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Abstract. Image segmentation is an essential step in biomedical image
analysis. In recent years, deep learning models have achieved significant
success in segmentation. However, deep learning requires the availability
of large annotated data to train these models, which can be challeng-
ing in biomedical imaging domain. In this paper, we aim to accomplish
biomedical image segmentation with limited labeled data using active
learning. We present a deep active learning framework that selects addi-
tional data points to be annotated by combining U-Net with an efficient
and effective query strategy to capture the most uncertain and represen-
tative points. This algorithm decouples the representative part by first
finding the core points in the unlabeled pool and then selecting the most
uncertain points from the reduced pool, which are different from the la-
beled pool. In our experiment, only 13% of the dataset was required with
active learning to outperform the model trained on the entire 2018 MIC-
CAI Brain Tumor Segmentation (BraTS) dataset. Thus, active learning
reduced the amount of labeled data required for image segmentation
without a significant loss in the accuracy.
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1 Introduction

Image segmentation is a critical task in computer vision as it helps us understand
the image at a semantic level. While there have been various algorithms devised
to carry out semantic segmentation[1], deep learning models have become the
main choice because of their supreme performance and generalization[2, 3]. The
recent advances in deep learning have motivated some encouraging works for
medical image segmentation[4–6] as well. But the deep learning models require
large volumes of training data, which can be difficult to collect. The problem
becomes more challenging for medical image segmentation as the data needs to
be labelled at a pixel level. Annotating the data can be tedious for the human
expert, thus, affecting the labeling accuracy. The limited number of domain
experts in medical imaging adds more challenge to the process of collecting
labelled data.
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In biomedical imaging, domain expertise is required for labeling the data.
Thus, it is very important to get only those data points labeled which con-
tribute the most in the learning of the model. Active learning[7] is a paradigm
that helps in querying the labels of only the most informative data points. Two
factors - uncertainty and representativeness, define the informativeness of a data
point. When working with deep neural networks, a single query point is not
enough to fine-tune the weights of the model. Thus, pool-based strategies such
as ranked batch-mode sampling, exploration-exploitation[8] are commonly used
with the deep learning models. In past couple of years, there have been several
efforts in applying active learning for medical image segmentation. Suggestive
Annotation[9] is one of the initial frameworks for biomedical image segmenta-
tion using deep active learning for the MICCAI 2015 gland challenge. It uses the
Fully Convolutional Network(FCN) and formulates the representativeness as the
maximum set-cover problem. In a similar way, Representative Annotation[10] re-
duces the computational complexity of finding the most representative points by
first using agglomerative clustering and then applying the maximum set-cover
over each cluster . Both of these works require 50% of the labeled data. In this
work, we show that the amount of labelled data can be reduced further.

In our work, we focus on applying active learning for brain tumor lesion
segmentation from MR images by using a very limited amount of labeled data
and computation time. We hypothesize that the data required to train a machine
learning model can be reduced by selecting the training points intelligently, at
a cost of a reduced accuracy within a certain limit. To test this hypothesis, we
used the 2018 Brain Tumor Segmentation(BraTS) MICCAI challenge dataset.
We also devised our own query strategy: A Coreset based Ranked Batch Mode
Sampling algorithm to reduce the computational cost of selecting the query
points, yet selecting the best ones. We used U-Net as the base deep learning
model to perform the lesion segmentation task. Figure 1 summarizes the entire
proposed deep active learning framework.

2 Methodology

The two major components of our framework are the deep learning model and
the query strategy. In this section, we will discuss them in detail.

2.1 Model Architecture

U-Net[12] is one of the first successful models used for medical image segmenta-
tion. It is a classic encoder-decoder model, where the encoder captures the spa-
tial information into a reduced form using Convolutional Neural Network(CNN).
This is similar to any CNN model being used for classification, which first en-
codes the important features and then uses them for classification. But U-Net
uses these encoded spatial features to reconstruct an output of same size as of
input. This captures the semantic information by combining the high-level fea-
tures from the encoder feature maps with the decoder using skip connections. We
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Fig. 1. Our active learning framework for MRI image segmentation. (1.) The model is
trained on the labeled pool. (2.) Find the (a)uncertainty and (b)representative scores for
the unlabeled pool using the trained model weights. (3.) The query strategy combines
these scores (4.) and yields the query points, (5.) which are the annotated and included
in labeled pool. This process is repeated until required.

used a modified version of U-Net as explained in[13]. This model uses a dice loss
function. The dice loss function directly aims at maximizing the dice coefficient
metric, thus performing better for data with class imbalance.

2.2 Query Strategies

Query strategy is an essential part of active learning and is used to find the
most informative data points in the unlabeled pool. The two major factors that
determine the informativeness of a data point are uncertainty - the confidence
of the model in predicting the correct output of the unlabeled data point, and
representativeness - there should be minimal similarity between the query pool
and the labeled pool, as well as diversity within the query pool. There have been
various approaches used to estimate the uncertainty of the model, like classifi-
cation uncertainty and entropy based uncertainty. Exploration-exploitation[14],
batch-mode sampling[15] are some query strategies that also capture the repre-
sentativeness. We used uncertainty sampling, ranked batch mode sampling, and
proposed coreset based ranked batch mode sampling, as described below.

Uncertainty Sampling. Uncertainty sampling[16] is the most common and
one of the first query strategies. It is a classic stream-based selective sampling
strategy that selects one query point at a time. Hence, it is more famous with
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traditional ML models that can be fine-tuned by a single data point. But we
need a batch of data points with deep learning models. For this, all the points in
unlabeled pool are ranked according to their uncertainty and top n data points
with the highest uncertainty are sampled.

This algorithm uses the prediction of the model to capture the uncertainty.
There are three ways of doing this - least confidence, margin sampling, and
entropy. We used the least confidence approach for the experiments as it is
computationally cheap and yields good results empirically.

Ranked Batch-Mode Sampling(RBM). Uncertainty sampling is not the
best strategy to mine the most informative query points as it fails to capture the
representativeness. Batch Mode Active Learning (BMAL)[15] is a query strategy
that incorporates reprsentativeness into its selection strategy. BMAL has its own
drawbacks as discussed in[17]. Ranked batch-mode sampling algorithm describes
a novel way of sampling points, keeping the major factors of uncertainty and
representativeness in mind. It calculates the scores of the two factors and take
the weighted mean by maintaining a running ratio. The points in the unlabeled
pool are ranked based on this combined score. To increase the diversity in the
labeled pool, it selects those points from the unlabeled pool which dont have
a high similarity with the labeled pool and the query pool, thus capturing the
intra- and the inter-diversity of the unlabeled pool as explained in Figure 2.
Initially, the algorithm gives higher preference to the diversity factor, but as the
sampling continues, the weighting scheme (α) shifts to the uncertainty scores.

Fig. 2. (left)Ranked batch-mode sampling algorithm and (right)coreset based ranked
batch-mode sampling algorithm

Coreset based Ranked Batch-Mode Sampling. The ranked batch-mode
algorithm[17] performs well because it captures both, uncertainty and repre-
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sentativeness. But because of the exhaustive similarity computation between
the two pools, labeled and unlabeled, for selecting each query point, it slows
down the process and also requires a large amount of memory. We propose a
refined version of the ranked batch-mode algorithm by decoupling the step of
finding the representative points to capture intra-pool diversity and inter-pool
diversity. First, K-means is used to reduce the size of the unlabeled pool and
keep the most diverse points. The K is decided by using the following formula -
K = 0.8Nq + 0.2Nu, where Nq is the number of data points in the query pool
and Nu is the number of data points in the unlabeled pool. Then, we choose
the data points closest to the centroid of each cluster. The reduced pool is then
used to select the data points most dissimilar to the labeled pool and capture
the inter-diversity as shown in Figure 2.

2.3 Training process

We divided the available annotated data into two pools - labeled data and un-
labeled data to emulate the active learning process. The entire process was then
run as explained in Figure 1. The model was trained on the labeled pool of data.
Predictions from the trained model are then used to determine the uncertainty
scores of the of the data points in the unlabeled pool. For the representativeness
computation, the encoder output of the same trained model was used to extract
the features of the data points of the two pools. The uncertainty scores and the
representativeness scores were then fed into the query strategy to find the most
informative points. The model was trained from scratch after including anno-
tated query points to the labeled pool. Also, the number of training epochs were
increased by 2 after each query to compensate for the increased training dataset
size. The batch-mode sampling techniques used Euclidean distance to determine
representativeness.

3 Data and Experiments

We used the 2018 Brain Tumor Segmentation (BraTS) MICCAI challenge dataset
to train and evaluate our algorithm. It consists of 210 cases of High Grade
Gliomas (HGG) and 75 cases of Low Grade Gliomas (LGG) along with the
ground-truth markings for the tumor. Each slice has been manually annotated
into 4 categories - enhancing tumor, tumor core, whole tumor, and the back-
ground and normal brain pixels. Each case has 4 modalities - T1, T1 contrast
enhanced (T1ce), T2 and FLAIR. The dataset is skull-stripped, interpolated to
the same resolution of 1mm3, and registered to the same dimension of 240 x 240
x 155.

The data is randomly split into the train-validation-test parts in the ratio
of 80:10:10 on case level. The training data has 166 HGG and 62 LGG cases,
validation data with 22 HGG and 6 LGG cases, and testing data with 22 HGG
and 7 LGG cases after the split. Each slice of the four modalities for every case
is normalized to have zero mean and unit variance. The tumor is present only in
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a small part of the brain. The healthy voxels comprise 98% of total voxels,0.18%
belongs to necrosis, 1.1% to edema and non-enhanced, and 0.38% to enhanced
tumor. Patches of size 128 ∗ 128 ∗ 4 are randomly sampled from each slice after
eliminating the zero-intensity pixels to tackle this class-imbalance problem. This
populates the training data with 99,864 patches, validation data with
12,264 patches, and testing data with 12,702 patches.

Exp. No. Model Training Data Used Hyperparameters

1. Vanilla U-Net 99k+ patches Epochs = 40

2.
U-Net with

Uncertainty Sampling
7k patches
(∼7% data)

Initial Epochs = 10
Initial pool size = 2k patches

Number of queries = 10
Patches labeled/query = 500

3.
U-Net with

RBM Sampling
15k patches
(∼15% data)

Initial Epochs = 10
Initial pool size = 9k patches
Number of queries = 10
Patches labeled/query = 600

4.
U-Net with Coreset

Based RBM Sampling
13k patches
(∼13% data)

Initial Epochs = 10
Initial pool size = 10k patches
Number of queries = 5

Patches labeled/query = 600
Table 1. Experiments conducted and the hyperparameters setting for each experiment

We conducted four experiments as in table 1. First, we used the entire data
for training and trained the model for 40 epochs. In the second experiment,
we used uncertainty sampling as the query strategy, 7% of the training data,
and conducted 10 queries. In third experiment, ranked batch-mode sampling
was used as the query strategy using 15% of the data and required 10 queries.
Finally, we used the coreset based ranked batch mode sampling which used only
13% of the entire data and only 5 queries.

4 Results and Discussion

Table 2 presents the results for the experiments conducted. The Coreset based
Ranked Batch Mode sampling outperformed all the other methods with the dice
coefficient scores of 0.844 for whole tumor, 0.83 for tumor core, and 0.799 for
enhancing tumor with a reduced average query time of just 43 minutes. The
Ranked Batch Mode sampling gives somewhat closer results, but at a cost of
greater computation time and memory.

With our coreset based ranked batch-mode algorithm, we were able to achieve
better results with the limited labeled data (only ∼13%) and query computation
time. We have also tackled the much prevalent issue of class imbalance using
active learning: Our algorithm selects the under-represented data points to be
included in the labeled pool, thus reducing the imbalance as much as possible.
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Exp. No. Model
Whole Tumor

Dice Coefficient
Tumor Core

Dice Coefficient
Enhancing Tumor
Dice Coefficient

Avg Query
Time

1. Vanilla U-Net 0.815 0.689 0.608 -

2.
U-Net with

Uncertainty Sampling
0.802 0.724 0.727 -

3.
U-Net with

RBM Sampling
0.829 0.812 0.788 1hr 50mins

4.
U-Net with Coreset

Based RBM Sampling
0.844 0.83 0.799 43 mins

Table 2. The dice coefficients for the three tumors for each experiment

This is evident from the comparable dice coefficient scores of the three tumors for
our algorithm, versus the large difference in them when no active learning is used.
Also, the increased scores of the coreset based approach empirically validates the
fact that the points being selected are more informative as compared to using
the previous strategies. Furthermore, decoupling the selection steps of the intra-
pool and inter-pool diverse points yields a faster convergence as we require only
5 queries to reach the final accuracy scores, with average query time also reduced
by one hour.

Fig. 3. The test results for HGG(left) and LGG(right) cases.

5 Conclusion and Future Work

In this paper, we presented a deep active learning based solution for MRI brain
tumor image segmentation. Our contributions are (1) a more efficient and effec-
tive query strategy, and (2) method to tackle the class-imbalance problem using
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active learning. This improved the results as shown in Figure 3 and Table 2 as
our algorithm is able to capture even the minute details of the enhancing tumor.
In future work, we will evaluate our framework with other datasets and explore
bayesian networks[18] which can provide a better estimate of uncertainty of the
unlabeled data points.
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