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Abstract—Degrees of freedom (DoF) gains are studied in wire-
less networks with cooperative transmission under a backhaul
load constraint that limits the average number of messages that
can be delivered from a centralized controller to basestation
transmitters. The backhaul load is defined as the sum of all
the messages available at all the transmitters per channel use,
normalized by the number of users. For Wyner’s linear interfer-
ence network, where each transmitter is connected to the receiver
having the same index as well as one succeeding receiver, the per
user DoF is characterized and the optimal scheme is presented.
Furthermore, it is shown that the optimal assignment of messages
to transmitters is asymmetric and satisfies a local cooperation
constraint, and that the optimal coding scheme relies only on
one-shot cooperative zero-forcing transmit beamforming. Using
insights from the analysis of Wyner’s linear interference network,
the results are extended to the more practical hexagonal sectored
cellular network, and coding schemes based on cooperative
zero-forcing are shown to deliver significant DoF gains. It is
established that by allowing for cooperative transmission and
a flexible message assignment that is constrained only by an
average backhaul load, one can deliver the rate gains promised
by information-theoretic upper bounds with practical one-shot
schemes that incur little or no additional load on the backhaul.
Finally, useful upper bounds on the per user DoF for schemes
based on cooperative zero-forcing are presented for lower values
of the average backhaul load constraint, and an optimization
framework is formulated for the general converse problem.

I. INTRODUCTION

Managing interference in wireless networks has emerged as
a challenging and important task over the past decade. We
explore the potential degrees of freedom gains of cooperative
transmission in wireless networks through different models for
the interference, and under average backhaul load constraints.
In particular, we show that cooperative transmission can be
used to achieve significant DoF gains without requiring extra
backhaul capacity.

We begin by studying the degrees of freedom (DoF) in
Wyner’s linear interference network, introduced in [3], where
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interference is modeled by assuming that the transmission of
each transmitter is heard only by the receiver that has the same
index as well as one succeeding transmitter. Wyner’s model,
while being simple, allows us to obtain rigorous conclusions
about the optimal schemes for interference management. Fur-
ther, as we show in this work, the insights obtained through
analyzing linear networks such as Wyner’s network can often
be carried over to more complex network models that better
approximate practical wireless networks.

Our focus on the DoF criterion is justified by the fact that it
is useful to capture roughly the available capacity as a fraction
of the capacity of an interference-free network consisting
of point-to-point links. Two major advantages of the DoF
criterion are as follows: (i) it is easy to analyze, and in many
cases, the problem of finding an information theoretic upper
bound or converse reduces to a straightforward combinatorial
problem ; and (ii) it captures the effect of interference, while
circumventing the difficulties in analysis introduced by the
additive Gaussian noise at the receivers. The DoF of a point-
to-point link with white Gaussian noise is unity, and this
is the reference benchmark for any given user’s rate in an
interference network, i.e., the per user DoF is at most one.

The DoF gain offered by cooperative transmission1 in
Wyner’s linear interference networks was studied in [5], for the
special case where each message is available at the transmitter
with the same index as well as M−1 succeeding transmitters.
The asymptotic limit of the per user DoF as the number of
users goes to infinity was shown to be M

M+1 . An asymptotic
per user DoF of 2M−1

2M was achieved using a smarter message
assignment in [6]. In the proposed scheme of [6], each message
is assigned to the transmitter with the same index as well
as M − 1 other transmitters. However, unlike the assignment
of [5], in [6] the choice of the M − 1 other transmitters
is not simply the succeeding M − 1 transmitters. In [7], it
is shown that under a maximum transmit set size contraint
constraint that limits the number of transmitters at which each
message can be available by M , the asymptotic per user DoF is

2M
2M+1 and is achieved by a flexible assignment of messages to
transmitters where it is not necessary to assign each message to
the transmitter with the same index. The DoF gains discussed
in [5], [6] and [7] are achieved by a simple signaling scheme
that relies only on zero-forcing transmit beamforming.

The maximum transmit set size constraint of M is not met

1Also called Coordinated Multi-Point (CoMP) transmission [4].
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tightly for all messages in the optimal message assignment
scheme presented in [7]. In this work, we therefore consider
a cooperation constraint that is more general and relevant
to many scenarios of practical significance. In particular, we
define the backhaul load constraint B as the ratio between
the sum of the transmit set sizes for all the messages and the
number of users. In other words, we allow the transmit set size
to vary across the messages, while maintaining a constraint on
the average transmit set size of B. We establish in this paper
that the asymptotic per user DoF in this new setting is 4B−1

4B ,
which is larger than the per user DoF of 2M

2M+1 obtained with
the more stringent per message transmit set size constraint of
M = B. The identified optimal scheme relies only on zero-
forcing beamforming at the transmitters, and an asymmetric
or unbalanced assignment of messages, with some messages
being assigned to more than B transmitters and others being
assigned to fewer than B transmitters.

We apply these insights to the more practical hexagonal
sectored cellular model. In particular, we show that with coop-
erative transmission that is based on zero-forcing beamforming
with asymmetric assignment of messages under an integer
backhaul load constraint of B, it is possible to achieve a per
user DoF of 2B

3B+1 (Theorem 5). We also show that under
restriction to zero-forcing schemes, the asymptotic per user
DoF is upper bounded by 5+B

10 for B < 5 (Theorem 7),
and formulate the general problem of finding the maximum
per user DoF under restriction to zero-forcing schemes as an
optimization problem. We emphasize that a per user DoF of
1
2 is achievable with simple zero-forcing schemes and B = 1,
i.e., with no additional backhaul load. On the other hand, we
show that if cooperative transmission is not allowed (M = 1),
then a per user DoF of 1

2 is the optimal value (Theorem
2), and cannot be obtained by simple interference avoidance
schemes (Theorem 4). This shows that simple one-shot zero-
forcing beamforming combined with non-uniform message
assignments can be used to achieve significant gains in the
per user DoF, while maintaining a low average backhaul load.

A. Related Work
A major advance in the theoretical analysis of interference

management in large wireless networks took place with the
introduction of asymptotic interference alignment in [8] (IA).
IA beamforming relies on signaling over a number of time
slots (symbol extension) that goes to infinity in order to enable
the achievability of a per user DoF of 1

2 in a fully connected
interference network. However, the gains offered by IA are
considered to be infeasible in practice, and a major reason
for the infeasability is the excessive requirement on the length
of symbol extension, which would lead to impractical delays.
An important aspect of this work is that we show that the
promised gains of interference alignment can be achieved with
one-shot coding schemes that do not require symbol extension,
if we consider more practical network models than the fully
connected model and allow for cooperative transmission, even
without requiring additional overall load on the supporting
backhaul.

Degrees of freedom gains in the hexagonal cellular down-
link using cooperative transmission was considered in [9],

where the transmitting basestations cooperate by exchanging
quantized dirty paper coded signals. However, implementing
such a scheme can face practical challenges as each transmitter
gets its message only after a series of preceding transmitters
have encoded their messages; this will require either significant
delay or coding over multiple time slots. Further, under this
setting, the only way for messages to be delivered to transmit-
ters through a centralized controller, is for the controller to be
aware of the channel state information.

B. Document Organization

We describe the system model in Section II. In Section III,
we outline the arguments that we use throughout the paper
for deriving degrees of freedom lower and upper bounds. We
then characterize the degrees of freedom for the Wyner linear
network in Section IV. We extend the results to the hexagonal
cellular network in Section V. Finally, we provide concluding
remarks in Section VI.

II. SYSTEM MODEL AND NOTATION

We use the standard model for the K-user interference
channel with single-antenna transmitters and receivers,

Yi =
∑
j∈Ni

Hi,jXj + Zi, (1)

where Xj denotes the signal transmitted by transmitter j
under an average transmit power constraint, Zi denotes the
additive white Gaussian noise at receiver i, Hi,j denotes the
channel gain coefficient from transmitter j to receiver i, and
Ni denotes the the set of transmitters that can be heard
at receiver i (neighbors in the connectivity graph including
itself). All channel coefficients that are not identically zero
are assumed to be drawn from a continuous joint distribution.
Finally, it is assumed that global channel state information is
available at all transmitters and receivers.

A. Linear Interference Networks

1) Wyner assymmetric model: In this channel model, each
transmitter is connected to its corresponding receiver as well
as one following receiver, and the last transmitter is only
connected to its corresponding receiver. More precisely,

Hi,j ≡ 0 iff i /∈ {j, j + 1}, ∀i, j ∈ [K], (2)

where [K] denotes the set {1, 2, . . . ,K}.
2) Locally connected channels: This is a more general

linear network defined in [7], where each receiver sees in-
terference from L neighboring transmitters. More precisely,
for the following channel model,

Hi,j ≡ 0 iff i /∈
[
j −

⌊
L

2

⌋
, j +

⌈
L

2

⌉]
,∀i, j ∈ [K]. (3)



3

B. Hexagonal Cellular Network

This is a sectored K user cellular network with three
sectors per cell as shown in Figure 1(a). We assume a local
interference model, where the interference at each receiver
is only due to the basestations in the neighboring sectors in
adjacent cells. It is assumed that the sectors belonging to the
same cell do not interfere with each other, the justification
being that the interference power due to sectors in the same
cell is usually far lower than the interference from out-of-cell
users located in the sector’s line of sight.

Fig. 1: (a) Cellular network and (b) connectivity graph. The
dotted lines in (b) represent the interference between sectors
belonging to the same cell.

1) Connectivity graph: The cellular model is represented
by an undirected connectivity graph G(V,E) shown in Figure
1(b) where each vertex u ∈ V corresponds to a transmitter-
receiver pair. For any node a, the transmitter, receiver and in-
tended message (word) corresponding to the node are denoted
by Ta, Ra and Wa, respectively. An edge e ∈ E between two
vertices u, v ∈ V corresponds to a channel existing between
the transmitter at u and the receiver at v, and vice-versa. The
dotted lines denote interference between sectors that belong to
the same cell, and is ignored in our model. For any node a, Na

denotes the set of nodes adjacent to node a and that includes
node a. To simplify the presentation, without much loss of
generality, we consider only K−user networks where

√
K is

an integer, and nodes are numbered as in Figure 1(b). (In the
figure,

√
K = 6). Since we are studying the performance in

the asymptotic limit of the number of users, the assumption
is not restrictive.

We formally define the connectivity graph G(V,E) using
Eisenstein integers similar to [9].

Definition 1: (Eisenstein integers) : Eisenstein integers Z[ω]
are numbers of the form a+ bω where ω = 1

2 (−1+ ı
√
3) and

a, b ∈ Z, where ı =
√
−1.

Let Br = {z ∈ C : |Re(z)| ≤ r, |Im(z)| ≤
√
3r
2 }. The set

Br denotes the Eisenstein integers enclosed in the rectangle
centered at the origin with the real part bounded by r and the
imaginary part bounded by

√
3r
2 . Consider the following one-

to-one mapping g : V → Z[ω] ∩ Br between vertices of the
graph and Eisenstein integers. For each v ∈ V , g(v) denotes
the corresponding vertex in the Eisenstein graph. Note that

V = {g−1(z) : z ∈ Z[ω] ∩ Br}. (4)

Consider the function f(a + bω) = (a + b) mod 3. This
partitions the space of Eisenstein integers into three cosets

represented by Ωsq,Ωcir,Ωdia corresponding to f(z) = 0,
f(z) = 1 and f(z) = 2 for all z ∈ Z[ω]. The subscripts
of Ωsq,Ωcir,Ωdia correspond to the squares, circles and
diamonds which are used to represent the respective cosets
in Figure 2. For any z ∈ Z[ω] ∩ Br, we define the following
triangle ∆(z),

∆(z) = {z, z + ω, z + ω + 1},

and the edges incident to the vertices of ∆(z) are denoted by
E(∆(z)) as follows,

E(∆(z)) = {(z, z + ω), (z, z + ω + 1), (z + ω, z + ω + 1)}.

If we consider the edges E(∆(z)), where z ∈ Ωsq , each
node is incident to exactly two edges and by removing these
edges, we have the connectivity graph in Figure 10, a proper
representation of the hexagonal cellular network with no intra-
cell interference. More precisely, without loss of generality,
let E(∆(z)), where z ∈ Ωsq , correspond to the intra-cell
interference. Then since we ignore intra-cell interference in
our model, we define the set of interfering edges in the graph
as

E = {(u, v) : u, v ∈ V and (g(u), g(v)) ∈ E(D)}, (5)

where,

D = {∆(z) : z ∈ {Ωcir ∪ Ωdia}}.

Thus the interference graph is G(V,E) where V is given by
(4) and the set of edges E is given by (5).

Fig. 2: The cellular network is represented by Eisenstein inte-
gers, partitioned into three cosets Ωsq,Ωcir,Ωdia represented
by square, circle and diamond shaped nodes respectively. For
any node z, ∆(z) represents the edges between the nodes, z,
z + ω and z + ω+ 1. Br is illustrated in the figure for r = 1.
The seven nodes lying on or within the rectangle belong to
the set B1.

C. Message Assignment

For each i ∈ [K], let Wi be the message intended for
receiver i, and Ti ⊆ [K] be the transmit set of receiver i, i.e.,
those transmitters with the knowledge of Wi. The transmitters
in Ti cooperatively transmit the message Wi to the receiver i.
A particular message assignment is denoted by {Ti}i∈[K]. For
a particular message assignment, M denotes the maximum
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transmit set size and B denotes the backhaul load or the
average transmit set size,

M = max
i
|Ti|, (6)

B =

∑K
i=1 |Ti|
K

. (7)

In this work, we allow for flexible association of messages,
i.e., we only restrict the size of transmit sets, without con-
straints on the specific set of transmitters that each message
is assigned to. The case M = 1 corresponds to the case of no
cooperation, but with possibly a flexible association of cells.
The case B = 1 corresponds to an average backhaul load of
one message per transmitter, i.e., no extra backhaul load due
to cooperation.

D. Local Cooperation

We say that the local cooperation constraint is satisfied, if
and only if there exists a function r(K) such that r(K) =
o(K), and for every K ∈ Z+, the transmit sets used for the
K-user channel satisfy the following:

Ti ⊆ {i− r(K), i− r(K) + 1, . . . , i+ r(K)},∀i ∈ [K]. (8)

E. Zero-forcing schemes

We consider in this work the class of zero-forcing schemes,
where each message is either not transmitted or allocated one
degree of freedom. Accordingly, every receiver is either active
or inactive. An active receiver does not observe any interfering
signals. For the case of no-cooperation i.e., M = 1, we refer
to zero-forcing schemes as interference avoidance schemes.
The case where M ≥ 2 corresponds to the scenario where
cooperative zero-forcing can be used.

For any zero-forcing scheme, the transmit signal at the jth

transmitter is given by,

Xj =
∑
i:j∈Ti

Xj,i, (9)

where Xj,i depends only on message Wi. Further, each
message is either not transmitted or allocated one degree of
freedom. More precisely, let Ỹj = Yj − Zj ,∀j ∈ [K]. Then,
in addition to the constraint in (9), it is either case that the
mutual information I(Ỹj ;Wj) = 0 or it is the case that Wj

completely determines Ỹj . Note that Ỹj can be determined
from Wj for the case where user j enjoys interference-
free communication, and I(Wj ; Ỹj) = 0 for the other case
where Wj is not transmitted. We say that the jth receiver
is active if and only if I(Ỹj ;Wj) > 0. Note that using zero-
forcing transmit beamforming, if the jth receiver is active, then
I(Wi;Yj) = 0,∀i 6= j. Finally, we say that the jth transmitter
is active if I (Xj ; {Wi : j ∈ Ti}) > 0.

We emphasize that we do not impose the condition that
an active message is transmitted with one degree of free-
dom. Rather, our definition simply ensures the creation of
interference-free point-to-point links. These links could then
be used in an optimal or a sub-optimal way by any zero-
forcing scheme. For example, in a zero-forcing scheme if more

than one active receiver has interference-free links to the same
transmitter, a DoF of one could not be achieved for each of
the active receivers.

Without loss in generality, we assume that it has to be the
case that if a message Wi is available at transmitter j, i.e.,
j ∈ Ti, then the message contributes to the corresponding
transmit signal, i.e., I(Wi, Xj,i) > 0. Otherwise, the message
assignment could be removed without affecting the sum rate.

F. Degrees of Freedom

Let P be the average transmit power constraint at each
transmitter, and let Wi denote the alphabet for message
Wi. Then the rates Ri(P ) = log |Wi|

n are achievable if the
decoding error probabilities of all messages can be simultane-
ously made arbitrarily small for a large enough coding block
length n, and this holds for almost all channel realizations.
The degrees of freedom (DoF) di, i ∈ [K], is defined as
di = limP→∞

Ri(P )
logP . The DoF region D is the closure of

the set of all achievable DoF tuples. The total DoF (η) is
the maximum value of the sum of the achievable degrees of
freedom, η = maxD

∑
i∈[K] di.

For a K-user channel, we define η(K,M) and ηavg(K,B)
as the maximum achievable η over all possible message
assignments satisfying the constraints (6) and (7) respectively.
We define the following asymptotic quantities which capture
how η scales with K.

τ(M) = lim
K→∞

η(K,M)

K
, (10)

τ avg(B) = lim
K→∞

ηavg(K,B)

K
. (11)

We use the superscript zf to indicate a further restriction
to zero-forcing schemes. Finally, we denote the DoF and
asymptotic per user DoF for the hexagonal cellular network
with subscript c.

III. PROOF TECHNIQUES

Before discussing the results we have for the above in-
troduced network models, we provide in this section a brief
overview of the main arguments used in the achievability and
converse proofs throughout this work.

A. Message Assignments and Coding Schemes

For the considered system model, a proof of achievability
involves a choice of assigning messages to transmitters, and
a transmission scheme that indicates coding and scheduling
decisions. We employ interference-aware message assign-
ments that divide the network into subnetworks of optimal
size, where each subnetwork consists of a fixed number of
transmitter-receiver pairs. The messages destined for receivers
in a subnetwork can only be assigned to transmitters within
the same subnetwork. Hence, all of our message assignments
satisfy the local cooperation constraint in (8). We then employ
a zero-forcing scheme that guarantees complete interference
cancellation for all active receivers within a subnetwork.
Because we assume that all channel coefficients are drawn



5

from a continuous joint distribution, thereby ensuring that the
probability of any specific realization is zero, cancelling a mes-
sage’s interference at a number n of undesired receivers would
require assigning this message at n transmitters other than the
transmitter delivering the message. Hence, the backhaul load
constraint induces a constraint on the number of receivers
at which each message’s interference can be canceled, and
accordingly, a constraint on the size of each subnetwork.

In [7], a cooperation constraint that limits the maximum
transmit set size was considered. The asymptotic per user
DoF was then characterized for Wyner’s linear asymmetric
network and achievable per user DoF values were presented for
other network models. Here, we observe that we can employ
the results obtained in [7] by using convex combinations of
the schemes that are optimal under a maximum transmit set
size constraint, in order to obtain a scheme that is optimal
under the considered average transmit set size constraint. By
a convex combintation of schemes, we refer to employing each
of the schemes in a disjoint part of the network that consists
of a number of successive transmitter-receiver pairs, and that
number equals a fraction of the total number of users, with
the sum of these fractions equaling unity.

It is interesting to observe that local cooperation combined
with one-shot zero-forcing schemes can be used to achieve
significant scalable DoF gains in large networks. Further,
these gains can be achieved with no or minimal extra load
on the backhaul, since deactivating few transmitters not only
helps with avoiding interference and splitting the network into
small subnetworks, but also releases backhaul resources that
could be used to assign active messages at more than one
transmitter. Finally, it is worth noting that even though we
only capture the sum rate through the asymptotic per user
DoF criterion, fairness between the users could be achieved
through a fractional reuse mechanism where user indices are
shifted across time or frequency slots.

B. Converse Proofs

The converse proofs presented in this work rely on two
fundamental results, that were proved in [7]. First, we use
Lemma 4 from [7], which we restate below. For any set of
receiver indices A ⊆ [K], define UA as the set of indices
of transmitters that exclusively carry the messages for the
receivers in A, and its complement ŪA. More precisely,
ŪA = ∪i/∈ATi.

Lemma 1 ([7, Lemma 4]): If there exists a set A ⊆ [K], a
function f1, and a function f2 whose definition does not de-
pend on the transmit power constraint P , and f1 (YA, XUA) =
XŪA + f2(ZA), then the sum DoF η ≤ |A|.

What Lemma 1 implies is that if there is a centralized
decoder that has access to all the received signals YA, and
a reliable communication scheme is used, then this decoder
would be able to decode all the K messages, and hence, the
DoF is bounded by the number of signals used for decoding
|A|. First, the centralized decoder would be able to decode the
messages WA because we assumed that the communication
scheme is reliable. The transmit signals XUA can then be
reconstructed, since their reconstruction solely relies on the

messages WA. Using the functions f1 and f2 in the statement
of the lemma, the remaining transmit signals can then be
reconstructed. Finally, using the knowledge of all the transmit
signals, all the messages can be recovered with a vanishing
error probability.

The second concept that we borrow from [7] is that of
irreducible message assignments. By reducibility, we refer to
the possibility of removing a message assignment to one or
more transmitters without affecting the sum rate, regardless
of the choice of the coding scheme. A message assignment
to a transmitter can only be useful either for delivering the
message to its intended receiver, or for aiding in cancelling
the message’s interference at an unintended receiver. If it is
guaranteed that neither functions can be achieved through
a given assignment, then this assignment can be removed
without affecting the sum rate. As a simple example for this
argument, when cooperation is not allowed, any irreducible
message assignment could have each message assigned only to
one of the transmitters connected to its intended destinations.

When deriving a converse under the backhaul load (average
transmit set size) constraint, we combine the above two
concepts with combinatorial concentration inequalities that are
based on the pigeonhole principle and allow us to infer from
the backhaul load constraint facts about the existence of a
number of messages whose transmit set sizes can be bounded
by a maximum value, and have guarantees on that number.
This step simplifies the combinatorial aspect of the problem
by allowing us to restrict our attention to a narrower class of
possible message assignments.

IV. WYNER INTERFERENCE NETWORK

In [7], each transmit set size was bounded by a maximum
transmit set size constraint M , i.e., |Ti| ≤ M, ∀i ∈ [K]. The
DoF achieving coding scheme was then characterized for every
value of M . We now consider the problem with an average
transmit set size constraint B and show that the per user DoF
τ avg(B) can be achieved using a combination of the schemes
that are characterized as optimal in [7] for the cases of M =
2B−1 and M = 2B. We now understand from this result that
even though the maximum transmit set size constraint may not
reflect a physical constraint, the solutions in [7] provide a set
of tools that can be used to achieve the optimal per user DoF
value under the more natural constraint on the total backhaul
load that is considered in this work.

A. Example: B = 1

Before introducing the main result, we illustrate through a
simple example how the potential flexibility in the backhaul
design according to the constraint in (7) can offer DoF gains
over a traditional design where all messages are assigned to
the same number of transmitters. We know from [7] that an
asymptotic per user DoF greater than 2

3 cannot be achieved
through assigning each message to one transmitter. We now
show that τ avg(B = 1) ≥ 3

4 , by allowing few messages to be
available at more than one transmitter at the cost of not trans-
mitting other messages. Consider the following assignment of
the first four messages, T1 = {1, 2}, T2 = {2}, T3 = φ, and
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T4 = {3}. Note that the backhaul load constraint B = 1 is
respected, because

∑4
i=1 |Ti|

4 = 1. Message W1 is transmitted
through X1 to Y1 without interference. Since the channel state
information is known at the second transmitter, the transmit
beam for W1 at X2 can be designed to cancel the interference
caused by W1 at Y2, and then W2 can be transmitted through
X2 to Y2 without interference. Finally, W4 is transmitted
through X3 to Y4 without interference. It follows that the
sum DoF for the first four messages

∑4
i=1 di ≥ 3. Since

the fourth transmitter is inactive, the subnetwork consisting
of the first four users does not interfere with the rest of the
network, and hence, we can see that τ avg(B = 1) ≥ 3

4 through
a similar assignment of messages in each consecutive 4-user
subnetwork. We illustrate this example in Figure 3.

Fig. 3: Achieving 3
4 per user DoF with a backhaul load

constraint B = 1. The figure shows only signals corresponding
to the first subnetwork in a general K-user network. The
signals in the dashed boxes are deactivated.

B. Main Result

We now characterize the asymptotic per user DoF τ avg(B)
for any integer value of the backhaul load constraint.

Theorem 1: The asymptotic per user DoF τ avg(B) is given
by,

τ avg(B) =
4B − 1

4B
,∀B ∈ Z+. (12)

Proof: We provide the proof for the lower bound here;
the proof of the upper bound is presented in the appendix.
We treat the network as a set of subnetworks, each consisting
of consecutive 4B transceivers. The last transmitter of each
subnetwork is deactivated to eliminate inter-subnetwork inter-
ference. It then suffices to show that a DoF of 4B − 1 can
be achieved in each subnetwork. Without loss of generality,
consider the cluster of users with indices in the set [4B]. This
is illustrated for B = 2 in Figure 4. We define the following
subsets of [4B],

S1 = [2B],

S2 = {2B + 2, 2B + 3, . . . , 4B}.

We next show that each user in S1 ∪ S2 achieves one degree
of freedom, while message W2B+1 is not transmitted. Let the
message assignments be as follows,

Ti =

{
{i, i+ 1, . . . , 2B}, ∀i ∈ S1,

{2B + 1, 2B + 2, . . . , i− 1}, ∀i ∈ S2,

and note that
∑4B

i=1 |Ti|
4B = B, and hence, the constraint

in (7) is satisfied. Now, due to the availability of channel

state information at the transmitters, the transmit beams for
message Wi can be designed to cancel its effect at receivers
with indices in the set Ci, where,

Ci =

{
{i+ 1, i+ 2, . . . , 2B}, ∀i ∈ S1,

{2B + 2, 2B + 3, . . . , i− 1}, ∀i ∈ S2.

Note that both C2B and C2B+2 equal the empty set, as
both W2B and W2B+2 do not contribute to interfering signals
at receivers in the set YS1 ∪ YS2 . The above scheme for
B = 2 is illustrated in Figure 4. We conclude that each
receiver whose index is in the set S1 ∪ S2 suffers only from
Gaussian noise, thereby enjoying one degree of freedom. Since
|S1 ∪ S2| = 4B − 1, it follows that

∑4B
i=1 di ≥ 4B − 1.

Using a similar argument for each following subnetwork and
noting that the last transmitter in each subnetwork is inactive
to eliminate inter-subnetwork interference, we establish that
τ avg(B) ≥ 4B−1

4B , thereby proving the lower bound in Theo-
rem 1.

Fig. 4: Achieving 7
8 per user DoF with a backhaul load

constraint B = 2. The figure shows only signals corresponding
to the first subnetwork in a general K-user network. The
signals in the dashed boxes are deactivated.

We note that the local cooperation constraint of (8) is
satisfied, when we use the illustrated message assignment.
In other words, the network can be split into subnetworks,
each of size 4B, and the messages corresponding to users in a
subnetwork can only be assigned to transmitters with indices
in the same subnetwork. Few remarks are now in order.

Remark 1: The achievable scheme in the proof of Theorem
1 is a zero-forcing scheme. The upper bound in the proof
of Theorem 1 holds for any coding scheme that satisfies the
average backhaul load constraint B. Hence, the upper bound
also holds if we restrict ourselves to zero-forcing schemes.
Thus, we have

τ zf,avg(B) = τ avg(B) =
4B − 1

4B
,∀B ∈ Z+.

Remark 2: Although we assume availability of all channel
coefficients at every transmitter in the network, the achievable
schemes used require only local channel state information.

Remark 3: In the proposed achievable schemes, some mes-
sages are being sent interference free at the expense of other
messages not being transmitted. Fairness can be maintained
in the allocation of the available DoF over all users through
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fractional reuse by deactivating different sets of receivers in
different sessions, e.g., in different time or frequency slots.

Remark 4: The result of Theorem 1 can be achieved by a
convex combination of the schemes in [7] for M = 2B − 1
and M = 2B in the ratio 4B − 1 : 4B + 1. Hence, even
though the maximum transmit set size constraint that is used
in the analysis of [7] may not reflect a practical setting, but the
obtained optimal schemes can be used to obtain the optimal
scheme in the considered setting, where the more practical
backhaul load constraint is considered.

Remark 5: In a locally connected network with L ≥ 2,
the per user DoF for the case of no cooperation (M = 1) is
upper bounded by 1

2 . Further, with restriction to interference
avoidance schemes, the DoF is upper bounded by 2

2+L (≤ 1
2 )

[7, Theorem 4]. Similar to the proof of Theorem 1, a per
user DoF greater than or equal to 1

2 can be achieved for L =
2, . . . , 6 by a convex combination of the schemes described
in [7] under the maximum transmit set constraint M using
simple zero-forcing schemes, without the need for additional
backhaul load, i.e., B = 1.

Remark 6: The coding scheme used to prove the lower
bound part of Theorem 1 is similar to the scheme introduced
in [5], as it relies on deactivating appropriately selected
transmitters to maximize the number of interference free
links. Mitigating interference among the remaining users is
carried out through dedicating each assignment of a message
to a transmitter either for message delivery at its intended
destination, or for cancelling the message’s interference at
a single unintended destination. However, the scheme in [5]
relies on the dirty paper coding scheme introduced in [10],
while here we are using zero-forcing transmit beamforming.
We note that replacing zero-forcing transmit beamforming
with dirty paper coding in the presented scheme would lead
to the same DoF result.

V. CELLULAR NETWORK

We have characterized the per user DoF for Wyner’s linear
interference network under the average backhaul load con-
straint B. In this section, we investigate the per user DoF for
the hexagonal sectored cellular model introduced in Section
II-B, using insights obtained from the analysis of Wyner’s
model. Our goal is to highlight the advantage of cooperative
transmission that is based on flexible cell associations for
cellular networks, by first showing that the asymptotic per
user DoF is at most 1

2 for the case when each message can
be available at a single transmitter. Further, we show for this
case that interference avoidance schemes can only be used to
achieve an asymptotic per user DoF of at most 2

5 . On the other
hand, when cooperative transmission is allowed, but the overall
load on the backhaul is not increased (B = 1), interference
avoidance schemes can be used to achieve the 1

2 asymptotic
per user DoF value.

We first impose the maximum transmit set size constraint
of M = 1 in the network, i.e., a message of a cell edge
mobile receiver can be assigned to any single basestation
transmitter, thus leading to a flexible cell association in the
cellular downlink.

Theorem 2: For the considered hexagonal cellular net-
work model, the following bound holds for the case of no-
cooperation,

τc(M = 1) ≤ 1

2
.

Proof: The proof is available in Section V-B.
This shows that using a traditional approach for interference

management, the maximum asymptotic per user DoF for the
considered hexagonal cellular network model is 1

2 . Further, the
only known way this DoF value can be approached is in the
limit as the length of symbol extension goes to infinity as in
the asymptotic interference alignment scheme of [8].

A. Zero-forcing schemes

In this section, we focus on cooperative zero-forcing, and
interference avoidance which is a special case of zero-forcing
schemes for M = 1. We now introduce some additional
notation. For each node i ∈ [K], let ri indicate whether
receiver i is active or not, i.e., ri = 1{Receiver i is active},
where 1{x} is defined as,

1{x} =

{
1, if x is true,
0, otherwise.

Similarly, for each node i ∈ [K], let ti indicate whether
transmitter i is active or not, i.e., ti = 1{Transmitter i is
active}. We note that the sum DoF in the network is upper
bounded by

∑
i∈[K] ri. Consider the adjacency matrix A of the

connectivity graph G of the network. The Edmond’s matrix D
is defined as

Dij =

{
xij , if Aij = 1,

0, otherwise,

ti 1{Transmitter i is active}
ri 1{Receiver i is active}
Ni Set of nodes adjacent to node i including node i
Tj Set of transmitters containing message Wj

ρj Fraction of users with messages available at exactly j transmitters
VS Set of active receivers connected to transmitters in S
DA,B Edmond’s matrix for bipartite graph with A and B

TABLE I: Summary of notation used for zero-forcing bounds.

where xij are indeterminates. We note that a bipartite graph
G has a perfect matching if and only if the polynomial defined
by the determinant det(D) is not identically zero i.e., D
has full rank. Let DA,B denote the Edmond’s matrix for the
bipartite graph with A and B as the two partite sets, and any
pair of vertices that have the same index are connected in the
bipartite graph.

For any set S ⊆ [K], we define VS as the set of indices of
the active receivers connected to the transmitters with indices
in S. Then VS = {k : k ∈ Ni, i ∈ S and I(Yk;Wk) > 0}.

We need the following lemma, which is an extension of a
lemma from [7] for zero-forcing schemes.

Lemma 2: Consider any zero-forcing scheme. For any
message Wi, the number of active receivers connected to at
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least one transmitter carrying the message is no greater than
the number of transmitters carrying the message,

|VTi | ≤ |Ti|. (13)

Furthermore, the following has to hold.

rank(DTi,VTi
) = |VTi |. (14)

Proof: We note that (14) implies (13), but we include both
in the theorem statement, and provide the proof of (13) first
for clarity. The statement of (13) is the same as [7, Lemma
3], but we briefly explain the proof here for completeness.
Since we impose the constraint I(Wi;Yj) = 0,∀j ∈ VTi , the
interference seen at all receivers in VTi has to be canceled.
Also, since the probability of a zero Lebesgue measure set of
channel realizations is zero, the |Ti| transmit signals carrying
Wi cannot be designed to cancel Wi at more than |Ti| − 1
receivers for almost all channel realizations. This implies (13).

Now, we note that (14) is equivalent to saying that there
exists a matching between transmitters carrying Wi and active
receivers connected to transmitters carrying Wi, and this
matching covers all such active receivers. If this is not true
while (13) is satisfied, then it follows from Hall’s Marriage
Theorem [29] that there has to be subsets T̃ ⊂ Ti, Ṽ ⊂ VTi
such that |T̃ | < |Ṽ| and any transmitter whose index is
in Ti\T̃ is not connected to any receiver in Ṽ . Hence, the
above argument that we used to reach (13) would apply if we
consider the sets T̃ and Ṽ as the set of transmitters carrying Wi

and the set of active receivers connected to them, respectively.
It hence follows that (14) holds, and the proof is thus complete.

We now characterize the per user DoF for any zero-forcing
scheme.

Theorem 3: For any K-user hexagonal cellular network,
the maximum achievable zero-forcing DoF under an average
backhaul load constraint, ηavg,zf

c (K,B) is the solution to the
following optimization problem

max
{Tj},{dij}i,j∈[K]

∑
i∈[K]

∑
j∈[K]

dij , (15)

s.t. dij ∈ {0, 1},∀i, j ∈ [K], (16)
dij = 0, if i /∈ Nj or j /∈ Ni,∀i, j ∈ [K],

(17)∑
k∈Nj

dkj ≤ 1,∀j ∈ [K], (18)

∑
k∈Nj

djk ≤ 1,∀j ∈ [K], (19)

dij ≤ 1{i ∈ Tj},∀i, j ∈ [K], (20)
1

K

∑
j

|Tj | ≤ B, (21)

rank(DTj ,ṼTj
) = |ṼTj |,∀j ∈ [K], (22)

where for any set S ⊆ [K], ṼS = {k : k ∈ Ni, i ∈
S and 1{

∑
w∈Nk

dwk = 1}}.
Proof:

We first show that if the constraints in (16) - (22) are
satisfied, then there exists a message assignment satisfy-
ing the average backhaul load constraint B, and a zero-
forcing scheme based on this assignment that achieves a per
user DoF of

∑
i∈[K]

∑
j∈[K] dij . It would follow then that

ηavg,zf
c (K,B) ≥

∑
i∈[K]

∑
j∈[K] dij , and hence the direct part

of the theorem would be proved. It follows from (21) that
the sets {Tj}j∈[K] are transmit sets satisfying the average
backhaul load constraint. We now construct the zero-forcing
scheme. If dij = 1, then we know from (20) that i ∈ Tj
and we also know from (17) that transmitter j is connected
to receiver i. We hence construct the transmit signal Xj,i

according to an optimal point-to-point code over an AWGN
channel (see e.g., [30]) to deliver Wi to its destination. We
know from (18) that Xj would not be used to deliver any
other message than Wi. Hence, we only need to show that
interference caused by any such message Wi at any active
receiver can be canceled. From (22), we know that there is a
matching between transmitters with indices in Ti and receivers
with indices in VTi that covers all such receivers. We hence
assign a unique transmitter with an index t ∈ Ti\{j} to each
receiver with an index r ∈ VTi\{i}, and design the transmit
signal Xt,i to cancel the interference of Wi at Yr. Finally,
it follows from (19) that transmitter j is the only transmitter
connected to receiver i, and used to deliver Wi. It follows that
we can achieve one degree of freedom for each binary variable
dij , and hence, ηavg,zf

c (K,B) is lower bounded by the solution
of the optimization problem in the theorem statement.

We now describe the converse proof. Consider the optimal
zero-forcing scheme achieving ηavg,zf

c (K,B). We show that
there is a choice of {Tj}, {dij}i,j∈[K] satisfying (16)-(22) such
that

∑
i∈[K]

∑
j∈[K] dij ≥ η

avg,zf
c (K,B). Since the considered

zero-forcing scheme satisfies the average backhaul load con-
straint of B, then (21) follows by setting {Tj} to the be the set
of transmit sets of the considered scheme. Since we achieve
zero degrees of freedom for every message whose receiver is
inactive, the number of active receivers is at least the achieved
degrees of freedom. We further know that since the definition
of zero-forcing schemes in Section II-E ensures the creation
of a point-to-point interference-free communication link for
each active receiver, then there has to be an optimal zero-
forcing scheme achieving ηavg,zf

c (K,B), where we achieve
one degree of freedom for each message corresponding to an
active receiver; we assume that the considered scheme satisfies
this property. For each active receiver with an index i, we
can hence assign a unique active transmitter with an index
j ∈ Ti ∩ Ni, such that I(Wi;Xj,i) > 0. If transmitter i is
assigned to receiver j, then we set dij = 1. Otherwise, we
set dij = 0. Thus, we have (16). Constraints (17) and (20)
hold because for any achievable scheme, a message can be
sent by a transmitter to a receiver only if there is a channel
between them, and the message has to be available at the
transmitter. Each message corresponds to at most one unique
transmitter, and each transmitter corresponds to at most one
unique message, and hence we have (18) and (19). Further, it
follows that for any set S ⊆ [K], ṼS = VS . We then have that
(22) follows from Lemma 2, and the converse proof is thus
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complete.

The optimization problem in Theorem 3 is difficult to
solve numerically, because we are interested in the asymptotic
behavior with large K, and the optimization is over a large
number of message assignments, without an explicit bound
on the maximum transmit set size constraint M . If a message
assigned to n transmitters where 0 ≤ n ≤ K, then we have(
K
n

)
possibilities to choose the transmit set, which is of the

order O(min(Kn,KK−n)). Since we consider a constraint
on the average backhaul load and not the maximum transmit
size, n can be O(K) for a particular message. Thus, the
computational complexity needed to just consider all message
assignments is O(K

K
2 ), i.e., exponential in K.2

Hence, instead of trying to solve the optimization problem
numerically, we focus on finding upper and lower bounds on
the per user DoF.

Interference avoidance: We now restrict ourselves to
M = 1, and the class of interference avoidance schemes,
which is a special case of zero-forcing schemes when M = 1,
and characterize lower and upper bounds for the maximum
achievable per user DoF.

Theorem 4: The following bounds hold under restriction to
interference avoidance schemes for the asymptotic per user
DoF of hexagonal cellular networks with no cooperation,

1

3
≤ τ zf

c (M = 1) ≤ 2

5
. (23)

Proof: The proof is available in Section V-C.
Zero-forcing lower bounds: We now allow for cooperation

in the network and show through the results in Theorem 5
and Theorem 6, how a smart choice for assigning messages
to transmitters, aided by cooperative transmission, can achieve
scalable DoF gains through a zero-forcing coding scheme. For
the achievable scheme in Theorem 5, this is done by treating
the hexagonal network as interfering locally connected linear
networks with connectivity parameter L = 2, while the scheme
in Theorem 6 considers a division of the network that does not
involve linear networks. We note that it follows from Theorem
5 that we can achieve a per user DoF of 1

2 without requiring an
extra load on the backhaul (B = 1), which is greater than the
2
5 upper bound in Theorem 4 for the case without cooperation.

Theorem 5: Under an integer backhaul load constraint B, the
following lower bound holds for the asymptotic per user DoF
of the hexagonal cellular network using zero-forcing schemes,

τ avg,zf
c (B) ≥ 2B

3B + 1
, ∀B ∈ Z+. (24)

Proof:
Consider a division of the network formed by deactivating

the nodes in the set Ωsq as shown in Figure 5a. We note
that the remaining network consists of non-interfering locally
connected subnetworks with connectivity parameter L = 2.
In each subnetwork, we use the scheme in [7] for M = 3B

2If we restrict our attention to the irreducible message assignments defined
in [7, Section V-D], then the complexity can be further reduced from
O

(
K

K
2

)
to O

(
c
K
2

)
, where c is a constant that depends on the number

of transmitters connected to a single receiver.

that considers a division of the subnetwork into non-interfering
blocks of 6B + 2 nodes. The message assignment is shown
in Figure 5b for B = 1. This scheme achieves a per user
DoF of M

(M+1) with B = M
2 in the locally connected linear

subnetwork. Since the linear subnetworks only account for
2
3 of the network, we obtain a per user DoF of 2B

3B+1 with
B = M

3 in the entire network.

In Theorem 5, τ avg,zf
c (B) → 2

3 as B → ∞. We now
consider achievable schemes which use a different division
of the network and show that a per user DoF equal to 2

3 can
be achieved with B = 4 with τ avg,zf

c (B) → 5
6 as B → ∞.

Theorem 6: Under the average backhaul load constraint B,
where (5�+6)2

6�+9 ≤ B < (5(�+1)+6)2

6(�+1)+9 , for some � ∈ N ∪ {0}, the
following lower bound holds for the asymptotic per user DoF
of the hexagonal cellular network using zero-forcing schemes,

τ avg,zf(B) ≥ 5�+ 6

6�+ 9
. (25)

Proof: The proof is available in Section V-D.
The achievable values for the per user DoF in Theorems 5

and 6 are compared in Figure 6.

Fig. 5: (a) Division of cellular network into subnetworks by
deactivating nodes in Ωsq , and (b) the message assignment
in each subnetwork for B = 1. The unshaded nodes in (a)
and the transmitters and receivers in the dashed boxes in (b)
indicate that they are inactive.

Zero-forcing upper bound: Let Kin denote the set of
internal nodes i.e., nodes which have five neighbors each, and
Kex denote the set of external nodes i.e., nodes which have
less than five neighbors.

We now present the following upper bound on the per user
DoF under the average backhaul load constraint B.

Theorem 7: Under the average backhaul load constraint
B, where B < 5, the following upper bound holds for the
asymptotic per user DoF under restriction to zero-forcing
schemes,

τ avg,zf
c (B) ≤ 1

2
+

B

10
. (26)

Proof: Consider any message assignment satisfying the
average backhaul load constraint of B, and a zero-forcing
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Fig. 6: Comparison of the lower bounds on the asymptotic per
user DoF τ avg,zf

c (B).

Fig. 7: The figure illustrates the neighboring set Nj for j = 2.

scheme. Let ρj denote the fraction of users whose messages
are available at exactly j transmitters, where 0 ≤ j ≤ K. We
have

∑K
i=0 ρi = 1, and from the backhaul load constraint B,

we have
∑K

i=1 iρi ≤ B. This gives us

K∑
i=2

(i− 1)ρi ≤ (B − 1) + ρ0. (27)

We also note that for any given message assignment, the per
user DoF is upper bounded by 1− ρ0.

Consider the optimal zero-forcing scheme. Since we achieve
zero degrees of freedom for every message whose receiver is
inactive, the number of active receivers is at least the achieved
degrees of freedom. We further know that since the definition
of zero-forcing schemes in Section II-E ensures the creation of
a point-to-point interference-free communication link for each
active receiver, then there has to be an optimal zero-forcing
scheme where we achieve one degree of freedom for each
message corresponding to an active receiver; we assume that
the considered scheme satisfies this property. For each active
receiver with an index i, we can hence assign a unique active
transmitter with an index j ∈ Ti∩Ni, such that I(Wi;Xj,i) >
0.

Consider an active transmitter j that is uniquely assigned to
an active receiver i such that |Ti| = m for some 1 ≤ m ≤ 4.
In the set Nj (shown in Figure 7), where Nj denotes the set of
five nodes adjacent to node j including node j, from Lemma
2 we have ∑

k∈Nj

rk ≤ m, 1 ≤ m ≤ 4. (28)

Note that for any transmitter, the number of receivers in
the neighboring set is five, and hence the number of active
receivers is trivially upper bounded by five.

By summing the number of active receivers
(∑

k∈Nj
rk

)

in the neighboring set Nj over all the transmitters j ∈ [K],
we obtain the following.

5
∑

i∈Kin
ri + c

∑
i∈Kex

ri

K

(a)

≤
4∑

i=1

iρi +

K∑
i=5

5ρi + 5ρ0 (29)

(b)
= 1 +

4∑
i=2

(i− 1)ρi +

K∑
i=5

4ρi + 4ρ0 (30)

(c)

≤ 1 + (B − 1) + ρ0 + 4ρ0, (31)

where c < 5 is a positive constant, (a) follows from (28), and
(b) follows since

∑K
i=0 ρi = 1. Finally, (c) follows because

(27) implies that
∑4

i=2(i − 1)ρi +
∑K

i=5 4ρi ≤ (B − 1) +
ρ0. Note that each node in the interior of the graph has five
neighbors, and hence appears five times on the left hand side
of the inequality (a).

We have |Kex| = O(
√
K) which gives us

∑
j∈Kex

rj

K =
O(

√
K)

K → 0 as K → ∞. Thus, we have τ avg,zf
c (B) =

limK→∞

∑
i∈Kin

ri

K ≤ B+5ρ0

5 . It follows that for any message
assignment, the per user DoF is upper bounded by min
{1− ρ0,

B
5 + ρ0} which gives us τ avg,zf

c (B) ≤ 1
2 + B

10 .
We note that while using Lemma 2 to upper bound the per

user DoF in the network, we rely on the unique assignment
of transmitters to active receivers. If a message is assigned
to a unique transmitter, we only have to consider the active
receivers among the neighbors of that particular transmitter.
If message is assigned to multiple transmitters, we need to
consider the active receivers among the neighbors of all of
the transmitters, and the above proof procedure may not lead
to a non-trivial upper bound. Thus, we consider the optimal
scheme in which each message can be assigned to a unique
transmitter.

We note that the bound in Theorem 7 may not be tight
and is useful only for B < 5. The comparison between
the upper and lower bounds for the per user DoF under
zero-forcing schemes is shown in Figure 8. We believe that
finding a general tight upper bound is difficult, especially
for higher values of B, due to the combinatorial search for
optimal message assignments as well as the rather complex
connectivity structure of hexagonal networks.

B. Proof of Theorem 2

In this section, before presenting the proof of Theorem 2,
we first provide a lemma from [7] for the case of M = 1 that
serves as a building block for the proof of Theorem 2, and
then present a toy network for which we show that the per
user DoF is upper bounded by 1

2 in order to gain some insight
into the proof of τc(M = 1) ≤ 1

2 .
We present the following lemma for the case of M = 1

which gives a relation between the DoF of the message being
delivered by a transmitter and the DoF corresponding to the
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Fig. 8: Comparison of upper and lower bounds on the asymp-
totic per user DoF τ avg,zf

c (B).

messages of the users connected to that transmitter. Here, Rj

denotes the set of receivers that are connected to transmitter j.
The lemma is an extension of the result in [23] which shows
that the maximum DoF for a network with two transmitter-
receiver pairs is unity.

Lemma 3 ([7, Lemma 5]): If Ti = {Xj}, then di + dk ≤ 1,
∀k ∈ Rj .

Each transmitter-receiver pair in the network is referred to
as a node. If a and b are two nodes such that they are connected
in the connectivity graph, and the transmitter of node a has
the message for node b, i.e., a ∈ Tb, we denote this by a → b.

Fig. 9: An example cellular network with nine transmitter-
receiver pairs. The messages of b3, b2, a1, c3 can be assigned
to any transmitter.

Illustrative Example: We consider the network and the
message assignment shown in Figure 9 and show that the
per user DoF in the network does not exceed 1

2 for this
particular message assignment. Note that the result holds for
any assignment of the messages b3, b2, a1, c3. Since a1 → a2,
we have da1+da2 ≤ 1 from Lemma 3. Similarly, b3 → b1 and
c3 → c2, we have db1+db3 ≤ 1 and dc2+dc3 ≤ 1, respectively
from Lemma 3. We now show that da3

+ db2 + dc1 ≤ 3
2 ,

and hence the per user DoF in this network is upper bounded
by 1

2 . Note that Tc1 = {c1} and hence db2 + dc1 ≤ 1 and
da3

+ dc1 ≤ 1. We also have b2 → a3 and from Lemma 3,
db2 + da3 ≤ 1. Thus da3 + db2 + dc1 ≤ 3

2 and the per user
DoF in this network is upper bounded by 1

2 .
We now proceed with the proof of Theorem 2.
Consider the division of the network into triangles D =

{∆(z) : z ∈ Ωcir} as shown in Figure 10.

Fig. 10: Division of the network into triangles.

For any z ∈ Ωcir, triangle ∆(z) consists of vertices z, z +
ω, z+ω+1. Note that each triangle contains one vertex from
each of the cosets, Ωcir, Ωsq and Ωdia.

We refer to a node as a self serving node if the message
to the receiver corresponding to the node is assigned to its
own transmitter. We refer to a node as an outsider node if
no message within its triangle is assigned to its transmitter,
and also its message is not assigned within its triangle. Let O
denote the set of outsider nodes given by,

O = {i ∈ ∆(z) : ∆(z) ⊆ D, Ti 
⊆ ∆(z), Tj 
= {i}, ∀j ∈ ∆(z)}.

Without loss of generality, we assume that |Tj | = 1, ∀j ∈
[K]. Note that if the message of a particular receiver is not
assigned to any transmitter, then the per user DoF cannot be
increased if we assume that the message is assigned to any of
the transmitters. We say that a triangle is in state Si if exactly
i of the messages of the triangle are assigned to transmitters
within the triangle, 0 ≤ i ≤ 3. Let Si denote the set of all
triangles in state Si.

Si = {∆(z) ⊆ D : {Tz⊆∆(z)}+

{Tz+ω⊆∆(z)} + {Tz+ω+1⊆∆(z)} = i}. (32)

Let SS1 denote the set of all self serving nodes belonging to
triangles in state S1. More precisely,

SS1 = {z : ∆(z) ∈ S1, Tz = {z}}.

Note that every triangle in state S0 consists of three outsider
nodes, every triangle in state S1 has at least one outsider node,
and a triangle in state S2 may contain an outsider node.

We also define a middle triangle, as a triangle that is
formed by the connected nodes of three different neighboring
triangles. Middle triangles are triangles of the form {∆(z) :
z ∈ Ωdia}. We say that a triangle is associated with a node
if the node belongs to the triangle. If z ∈ Ωdia, the middle
triangle associated with vertex z is ∆(z). If z ∈ Ωsq , the
middle triangle associated with vertex z is ∆(z − ω). If
z ∈ Ωcir, the middle triangle associated with vertex z is
∆(z−ω−1). For any vertex a, we denote the middle triangle
associated with it as Ma. Note that each vertex is associated
with exactly one main triangle and one middle triangle. We
note that the definition of an outsider node is with respect to
the main triangle associated with the node and not the middle
triangle associated with it.

Let τS denote the per user DoF for the messages with
indices in some set S . We present Algorithm 1, to define
a strategy for including nodes in a set S , such that at any
stage, the per user DoF of the nodes already included in S
is upper bounded by 1

2 i.e., τS ≤ 1
2 . Note that at the end of
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Algorithm 1
1: Initialize S ← φ
2: while SS1\S 6= φ do
3: for a ∈ SS1 where a ∈ ∆(z) for some z ∈ Ωcir do
4: S ← S ∪ {a, j} where j = min

x∈∆(z)\{a}
<(x)

5: end for
6: end while
7: while O\S 6= φ do
8: for a ∈ O\S where a ∈ ∆(z) for some z ∈ Ωcir and

the associated middle triangle Ma contains nodes b and c
apart from a. do

9: if Ma\S contains 3 outsider nodes then
10: S ← S ∪ {a, b, c}
11: else if Ma\S contains 2 outsider nodes a and j

where j ∈ {b, c} then
12: S ← S ∪ {a, j}
13: else if Ma\S contains a as the only outsider node

and message for a is assigned within Ma\S at j ∈ {b, c},
i.e., j → a then

14: S ← S ∪ {a, j}
15: else if Ma\S contains a as the only outsider node

and message for a is not assigned within Ma\S then
16: S ← S ∪ {a}
17: end if
18: end for
19: end while
20: while S1 ∪ S2 ∪ S3\S 6= φ do
21: for triangle T ∈ S1 ∪ S2 ∪ S3 do
22: S ← S ∪ T\S
23: end for
24: end while

the algorithm, all nodes are included in S. To facilitate the
understanding of Algorithm 1, we observe the following:

• If a ∈ SS1, then a is a self-serving node and since the
main triangle T associated with it is in state S1, the other
nodes in the triangle b, c are outsider nodes. We have
da + db ≤ 1 and da + dc ≤ 1, according to Lemma
3. Without loss of generality, we include the node with
minimum real value among the two nodes b, c, and node
a in the set S as in line 4.

• If Ma\S where Ma is a middle triangle, contains 3
outsider nodes, we include the nodes of that middle
triangle a, b, c in the set S as in line 10. If Ma\S contains
only two outsider nodes a, j, where j ∈ {b, c}, we include
them in the set S as in line 12.
We now show that if nodes are added to the set S
according to line 10 or line 12, then the per user DoF of
the nodes included in S is upper bounded by 1

2 . In any
middle triangle with nodes a, b, c, containing at least two
outsider nodes, we show that da + db ≤ 1, db + dc ≤ 1,
da + dc ≤ 1 and hence da + db + dc ≤ 3

2 . Without loss
of generality, let the two outsider nodes be a and b. If
the nodes a, b are added according to line 12, it suffices
to show that da + db ≤ 1 whereas if the nodes a, b, c
are added according to line 10, we need to show that

da + db + dc ≤ 3
2 . For node a, we have the following

possibilities.
– The message Wa is not available at either b or
c. From our assumption, Wa is not available at
neighboring nodes outside the triangle. Hence, Wa

cannot be transmitted and we have da = 0.
– The message Wa is available at one vertex in b or c.

From lemma 3, we have da+dc ≤ 1 and da+db ≤ 1.
Similarly, for node b, we have db = 0 if the message
Wb is not available at either a or c, or db + dc ≤ 1 and
db + da ≤ 1 if the message Wb is available at one vertex
in a or c. This gives us da + db + dc ≤ 3

2 .
Thus, for any middle triangle with nodes a, b, c with at
least two outsider nodes, we have da + db + dc ≤ 3

2 .
In addition, we also have da + db ≤ 1, db + dc ≤ 1
and da + dc ≤ 1 as discussed above. Although for any
middle triangle with at least two outsider nodes, the per
user DoF is upper bounded by 1

2 , we do not include the
third node in the set S in line 12 in order to simplify the
cases considered later.

• Let a be the only outsider node in Ma\S, where Ma

is the middle triangle. If its message Wa is available at
neighboring node j ∈Ma\S where j ∈ {b, c}, i.e., j →
a, then we have dj + da ≤ 1 and include nodes a, j in
the set S as in line 14.

• In the middle triangle Ma, if Wa is not assigned within
nodes b, c, we have da = 0 and we include a in the set
S as in line 16.
We now consider the case where the message Wa is
assigned to a node in the set Ma ∩ S and show that
τS∪{a} ≤ 1

2 when we add only the node a in the set S.
Suppose j → a where j ∈ {b, c} but j ∈ S. We consider
the case j = c or c → a shown in Figure 11. So far,
we have only added all outsider nodes in a few middle
triangles and nodes from self-serving triangles. Hence this
is possible only when j was included in S according to
line 4 in the algorithm. Without loss of generality, let
j be the self serving node and m be the outsider node
which was included in line 4. We have dj + da ≤ 1,
dm + da ≤ 1 and we have dj + dm ≤ 1 from before.
Note that we have dm + da ≤ 1 from Theorem 1 since
Ta = {j} and m ∈ Rj . Hence a can be included without
any increase in the per user DoF. The same argument
holds even if j was the outsider node and m the self
serving node included in line 4. Note that j and m could
both contain messages for the only remaining outsider
nodes a and k in their respective middle triangles. In that
case we see that dj + da ≤ 1, dk + dm ≤ 1 and τS ≤ 1

2
when k is added later according to line 16.

Consider all triangles in S1 ∪ S2 ∪ S3. If T denotes such a
triangle with nodes a, b, c, let t denote the set of nodes in T
but not included in S by line 19. For triangles in S2,S3 with
nodes a, b, c, we have da + db ≤ 1, db + dc ≤ 1, da + dc ≤ 1
and hence da + db + dc ≤ 3

2 from Lemma 3. Consider the
following cases for any triangle T that has one or more nodes
in the set t = T\S:

• The set t contains only one node a. We first find two
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Fig. 11: We illustrate the case when a is the only outsider
node in its middle triangle and its message is available at c
where c ∈ S. The node c is a self-serving node and node m
has been included according to line 4. The node m contains
the message for the only outsider node k in the middle triangle
containing m and k.

nodes b, j where b → j that were previously added to
S according to line 14 and show that dj + da + db ≤ 3

2
holds. We then show that nodes b and j do not appear
in any other such combination, and hence τS ≤ 1

2 after
adding a to S .
Note that by definition, a triangle in state S2 or S3 has
at least two messages assigned within the triangle and
thus has at least two non-outsider nodes. Hence, if T ∈
S2∪S3, there exists at least one node say b such that b is
a non-outsider node and da + db ≤ 1. We have the same
conclusion if T ∈ S1, since all the self serving nodes and
outsider nodes have already been included in S . Hence,
it is either the case that a → b or b → a.
Since b was a non-outsider node that was previously
considered, it must have been added according to line
14. Hence, there is an assignment b → j where j is an
outsider node in the middle triangle Mb, j ∈ {a, c} and
db + dj ≤ 1 was considered. We also have da + db ≤ 1
and da + dj ≤ 1 from Lemma 3 since Tj = {b} and
a ∈ Rb. Hence we have dj + da + db ≤ 3

2 .
Note that neither j nor b is part of any other such
combination. This is true for b because all the nodes in
its triangle have already been considered. Since b → j
and j has been added to the set S according to line 14,
outsider node j cannot be part of any such combination
that does not involve b. Thus, we include t = {a} in the
set S as in line 22 while maintaining τS ≤ 1

2 .
• The set t contains two nodes say a, b. If T ∈ S1, then

either a → b or b → a and we have da + db ≤ 1. If
T ∈ S2 ∪ S3, we have da + db ≤ 1 and we include
t = {a, b} in the set S as in line 22.

• The set t contains three nodes a, b, c. This can happen
only when T ∈ S2 ∪S3. In this case, we have da + db +
dc ≤ 3

2 and we include t = {a, b, c} in the set S as in
line 22.

C. Proof of Theorem 4

Lower Bound: Consider the division of the network into
triangles D = {∆(z) : z ∈ Ωcir} as shown in Figure 12. For
any z ∈ Ωcir, triangle ∆(z) consists of vertices z, z + ω, z +
ω + 1. By deactivating the nodes {z : z ∈ Ωsqr ∪ Ωdia}, i.e.,
the square and diamond nodes in each triangle, the network

(a) (b)

Fig. 12: Division of network into triangular subnetworks in
(a). In (b), we note that by deactivating square and diamond
nodes, a per user DoF of 1

3 is achieved.

decomposes into K
3 isolated nodes {z : z ∈ Ωcir} that each

achieves a DoF of one, thus achieving a per user DoF of 1
3 in

the network.
Upper Bound: For each node j ∈ Kin in the interior of

the network, consider the set of neighbors Nj . This results in
the block of five nodes as shown in Figure 7. For any such j,
we show that ∑

i∈Nj

{ri + ti} ≤ 4.

For any zero-forcing scheme, we first note that among any
two adjacent nodes i, j,

ri + ti + rj + tj ≤ 2,

i.e., among any two adjacent nodes, at least two transmitters
or receivers are inactive. This holds because if one of the
receivers is active, one transmitter has to be inactive among
the nodes {i, j} and if one of the transmitters is active, one
of the receivers among the nodes {i, j} has to be inactive.

We further note that any fully connected triangle in the
network is in one of the following states:

State 0 (inactive triangle): All transmitters and receivers in
the triangle are inactive.

State 1 (self-serving triangle): Exactly one transmitter in
the triangle sends a message to exactly one receiver within
the triangle. None of the other transmitters or receivers can be
active in this triangle.

State 2 (serving triangle): At least one transmitter in the
triangle is activated to serve a receiver in another triangle and
there are no active receivers in the considered triangle.

State 3 (served triangle): At least one receiver in the
triangle is activated as it is being served by a transmitter in
another triangle and there are no active transmitters within the
considered triangle.

Without loss of generality we now consider j = 2 and
the block of five nodes shown in Figure 7 and show that∑

i∈N2
{ri + ti} ≤ 4. We show that at least six transmitters

or receivers must be inactive. Consider the triangle formed by
nodes {1, 2, 4}:

• If the triangle is in State 0 then all three transmitters and
receivers are inactive and we are done.

• If the triangle is in State 1, then among the three nodes,
there is at least one inactive node. Among the remaining
adjacent nodes in the triangle at least two of the trans-
mitters or receivers are inactive. Among the nodes {3, 5},
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at least two of the transmitters or receivers are inactive.
Thus in the block of five nodes,

∑
i∈N2

{ri + ti} ≤ 4.
• If the triangle is in State 2, then all three receivers in

the triangle are inactive. Suppose all three transmitters in
the triangle are active. Then one receiver among nodes
{3, 5} must be receiving message from transmitter 2 and
the remaining node among {3, 5} is inactive. Thus at least
six transmitters or receivers are inactive. If on the other
hand, at least one transmitter in the triangle is inactive,
then we have three inactive receivers and one inactive
transmitter within the triangle. Among the nodes {3, 5},
at least two of the transmitters or receivers are inactive.
Thus in the block of five nodes,

∑
i∈N2

{ri + ti} ≤ 4.
• If the triangle is in State 3, the discussion follows in

a similar fashion to the State 2 case with transmitters
instead of receivers.

Summing this up over all K users, for some constant c < 5,
we have

5
∑

i∈Kin

{ri + ti}+ c
∑

j∈Kex

{rj + tj} ≤ 4K.

We have |Kex| = O(
√
K) which gives us

∑
j∈Kex

{rj + tj}
K

=
O(

√
K)

K
→ 0 as K → ∞.

Thus, we have

τ avg,zf
c (M = 1) ≤ limK→∞

∑
i∈Kin

ri + ti

2K
,

which gives us per user DoF less than or equal to 2
5 .

D. Proof of Theorem 6

We first show that under the maximum transmit set size
constraint M defined in (6), where 5(� − 1) + 6 < M ≤
5� + 6, for some � ∈ N ∪ {0}, a per user DoF of M

6�+9 can
be achieved with an average backhaul load B = M2

6�+9 and the
proof follows.

For any �, consider the division of the network into blocks
of 6�+9 nodes by deactivating the nodes in the set D�, defined
as,

D� =


∆(z)

⋃
m∈[�]

{z −
√
3mı} : z ∈ G


 ,

where G = {z : z = (32k+3p) + ı((2�+3)
√
3
2 k), ∀k, p ∈ },

where ı =
√
−1.

We first prove the result for 1 < M ≤ 6 for which � = 0
and then extend this scheme to higher values of M which
correspond to higher values of �. By deactivating nodes in D0

the network decomposes into non-interfering blocks containing
six nodes each. In the block of six nodes, if M messages are
each available at M transmitters, then by the use of simple
linear transmit beamforming, we obtain a sum DoF of M thus
giving us a per user DoF of M

9 . Note that for this scheme, the
average backhaul load on the network B = M2

9 .
For a higher M such that 5(�− 1) + 6 < M ≤ 5�+6 with

� ≥ 1, consider subnetworks of size 9 + 6�. The case � = 1
is shown in the Figure 13(b). By deactivating the nodes in D�

Fig. 13: Division of cellular network into subnetworks. In (a),
� = 0 and each block has six nodes each. In (b), � = 1 and
each block has a sub-block containing nine nodes and a sub-
block containing six nodes below it. The nodes in the triangles
denote the deactivated nodes in the network.

the network decomposes into non-interfering blocks containing
5� + 6 nodes each. In each non-interfering block, we have a
sub-block of six nodes as in the previous case and � sub-blocks
containing five nodes each. If in each block, M messages are
each available at M transmitters, then by the use of simple
linear transmit beamforming, we obtain a sum DoF of M in
each block of 6�+ 9 nodes. Thus a per user DoF of M

6�+9 can
be attained with an average backhaul load of M2

6�+9 .

VI. CONCLUSION

We studied the potential gains offered by cooperative
transmission in the downlink of cellular networks, under an
average backhaul load constraint. We first characterized the
asymptotic per user DoF in the linear interference network and
showed that the optimal coding scheme relies only on zero-
forcing transmit beamforming. The optimal schemes rely on
an asymmetric assignment of messages, such that the backhaul
constraint is satisfied, where some messages are assigned to
more than B transmitters, others are assigned to fewer than
B transmitters, and the remaining messages are not assigned
at all. Thus, the average backhaul constraint allows for higher
degree of freedom gains compared to the maximum transmit
set size constraint and hence we have τ avg(B) > τ(M). We
then extended these results to the more general and practically
relevant hexagonal sectored cellular networks. We showed that
DoF gains can be achieved using cooperative transmission
under the average backhaul load constraint B by proposing
achievable schemes for general integer values of B. The
proposed schemes are simple zero-forcing schemes with a flex-
ible message assignment that achieve the information-theoretic
upper bound of the per user DoF when cooperation is not
allowed. Further, in order to achieve this bound, there is neither
need to increase the backhaul load beyond an average of one
message per transmitter, nor to use interference alignment. We
also showed that τ zf

c (M = 1) < τc(M = 1), i.e., interference
avoidance schemes cannot achieve the information theoretic
upper bound of 1

2 , a DoF value that can be achieved with zero-
forcing cooperative transmission and no extra backhaul load.
Further, we provided a useful upper bound on the per user DoF
achievable through cooperative zero-forcing with small values
of the backhaul load B < 5, τ avg,zf

c (B) ≤ 5+B
10 . In order to
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obtain a tight bound on the per user DoF for zero-forcing
schemes for any backhaul load constraint B, we formulated
the general problem of finding the maximum per user DoF as
an optimization problem.

It is important to note that the conclusions in this work,
rely on the assumption that accurate channel state information
(CSIT) is available at the transmitters. Recently, the problem
of interference management through cooperative transmission
has been studied with weak and no CSIT in [11]-[16]. In [13],
it was shown that significant gains could be achieved through
a flexible cell association strategy that does not constrain
availability of the ith message to only the ith transmitter.
In [17], it was shown that cooperative transmission cannot lead
to a per user DoF gain in large Wyner’s linear networks with
no CSIT, when restricted to linear cooperation schemes. It is
of interest to extend the work in [11]-[16] to study interference
management using cooperative transmission with weak and no
CSIT.
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APPENDIX

UPPER BOUND IN THEOREM 1

We prove the upper bound in Theorem 1 in two steps. First,
we provide an information theoretic argument in Lemma 4 to
prove an upper bound on the DoF of any network that has
a subset of messages whose transmit set sizes are bounded.
We then finalize the proof with a combinatorial argument
that shows the existence of such a subset of messages in
any assignment of messages satisfying the backhaul constraint
of (7).

In order to establish the information theoretic argument in
Lemma 4, we use Lemma 1, that is introduced in Section III.
We also need [7, Corollary 3] in the proof of Lemma 4; we
restate it for the considered system model.

Corollary 1 ([7, Corollary 3]): For any K-user linear
interference channel, if the size of the transmit set |Ti| ≤
M, i ∈ [K], then any element k ∈ Ti such that k /∈
{i − M, i − M + 1, . . . , i + M − 1} can be removed from
Ti, without decreasing the sum rate.

We now make the following definition to use in the proof
of the following lemma. For any set S ⊆ [K], let gS : S →
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{1, 2, . . . , |S|} be a function that returns the ascending order
of any element in the set S , e.g., gS (min {i : i ∈ S}) = 1 and
gS (max {i : i ∈ S}) = |S|

Lemma 4: For any K-user linear interference channel with
DoF η, if there exists a subset of messages S ⊆ [K] such
that each message in S is available at a maximum of M
transmitters, i.e., |Ti| ≤ M,∀i ∈ S, then the DoF is bounded
by,

η ≤ K − |S|
2M + 1

+ CK , (33)

where limK→∞
CK

K = 0.
Proof: We use Lemma 1 with a set A such that the size of

the complement set |Ā| = |S|
2M+1 −o(K). We define the set A

such that Ā = {i : i ∈ S, gS(i) = (2M+1)(j−1)+M+1, j ∈
Z+}.

Now, we let s1, s2 be the smallest two indices in Ā. We see
that gS(s1) = M+1, gS(s2) = 3M+2. Note that X1+ Z1

H1,1
=

Y1

H1,1
, and

X2 +
Z2 − H2,1

H1,1
Z1

H2,2
=
Y2 − H2,1

H1,1
Y1

H2,2
.

Similarly, it is clear how the first s1 − 1 transmit signals
X1, X2, . . . , Xs−1 denoted as X[s1−1] can be recovered from
the received signals Y[s1−1] and linear combinations of the
noise signals Z[s1−1]. In what follows, we show how to recon-
struct a noisy version of the signals {Xs1 , Xs1+1, . . . , Xs2−1},
where the reconstruction noise is a linear combination of
the signals ZA. Then it will be clear by symmetry how the
remaining transmit signals can be reconstructed.

We now notice that it follows from Corollary 1 that message
Ws1 can be removed from any transmitter in Ts1 whose index
is greater than s1 + M − 1, without affecting the sum rate.
Similarly, there is no loss of generality in assuming that
∀si ∈ S, si 6= s1, Tsi does not have an element with index
less than si−M . Since si− s1 ≥ gS(si)− gS(s1) ≥ 2M + 1,
it follows that Xs1+M ∈ XUA . The signal Xs1+M+1 +

Zs1+M+1

Hs1+M+1,s1+M+1
can be reconstructed from Ys1+M+1 and

Xs1+M . Then, it can be seen that the transmit sig-
nals {Xs1+M+2, Xs1+M+3, . . . , Xs2−1} can be reconstructed
from {Ys1+M+1, Ys1+M+2, . . . , Ys2−1}, and linear combina-
tions of the noise signals {Zs1+M+1, Zs1+M+2, . . . , Zs2−1}.
Similarly, since Xs1+M is known, the transmit signals
{Xs1+M−1, Xs1+M−2, . . . , Xs1} can be reconstructed from
{Ys1+M , Ys1+M−1, . . . , Ys1+1}, and linear combinations of
the noise signals {Zs1+M , Zs1+M−1, . . . , Zs1+1}. By follow-
ing a similar argument to reconstruct all transmit signals from
the signals YA, XUA , and linear combinations of the noise
signals ZA, we can show the existence of functions f1 and f2

of Lemma 1 to complete the proof.
We now explain how Lemma 4 can be used to prove that

τ avg(B = 1) ≤ 3
4 . For any message assignment satisfying (7)

for a K-user channel, let ρj be defined as follows for every
j ∈ {0, 1, . . . ,K},

ρj =
| {i : i ∈ [K], |Ti| = j} |

K
. (34)

ρj is the fraction of users whose messages are available at
exactly j transmitters. Now, if ρ0+ρ1 ≥ 3

4 , then Lemma 4 can
be used directly to show that η ≤ 3K

4 +o(K). Otherwise, more
than K

4 users have their messages at two or more transmitters,
and it follows from (7) that ρ0 ≥

∑K
j=2 ρj ≥

1
4 , and hence,

η ≤ (1− ρ0)K ≤ 3K
4 .

We generalize the above argument to complete the proof that
τ avg(B) ≤ 4B−1

4B ,∀B ∈ Z+. More specifically, we show that
for any message assignment satisfying (7) for a K-user chan-
nel with an average transmit set size constraint B, there exists
an integer M ∈ {0, 1, . . . ,K}, and a subset S ⊆ [K] whose
size |S| ≥ 2M+1

4B K, such that each message in S is available
at a maximum of M transmitters, i.e., |Ti| ≤ M, ∀i ∈ S. Fix
any message assignment satisfying (7) for a K-user channel
with backhaul constraint B, and let ρj , j ∈ {0, 1, . . . ,K} be
defined as in (34). If

∑K
j=2B ρj ≤

1
4B , then more than 4B−1

4B K
users have a transmit set whose size is at most 2B − 1, and
the statement follows with M = 2B−1. It is then possible to
assume that

∑K
j=2B ρj >

1
4B . In what follows, we show by

contradiction that there exists an integer M ∈ {0, . . . , 2B−2}
such that

∑M
j=0 ρj >

2M+1
4B .

Define ρ∗j , j ∈ {0, 1, . . . , 2B} such that ρ∗0 = ρ∗2B = 1
4B ,

and ρ∗j = 1
2B ,∀j ∈ {1, . . . , 2B − 1}. Now, note that∑2B

j=0 ρ
∗
j = 1, and

∑2B
j=0 jρ

∗
j = B. It follows that if

ρj = ρ∗j ,∀j ∈ {0, . . . , 2B}, and ρj = 0,∀j ≥ 2B + 1, then

the constraint in (7) is tightly met, i.e.,
∑K

i=1 |Ti|
K = B. We

will use this fact in the rest of the proof.
Assume that

∑K
j=2B ρj > ρ∗2B = 1

4B , and that ∀M ∈
{0, 1, . . . , 2B − 2},

∑M
j=0 ρj ≤

∑M
j=0 ρ

∗
j = 2M+1

4B . We know
from (7) that

∑K
j=0 jρj ≤

∑2B
j=0 jρ

∗
j = B. Also, since∑K

j=0 ρj =
∑2B
j=0 ρ

∗
j = 1 and

∑K
j=2B ρj > ρ∗2B , it follows

that there exists an integer M ∈ {0, 1, . . . , 2B − 1} such
that ρM > ρ∗M ; let m be the smallest such integer. Since∑m
j=0 ρj ≤

∑m
j=0 ρ

∗
j , and ∀j ∈ {0, 1, . . . ,m − 1}, ρj ≤ ρ∗j ,

we can construct another message assignment by removing
elements from some transmit sets whose size is m, such that
the new assignment satisfies (7), and has transmit sets T ∗i
where ∀j ∈ {0, 1, . . . ,m}, |{i : i ∈ [K], |T ∗i | = j}| ≤ ρ∗j . By
successive application of the above argument, we can construct
a message assignment that satisfies (7), and has transmit sets
T ∗i where ∀j ∈ {0, 1, . . . , 2B−1}, |{i : i ∈ [K], |T ∗i | = j}| ≤
ρ∗j and |{i : i ∈ [K], |T ∗i | ≥ 2B}| ≥ ρ∗2B . Note that the new
assignment has to violate (7) since

∑2B
j=0 jρ

∗
j = B, and we

reach a contradiction.
We now know from Lemma 4 that under the backhaul load

constraint of (7), the DoF for any K-user channel is upper
bounded by 4B−1

4B K + o(K). It follows that the asymptotic
per user DoF τ avg(B) ≤ 4B−1

4B , thereby proving the upper
bound in Theorem 1.
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