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Abstract. A common technical challenge encountered in many operations management
models is that decision variables are truncated by some random variables and the deci-
sions are made before the values of these random variables are realized, leading to non-
convex minimization problems. To address this challenge, we develop a powerful trans-
formation technique that converts a nonconvex minimization problem to an equivalent
convex minimization problem. We show that such a transformation enables us to prove the
preservation of some desired structural properties, such as convexity, submodularity, and
Lé-convexity, under optimization operations, that are critical for identifying the structures
of optimal policies and developing efficient algorithms. We then demonstrate the appli-
cations of our approach to several important models in inventory control and revenue
management: dual sourcing with random supply capacity, assemble-to-order systems
with random supply capacity, and capacity allocation in network revenue management.
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1. Introduction

In operations management literature, a common techni-
cal challenge encountered in many models is that deci-
sion variables are truncated by some random variables
and the decisions are made before the values of these
random variables are realized. A notable example is
inventory control problems with supply capacity uncer-
tainty in which the replenishment decision is truncated
by the random supply capacity (see, e.g., Ciarallo et al.
1994, Wang and Gerchak 1996, Bollapragada et al. 2004,
Hu et al. 2008, Feng 2010, and Feng and Shi 2012).
Another example is capacity allocation problems in
revenue management where the booking limit of each
demand class is truncated by the random demand (see,
e.g., Brumellem and Mcgill 1993, Robinson 1995, and
Chen and Homem-de-Mello 2010). This type of variable
truncation often leads to stochastic optimization prob-
lems in the following form:

E[f(x,u A(z+E))], M

inf
u:(x,z,u)esd

g(x,z) =

where f is a function in decision variables u and state
variables (x,z), o is the constraint set, E is a random
vector, and A denotes componentwise minimum.
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For these applications, it is natural to ask how to
solve problem (1) efficiently and whether the optimiza-
tion operation can preserve some desired structural
properties of f such as convexity or submodularity.
However, solving and analyzing such a problem can be
very difficult. An intrinsic challenge arises from the fact
that the truncation by random variables may destroy
convexity: the objective function may not be convex in
the decision variables even if the function f is convex.
Without the regular properties such as convexity, the
problem could be both analytically and computation-
ally intractable, in particular when facing multidimen-
sional state and decision variables.

Our paper aims at addressing this challenge when
the random variables are independently distributed by
developing a novel transformation technique that con-
verts the nonconvex minimization problem (1) to an
equivalent convex minimization problem. As we men-
tioned earlier, the original problem formulation may be
nonconvex for a convex function f because in the objec-
tive function there are terms involving the minimum of
decision variables and random variables. The key idea
is to relax the original problem by replacing u A (z + &)
by new variables v(&) = (v,(&,), v,(&,), ..., v,(&,)) and
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imposing v(£) < z + £ in the constraints. We prove that
the optimal objective values of the original and trans-
formed problems are the same when f is convex and
certain regularity conditions are imposed on /. Fur-
thermore, our transformation technique allows us to
show that the optimization operation in problem (1)
can preserve convexity, submodularity, or L*-convexity,
which then enables us to perform comparative statics
analysis in multidimensional state and decision spaces
and characterize the monotone structure of optimal
policies.

Our approach has a wide range of applications.
In this paper, we focus on the applications of the trans-
formation technique to three models with multidimen-
sional state spaces. Our first application is an inventory
system with two capacitated suppliers, a regular one
with a longer lead time and an expedited one with a
shorter lead time. The two suppliers have independent
supply capacity uncertainties. The objective of the firm
is to find a dual-sourcing strategy to minimize the total
expected cost. The second application is an assemble-
to-order (ATO) inventory system with multiple com-
ponents and products. The order quantity of each com-
ponent cannot exceed a random capacity. The firm
decides the ordering quantities of all components and
then the number of products assembled to minimize
the expected cost. The third application is the capac-
ity allocation in network revenue management where
fixed capacities of resources are allocated dynamically
to different products with random demands. In the air-
line industry, this corresponds to setting booking limits
for each itinerary-fare class combination. The booking
limits are truncated by the random demand. The firm
aims to maximize the expected total revenue. In all
the above applications, we employ the transforma-
tion technique to prove that the apparently nonconvex
minimization problems (or nonconcave maximization
problems) can be converted to equivalent convex min-
imization problems (or concave maximization prob-
lems), and under some conditions, the optimal deci-
sions are monotone in terms of the state variables with
limited sensitivities. Without the transformation tech-
nique, the structural analyses would have been much
more complicated, if not impossible, to carry out.

1.1. Related Literature

We next review two streams of related literature:
(1) inventory management with special emphasis on
supply capacity uncertainty, and (2) capacity allocation
in network revenue management.

Supply uncertainty of inventory/production sys-
tems can be driven by a variety of factors. Most stud-
ies in this literature focus on random yield problems
where the supply is a random proportion of the order
quantity; see Henig and Gerchak (1990), Federgruen
and Yang (2008, 2011), Chen et al. (2013), and the ref-
erences therein. Such an issue usually arises from the

quantity uncertainty of items produced in a batch.
Another important supply uncertainty is the supply
capacity uncertainty due to the unreliability of the sup-
ply processes (e.g., partial delivery or cancellation of
an order by the supplier). In such an environment, the
firm has to place orders before knowing the actual sup-
ply capacity. There are relatively few papers address-
ing the random capacity problems.

Ciarallo et al. (1994) consider an inventory control
problem, assuming that the replenishment decisions
are made before the capacity uncertainty is realized
and the replenishment lead time is zero. They show
that the presence of capacity uncertainty does not
affect the optimality of a base-stock policy. Wang and
Gerchak (1996) extend the analysis to systems with
both random supply capacity and random yield. Feng
(2010) addresses a joint pricing and inventory control
problem with supply capacity uncertainty and zero
lead time and shows that the optimal policy is char-
acterized by two critical values: a reorder point and
a target safety stock. The common technical challenge
of these models is that with random supply capacity,
the corresponding dynamic programming recursions,
though all involving one-dimensional state spaces,
are not convex minimization (concave maximization)
problems anymore, and delicate analyses are needed
to characterize the structures of optimal policies.

Our transformation technique can be readily applied
to the aforementioned models to simplify the structural
analysis. More importantly, such an approach allows us
to address more general inventory models under sup-
ply capacity uncertainty with multidimensional state
spaces using the concept of Lf-convexity. This paper
demonstrates two applications in the area of inventory
management with supply uncertainty, i.e., the dual-
sourcing problem and the assemble-to-order problem.
In the following, we introduce the literature related to
these two applications.

There is an extensive literature on the dual-sourcing
problem. It was first studied by Barankin (1961) in a
one-period setting and then extended by Daniel (1963),
Fukuda (1964), and Whittmore and Saunders (1977) to
various settings with multiperiod horizons. Feng and
Shi (2012) consider a joint inventory control and pric-
ing problem with multiple suppliers whose replenish-
ment lead times are zero and supply capacities are
uncertain. They show that with deterministic capaci-
ties a multilevel base-stock list-price policy plus a cost-
based supplier selection (i.e., ordering from a cheaper
source first) is optimal. However, with general random
supply capacities, such a policy is no longer optimal.
They show that the optimal policy can be characterized
by a near reorder point such that a positive order is
placed (almost everywhere) if and only if the inventory
level is below this point. They also identify a condi-
tion under which a strict reorder-point policy and a
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cost-based supplier-selection criterion become optimal.
More recently, Zhou and Chao (2014) address the dual-
sourcing problem with price sensitive demand, a reg-
ular supplier with one-period lead time, and an expe-
dited supplier with zero lead time, and characterize
the structure of the optimal policy. Gong et al. (2014)
further generalize the structural analysis to a dual-
sourcing problem with price sensitive demand and
Markovian supply interruptions. In both models, there
are no capacity limits on the supplies. To the best of
our knowledge, our paper is the first addressing the
dual-sourcing system with arbitrary deterministic lead
time discrepancies and supply capacity uncertainties.

The assemble-to-order system is one of the most
important production/inventory systems; see Song
and Zipkin (2003) for a review of the research liter-
ature and applications of assemble-to-order systems
up to the early 2000s. Lu and Song (2005) study a
continuous-review assemble-to-order system with ran-
dom demands and lead times with an order-based
approach. Nadar et al. (2014) develop the optimal struc-
tural results for a continuous-review assemble-to-order
generalized M-system with lost sales. Bollapragada
et al. (2004) study multiechelon assembly systems
under installation base-stock policies where the com-
ponent suppliers have various lead times and ran-
dom supply capacities. They propose a decomposition
approach and their numerical study shows that their
heuristic performs well in comparison with the opti-
mal base-stock policy. In this paper, we show that our
approach applies to the assemble-to-order system with
random component capacity. Moreover, for the gen-
eralized M-system, we show that the cost-to-go func-
tions are Li-convex, which allows us to characterize the
monotone structure of the optimal policy.

Revenue management (RM), also known as yield
management, has been widely adopted in various
industries such as airlines, hotels, car rentals, and
cruise lines. Driven by its prevalence in the service
industry, the research interest in RM has been growing
rapidly over the last two decades; see Talluri and van
Ryzin (2005) for a comprehensive introduction to the
practice and theoretical developments of RM.

The network revenue management problem, which
involves managing multiple resources (such as airline
seats in different leg-cabin combinations), is notori-
ously challenging. Indeed, as mentioned by Talluri and
van Ryzin (2005, p. 83), “in the network case, exact opti-
mization is for all practical purposes impossible,” and
thus the literature focuses predominantly on various
approximations. One approximation is to formulate
a stochastic programming problem (see Cooper and
Homem-de-Mello 2007, Moller et al. 2008, Chen and
Homem-de-Mello 2010, and the references therein).
For example, one can formulate a two-stage stochastic
linear programming problem (SLP) by aggregating the

demand over the planning horizon and determining
the booking limits at the beginning (see Talluri and van
Ryzin 2005, Section 3.3.1). To improve upon the SLP,
one can consider a multistage stochastic programming
(MSSP), in which the policy of booking limits is revised
from time to time in order to take into account the
information about demand learned so far. The MSSP is
challenging, evidenced by Chen and Homem-de-Mello
(2010, p. 93): “even the continuous relaxation of that
problem does not have a concave expected recourse
function,” as its objective function and constraints
involve booking limits truncated by realized demands.
As a compromise, they propose an approximation
based on re-solving a sequence of two-stage stochastic
programs.

We consider the MSSP with continuous relaxation.
In each time period, the firm decides the booking lim-
its allocated to each demand class before the demand
is realized. Interestingly, our transformation technique
preserves concavity in the dynamic programming
recursions, and hence overcomes the difficulty stated
by Chen and Homem-de-Mello (2010). Under certain
network structures, we further show that L”—concavity
can be preserved and use it to derive some mono-
tonicity properties of the optimal booking limits. Our
approach opens the door to the development of effec-
tive algorithms to solve MSSP directly.

1.2. Our Contribution

As evidenced by the literature review, structural analy-
ses for many important models (such as the inventory
control problem under supply capacity uncertainty
and the capacity allocation problem in revenue man-
agement) involve solving challenging stochastic opti-
mization problems with a form similar to problem (1).
Our transformation technique provides a unified tech-
nical tool to facilitate the structural analysis of this type
of problems, which is our primary contribution to the
literature. The power of this technique is demonstrated
by its applications to several important inventory con-
trol and revenue management models that generalize
the corresponding ones in the literature. The preserva-
tion results for structural properties such as convexity,
submodularity, and L*-convixity enabled by our trans-
formation technique can also be potentially exploited
to develop efficient algorithms.

Recently, Feng and Shanthikumar (2018) use the
notion of stochastic linearity in midpoint to develop a dif-
ferent technique to show that a class of nonlinear sup-
ply and demand functions (in the almost sure sense)
are in fact linear in the stochastic sense. Like ours, their
approach allows them to convert some nonconvex min-
imization problems, including those in Ciarallo et al.
(1994), Wang and Gerchak (1996), Feng (2010), and
Feng and Shi (2012), into convex minimization prob-
lems. Treating the means of the supply and demand
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functions as decision variables instead of the original
decisions (ordering quantity and price), they show that
supply and demand functions are stochastically lin-
ear in midpoint with respect to their means and the
objective functions are concave in the means of sup-
ply and demand. Note that they focus on the concav-
ity property but do not touch upon supermodular-
ity or L*-concavity. Different from their approach, our
approach works on the original decision variables and
transforms the original optimization problem into an
equivalent constrained optimization problem, which
allows us to readily show the preservation of convexity,
submodularity, and L-convexity. Hence, our approach
is more suitable for problems with high-dimensional
state spaces like the applications we present in this
paper. In the appendix we provide a detailed compar-
ison between our transformation technique and their
approach. In particular, we show that although their
approach can also preserve convexity and submodu-
larity, it does not preserve Li-convexity.

The remainder of this paper is organized as follows.
Section 2 develops the transformation technique and
the relevant preservation results. Sections 3-5 focus on
the applications of our approach to the dual-sourcing
problem, the assemble-to-order system, and the capac-
ity allocation problem, respectively. The paper is con-
cluded in Section 6.

Throughout this paper, we use decreasing, increas-
ing, and monotonicity in a weak sense. We use R and
R, to denote the real space and the set with nonnega-
tive reals, Z, and Z_ to denote the set of integers and
the set of nonnegative integers, respectively. For con-
venience, let F be either R or Z. Define R = R U {0},
e €[F" a vector whose components are all ones, e; a unit
vector whose jth component is one, and for x, y € F",
x<yifandonlyif x; <y, foranyi=1,...,n, x* =
max(x,0), x Ay =min(x, y), and x V y = max(x, y) (the
componentwise minimum and maximum operations).
The indicator function of any set %" C F", denoted
by 6, is defined as 0.(x) =0 for x € ¥ and +co oth-
erwise. We use the superscript T to denote the trans-
pose of a vector or a matrix. We use uppercase letters
(e.g., &) to denote random vectors and lowercase letters
(e.g., &) for their realizations. Given a random vector
E=(8,...,E,)T, we use ¥ = Supp(E) to denote the
support of this random vector. In addition, we define
& —esssup{é | & €Y, } & —essmf{é | &€, } for
]— M, where S 1s z s pro]ectlon 1nto the jth
coordlnate Let & = (51, L ED, E=(&,... &), and
almost surely is abbreviated as a.s. )

2. Transformation Technique and

Preservation Properties
In this section, we first develop the transformation
technique for a class of stochastic optimization prob-
lems and then show several preservation results that
are useful in structural analysis.

2.1. Transformation
Given a function f:F" — R and a random vector E with
Supp(E) =% CF", consider the following optimization
problem:

= inf E[f(u AE)]. @

In general, the above problem may not be a convex
minimization problem even if the function f is con-
vex. For instance, let f(u) = u*> and E be Bernoulli dis-
tributed with success probability 0.5. One can easily
see E[f(u A E)] is not convex in u. Interestingly, we
show that under certain conditions, we can convert it
into an equivalent convex minimization problem.

For this purpose, note that the optimization prob-
lem (2) can be rewritten as follows:

inf E[f(0v(8))]
st. v(§)=uné VEex, 3)
uelF",v(-)e M,

where /I is the set of measurable functions. The feasi-
ble region of (3) is " x (F")*, while the feasible region
of (2) is F". In the following theorem, we show that
the equality constraint v(&) = u A & can be relaxed by
the inequality constraint v(&) < &, VE e &, with v(&) =
(v1(&1),...,v,(&,)) € F". For the rest of the paper, we
require that v(-) is measurable in all of our formu-
lations and therefore omit v(-) € # for brevity. The
following lemma will be useful for the proof of the
theorem.

Lemma 1. Suppose that the function f: F — R is quasi-
convex. If x* is a minimizer of f(x) over [F, we have f(x* Ab)
< f(a) forany a,b e F witha < b.

Proof. The quasi-convexity of f implies that f(x)
decreases in x as x < x* and increases in x as x > x".
If a > x*, we have b > a > x*, which implies that a > x* A
b = x*. Ifa x*, since a < b, we have a < x* A b <

In either case, f(x ADb)< f(a). QED.

Theorem 1 (Equivalent Transformation). Suppose that
(a) the function f: F" — R is lower semicontinuous with
f(x) = +oo for |x| — oo; (b) f is componentwise convex
(componentwise discrete convex if F = Z); (c) the random
vector B has independent components and it has realizations
& e % =Supp(E). Then, t* defined in (2) is also the optimal
objective value of the following optimization problem:

inf E[f(v(E))]
st. v(§)<E& Ve, 4)
(&)= (v1(&1), -, 0,(EN)) EF" VEEZ.

Proof. Let 7" be the optimal objective value of prob-
lem (4). Since for any u € F", v(&) = u A £ is feasible for
problem (4), n* <t

It remains to show that 7v* < n*. Clearly, it holds
when 7" = co. Thus, in the following, we assume that
7" < 0o, which together with assumption (a) implies
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that all optimization problems involved below, as well
as problems (2) and (4), admit finite optimal solu-
tions. Given any optimal solution of (4) denoted by
v =(v'(&) | & € %), we will show that we can find a
solution @ € F" such that E[f (i1 A E)] = E[f(v*(E))].

We first show that it is true for n = 1. Let i =
argmin . f(u) (when there are multiple optimal solu-
tions, we choose the smallest one). Consider any feasi-
ble solution v = (v(&) | £ € %) of problem (4). We have
faAE)< f(v()) for any & € X according to Lemma 1.
Hence, E[f(&i A E)] < 7*. Note that i is a feasible solu-
tion for problem (2), which implies that t* =E[ f ({1 AE)]
< 1*. Combined with the fact that ©* < 7%, we have
T =7

We now consider the general case with n > 1. Use
v} to represent the ith component of v* fori=1,...,n.
Starting from the first component, define

1 (uy) = ELf (4, 03(2), - -, 0,(E))]-

The componentwise convexity of f implies that 77, (u,)
is convex in u;. Since the components of the vec-
tor E are independently distributed, Eg [71,(v,(E,))] =
Ez[f(v1(8)),v5(8y), ..., v, (E,))] for any measurable
function v,(-), and the preceding analysis for n =1
implies that there exists a 7i; such that

' =min{E[m,(v,(E)))]]v,(&,) <&, 0,(E)EF,VE €%}
:IE]Ig;IE[T(l(ul ANEy)]=E[m (i1, AE,)].

Next define m,(u,) = E[f(l; A B, uy, 03(Es),...,
v;,(E,))]. Clearly, 7, is convex. Following the preceding
analysis, there exists a il, such that
" =min{E[71,(0,(8,))]|05(&,) < &5, 05(&,) €F, V&, €%}

={2£{F1E[712(”2 ANE)]=E[1,(11, AB,)].

Continue this process and define m;(u;) = E[f(ii; A

By ooyl g ANE g, u;,00,,(8r ), -, 03(E,))]. Applying
the same approach, we can find i;,i =3,...,n, such
that

7" =min{E[7t;(v;(E))] | v,(&;) < &;,0;(&,) €F, V€ €%}
=mgFlE[7'(i(”i ANE)]=E[m;(i1; AE))].

Therefore,
n'=E[n, (1, AE)]=E[f(l; AE,,..., 10, NE,)].

Since 1l is a feasible solution to problem (2), we have
T < E[f(@i A B)] = n*. Combined with the fact that
< 1, wehave 7' =1*. Q.E.D.

Remark 1. In the proof of the above theorem, we illus-
trate that whenn =1,

minE[f(u AZ)] =E[f(2 AE)],

where 7 is any minimizer of the function f. In fact, this
observation is still valid when f is quasi-convex.
However, when 7 > 1, such a result no longer holds,
ie, min, E[f(u AE)]# E[f(ii AE)], evenf f isjointly
convex. We now present an example. Specifically, let

n=2,F=R,
fluy, uy)=(uy +u, _2)2 +(uy = 1)2 +(uy — 1)2,

and E; and E, be independent and identically dis-
tributed and take values 0 and 2 with equal probabil-
ities. In this case, 7 = (1,1). However, one can easily
verify that argmin, .. E[f(u AB)]=(1.2,1.2) # 1.

Remark 2. In the above theorem, we require that
v(&) = (v1(&y),...,v,(&,)). This cannot be relaxed to
allow v(&) = (v4(&), ...,v,(&)). To illustrate this, we use
the above example again. Note that for problem (4), the
optimal objective value is 2.4 and an optimal solution
is given by
v1(0)=v3(0)=0, v](2)=v3(2)=1.2.

However, if one replaces v(¢&) = (v1(&4),...,v,(&,)) by
(&) = (v4(&),...,v,(&)) in problem (4), the optimal
objective value becomes 2.25 and an optimal solution
is given by

2*(0,0) = (0,0),
v*(2,0) = (1.5,0),

v'(0,2) = (0,1.5),
0'(2,2) = (1,1).

Remark 3. It is interesting to observe that u# does not
appear in problem (4). Our proof implies that given
an optimal solution u* of problem (2), v* = (v*(&§) =
u* A& | & e) is optimal for problem (4). On the other
hand, given an optimal solution v* of problem (4),
we can directly construct an optimal solution of prob-
lem (2) without solving any additional optimization
problem. To see this, we start with n =1 and define
S={&|v' (&) <&, & eX} (for simplicity, we drop the
subscript 1 in the presentation when n =1). We con-
sider two cases depending on whether the probabil-
ity of event S, denoted by P(S), is zero or not. In the
first case, P(S) > 0. Randomly pick £ € S according to
the probability distribution of & conditional on S and
define i = v*(£). It suffices to show that i is optimal
for the optimization problem min, . f(u) with proba-
bility 1. Suppose this is not true and P(S’) > 0, where
S’ is the event such that £ € S and v*(€) is not optimal
for min,; f(u). We define a new feasible solution of
problem (4):

ifees,

u'ng, iféEes,

5(E) = {v*@,

where 1 is an optimal solution of min,; f(u). If £ ¢S,

then 9(¢) = v*(&) and f(0(8)) = f(v'(E)). If & €5



Chen, Gao, and Pang: Preservation of Structural Properties in Optimization

Operations Research, 2018, vol. 66, no. 2, pp. 340-357, © 2018 INFORMS

345

and & > u® f(9(&)) = f(u°) < f(v*(&)). If £€ S and
E<u®, v°(&) < & <u’ and the convexity of f implies
that f(9(&)) = f(&) < f(v*(&)). Since P(S’) > 0, we
have E[f(9(&))] < E[f(v*(£))], which is a contradic-
tion. Therefore, with probability 1, i is optimal for the
optimization problem min, f(u). In the second case,
P(S) = 0. Note that f must be decreasing over %, oth-
erwise we can easily construct a feasible solution of
problem (4) with a lower cost. Hence, assumption (a)
implies that £ < oo, and 4 = £ is a minimizer of the
function f onF. For n > 1, define, fori=1,...,n, event
S, ={& | vi(&) < &;}. If the probability of S; is posi-
tive, randomly pick &; € S; according to the probabil-
ity distribution of & conditional on S; and define 7, =
v;(éi); otherwise, define i, = &, (again &, < 00). Since the
components of the random vector Z are independent,
we can extend the above analysis to show that, with
probability 1, @i = (i, ..., 1,) is an optimal solution of
problem (2).

We can explicitly incorporate constraints on u in
Theorem 1 and consider a more general optimization
model. To simplify notations, we define an operator ¢,
asu O EE(UANE, o e ANE U Vi, U, VE).
The problem of interest is

InfE[ f(u 0, E)], ©)
where f:F" — R and % C F". Define a set
V={u¢ &lueu, e} (6)

We impose the following assumption:

Assumption 1. (a) For any u € F" such that u ¢, £ €V,
V& e ¥, there exists u’ € U such that v’ ¢, & =u O, &,
VEEX.

(b) The indicator function of the set V" is componentwise
convex (componentwise discrete convex if F = Z).

Notice that part (a) implies thatif u ¢, £ €V, VEe X,
we do not necessarily need u € U. Instead, we only
require that there exists u’ € U such that u’ ¢, & =
u o &, VE e ¥. As can be seen from the proof of
Theorem 2, Assumption 1 allows us to convert the
constrained optimization problem (5) to an equiva-
lent unconstrained optimization problem so that Theo-
rem 1 can be applied. We provide a nontrivial example
under which Assumption 1 holds in Lemma 2.

Theorem 2. Consider the optimization problem (5), where
f:F" — Rand the random vector E in F" satisfy the assump-
tions in Theorem 1. Suppose that Assumption 1 is satisfied.
Problem (5) and the following optimization problem have the
same optimal objective value:

il’lf E[f(vl(El)l <o Oy (‘En))]

st. 0,(E)<E VEex;, j=1,..,k
Z)j(cf]»)>5j Véje%j,j=k+1,...,n,
(0,(&), ..., 0, (E)EV VEew. @)

Proof. Problem (5) is equivalent to the following
unconstrained optimization problem.

inf (E[f (1 0, 5)]+ 6, ()} ®)
Define for any v € F”,

f@)=f(0)+06,(v),

where 7 is defined in (6). Then by Assumption 1 the
optimal objective value of problem (8) is equivalent to
that of the following problem:

jﬁ}fn E[f(u 0, B)]. )

To see this, note that for any u € %, we have u¢, £ €/,
VEe%; hence, inf, E[ f(u 0, B)] <inf,c,, E[ f(u 0, E)].
On the otber hand, because of Assumption 1, we have
infue[F" E[f(u <>k E)] = infue’?l E[f(u <>k’:’_’::‘)]

Define a new random vector = with (&,,...,&,
,—2,) and a new

= =) =(% = R
‘—‘k+l/"'/‘j‘,n) - (ul/"'/uk/_"_‘k-#l/"'

function f: F* — R by
Fluy, ot gy oo thy)= f(Uy, o Uy =gy, =1,
Then problem (9) is equivalent to the problem

inf E[f(i A )]

By Theorem 1, it has the same optimal objective value
with the following problem:

inf E[f@(E)] )
st. 9(§) <& V& €Supp(E),
Z7(5) = (61(51)/ sy 5n(£n)) € [Fn,

which is clearly equivalent to problem (7) from the def-
inition of f. Notice that the indicator function of the
set 7" needs to be componentwise convex to ensure
that f is componentwise convex. Q.E.D.

The following lemma provides an example that sat-
isfies Assumption 1.

Lemma 2. Assume that U = {u € F" | Au < Db,u; > u,,
ce U 2 U, Uy S Ty, ..., U, < 0,), where b,uy, ...,
U, iy, - - -, 1, are given constants, A = (a;;) with entries
a; >0 forany iand j=1,...,k, and a; <O for any i and
j=k+1,...,n. In addition X is contained in [y]-,+oo)
for j=1,...,k, and %, is contained in (—oo, ;] for j =
k+1,...,n. Then Assumption 1 is satisfied.

Proof. For notational convenience, we only prove the
case where k = 1, i.e., there is only the A operation.
This is because we can apply the same technique used
in the proof of Theorem 2 to convert a problem with
the V operation to a new one only with the A operation.
In this case the set U = {u | Au < b,u]- > yj,jzl,...,n},
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whereaij >0foralli=1,...,m,j=1,...
VE EX; forj=1,...,n._

Recall that we define & j=ess sup{& j | £ € %}. We first
consider the case where & j <o for all j. Note that " =
{uné&|ueuU, & e¥}is equivalent to the following set
{w|Aw<b,u;<w;<&,j=1,...,n}, denotedby?l/
For any w=u A& €%, we have Aw A(u A &)< bsince

>Ofora111 jand Au <b; u; < /\5 =w, <cf since

<<§ VEex, ForanyweoVw,letuzw, cf]:cfj for
all j. Then w= u A & since w; < 6 for all j, and u € U.
Hence, V' =,,. Clearly 7 is a convex set. Given any u
satlsfymg uA 5 €V V& e, we define u’ such that for

j=1 M,
] ) i . .
i 1fu]>£].

One can easily check that u’ AE=u A&V E € X. Weonly
need to show u’ € U. Since 5] >u;and u; > u;, we have
> U, forj=1,...,n.Because A(uA&)<bVEeXand
E has independent components, we obtain A(u A &) <b
which is the same as Au’ < b.
If E_j = oo for any j, then u;. =1
arguments we can obtain the desired results.

,n,andéj >u

and following similar
Q.E.D.

2.2. Preservation of Structural Properties

One advantage of our transformation technique is that it
canbe used to establish the preservation of not only con-
vexity and submodularity but also L-convexity under
optimization operations, which plays a critical role in
characterizing the structure of the optimal policies for
many dynamic decision-making problems and facili-
tates their efficient computations. To see this, we first
provide a brief review of the concept of L*-convexity
and some structural properties. The concept of L*-con-
vexity was introduced by Murota (1998) to extend con-
vex analysis from real space to spaces with integers (see
Murota 2009 for a survey of the recent developments
in discrete convex analysis). It was first introduced into
the inventory management literature by Lu and Song
(2005) and used by Zipkin (2008) to characterize the
optimal structural policy of lost-sales inventory mod-
els with positive lead times. Since then, L%-convexity
was found to be powerful enough to establish the struc-
tures of optimal policies in various other inventory
models: serial inventory systems (Huh and Janakira-
man 2010), inventory-pricing models with positive lead
times (Pang et al. 2012), perishable inventory models
(Chen et al. 2014), etc.

In the transformed problem the decisions are v =
(v(&) | & € X) € (F")". Note that the direct product of
lattices is still a lattice under the componentwise par-
tial order (see Example 2.2.3 (d) of Topkis 1998). There-
fore, if X, is a lattice for each a € A, where A is an
index set, then the direct product of sets X, is also a
lattice. In the following, we present the definition of

L%-convexity with domain % =
index set.

(F")*, where A is any

Definition 1. A function f: % — R is L®-convex if for
any x,x' € Y, A€l,,

f@)+f(x) = fl(x+Ae) Ax)+ f(x V(X' —Ae)),

where e is the all-ones vector in %. A set %" C % is said
to be Lé-convex if its indicator function -, is L%-convex.

For an L%-convex function f, its effective domain
dom(f) = {x € % | f(x) < +o0} is an L3-convex set.
We sometimes say a function f is Lf-convex on a set %
with the understanding that % is an L*-convex set
and the extension of f to the whole space by defining
f(v)=+oo for v ¢ U is Li-convex. One can also show
that an L%-convex function restricted to an Lf-convex set
is also L#-convex. Following a similar proof in Simchi-
Levi et al. (2014), we can show that an equivalent def-
inition of L%-convexity is given as follows: A function
f: Y% — Ris L-convex if and only if ¢(x, &) £ f(x — &e)
is submodular in (x, &) € % X &, where & is the inter-
section of F and any unbounded interval in R, and e is
the all-ones vector in %.

We now list some of the commonly used properties
of Lé-convexity. To describe the monotonicity of opti-
mal solution sets, we use the induced set ordering C,
which defines X’ C X” for two nonempty sets X’ and
X" if x’ € X" and x” € X” imply that x’ A x” € X’ and
x'V x"” € X" (see Topkis 1998, p. 32). For a nonempty
set X, that depends on the parameter ¢ in a partial
order set T, we say that X, is increasing in t on T if
{X;,t € T} has the induced set ordering C. The proofs
of these properties are relegated to the appendix.

Proposition 1 (L%-Convexity). (a) Any nonnegative linear
combination of Li-convex functions is L*-convex. That is, if
fi:Y > R(i=1,2,...,n)are Li-convex, then for any scalar
a; >0, X0 a, f; is also Li-convex.

b) If f; is L:-convex for k =1,2,... and lim;_,, fi(x)=
f(x) for any x € %, then f is Li-convex.

(c) Assume that a function f(-,-) is defined on the
product space Y X F". If f(-,y) is Li-convex for any
given y € F", then for a random vector C defined on F",
E.[f(x,C)] is Li-convex, provided it is well defined.

(d) If f: % — R is an Li-convex function, then g: % X
F — R defined by g(x, A) = f(x — Ae) is also Li-convex.

(e) Assume that 51 is an Li-convex set of F" X % and
f(,): F* X% — R is an Li-convex function. Then the func-
tion

inf_f(xy) (10)

8x)=
y:(xy
is Li-convex over F" if g(x) # —00f0r any x €F".
(f) Let e and é be the all-ones vectors corresponding to
the state space of x and the decision space of y, respectively,

in (10). Then argmin, . ., f(x,y) is increasing in x and

argmin f(x +we,y)C wé +argmin f(x, y).
y: (x+we, y)esd y:(x, y)est
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(g) Denote x; a component of x € %Y. A set with a rep-
resentation {x € Y: | < x <u,x; —x; <vy, Vi#j} is
LA-convex in the space %, where |, u € ;/ and v;; € F.

We now show how our transformation technique can
be used to establish preservation properties of convex-
ity, submodularity, and L%-convexity under optimiza-
tion operations.

Consider the following optimization problem

gbvz)= E[f(c,uo(z+8)], (1)
where f(-,)): F" xF" > R, x € ",z € F" and set s C
F" xF" X F" is nonempty.
Define a set

A= ={(x,z,w) |w=u o, (z+&),(x,z,u)€sd,E€X}.

Similar to Assumption 1, we specify the following
condition:

Assumption 2. (a) For any (x,z,u) such that (x,z,u ¢,
(z+ &) esd® VE e, there exists (x,z,u’) € si such that
wWo(z+8)=u0,(z+&)VéeX.

(b) The indicator function of the set si= is componentwise
convex in w (componentwise discrete convex if F = Z).

Similar to Lemma 2, we provide an example with
linear constraints, which satisfies Assumption 2. The
proof is similar and thus omitted for brevity.

Lemma 3. Assume that st = {(x,z,u) | Au <b,u;, > u,,
U 2 U Uy S gy, ..., U, < U}, where b,uy, ...,
uk, iy, - -, U, are parameters that may depend onxandz,
(a,]) wzth entrles a;; >0 foranyiand j=1,...,k and
<0foranyiand j= k +1,...,n. In addition %J is con-
taz’ned in [1_4]- -z, +00) for j = 1, .k, and & is contained
in (—oo, i — z]-]for j=k+1,...,n. Then Assumption 2 is
satisfied.

Now we are ready to present our main result in this
section.

Theorem 3 (Preservation). Consider the optimization
problem (11), where f(x,-) and E satisfy the assumptions
in Theorem 1 for any given x. If Assumption 2 is satisfied,
then we have the following results:

() If f and s4= are convex, then g is also convex.

(b) If f is submodular and si= is a lattice, then g is also
submodular.

(c) If f and 5= are Li-convex, then g is also L®-convex.

Proof. Theorem 2 implies that problem (11) can be
equivalently converted to the following one:

lnf E[f(xlvl(al)/"-/Un(‘En))]
s.t. ’()](é])SZ]-f-E] Vé]€%], ijl,...,k,
(x,2,0,(&),...,0,(E)) €= VEeX. (12)

To see this, given fixed (x,z), let %(x,z) denote
the constraint set {u: (x,z,u) € s}, f.(u) = f(x,u),
E,=z+&,and %, =Supp(E,). Then (11)is equivalent to

inf E[f,(u 0, £.)]. (13)

ueU(x,z)

Let U/ (x,z) = {u 0 & ueU(x,z),Ee?,}. Given any
u o, E€eV(x,z) VEe X, we have (x,z,u) satisfying
(x,z,u 0 (z+ &) €45 V & € Z. According to Assump-
tion 2, there exists (x,z,u’) € s such that u’ ¢, (z+ &) =
U (z+<&) YE €. Thus we have u’ € U(x,z) and
u’ ¢y E=u O Evie % If the indicator function of 4 is
componentwise convex in w, it is clear that the indica-
tor function of ¥'(x, z) is also componentwise convex.
Therefore, if Assumption 2 is satisfied, then Assump-
tion 1 is also satisfied. According to Theorem 2, we can
transform (13) into

1nf E f(vl(h‘zl) ;0 (‘:‘zn))]

st 0,(&) <& vg €ZVi=1,...k
v(é) 5 V£~E%Z], V]—ktl
(01(51),...,vn(§n))€°l/(x,z) Véegpz/

which is equivalent to (12).

It is straightforward to check that the constraint set
involving (x, z, (v,(&;),...,0,(&,))sex is a convex set, a
lattice, and an LA-convex set (Proposition 1 part (g)) on
the product set " X " x (F")” for cases (a), (b), and (c),
respectively.

In the following, we show that the objective func-
tion E[f(x,v,(8,),...,v,(E,))] is convex, submodular,
Li-convex in (x, (v1(&y), ..., 0,(&,))eer € F" X (F")* for
cases (a), (b), and (c), respectively. Define f B X
(F")* x % — R such that f(x,v,&) £ f(x,v(&)) VE e .
Clearly, E[f(x,v,E)] = E[f(x,v(E))]. Given any real-
ization &, if f(-,-) is convex/submodular/L%-convex,
then one can easily prove by definition that f(-,-, &)
is also convex/submodular/L%-convex. We show the
proof for convexity; the proofs for submodularity and
L%-convex are similar and simply follow their defini-
tions, respectively. Given &, for any (x,v), (x’,v’), and
A €[0,1], we have

fAx+(1=M)x", Ao+ (1= A0, &)
= f(Ax+(1=A)x", Ao(&) + (1= A)v'(&))
SAf(x,0(8)+ (A=) f(x',0'(&))
=Af(x,0,E)+(1-N)f(x, v, &).

Since f (-,-,&) is convex/submodular/L%-convex for
any given &, we have that the objective function
E[f(x,v(8))] = E[f(x,v,E)] is also convex/submod-
ular/L%-convex because of Proposition 1 part (c).

Part (a) follows immediately from the theorem of con-
vexity preservation under minimization (see Simchi-
Levi et al. 2014, Proposition 2.1.15, for the case with
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finite-dimensional spaces, and Zalinescu 2002, Theo-
rem 2.1.3(v), for the case with general vector spaces).
Part (b) follows from Topkis (1998, Theorem 2.7.6).
Part (c) follows from Proposition 1 part (e). Q.E.D.

The following theorem characterizes the monotonic-
ity properties of the solution set to the optimization
problem (11). The proof is relegated to the appendix.

Theorem 4. Consider the optimization problem (11), where
f(x,-) and E satisfy the assumptions in Theorem 1 for any
given x. Let U*(x, z) denote the optimal solution set of (11)
and let & and € be the all-ones vectors in F" and F", respec-
tively, and e = (é, €). If Assumption 2 is satisfied, s1, (= are
closed, and in addition u; <zj+5_]-,j:1,...,k, u; sz+§j,
j=k+1,...,n, then we have the following results:

(@) If f is a submodular function, and s, 4% are lattices,
then U*(x,z) is increasing in (x,z). There exist a greatest
element and a least element in U*(x, z), which are increasing
in (x,z).

(b) If f is an Li-convex function, and si,(* are L°-
convex sets, then U'(x,z) is increasing in (x,z) and
U ((x,z) + we) EU(x,z) + wé for any w > 0. Within
U*(x,z), there exist a greatest element and a least element
that satisfy the above monotonicity properties with limited
sensitivity.

In the following, we provide an example to show
that the assumption up<zi+ 5]-,]' =1,...,k, up>z; +§j,
j=k+1,...,nisneeded.

Example 1. Suppose that f(u) = u? and the support of
Eis [-3,-1]. Let U'(z) = argmin,,_, E[f(u A (z + B))],
and z=0,w =2. When % =R, we have U"(z) =[-1, ),
U (z + w) = {0}. Notice that %"(z) C U*(z + w) does not
hold. However, when %(z) = {u € R: u < z + £}, we
have U(z) = (—c0, —1], U(z + w) = (-0, 1]. Then U*(z) =
{-1}, U (z + w) ={0}. Clearly U"(z) E U'(z + w).

Notice that if the conditions in Lemma 3 are satis-
fied, then the assumptions up<zi+ é_]-,j =1,...,k, u; >
zj+ §j,j =k+1,...,nin Theorem 4 are without loss of
generality. To see this, given any (x, z, u) that is feasible
for problem (11), (x,z,uy A(z + &), ..., g Az + &),
U V (Zpor + Exin)s e, V (2, + &) is also feasible
and yields the same objective value. In all of our appli-
cations, the constraint set satisfies the conditions in
Lemma 3.

In the following three sections, we apply the trans-
formation technique and the relevant preservation
results to three fundamental models from inventory
and revenue management literature and demonstrate
how these results facilitate the structural analyses.

3. Dual Sourcing Under Supply
Capacity Uncertainty

Consider a firm managing a T-period periodic-review
inventory system in the presence of two capacitated

suppliers (or delivery modes): a regular supplier with
a longer replenishment lead time of I; periods and a
unit ordering cost cy, and an expedited (emergency)
supplier with a shorter replenishment lead time of I,
periods and a unit ordering cost ¢z, where Iy and I
are nonnegative integers and I > I;.. There are no fixed
ordering costs. Both suppliers offer limited and uncer-
tain capacities, denoted by K , and Ky ,, t € {1,...,T},
for regular and expedited suppliers, respectively. The
processes {Ky ,}_, and {K; ,}]_, are both independent
over time and independent of each other. Note that the
independence assumption on the supply capacity dis-
tributions can be justified by the dual-sourcing prac-
tice with two geographically distant locations, such as
China and Mexico in the case study of Van Mieghem
(2008), where the production processes are typically
independent of each other. Demands of successive
periods, denoted by D, for period t, are stochastic,
independent over time, and independent of the sup-
ply capacities. For convenience, let D, ;,;; be the total
demand from period t to period t + 1, i.e., Dy, 1,y =
D;+---+D,,;. We use d, and d; ,,;, to denote the real-
ization of D, and Dy, ;).

It is notable that a typical assumption in the dual-
sourcing literature without capacity limits is that the
expedited ordering cost c; is greater than the regular
ordering cost cy, because otherwise it is trivial for the
firm to procure exclusively from the expedited sup-
plier (see, e.g., Veeraraghavan and Scheller-Wolf 2006,
Sheopuri et al. 2010). We do not make this assumption
here. In fact, if the expedited capacity is limited, even
when the regular ordering cost is higher, it may still be
beneficial to order from the regular supplier.

The sequence of events is as follows. At the begin-
ning of period ¢, orders from the regular supplier I
periods ago and the expedited supplier I periods ago
(if Iz = 1) are received. (Note that if [ =0, we assume
that an order from the expedited supplier is received
right away.) The firm then reviews the inventory level
and the orders outstanding, and determines how much
to order from the two suppliers before observing the
suppliers’ capacities Kz, and K;,. Let gz and g;
be the (target) order quantities from the regular and
expedited channels, respectively. After the orders are
placed, the suppliers’ capacities K , and K} , are real-
ized. We use k , and k; , to denote realizations of Ky, ,
and K ,, respectively. Then the amounts of invento-
ries shipped from the regular and expedited suppli-
ers are qp A kg ; and qp A kg ;, respectively. Note that
here we assume that the supply capacity uncertain-
ties are resolved in the same period when the orders
are placed (see Federgruen and Yang 2011 for a sim-
ilar treatment for the random yield problem). This is
reasonable when the capacity uncertainties are mainly
driven by the unreliability of the production process
and the production time is no more than the ordering
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costs are given by cr(qr A kg ;) and cg(q; A kg ;). Here
we assume that the ordering cost is proportional to
the quantity actually delivered, which is a common
assumption in the literature of inventory control with
random capacities (see Ciarallo et al. 1994, Wang and
Gerchak 1996, Feng 2010, and so on). This assump-
tion is appropriate when the payment is made upon
the receipt of the shipments and the firms only pay the
actual delivered amount. At the end of this period, the
demand is realized and met with on-hand inventory
(if any). Unmet demand is fully backlogged with a unit
shortage cost /i~. Excess inventory is carried over to the
next period with a unit holding cost h*.

The objective of the firm is to find a dual-sourc-
ing strategy so as to minimize the total expected
discounted cost, including ordering cost, holding
cost, and backorder cost, over the planning horizon.
To present the dynamic programming model for deriv-
ing the optimal strategy, one can naturally describe the
system state right before the firm places orders by a
vector s = (s, ...,s;,_1), where s; denotes the amount
of on-hand net inventory plus outstanding orders that
will arrive within 7 periods, i =1,..., [z — 1. However,
in a backlogging model, since the orders of each period
will have an influence only I; periods later, and the on-
hand net inventory level I periods later solely depends
on s, , it suffices to use the now standard accounting
technique to discount the future inventory cost to the
current period and focus on the pipeline inventory lev-
els s, ..., s, Specifically, we can reduce the state
space to k = [ — I; dimensions by defining the system
state as z = (zy,...,2), where z; =5, ;,i=1,...,k
The state space is given by

9:{(217'“12:]{):21<Zz<"'<zk}.

Given the system state z, the system state of the next
period is given by

Z=(zy+qp Nkp,—d;, ...,z +qp Nk —d,,
YAz +kg )+ e Ak —dy),
where y = z; + g3 is the (target) order-up-to level from
the regular channel. For reasons that will become clear

later, we denote u = —q and IEEJ = —kg ;. The dynamics
of the system state can be rewritten as

Z= [(ZZr .. '/Zkry A (Zk +kR,t)) - (u VIEE,t +dt)e]/

where e is the k-dimensional all-ones vector.

We are now ready to present the dynamic program
to derive the firm’s optimal strategy. Let o € (0,1] be
the discount factor. The optimality equations can be
written as follows. Fort =1, ..., T,

vi(z) = yg}iZLO{E[gf(Z/ YA (zp+Kg ), uV KE,t)]}
Ve, (14)

where

8:(z,y,u)=cr(y—2)—cpu+B,(z,—u)
+0[E[U,+l((22,...,Zk,]/)—(Dt+M)€)], (15)

and
B,(x) = alEE[h+(x - D[t,t+15])+ + h_(D[t,H—lE] -x)*].

Note that the expectation of the right-hand side of
Equation (14) is taken over the random capacities. The
function g, represents the expected total discounted
cost after the capacities are realized but before the
demand is realized. The first term of the right-hand
side of Equation (15) is the ordering cost from the reg-
ular supplier, the second term is the ordering cost from
the expedited supplier, the third term is the expected
discounted holding and shortage cost of period ¢ + I,
and the last term is the expected total discounted
future costs. For simplicity, we assume the terminal
value function vy,;(z) =0 for any z, which implies that
there is no salvage value for leftover inventory and
no backlogging cost for unfilled demand after period
T + I;. That is, the firm makes decisions in the first T
periods but takes into account the inventory cost up to
period T + [;. Our structural results and analysis still
hold if vy,,(z) is assumed to be Li-convex.

Problem (14) admits optimal solutions under rather
general and standard conditions. Nevertheless, it is a
challenging problem. First, the state space is multidi-
mensional. A more severe issue is that the objective
function of problem (14) is not convex. Note that for
the last period with v, =0, the objective function has
a structure similar to that in (1), which may not be
convex. Thus, it is far from being clear whether the
cost-to-go functions v, are convex, and even if they
are, the objective function of problem (14) is not. How-
ever, with the transformation technique developed in
Section 2 we can convert the nonconvex minimization
problem (14) into an equivalent convex minimization
problem and show that v, is actually L*-convex.

In the following analysis, we assume that both c;
and cy are smaller than /i~ /(1 — a), which ensures that
it is not optimal to never order anything and merely
accumulate penalty costs. Let (y,(z), u,(z)) denote the
optimal solution for problem (14). When there are
multiple optimal solutions, we assume it is the great-
est one, which will be shown to be well defined
later.

Theorem 5. For all t, v,(z) is Li-convex in z € . The
optimal solution (y,(z), u,(z)) is increasing in z with limited
sensitivity. (When there are multiple optimal solutions, we
assume it is the greatest one.) That is, for any w >0,

z
4o ”

yi(z +we) < y,(2) + w,
u,(z ) <

<
<u(z+we) <u(z)+ w.
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Proof. The proof is by induction. Suppose that
0;,; is Li-convex. By Proposition 1(d), for any d,,
01l(zo, -+, 2k, ¥) — (d; + u)e] is Li-convex in (z,y,u)
and sois av,,1[(z5, ..., 2, y) — (d, + u)e]. Clearly all the
other terms of g, are Li-convex in (z, y, u) (That is why
we define u = —g; and lze,t =—kg ;). Thus, g, is Li-convex
in(z,y,u).Letst ={(z,y,u) | y > z,u <0} and

‘%E = {(Zr y A (Zk +kR,t)ru Vlze,t) I y > Zkru < 01
kg, € Supp(Kp ,), k. , € Supp(Ky ,)}-

Since Ky ; > 0 and KEJ < 0 almost surely, it is easy to
see that

= ~1
A== {(Z/ wq, wz) | Zp + kllé,t > w1 = Zk/kE,t < Wy < O}/

where we set ki , = esssup(Supp(Kg ;) and Izé,t =
essinf(Supp(Kp ;).

The constraint set /= forms an L%-convex set because
of Proposition 1(g). It is straightforward to see that
the set o0 = {(z,y,u) | y > z;,u <0} is of the form
in Lemma 3. Applying Theorem 3, we know v,(z) is
L%-convex in z € #. According to Theorem 4, the great-
est optimal solution (y,(z), u,(z)) is well defined and
has the desired monotonicity property with limited
sensitivity. Q.E.D.

The monotonicity and limited sensitivity of y,(z)
imply that the optimal regular order quantity g ,(z),
which is equal to y,(z) — z,, increases in zy,...,2;_,
but decreases in z;, and satisfies —~w < g ,(z + we) —
qr,(z) <0.

To gain more insights, we can transform the state
vector to x =(xy,...,x;), where x; =z, and x; =z, —z,_4,
i=2,...,k. Note that x; = z; represents the amount
of on-hand net inventory plus outstanding orders that
will arrive within I periods, and x; represents the
size of the outstanding order that will arrive Iy +i—1
periods later. Denote the corresponding optimal order
quantities by g ,(x) = qg ,(z) and ¢ ,(x) = g, ,(z). The
monotonicity and limited sensitivity of y,(z) imply the
following inequalities:

~w < g (x +wey) = G (%) < Gg o (x +wep_y) —qg 4(x)
<"'<971<,t(x"'(‘)f/’l)_‘ilz,t(x)<O' (17)

Compare states z + we; and z. For i =1, the former
has w more units of on-hand inventory or outstanding
orders that will arrive within /; periods. Fori=2,... ,k,
the former has @ more units of outstanding order that
will arrive I +7 —1 periods later. Thus, inequalities (17)
imply that the regular order quantity decreases in on-
hand inventory level and the sizes of the outstanding
orders. The sensitivity decreases in the age of the out-
standing order, where the age refers to the number of
periods passed since the order was placed. In other

words, the regular order quantity is most sensitive to
the size of the most recently placed order.

Similarly, for the expedited order quantity 4 ,(x) =
—u,(z), we have

—@ < g (X + wey) = e (%) < e (X + wey) = i (%)
<o S (x + wey) = g, (x) < 0. (18)

That is, the expedited order quantity decreases in the
sizes of outstanding orders in the pipeline, but the sen-
sitivity increases in the age of the outstanding order.
In other words, the expedited order quantity is least
sensitive to the most recently placed order, which is
opposite to the sensitivity of the regular order quantity.

Such monotone properties with limited sensitivity
are also observed in Hua et al. (2015) who consider an
uncapacitated dual-sourcing problem, and in the joint
inventory-pricing control problems with positive lead
time where the replenishment decision has a decreas-
ing sensitivity in the age of the outstanding order,
whereas the pricing decision has an increasing sensitiv-
ity in the age of the outstanding order (see, e.g., Chen
et al. 2014). The implication is that the decisions whose
immediate impacts are closer to the on-hand stock (e.g.,
pricing or expedited order) are more sensitive to the
on-hand inventory level and older outstanding orders
while the decisions whose immediate impacts are fur-
ther away from the on-hand stock (e.g., regular order)
is more sensitive to the younger outstanding orders.

4. Assemble-to-Order Systems with
Random Capacity

Consider an ATO system over a planning horizon with
T periods. The ATO system consists of m components
indexed by i € {1,2, ..., m} and n products indexed by
j€{1,2,...,n}. At the beginning of each period, the
firm observes on-hand inventory levels of the m com-
ponents x = (xq,...,x,,)", and then decides the order-
up-to inventory levels of components y = (yy,..., ¥,)".
The delivered quantity of each component i cannot
exceed a random capacity, denoted by E, ;, which is
realized after the order is placed. The capacities are
independent of each other and over time. Inventory
replenishment lead time is assumed to be zero. The
demand for product j in period ¢ is D, ; and we assume
that they are independent over time and independent
of capacities. Let D, =(D, 4,...,D, ,)". The bill of mate-
rials is specified by an m X n matrix A, whose com-
ponent a;; denotes the units of component i required
to make one unit of product j. Unmet demands are
assumed to be lost. Let c; and h; represent the ordering
cost and holding cost of component i per unit, respec-
tively, and b; denote the per unit shortage cost of prod-
uct j. We use ¢, h, b to denote the vectors (¢, ...,c,)T,
(hy,..., )", (by,...,b,)7", respectively. The one-period
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discount factor is « € (0, 1]. The objective of the firm is
to minimize the total expected discounted cost.

Let f,(x) be the cost-to-go function with initial inven-
tory levels x at the beginning of period t. We omit the
subscript ¢ for notational brevity when no ambiguity
occurs. The optimality equation is

ff(x)=nyﬂ>i§1{E[CT(y/\(x+5)—x)]+E[8f(]//\(x+3)ID)]},

19)
where
g(zld)= min {Z(z,uld)+af,(z-Au)}, (20)
u:(z, u)eU(d)
and

L(z,u|d)=h"(z—Au)+b"(d —u). (21)

The boundary condition is assumed to be f; ,(x) =0
without loss of generality. The first term in the objec-
tive function of (19) is the ordering cost. Similar to the
dual-sourcing model, we assume that the ordering cost
is proportional to the quantity actually delivered. The
feasible set in (20) is given by U(d) = {(z,u) | Au < z,
0<u < dj,j =1,2,...,n}, where z is the on-hand
inventory level after the inventory ordered in the cur-
rent period arrives, and u is the vector of assembled-
product quantities. The inventory holding and short-
age costs are given in Z(z, u | d).

Because of the complexity of general ATO systems,
some important special systems are studied in the lit-
erature, one of which is a generalized M-system (see
Nadar et al. 2014). A generalized M-system has m com-
ponents and m + 1 products, where each product i
requires a single unit of component i for i < m and
product m + 1 consumes one unit of each component.
This ATO system reduces to an M-system when m =2.
The bill of materials matrix has the following form:

100 0 1
010 01

A=|0 01 0 1| 22)
000 -+ 11

We summarize the structural results of this section
in the following theorem.

Theorem 6. (a) For a general ATO system, the optimal cost
function f,(x) is convex in x for all t.

(b) For a generalized M-system, the optimal cost function
f,(x) is Li-convex in x for all t. The optimal order-up-to level
y,(x) is increasing in x with limited sensitivity. That is, for
any w >0, y,(x) < y,(x + we) < y,(x) + we. (When there are
multiple optimal solutions, we assume it is the greatest one.)

Proof. (a) We prove by induction. Assume that f,,; is
convex. Itis easy to see that g,(z | d) in (20) is convex in z

for any demand realization d since the objective func-
tion is jointly convex in (z, #) and the constraints form
a convex set. Define G,(z) £ ¢"z + E[g,(z | D)], which is
convexin z. Then f,(x) =min, . E[G,(y A (x +E))] - cTx.
The constraint set is ¢ = {(x, y) | y > x}. By definition,
= ={(x,y A(x+&)) | y > x, & € Supp(E)}. This is equiv-
alent to the set {(x, w) | x; <w; < x;+&;, Vi=1,...,m},
which is convex. In addition, Assumption 2 is satisfied
since ¥ is of the form given in Lemma 3. Therefore, fol-
lowing Theorem 3 we know that f,(x) is convex in x.

(b) For j=1,...,m, define il; =z; —u;. Let @, =
U, and

-1 0 0 0 1
0 -1 0 0 1
0o 0 o0 -1 1

Then g,(y | 4) can be written as
g(zld)= min {Z(z,i|d)

ii:(z,i)e(d)

+aft+l(ﬁl_ﬁﬂz+1/"'/ﬁm_ﬁm+1)}l (24)

where
i=1 j=1

+ bm+1(dm+1 - ﬁm+1)/ (25)

and

U(d)={(z,0) | Aa <0,0<z;—it; <d,

i=1,2,...,m,0<i,.,<d,}.  (26)

We then prove by induction. Clearly fr,(x) is L%-
convex. If f,,; is Li-convex then the objective function
of (24) is also L%-convex in (z,1) because of Propo-
sition 1(a) and (d). The constraint set %(d) forms a
L%-convex set by Proposition 1(g). Therefore, g,(z | d) is
L%-convex in z for any d according to Proposition 1(e).
Similar to part (a) we have s¢* = {(x, w) | x; <w; < x; +&;,
Vi=1,...,m}, which is Li-convex following Proposi-
tion 1(g). One can easily check that ¢ is of the form
given in Lemma 3. Therefore, applying Theorem 3
and 4, we know that f,(x) is also Lf-convex and the
sensitivity results hold. Q.E.D.

Theorem 6 summarizes the sensitivity results for the
stage when components are ordered. For a generalized
M-system, the order-up-to level y; of any component i
increases in its own inventory level x; as well as the
inventory level of any other component j # i. The lim-
ited sensitivity implies that for any component i the
ordering quantity y; — x; decreases in the inventory level
of any component. One can easily check that the fol-
lowing sensitivity results hold during the stage when
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products are assembled. For a generalized M-system,
the quantity of product m + 1 increases in the quan-
tity of each component, while the quantity of product
j(# m + 1) increases in the quantity of component j but
decreases in the quantity of component k(# ).

5. Capacity Allocation in Network

Revenue Management

We consider a network system consisting of m re-
sources (airline seats in different legs), indexed by i €
{1,...,m}, with initial capacity levels C=(C,,...,C,,)",
and n products (itinerary-class combinations), indexed
by je{1,...,n}. The corresponding prices, denoted by
p=(py,...,p,)", are exogenously given. Each product
needs at most one unit of each resource. Let A = (a;;)
be the resource coefficient matrix, where a;; =1 if prod-
uct j uses one unit of resource i and a;; =0 otherwise.
Define D, = (D, y,...,D, ,)", where D, ; is demand of
product j in period t. Assume that the demands of
different products are independent and the demands
are independent over time. The objective of the firm
is to decide the booking limits for all demand classes
dynamically so as to maximize the total expected profit
over the planning horizon.

As mentioned in Section 1, the model we consider
here is MSSP in Chen and Homem-de-Mello (2010)
with continuous relaxations. Chen and Homem-de-
Mello (2010) point out that the major difficulty of the
above model is that it is not a concave maximization
problem, since the decisions are truncated by random
demands. Therefore, they re-solve a sequence of two-
stage stochastic programs for approximation. Interest-
ingly, as we show in this section, our transformation
technique can overcome this difficulty and allows us
to preserve concavity in the dynamic programming
recursions. Under a certain network structure, we fur-
ther demonstrate that L%-concavity can be preserved
and use it to derive monotone properties of the optimal
booking limits. Note that the model considered here is
different from the one in Talluri and van Ryzin (2005,
section 3.2.1). Their model assumes there is at most
one demand request in any period. We do not impose
this assumption. Since in our model each time period
corresponds to the time when the firm needs to revise
its capacity allocation policy, it may not be practical
to divide the planning horizon so much so that there
is at most one demand in any period because of the
increased computational complexity.

In the following, we omit the subscript ¢ for nota-
tional brevity when no ambiguity occurs. The state
variable is denoted by the vector x = (xq,...,x,,)" in
which x; is the capacity level of the resource 7 in the cur-
rent period. At the beginning of the planning horizon,
we have x = C. In each period, the firm observes the
current capacity level x and decides the booking lim-
its for different demand classes. The decision variable

is denoted by vector u = (uy,...,u,)", where u; is the
booking limit for class j demand in the current period.
The action space can be defined as s¢ = {(x, u) | Au < x,
u > 0}. Let f,(x) be the optimal value. The optimality

equations can be expressed as

fi(x)= max Elp"(u D)+ fi(x=AWAD)),
t=1,...,T, (27)

where fr (x) =0. For & € F}, define the function
¢, F"" - R such that

g6, &) = pTE+ fu(x—AL).
Then the optimality equation can be expressed as

filx) = ma;<%E[gt(x,u/\D)], t=1,...,T. (28)

H(x,u

We also consider a special case where the resource
coefficient matrix has the same format as the bill of
materials matrix in the assemble-to-order generalized
M-system, i.e., the resource coefficient matrix is given
by (22). When the number of resources m = 2, one can
relate this type of resource coefficient matrix to the
following setting. There are two legs in the network:
A to B and B to C. There are three types of consumers.
Type one consumers travel from A to B, type two con-
sumers travel from B to C, and type three consumers
travel from A to C with a transition at B.

We summarize the structural results in the following
theorem.

Theorem 7. (a) For the network revenue management prob-
lem (27), the optimal value function f,(x) is concave in x for
all t.

(b) If, in addition, the resource coefficient matrix is given
by (22), then for all t, f,(x) is Li-concave. The optimal book-
ing limit w’, ., (x) is increasing in x with limited sensitivity,
ie., forany w >0, u, ,(x)<u, ,(x+we)<u (x)+w.
Forj=1,...,m, u}‘.(x) is increasing in x; and decreasing in
Xy, k # j, with limited sensitivity, i.e., u;(x) <ui(xtwe;) <
u;(x) + w and u}‘.(x) - w < u}‘.(x + wey) < u}f(x) for any
w >0, k # j. (When there are multiple optimal solutions, we
choose the one such that (—uj(x),...,—u,,(x),u; ,(x)) is
the greatest.)

Proof. (a) We prove by induction. Assume f;,; is
concave. In the objective function of (28), g(-,-) is
clearly concave. Since o = {(x,u) | Au < x,u >0}, 4= =
{(x,und)|(x,u) € s,deSupp(D)}, which is equiva-
lent to the convex set {(x, w): Aw < x,0 < w; < d_j, Vji=
1,...,n}. In addition, Assumption 2 is satisfied since
is of the form given in Lemma 3. Then it follows from
Theorem 3 that f,(x) is concave.
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(b) For j=1,...,m, define il; = x; — U}, g = Uy
and A is given in (23). The optimality equatlons can be
rewritten as

ft(x)_ max E Pm+1(”m+1/\Dm+1)+ZP; X

i (x,n)esd =
=20V (x;=D) + fra(D)],
=1
where o = {(x,4) | it > 0,A1 <0,x xp—1;20,j=1,
.,m} and

f:[1’71V(xl_Dl)l"'/ﬁmv(xm_[)m)]_(ﬁm-*—l/\Dm+1)e'

Define h,(x,&) = ppi1mer + Z] 1PjX; Z}”pjcfj +
T,

fra((&q, oo &) —&ppe). Thenfor t =1,.
fi(x) =

fnax E[h (x, 4, V(x;—-Dy),...,
a:(x e
u, v (xm - m)/ Uy A Dm+1)]-

Clearly fr,;(x) is Lf-concave. If f,,;(x) is Li-concave,
then h,(x,&) is also Lf-concave by Proposition 1(a)
and (d). We have

E_{(x ulv(xl dl)!"‘/ﬁmv(xm_dm)/
um+1 A dm+1) | (xl ﬁ) € 5’{4/ de SUPP(D)}

Notice that (= is equivalent to the following set:
{(x,w)lx]-—d_] < is

]:1/"'17/;/1/0< m+1< m+1}/

Wi <Xj, Wy SWj,w; 20,

where Jj = esssup{d; | d € Supp(D)}. It follows from
Proposition 1(g) that 5= is L%-convex. One can easily
check that s/ is of the form in Lemma 3. Therefore, The-
orem 3 can be applied to show that the Lf-concavity
of f,(x) is preserved. It follows from Theorem 4 that
there exists a greatest solution #*(x) such that ﬁ}f(x) is
increasing in x for all ] With limited sensitivity, which
implies that v’ , (x) =4’ ,,(x) is increasing in x with
limited sensitivity while u ](x) X;— i ](x) is increasing
in x;, and decreasing in x;, k # j with limited sensitiv-
ity.  Q.E.D.

The sensitivity result from Theorem 7 implies that
if the current capacity level of any resource i increases
by w, then the allocated capacity of product i and
m +1 should also increase, but the allocated capacity
of product j,j # i, j # m + 1 will decrease. All the above
changes are bounded by w because of the limited sen-
sitivity.

Remark 4. Even though the resource coefficient matrix
here is the same as the bill of materials matrix in Sec-
tion 4, the analyses of the two models have a significant
difference. For the ATO model, the decision variable
is truncated by random capacity and the bill of mate-
rials matrix does not enter the constraints when we

apply the transformation technique. However, for the
revenue management model the decision variable is
truncated by random demand and the resource coeffi-
cient matrix affects the constraints when applying the
transformation.

6. Conclusion

In this paper, we develop a transformation technique
for a class of stochastic optimization problems. This
transformation technique allows us to convert a non-
convex minimization problem to an equivalent con-
vex minimization problem, and to prove the preser-
vation of some desirable structural properties (e.g.,
convexity, submodularity, and Li-convexity). We apply
these results to several important applications: dual
sourcing with random supply capacity, ATO systems
with random supply capacity, and network revenue
management. Our transformation technique is not lim-
ited to the aforementioned applications. For instance,
Chen et al. (2015) applied our results, together with a
preservation property of concavity and supermodular-
ity with a nonlattice constraint structure developed in
Chen et al. (2013), to provide a significantly simplified
analysis to the two-facility joint inventory and trans-
shipment problem with uncertain capacities analyzed
in Hu et al. (2008). Recently, Demirel et al. (2015) ana-
lyze a calibrate-to-order system where a firm produces
two products on dedicated production lines that are
then calibrated according to the specifications of cus-
tomer orders on a shared resource. Both the dedicated
product lines and the shared resource face random
capacities. It can be readily shown that our analysis
also applies to their model when the uncertain capac-
ities are independent of each other and over time, and
can significantly simplify the analysis. We believe our
transformation technique can find many more applica-
tions in inventory control, revenue management, and
beyond.

It is notable that our transformation technique re-
quires the assumption that the random components
are independently distributed. It is likely that new
approaches are needed to extend the analysis to cases
with correlated random components. Another future
research direction is to design efficient algorithms for
the applications considered here employing properties
of convexity or Lf-convexity enabled by our transfor-
mation technique.

Acknowledgments

The authors would like to thank George Shanthikumar, Qi
Feng, and Xiting Gong for insightful discussions. The authors
also thanks the area editor Chung-Piaw Teo and three anony-
mous referees for helpful comments and suggestions.



354

Chen, Gao, and Pang: Preservation of Structural Properties in Optimization

Operations Research, 2018, vol. 66, no. 2, pp. 340-357, © 2018 INFORMS

Appendix A. Proofs

Proof of Proposition 1

Parts (a)-(c) are from Murota (2003). The proofs follow
directly from the definition.

(d) We need to show that g[(x, A) — &(e, 1)] is submodular.
Notice that g[(x,A)—&(e, 1) =g(v—Ee, A= &) = f((v—&e) -
(A—=&)e) = f(v— Ae), which is submodular.

(e) We assume without loss of generality that s¢ =F" X %;
otherwise we can focus on the restriction of f on ¢ and let f
be infinity outside of /. We know that r(x,y, &) = f[(x,y) —
&e] is submodular, and we want to show that g(x — &e)
is submodular in (x,&). We have g(x — &e) = inf, f(x —
e, y) = inf,co fl(x,y + E&) — e = inf,eyy 7(x, y + &, &) =
inf,_¢seq, 7(x, 2, £). Notice that {(z,&): z — £& € Y} is a lattice
and r(x, z, &) is submodular; it follows from Theorem 2.7.6 of
Topkis (1998) that g(x — &e) is submodular in (x, &).

(f) It follows from Theorem 2.8.2 of Topkis (1998) that
argmin, . ., f(x,y) is increasing in x. For any @ >0
and any x € dom(g), define wé + argmin, . ., f(x,y) as
the set {u + weé: u € argmin . . f(x,y)}. Pick vy in
arg miny:(x,y)ew f(x’ y) and y” in arg miny:(x+we,y)esﬂ f(x +
we, y). Then for any w > 0 such that (x + we, ¥’ + wé) € sf and
(x, ¥ —wé) e h wehave (x + we, y” Ay + wé)) = (x +we, y”") A
(x+we,y +wé)edd, (x,(y" —wé)Vy)=(x,y" —wé)V(x,y)
€ sl and

0> f(x+we,y")— f(x +we, ¥’ Ay + wé))

=flx, y" —w) + w(e, &) - fl(x,(y" —we) AY') + wle, )]
flx,y" —wé)— f(x,(y —wé)Ay)
flx,(y' —wé)vy)—-f(x,y) >0,

>
>

where the first and the last inequalities are due to the opti-
mality of y” and y’ for x + we and x, respectively, the sec-
ond inequality is due to the L%-convexity of f, which implies
that f(x — we, y — wé) is submodular in (x,y,w), and the
third inequality is due to the submodularity of f(x,y) in y.
The first and the last inequalities then imply that equality
holds throughout the above inequalities and so y” A (y’ + wé)
€ argmin, ., f(x + we,y), and (¥’ - w?) V y’ €
argmin, ., ., f(x, y), which then implies that y” v (y' + we)
€ wé+argmin, . ., f(x,y). Therefore,

argmin f(x +we, y) E wé +argmin f(x, y).
y: (x+we, y)est y:(x, y)est

(g) Letsi={xe¥Y: I<x<u,x;—x;<vy, Yi#j} For any
x,x €s1,A €F,, we only need to show that (x + Ae) A x/,
xV(x’— Ae) € s. Firstly we have (x + Ae) Ax’ < x’ < u, and
Z<x/\x’<(x+/\e)/\x’.F0ranyi;éj,ifx;<xi+/\,x}<x]-+)\,
then (xi+A)/\x;—(xj+)\)/\x;.=x;—x;. <oy x> x4+,
x;. > x;+ A, then (x,~+A)/\x;—(x]-+A)/\x;.=xi—xj < vy
Ifx;gxi+/\,xj+A<x;,then (xi+/\)Ax;—(xj+)\)Ax}:
x;—(xj+/\)<xi+/\—(xj+/\)<vij.1fxl’.>x,~+/\,xj+/\>x;,
then(x,+/\)/\x,’.—(xj+/\)/\x;.:(xl-+)\)—x’.<xl’.—x} < vy
Thus we have (x + Ae) A x’ € 0. Similarly we can show that
xV(x'—Ae) €.

Proof of Theorem 4

We only provide the proof of part (b). Since part (a) can be
proved using almost the same arguments (as L%-convexity
implies submodularity), its proof is omitted for brevity.

We first show that the optimal solution set for the op-
timization problem (11), %*(x, z), is increasing in x for any
given z. The Li-convexity of f implies that f(x, z) is submod-
ular in (x, z). Note that for the submodular function f(x,z)
it is straightforward to show that f(g;(x1),..., £2(x,), h1(xq),
..., h,(x,)) is also submodular in (x,z) for any increasing
univariate functions g;,i=1,...,n and hj,j =1,...,m. Then
f(x,u ¢ (z+E)) is submodular in (x, 1) for any given z and
realization of Z. Since the expected value of a submodu-
lar function is submodular (Corollary 2.6.2 of Topkis 1998),
E[f(x,u O, (z + E))] is submodular in (x, 1) for any given z.
Since s/ is an Lf-convex set, we know that for any given z the
constraint set of the optimization problem (11) is a sublattice.
It follows from Theorem 2.8.2 of Topkis (1998) that U"(x, z) is
increasing in x for any given z.

We then show the optimal solution set satisfies the limited
sensitivity, i.e.,, U*((x,z) + we) E U (x,z) + wé for any w > 0.
Note that for any w > 0, letting & = —w, we have

g((x,z2) + we) = ’ }nf ) E[f(x+wé,u ¢, (z+wé+E))]
u:((x,z)+we, u)exd
= inf  E[f((x, @0, (z+E)) - @e)].
ii: ((x,z)—@e, i—@é)ed

(A1)

The Li-convexity of f implies that f((x,i) — @e) is sub-
modular in (x, i, @), which implies that f((x, i ¢; (z + E))
— @e) is submodular in (ii, @) for any given (x,z) and any
realization of E. Since the expected value of a submodu-
lar function is submodular (Corollary 2.6.2 of Topkis 1998),
E[f((x, i ¢ (z + E)) — ®e)] is submodular in (ii, @) for any
given (x, z). Since 5/ is an Li-convex set, {(x, z, i, ®): ((x,z) —
@e, il — &) € 1, ® <0} is also an Lb-convex set, which implies
that {(ii, ®): ((x,z) — e, il — @é) € 4, < 0} is a sublat-
tice for any given (x,z). It follows from Theorem 2.8.2 of
Topkis (1998) that the solution set of @i for optimization
problem (A.1), denoted by %*(@,x,z), is increasing in @,
ie., U(®d,x,z) EUN(0,x,z). Note that U (&, x,z) = U ((x,z) +
we) — wé. Hence we have U*((x,z) + we) — wé T U (x, z).

We next proceed to show that %*(x, z) is increasing in z for
any given x, which turns out to be more challenging. Note
that it is difficult to show this monotonicity property directly
for U*(x, z) based on the original optimization problem (11).
In what follows, we show that the projection of the solu-
tion set of the transformed problem (12) on the constraint set
U(x,z) of the original problem (11) is exactly %*(x,z) and
that the monotonicity properties of the solution set of the
transformed problem (12) can be preserved by the projection.

Let ¥/ (x,z) denote the constraint set of the transformed
problem (12). Define the projection of the solution set of prob-
lem (12), #*(x, z) =arg ming, ), cex)e (v, ) ELf (¥, 0(E))], on the
constraint set %(x, z) as

I, 5 (x,z)={u € U(x,z) | (uo(z+ &), E € X) e F(x,2)}.

We claim that IT,,%"(x, z) is the solution set of the origi-
nal problem for any given (x,z), i.e., IT, %" (x,z) = U'(x, z).
In fact, if u* is an optimal solution to the original problem,
(u*0r(z+&), & € &) isaminimizer of the transformed problem,
ie., (U0 (z+ &), & €X) e F(x,z). On the other hand, if u €
IT,%"(x,z), then (v(&) | v(&) =u O, (z+ &), £ € ¥)is an optimal
solution of the transformed problem because of the definition
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of IT,,&". Since E[f(x,v(E))] = E[f(x, u¢i(z + E))] = 7°, u is
optimal for the original problem. Hence the claim is true.

It remains to show I1,%*(x,z) is increasing in z for any
given x, i.e.,

1, (x,z) EI, ¥ (x,z + we;), j=1,...,n. (A2)

First note from Proposition 1 that &*(x,z) is increasing
in (x,z) and satisfies the limited sensitivity property with
respect to (x,z),i.e., ¥ ((x,z) + we) E wé + F*(x, z).

For any j € {1,...,n}, it suffices to show that u’ A u” €
[T, #(x,z) and u' vV u” € [1,5"(x,z + w¢;) for any u’ €
[, (x,z) and u” € I1;,¥"(x, z + wé;). Since the proofs for
w' Au” elly,# (x,z) and u’' v u” €I, #(x, z + wé¢;) are sim-
ilar, we only provide the detailed arguments of the former
and omit that of the latter for brevity.

It is notable that since % is a lattice and u’,u” € U (by
the definition of I1;,5*(x,z)) we know that u’ A u” € U and
u’ vV u” € U. Hence, to show u’ A u” € I1,,%*(x, z) it suffices
to show (' Au”)0 (z + &), & €XF) e F*(x,z). Since ¥ (x,z) C
F(x,z+we;), wehave (/0 (z+&), E€X)A (U0 (z+ we; +E),
EeX)e F(x,z2).

For any componentz;, l€{1,...,j-1,j+1,...,n}, wehave

(ujop(zi+ &), E€X)N(u] o) (z,+ &), E€X)
=((ujAu)o (z,+&)),E€%),

where o, represents the corresponding operation in ¢, for
component /.

For component z;, if je{1,...,k}, the operation in ¢, for
component j is ¢; = A and we have

(u}oj (zj+5]-),£ e%)/\(u;’oj (z]- +w+5j),5 €EX)
= ((u; /\u}’)oj (zj+¢&),E€%).

If je{k+1,...,n}, we have o; = V. If, in addition, u; < u;.’,
then

(0, (z;+ &), E€X)AN(W] 0 (z;+w + &), E€F)
=((Wjnul)o;(z;+ &), E€),

which, together with the above analysis for other compo-
nents, implies that

(W Au"Yoj(z +E), & €)

=(u'oi(z+&),E€X)N(u"0i(z+we;+&),E€X) € F'(x, 2).

If, otherwise, W, <uf, defining 5(&) 2 (1 O (z+ &) A (1" O
(z+ wé; + &)), we have

(€)= (W V (2 + EN AWV (2 + 0+ )

) ) f& >u —z.
zj+&;, 1f£1/u] zZj,
’ . [ . r_ >

_ 1fu]. z; a)<5]<uj Zj,
) o ifu -z —w <& "o
z]+a)+£], 1fu] z; w\£]<u] Z;—w,
u;.’, if5j<u}’—z/—w.

We use 77-]'(5_,‘) to denote (51(51)/~--/51—1(5]'—1)/5j+1(5j+1)
,.,0,(&,)). Let * denote the optimal objective value of the
transformed problem with parameters (x,z). Similar to the
arguments in Theorem 2, let f(x,z,v) = f(x,0) + 0o (x,2)(0),
where 7/ (x,z) denotes the constraint set {v(&) | (x,z,v(&)) €
9%, & € #}. Following the proof in Theorem 1, define

§()= E[f(x,z,ﬁ_j(E_j),-)]. Since the function f is compo-
nentwise convex, lower semicontinuous with f(x,u) — +oco
for |u| — oo and any given x, and the constraint set is com-
ponentwise convex and closed, we know that ¢(-) is convex,
lower semicontinuous, and §(u) — +oo for |u| — co. Then
minu],éF §(u;) contains a smallest minimizer and a greatest
minimizer, denoted by u; and ii;, respectively, and given any
ii; € argmin, . §(+), we have

=minE[(u; V (z;+E))] = EZ(#; V (z; + E))].

We next prove by contradiction that u;’ € [u joi ]-], which
implies that u;’ € argminuje[F g(uj).

Suppose ij<u?.For&;<uf-z; we have i< ﬁjv(z]-+5j) <
0;(&;)and thus g(i1; v (z; +&;)) < §(7,(&;)). By the assumption
of this theorem, we have & jtzitws u’ <u’, which implies
Pr(¢; < u; —z;)>0.For &; >u’—z;, wehave §(it; V(z;+¢)) =
8(z; + &) = 8(0,(¢;)). Then we must have 7" = E[g(it; V
(zj + &)))] < E[§(7,(§;))], which contradicts the optimality of
(9(&), & € %) for the transformed problem.

Suppose u; > u;’. For&; <u;—z;—w,wehaveu;V(z;+&;)>
0;(&;) and thus g(u; v (z;+&;)) < 8(5;(&;)). Since &+ w + z; <
u;’ < y/,wehave Pr(éj < yj—zj—a)) >0.Foru;—z;—w<¢; <
u;—z;, wehave g(u; v (z; + &) = §(u;) < §(8;(&;)). For &; >
u;—z;, wehave g(u; V(z;+&;))=8(z;+¢)) <g((u;v(z]-+5j))/\
(zj + w + &;)) = §(,(&;)). Then we must have 7" = E[g(u; V
(z;+ Ej))] < E[£(0;(E;))], which contradicts the optimality of
(9(&), & € %) for the transformed problem.

The above contradictions imply u? € [u;,i;] and 7" =
min,, ¢ E[g(u;.’ V (z; + E)))]. Clearly, for any I # j, §,(&) =
(u; Aup)oi(z; + &), VE €. Then (u' Au”) Oy (z +wé) = ((u} A
u;’) Vi(z; +&),0_1(&)), & € %) € F(x,2). In summary, we
have (W' Au”)0(z+ &), & € X) e F(x,z) and hence u’ Au” €
I1,%*(x, z). Following the similar arguments, we can show
that u’ v u” €I, #"(x, z + w¢;) and then (A.2) holds.

Finally, we show that the optimal solution set %"(x, z) is
a lattice, and it has a greatest element and a least element.
Given fixed (x,z), let h(u) = E[ f (x, u 0, (z + E))]. For any real-
ization of E, denoted by &, given any u” and u”, we have

[l O (z+ )+ fx,u” 0 (z+ )
=f('xlui /\(Zl +£])I""u:’ V(Zn +£n))
+ [l uf Az + &), uy Vi(z, +E)
> flx, (i Az + ED) A W] Az + &), -,
(up V(z, + &) A (uy v (2, + &)
+fO, Wy Az + &)V (W) Az + &),
(uy V(z, + DV (U V (2, + E,)))
= fl, (uy AuY) Az + &), (g, AUV (2, + E,)
+ VU Az + &), (uy V) vz, + &)
The inequality is due to the submodularity of f. Then h(u’)+
h(u”) = h(u’ Au”)+h(u’ vV u”). Therefore, the objective func-
tion of (11) is submodular in u. By our assumptions the func-
tion f satisfies f(x,z) — +oo for |z| — oo for any given x, and
the constraint set is closed and is a lattice, it is equivalent to

restricting our constraint set to a compact sublattice of R".
By Topkis (1998, Corollary 2.7.1) the solution set %*(x, z) is a
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compact sublattice of R”, and there exist a greatest element
and a least element in the solution set and they satisfy the
desired monotonicity properties.

Appendix B. A Comparison to the Stochastic
Linearity Approach

Feng and Shanthikumar, (hereafter referred to as FS, 2014)
also consider optimization problems with objective function
E[f(u A E)] and convert them to convex minimization prob-
lems using stochastic linearity in mid-point (SL(mp)). Specif-
ically, given a stochastic function Y (u) = (u, E), let u(u) =
E[¢(u,E)], and u(u) be the inverse of p(u), i.e., u(y) =inf{u |
E[¢(u,E)] > u}. Then g(u) = E[f(Y(u(u)))] is convex in u as
long as Y(u(u)) is SL(mp). FS prove that, along with several
other supply functions, if (u,E) = u A E, then Y(u(u)) is
SL(mp). This allows them to convert nonconvex minimiza-
tion problems to equivalent convex minimization problems
by a variable transformation.

Our transformation technique can preserve convexity as
well as submodularity and L%-convexity. FS do not men-
tion whether their approach can preserve submodularity or
Li-convexity. It turns out that their approach can preserve
submodularity of the objective function, but can not preserve
L%-convexity. These are shown in the following Proposition 2
and Example 2, respectively.

Proposition 2. Suppose that f: R" — R is a submodular func-
tion, and B is a random vector with support ¥ € R", in which any
component E; is independent of each other. Let p(u) = E[u A E]
and u () be the inverse of p(u). Then

(@) h(u)=E[f(u AE)] is submodular in u.

(b) g(u)=E[f(u(u) AE)] is submodular in 1.

Proof. (a) For any realization &, given any u and u’, we have
FUAE+FUAE)> F(AEV AW AEN+F(uAE)V (' AE))
=f((unu)ANE)+ f((uVvu)A€). It follows from Corol-
lary 2.6.2 of Topkis 1998 that the submodularity property
is preserved under expectation, which implies that h(u) =
E[f(u AE)] is submodular.

(b) Notice that for any component i =1,...,n, u;(y;) is
an increasing function of ;. Hence, for any realization &,
u;(u;) A &; is also an increasing function of p; for compo-
nent i =1,...,n. It follows immediately that f(u(u) A &) =
flu(uy) A&y, oo u,(uy,) A E,) is submodular in p for any
realization &. Taking expectation, we know that g(u) =
E[f(u(p) AE)] is submodular in p. Q.E.D.

Example 2. Consider E[ f(u; A2, u, AE,)], where f(u;,u,) =
e"17 js an Li-convex function. Suppose both E; and &,
follow exponential distribution with mean 1, and they are
independent of each other. Then Vi =1,2, u;(u;) = E[u; A
El=Jy &eide; + [ ueidE; =1~ e We have u;(y;) =
—In(1-p;) and

iy uq
E[f(ul/\El,u2/\Ez)]:/ / egl’gze’éle’ézdéldéz
o Jo

up =)
Lty £ &
+ / e1t2e b2 dE, dE,

g

Uy
+ / ef1m12p=81 =52 dél déz
, Jo

/0

/u
[oe] o0

+/ / e1M2e e 2 4 dE,
uy Juy

= %(1 +up)(1 +e7242)
= 2= In(1 = )1+ (1= ).

Define (i1, ) = 3(1 = In(1 — up))(1 + (1 = yy)?). Let p =
[0.7,0.2], 4’ =[0.8,0.4], a =0.1. We have g(u)+ g(u’) ~3.5817
while g((u+ae) A ')+ g(u Vv (¢ — ae)) = 3.5860. Therefore,

g(u)+g(W) <g((u+ae) Au)+g(uV (i - ae)),
which means that g(u;, i,) is not Li-convex.

Note that the approach introduced by FS requires comput-
ing the inverse of u(u), which may not have a closed-form
solution. When considering a constrained optimization prob-
lem, even if all the constraints in the original problem are lin-
ear, their approach will very likely add nonlinear constraints
explicitly, whereas our transformation technique only adds
linear constraints, although a potentially infinite number of
them. More importantly, under the conditions in Lemma 2,
the constraint set can also preserve Li-convexity with our
transformation technique, but this may not hold under their
approach, which is illustrated in Example 3.

Example 3. Consider inf,., E[f(u; A E;,u, V E,)], where
f(-,-) is an Li-convex function and U = {(u, u,) | uy —u, < 1,
0<u; <1,0<u, <1}. Suppose &, and E, are both uniformly
distributed between 0 and 1, and they are independent of
each other. Applying our transformation technique, we have

inf E[f(v1(E1),02(E,))]

st v(&) <& VY, & €][0,1],
(&)= & V& €0,1],
(01(&1),v2(&)) €V VEE[0,1]%x[0,1],

where 7V = {(v,,0,) | v; -0, < 3,0< 0, <1,0< v, <1} All
constraints in the transformed problem are linear, and they
form an Lb-convex set.

Next we apply the transformation of FS. We have p(u;) =
Eluy A Byl = uy — 3u?, yy(uy) = E[u, V E,] = 3(1 + u3). Then
we have u,(p;) =1—+/1=2p,uy(,) = /21, — 1. Hence, the
constraint set after the transformation becomes % = {(1, t,) |
VI =20 442u,-123,0< < 5,5 < pp < 1}, which consists
of nonlinear constraints. One can also check that % is not an
Li-convex set. To see this, notice that p = [0.3,0.5] € % and
W =[0.41,0.51] € U, but u v (¢’ — ae) ¢ U with & =0.01.

(B.1)
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