firm should employ in order to deal with
stochastic reference price effect and the value of acquiring consumers’ reference price
information.
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116 X.Chenetal.

4.1 Comparison of Steady States

The key insight from the results developed in Sect. 3 is that in the long run itis always
beneficial for the firm to have, on average, a markup based on the steady-state price
from the deterministic model in order to deal with uncertainties in consumers’ future
reference prices. In this subsection, we explore how such markup varies according to
the problem parameters and quantify the magnitude of the markup.

Figure 3 illustrates the gap between r; and r}; under a range of values of o and
different levels of /b with other parameters fixed at the same values in Fig. 2. One can
see that the gap decreases as « increases and /b decreases. As o grows, consumers
adapt to the new price at a faster rate and in the extreme case it adjusts to the current
price instantaneously. Such decrease in the average gap between reference price and
price reduces the (stochastic) reference price effects and consequently results in a
smaller difference between r; and rf). Similarly, when n/b is small, reference price
effects play a minor role and in the limiting case when /b approaches zero, both r
and 7, get closer to the static price, the optimal price under the static demand model
(the demand model without reference price effects, i.e., n = 0), and consequently
their gap goes to zero.

More interestingly, the expected steady-state reference price ) and its deterministic
counterpart r}, can have different behaviors relative to some problem parameters.
When reference price effects are significant (17/b is large), r;" is decreasing in @ while
r}, is increasing in a. It is easy to see the monotonicity of rJ,. Since the static price
is always higher than r}), as « increases, the model more closely resembles the static

0.67 T T

—e—7i(n/b=10.2)
—e—1p(n/b=0.2)
—+—7%(n/b=10.5)
——rp(n/b=0.5)
—8—ri(n/b=038) |
—o—1p(n/b =0.8)

0.66

o

o

8}
T

0.64}

0.62

Steady state reference prices
2

o
o
=

0.6

0.59 L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig.3 Comparisons of r; and rJ,
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demand model and as aresult, r}; increasingly approaches the static price. The opposite
direction of r{" is less obvious. One possible explanation is that when o becomes larger,
the benefit of having larger variations in reference price decreases. Similar explanations
apply to the sensitivity of r;" and rJ, to n/b. As /b becomes smaller, the effects of
reference price gradually vanish and rJ, increases to the static price while r; decreases
to it.

In addition to the qualitative description, in the following we quantitatively measure
the magnitude of the gap between r; and r},. Specifically, we use the relative price
re —rz‘)

"D
per unit of variance o>, We fix ¢ at 0 and b at 10 and choose different levels for a /b,
n/b and «. In addition, two levels of discount factor y are used: 0.01 and 0.05, and
the corresponding results are listed in Tables 1 and 2, respectively.

A few observations are immediate from these tables. First of all, the relative change
in steady-state reference price can be very significant in many scenarios. Keep in
mind that these are “per unit of o>” figures, so the actual relative changes in steady-
state reference price are these numbers multiplied by o'2. Similar to the sensitivity in
Fig. 3, we find that when a/b is large, relative price change becomes less significant.
Moreover, relative price change decreases when y gets larger, or when future profit
is discounted more. In the limiting case, when y gets arbitrarily large, future profit is
discounted so much that essentially we would be dealing with a single-period problem.
In a single-period problem, the relative price change would become 0 as reference price
effect itself would vanish.

, to measure the percentage change in the steady-state reference price,

. L
change: =

4.2 The Value of Reference Price Information

In this subsection, we examine the value of reference price information. In seek-
ing a state feedback solution p*(r), we have assumed that the firm has complete

Table 1 Relative price change with discount factor y = 0.01

n/b=02 n/b=0.5 n/b=0.8
a 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
a/b=02 15% 5% 3%  63%  24%  15% 125% 48%  29%
a/b=05 1% 3% 2% 36% 14% 8% 79% 29% 18%
a/b=08 5% 2% 1%  26% 10% 6% 58% 22% 13%

Table 2 Relative price change with discount factor y = 0.05

n/b =02 n/b = 0.5 n/b =08
a 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
a/b =02 8% 4% 3% 35%  19% 13% 67% 37% 25%
a/b=0.5 4% 2% 1% 21% 1% 7% 45% 24% 16%
a/b=0.8 3% 1% 1% 15% 8% 5% 34% 18% 12%
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118 X.Chenetal.

information of consumers’ current reference price. This can be achieved by either
observing incoming type of consumers group and the exogenous factors or directly
measuring reference prices through surveys or experiments. In either way, acquiring
such information over time may be costly. Therefore, it is important to quantify the
additional profit such information can provide. We remark that since the open-loop
solution coincides with the solution under the deterministic model studied in Fibich
et al. [9], our value of reference price information is equivalent as quantifying the
profit gained from considering the stochastic reference price compared with that of
the deterministic reference price model.

In Fig. 4, we illustrate the comparison between the value function V (r) under the
state feedback solution p*(r) and the value function Vypen-1o0p (') under the open-loop
solution {popen-loop(?)}. Figure 4 uses the same parameter as Fig. 2 with o« = 0.5, and
one can see that V (r) is always higher than Vipen-100p (7)-

To measure the benefit of having a state feedback solution, we compute the rela-
V(r)_vupen-loop (r)
Vopen-loop (7))
Tables 1 and 2, we fix r = 1.0, 02 = 0.2 and choose different levels for a /b, n/b
and «. The results are summarized in Tables 3 and 4, respectively, for y = 0.01 and
y = 0.05. One can see that the sensitivity of the relative value change with respect
to problem parameters is similar to that of the relative price change. That is, as the
reference price effect becomes stronger relative to the direct price effect, i.e., n/b is
larger and a/b is smaller, then the relative value change is higher. In addition, the
relative value change will become more significant as consumers adapt to new price

information at a slower rate and as the firm discounts less into the future.

tive value change: for different parameter configurations. Similar to

330

3251

w

N

o
T

Expected values

= Vopenfloop(r)

—6—V(r)

305 . . . . . . . . .

Fig.4 Comparisons of V (r) and Vopen-loop (7')
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Table 3 Relative value change with discount factor y = 0.01

n/b =02 n/b=0.5 n/b =038
o 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
afb =02 6% 2% 1% 27%  10% 6% 55%  20% 12%
a/b=0.5 3% 1% 1% 16% 6% 3% 35%  12% 7%
a/b=0.8 2% 1% 0% 12% 4% 2% 26% 9% 5%

Table 4 Relative value change with discount factor y = 0.05

n/b =02 n/b = 0.5 n/b =08
o 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
a/b=0.2 4% 2% 1% 16% 8% 5% 30%  15% 10%
a/b =05 2% 1% 1% 12% 5% 3% 2%  10% 7%
a/b=0.8 2% 1% 0% 10% 4% 2% 20% 8% 5%

From a managerial perspective, our results suggest that when the direct price effect
dominates the reference price effect (in our example, more than twice of the reference
price effect), then it is sufficient for the firm to employ an open-loop strategy without
monitoring consumers’ reference prices overtime. This justifies, in some scenarios,
the study of deterministic reference price models in the literature (e.g., [5,9]). On the
other hand, when reference price effect dominates the direct price effect, ignoring
the realization of reference price information or, equivalently, treating reference price
deterministically will result in significant loss in profit. In this case, firm should actively
explore consumers’ reference price level and adjust its prices accordingly.

5 Conclusion

This paper studies a dynamic pricing problem under stochastic reference price
effect. A stochastic differential equation is proposed to model the reference price
evolution in order to capture the temporal heterogeneity in consumer groups as well
as exogenous shocks that affect consumers’ memory processes. The corresponding
dynamic pricing problem is analyzed using stochastic optimal control theory. By solv-
ing the HJB equation, we are able to provide an explicit expression for the optimal
pricing strategy and the distribution of the steady state. We find that, on average, the
firm should always have a markup over the steady-state price under the deterministic
model in order to deal with the uncertainties in future reference prices.

Our numerical results reveal that such markup can be very significant, and it is
more valuable for the firm to acquire the information of consumers’ reference price
if reference price effect dominates the direct price effect, consumers adapt slower to
new price information and the future profit is discounted less.

As pointed out earlier, Bell and Lattin [17] found that in some scenarios, loss/gain
neutral assumption is appropriate if consumer heterogeneity is taken into consider-
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ation. However, there are other cases when loss-averse or gain-seeking behavior is
found across different consumer groups, which can result in either loss-sensitive or
gain-sensitive demands (see [20]). It would be interesting to see how our results can
be generalized when there are asymmetric responses in demands.

While the continuous-time framework is convenient for deriving closed-form solu-
tions, it is usually harder to implement in practice and hence a discrete-time counterpart
of our model (or more specifically, the square-root-diffusion process (2.3)) is desir-
able. Note that if one applies the standard Euler-Maruyama discretization scheme (see,
e.g., Chapter 9 in [21]) to (2.3), one would obtain

riv1 = (1 —ory +ap, + o ri Xy,

where X;,t = 0, 1, ... are i.i.d. standard normal random variables. However, since X;
is unbounded from below, the reference prices r; are not guaranteed to be nonnegative
almost surely, and such reference price evolution is not well defined. There are different
alternative discretization schemes proposed in the literature to rectify the above issue
(see [22,23]). It is unclear at this point, however, which model is more appropriate in
describing the evolution of reference prices in discrete time, and more future research
is needed.

Finally, our observation that a higher demand variability is desirable may no longer
hold if a joint inventory and pricing model is considered (see [24-28]). Recently,
Chen et al. [29] have studied the joint inventory and pricing problem that incorporates
reference price effect. However, their model assumes deterministic reference price
effect and it would be valuable to see what the additional insights are if one considers
stochastic reference price effect.

Appendix
Proof of Proposition 3.1

To solve the HIB equation (3.1), we start from solving a more general finite horizon
problem. That is, let

T
V(r,t) = max |:/ e VIF(r(s), p(s))ds]
t

p(s)

be the value of optimal accumulated profit (profit-to-go function) from time ¢ to the
end of horizon 7 when the initial reference price is r. Notice that the value function
in our problem (2.6) V (rp) = limr_  V (19, 0).

From standard theory in stochastic optimal control, V (r, ¢) then satisfies the HIB
equation

AV (r, 1) AV(r,t)  o%rd*V(r,t)
yV,t)=max |F(r,p)+ ———+alp—r)——+ ———75—|- 6.1
J4 ot ar 2 ar
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Using first-order condition in (6.1) and with a slight abuse of notation, we can solve

p as
c b+ nr o ov(r,t
Py =5 20D
2 2@@+n 2a+n) or

Substitute the above equation into (6.1), it follows

g V-
R R ET AT

b+ b+ Fatn)
2 4(a+mn) 4

— —ar+

o2 9%V 3V o? <8V)2 |:ozc oe(b+r]r):| A%

0.

Introducing a few new notations, this can be written concisely as:

v a2V v
— —yV+Ar—+B
or?

ot ar

where

B=——,
4(a +n)
. n ab
PO= 5 M 2ty
an
+—7
2(a +1n)
bc b2 cz(a—i—n)
PZO——7+4(Q+}7)+ 1 )
c b
en, bn
2 2(a + 1)
2

T dat+n

P11 = -«

p21 = —
P22

If we assume function V (7, t) has the following form:
V(r, 1)) = Q@)r + ROr + M),
then we get the following ordinary differential equations (ODEs):

d
d—?—VQ+4BQ2+2P11Q+P22=0,

dR
T YR+2A0 +4BOR+2p1oQ + p1iR + p21 =0,

2 2(a +1n)

or

2
aV
—> +(Pm+l711r)5+P20+l721r+l722r2 =0, (6.2)

(6.3)

(6.4)

(6.5)

@ Springer



122 X.Chenetal.

M ,
O —yM + BR” + p1oR + p2o =0, (6.6)

with terminal condition Q(T) = R(T) = M(T) = 0.
We first explicitly solve ODE (6.4) by rewriting it as:

do
o = AB@ - 00(@ - Q)

where Q1 < Q> are the two distinct roots of the equation:

4BQ? — (y —2p11)Q + pn = 0.

Namely:
0,="" 2p1 — /(v —2p11)> — 16Bp,
1= 5B ,
vy —2pu+ (¥ —2pi1)? - 16Bpxn
0s = )
8B
Therefore,
do = —4Bdrt
(Q—-0(Q—02)
dQ |: 1 1 :|
= - = —4Bdt
01— | 0-01 00—
0-0
In == = —4B(Q; — C
= In 0= 0, (Q1— 021 +
Q-0 —4B(01- 01
=D =021, 6.7
~ o-0 UF 7

where C and D = ¢ are constants to be determined. By O(T) = 0, we can solve

D= 214001
02

Substitute D back into (6.7), it follows

0,4B(Q1=0T _ ), AB(Q1— 021
Q) = 0yt B@I—0aT — ABO1— 0o

(6.8)

With the expressions for Q(#), expressions for R(¢) and M (¢) can then be obtained
by solving (6.5) and (6.6). Consequently, p*(r) can be determined as well. One can
easily verify using Theorem 4.1 in chapter VI of [30] that p*(r) solved in this way is
indeed optimal and V (r, t) is given by (6.3).
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The solution to (3.1) is then obtained by letting 7 — 0. Since Q1 < Q», we have
0 := Q1 = lim7_,+ Q(t), where by substituting the expressions for B, p11 and p>>

2a+n_a+n

—A
200 202

-
Q—2a2(9+’7)+

and A is given by:

2
AZ\/y2+2a—a(y+a)+yr].
n+a

Correspondingly, one can also obtain R := lim7_, 5, R(?) as

2p10Q + p21 +2A0

R =
Yy —4BQ — pui
b o*a+ cla+ —A 02Qa + 2
=|—+ (2 77)+ ( m |y + b+ ca+ ( 77)_|_ .
o o o y+ A 2 y+ A

Similarly, M := limr_, o M (¢) can be computed.

Now, we have explicitly solved (3.1), where V () = Qr>+ Rr+ M and the optimal
pricing strategy can then be obtained as (3.2).

Finally, we remark that both Q1 and Q, are positive solutions to the Algebraic
Riccati Equation (ARE): 4B Q2 — (' = 2p11) O + p22 = 0, which has no negative
solution. This deviates significantly from standard linear quadratic control theory and
is the primal reason we need to solve from the finite horizon problem instead of solving
ARE directly.

Proof of Proposition 3.2

Note that r*(r) follows (3.3), which is a square-root diffusion process. It is not
difficult to show that A, u > 0. For such square-root diffusion process, it is known that
r*(t) converges in distribution to a steady state which follows a Gamma distribution
with shape parameter 2;\—5‘ and rate parameter (% (see, for instance, [15]).

Proof of Corollary 3.3

By Proposition 3.2, R} follows a Gamma distribution and its mean and variance
can then be computed as

2hp o2
E[R 1= ——— = pu,
[R{] PRk e
2
201 o? w5
* _ AT -
var(R{) = 2 (ZA) 2)\0.

@ Springer



124

X.Chenetal.

Substituting the expressions for Q, R and A into x, with cumbersome algebraic manip-
ulations, one can further obtain

_ (y+ab N o? |:a+n(z_é)+2a+n]
2a(y +@) +yn  2aly +a)+yn| a 2 2 2 '
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