
Data Efficient Learning of Robust Control Policies

Susmit Jha1 and Patrick Lincoln1

Abstract— This paper investigates data-efficient methods for
learning robust control policies. Reinforcement learning has
emerged as an effective approach to learn control policies by
interacting directly with the plant, but it requires a significant
number of example trajectories to converge to the optimal pol-
icy. Combining model-free reinforcement learning with model-
based control methods achieves better data-efficiency via simul-
taneous system identification and controller synthesis. We study
a novel approach that exploits the existence of approximate
physics models to accelerate the learning of control policies.
The proposed approach consists of iterating through three key
steps: evaluating a selected policy on the real-world plant and
recording trajectories, building a Gaussian process model to
predict the reality-gap of a parametric physics model in the
neighborhood of the selected policy, and synthesizing a new
policy using reinforcement learning on the refined physics model
that most likely approximates the real plant. The approach
converges to an optimal policy as well as an approximate
physics model. The real world experiments are limited to
evaluating only promising candidate policies, and the use of
Gaussian processes minimizes the number of required real
world trajectories. We demonstrate the effectiveness of our
techniques on a set of simulation case-studies using OpenAI
gym environments.

I. INTRODUCTION

Synthesis of control policies for dynamical systems is

critical in many domains such as networks, robotics, cyber-

physical systems and systems biology. While synthesis of

control for known dynamics model has been well-studied

in literature, the recent success in data-driven learning has

inspired a number of techniques for synthesizing control

of plants with unknown dynamics. These techniques for

learning control policies when plant’s dynamics are unknown

can be broadly classified into two classes: model-based

methods that attempt at learning the system dynamics before

synthesizing control policies, and model-free methods that

search for best control policies for a given task without

explicitly learning the system dynamics. Model-based ap-

proaches learn plant models such as differential equations,

Gaussian processes or Markov decision processes (MDP),

and then use corresponding control synthesis techniques.

Model-free methods directly learn policies but do not easily

generalize to unobserved regions of the plant’s behavior.

Reinforcement learning methods can be used for control

synthesis by approximately learning the Q-values [12], and

The authors acknowledge support from the National Science Foundation
(NSF) Cyber-Physical Systems #1740079 project, NSF Software & Hard-
ware Foundation #1750009 project, and US ARL Cooperative Agreement
W911NF-17-2-0196 on Internet of Battlefield Things (IoBT).

1 The authors are with Computer Science Laboratory, SRI In-
ternational, Menlo Park, USA. Emails: susmit.jha@sri.com,
patrick.lincoln@sri.com

then picking the action for each state that maximizes the Q-

value. Reinforcement learning methods such as direct policy

search and trust region policy optimization (TRPO) [18]

are examples of model-free approaches for synthesizing

control policy directly. The use of deep neural networks

in representing policies in reinforcement learning enables

the application of scalable stochastic gradient descent based

optimization methods, and is accredited with recent success

in synthesizing control for highly nonlinear stochastic sys-

tems. Unfortunately, these techniques are typically very ‘data

hungry’ requiring a lot of training data before the algorithms

converge to a good control policy. Further, some of these

training trajectories could be potentially unsafe for the phys-

ical system. Consequently, the use of reinforcement learning

in real world becomes impractical if all learning data is

directly obtained through experiments on the physical plant.

This issue is often alleviated in practice by using simulation

models for early stages of training. These simulation models

use off-the-shelf physics engines that provide convenient

platforms for modeling the dynamics of the robots or other

plants that will interact with the controller. Reinforcement

learning can be used with the simulation models but the

learned policy may not work due to model inaccuracies. This

is often referred as reality gap.

This paper addresses this challenge of reality gap to enable

efficient learning of robust control policies using approximate

physics models. We present a novel approach for more accu-

rate model identification using off-the-shelf physics engines

that reduces the number of real-world experiments. The plant

to be controlled can often be modeled at a high-level using

physics engines but the inaccuracies arise due to unknown

parameters in the models. For instance, a simple example

of a cart-pole can be easily qualitatively modeled using a

physics engine but parametric details such as the mass of

the cart, the friction between the wheels and the floor, and

the length of the pole are difficult to get exactly correct.

These inaccuracies can cause the behavior of the simulation

model to diverge from the real-world experiments. An eager

approach would be to let system identification learn the

model parameters as accurately as possible before controller

synthesis. But such an eager approach can potentially lead

to wasted effort and needlessly large number of real-world

trajectories because the discovery of optimal control policy

may not actually require very accurate estimation of some of

the parameters. Simulation models can often describe only

a narrow slice of the overall behavior of a plant, and so,

configuring these models requires us to know what behaviors

the plant is expected to exhibit, which in turn, requires us to

know the optimal policy that is yet to be synthesized. This

2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

978-1-5386-6596-1/18/$31.00 ©2018 IEEE 856

creates a cyclic dependency between system identification

for estimating the model parameters, and reinforcement

learning for finding the optimal policy. In this paper, we

adopt a novel approach of dovetailing identification of model

parameters, and reinforcement learning that facilitates data

efficient learning by minimizing the number of real-world

trajectories.

The rest of the paper is organized as follows. In Section II,

we describe relevant related work. We present the proposed

approach in Section III and demonstrate its effectiveness with

experiments in Section IV. We discuss the limitations of the

proposed approach and mention ongoing work in conclusion

in Section V.

II. RELATED WORK

The emergence of deep neural networks as high-capacity

function approximators has led to increased success in the

field of reinforcement learning [12], [19], [9], [10]. However,

a significant roadblock in the widescale application of these

methods is their reliance on large amount of data. One

approach to address this data scarcity in the real-world is

to first learn a policy using a simulation model and then

transfer the learned policy to the real system. However,

the environment and physics of the simulator are often

not exactly the same as the real world. This causes the

behavior of the simulation model to diverge from the real

system. This reality gap results in unsuccessful transfer

if the learned policy is not robust to modeling errors in

the simulator, and several techniques have been proposed

recently to accomplish this transfer [6], [16]. In contrast to

these efforts, we do not aim at successful transfer of policy

learned on approximate models to the real-world. Instead,

we aim at learning a good enough approximation of the real-

world to enable discovery of optimal policy minimizing the

number of real world experiments.

Another closely related area is that of model-free learning

that integrates physics engines [4], [2], [22] with end to end

learning. These techniques use the physics models to learn

end to end mapping from the observations to control inputs.

These techniques do not try to refine the accuracy of physics

model to reduce the number of real-world trajectories, but

instead use physics model to represent part of the pipeline

mapping observations to control inputs. In contrast, we

attempt at learning a good enough approximation of the

physical model itself. While model-free learning techniques

have been studied for a long time [20], and their effectiveness

in synthesizing control has been also established [18], [12],

our approach attempts to make these approaches more data

efficient.

In contrast to model-free learning, model-based control

involves explicitly learning the unknown system dynamics.

This dynamics model is then used for discovering the opti-

mal policy. It has been previously reported in model-based

control that even approximate models can yield near optimal

policy [1], [7]. This motivates our effort to learn model

parameters simultaneously with the policy where the attempt

is not to learn an accurate model but just good enough to

learn a near optimal policy. System identification [14], [13] to

build dynamics model has also been independently studied in

control literature outside of reinforcement learning context.

In contrast, we consider parametric physics models and focus

on learning approximate value of these parameters instead of

discovering the physics model from scratch.

Data efficient learning of dynamics model for synthesizing

control policy has also received significant attention recently.

Deisenroth et al [8] developed a data-efficient reinforcement

learning method by incorporating state-space constraints in

the learning process and demonstrated the success on a set

of stacking tasks. Zhu et al [23] proposed a fast model iden-

tification approach comprising of Gaussian process based

estimation of parameter probability, and TRPO based policy

learning that is similar to the technique presented in the

paper. The choice of parameter for selecting real-world ex-

periments in [23] is greedy while we rely on entropy search.

Chatzilygeroudis et al [5] proposed a data-efficient model-

based RL algorithm, called BlackDROPS (Black-box Data-

efficient RObot Policy Search) that replaces the gradient-

based optimization algorithm with a parallel, blackbox algo-

rithm that takes into account the model uncertainties. Saveri-

ano et al. [17] developed an approach for policy improvement

with residual model learning (PI-REM) which focuses on

learning the residual dynamics between the simulator and

reality. Such a residual learning approach can be combined

with the parametric learning technique presented in this paper

if qualitative models of residuals are available.

III. APPROACH

We reduce the number of real-world trajectories required

for learning robust control policies by avoiding the extra

effort to learn accurate models of the plant that is universally

valid over the entire state-action space. Instead, we use

an iterative method to learn model parameters around the

optimal policy. The overall approach is sketched in Figure 1.

We start with a random safe policy and execute it on the plant

to generate real-world trajectories. These trajectories are used

to estimate a probability distribution over the parameter

values that indicates the likelihood of a parameter value

to be correct. This probability distribution is refined to be

of low entropy by selecting some values of the parame-

ters and obtaining trajectories from the simulation model

configured with these values. The low entropy probability

distribution is then used to sample a candidate parameter

value. This candidate is accepted as the final parameter

value if two conditions are satisfied. First, the candidate

parameter is close to the most likely parameter predicted by

the distribution. Second, the value function attained by the

policy learned from the simulation engine configured to this

parameter value is within a small threshold of the maximum

value function attained in the parameter’s neighborhood.

This stopping criteria is guided by the guarantee on the

KL divergence between successive policy revisions of the

Trusted Region Policy Optimization (TRPO) algorithm used

for reinforcement learning in our approach. If this criteria is

not met, then we run the learned policy on the real system

857

and add the corresponding trajectory to our training set. The

estimation of probability distribution of parameter values

is repeated, and we again sample a parameter value from

the distribution and check whether the stopping criteria is

satisfied. In rest of this section, we detail the critical steps

of the algorithm.

A. Reinforcement learning

We use reinforcement learning methods for synthesizing

control policies using the simulation model. The dynamics

model of the plant to be controlled comprises of states

S. A policy π is a mapping from states to actions A. A

reward R is provided for a given state and selected action

which encodes the task specification. The goal of controller

synthesis is to find an optimal policy that maximizes the

total expected reward. Typically, a value function Vπ(s) is

associated to each state that denotes the long term expected

reward of the state s. Model-based reinforcement learning

attempts at learning the transition probability P (s′|s, a) of

getting to state s′ from state s on action a. But as the

space of states and actions become large, learning these

transition probabilities becomes difficult. This problem is

particularly severe in continuous control problems where the

action space is continuous, and discretization results into a

large number of actions. A Q-value function Qπ(s, a) can

also be associated to each state and action that denotes

the expected reward of executing action a in state s. Deep

learning implementations (DQN) [12] of Q-learning have

proved to be very effective in learning control policies over

high-dimensional states such as those in Atari games [11].

The table size of Q-value also grows rapidly with the increase

in the number of actions.

In our attempt to make the process of learning control

policies more data-efficient, we chose to focus on model-free

reinforcement learning methods that scale better with large

state-action spaces. In particular, we use Trust Region Pol-

icy Optimization (TRPO) [18] algorithm for reinforcement

learning. TRPO directly searches over policies using gradient

of the policy network. A key characteristic of TRPO is that

the KL divergence between updated policy in the current

iteration and the previous policy is guaranteed to have a

bounded KL divergence. This enables the use of previous

policy to evaluate different possible models of the plant. The

search for best possible model is continued until the set of

likely plant models predict similar values for the previous

policy. Since the new policy is not much different than the

previous policy, any of these models can be used to search

for the next policy.

B. GP based estimation of model parameters probability

Let β denote the unknown discrete parameters of the plant

model. We assume that the values of these parameters lie in a

finite set B. In case of continuous parameters such as friction

or length or mass, we assume that a suitable discretization

has been performed to obtain B. Our algorithm maintains

a probability distribution over β ∈ B and iteratively refines

this distribution. The unknown parameterized dynamics of

the plant for a control policy π is given by

xt+1 = F (xt, π(xt), β)

where a simulator using off-the-shelf physics engine imple-

ments the function F but the parameters β are not known

and need to be learned simultaneously with the optimal con-

troller. We also parameterize the value function as Vπ(s, β)
to denote the expected reward for state s computed using the

simulation model with parameter value β.

The overall algorithm comprises of dovetailed model

identification to find good approximations of β followed by

controller synthesis to find optimal policy π. Giving an initial

policy π0 and initial distribution P over the parameters β,

we repeat the following three steps for t = 0, 1, 2, . . .

1) Roll out the policy πt on the real-world plant and

collect the trajectories.

2) Update distribution P of the parameters β by sampling

β and running simulations using the physics model,

and learn a Gaussian process approximation of the

model-deviation function.

3) Sample parameter value βt+1 from B according to the

updated distribution, and use TRPO to find optimal

policy for the model with βt+1.

Given real-world trajectories T with different policies πt,

we can collect the observed current and next states along

with the action, (s, a, s′) ∈ T where the action a = πt(s) to

compute the average deviation of the observations from the

predictions of the simulation model with the parameters set

to β:

∆(β) =
1

|T |

∑

(s,a,s′)∈T

||s′ − F (s, a, β)||2

The overall goal of the model identification step can be

formulated as finding β that minimizes the function ∆(β).
But the function ∆ itself is not fixed and will change

as we gather more real-world trajectories in T . Black-

box optimization techniques can be used to compute the

minimum of this function but these methods would overfit the

parameter β to the observations selecting the best possible

model for current observations. These techniques do not

allow trading off exploration and exploitation needed to

design new experiments and collect more data to learn better

estimate of β.

This motivates our choice of approximating the model-

deviation function ∆ as a Gaussian process (GP) [15] map-

ping the parameters β to the average deviation between the

model trajectories and the observed real-world trajectories.

Let ∆ be approximated by a GP inferred from the multiple

policies learned and rolled out for different sampled model

parameters. The mean and covariance matrix of this learned

GP is denoted by µ and Σ, respectively.

If ∆GP denotes the GP learned from the sampled β

and corresponding observed averaged model-deviation ∆(β).
We can revise the probability distribution over the model

858

• Hopper: This is a planar monopod robot with 4 rigid

links, corresponding to the torso, upper leg, lower

leg, and foot, along with 3 actuated joints. The 11

dimensional state space includes joint angles and joint

velocities.

For each of the environments, we conducted three experi-

ments each using a batch size of 20,000. We choose a large

batch size to minimize variance in estimating value function

of a candidate policy.

• We first ran TRPO reinforcement learning algorithm on

the gym environment with the correct parameter values

without perturbation. This provides the baseline for the

maximum achievable reward.

• We also ran TRPO reinforcement learning algorithm

by considering the worst perturbation in the parameters

which allows us to compare the advantage of identifying

parameters more accurately.

• Finally, we ran the algorithm presented in this paper.

For each of these experiments, we compute the expected

reward for the revised policy in each iteration. We plot the

expected rewards for the four environments in Figure 3, 4

and 5. While running TRPO algorithm with perturbed sim-

ulator produces significantly lower expected reward than the

reward obtained by using an accurate simulator, the proposed

approach is able to identify optimal policy and parameters

using fewer number of real-world trajectories.

V. CONCLUSION

Learning optimal control policy of a plant in absence of

an accurate model is difficult. A direct approach to model

identification entails generating a large number of real-world

trajectories by randomly initializing the policy and perform-

ing roll-outs. The search for best model parameters can be

framed as an optimization problem that tries to minimize the

deviation of the model behavior from the observed real-world

trajectories. Learning an accurate dynamics model requires

sufficiently sampling the state-action space of the dynamical

system by suitably initializing the policy and performing a

number of roll-outs. This direct approach is rather wasteful

for two reasons. First, we need to learn the dynamics of

the plant only close to the optimal policy for evaluating

the optimal policy and its close-by candidates. Second, we

need the dynamics model to be just good enough to infer

the optimal policy. In many cases, an approximate dynamics

model can provide approximate relative ordering of the

candidate policies, and is thus, sufficient to identify a near-

optimal policy. But exploiting these for data efficient learning

of control policies is difficult due to the strong coupling

between learning dynamics model and finding optimal policy.

In this paper, we addressed this challenge by proposing

an iterative search procedure that estimates the parame-

ters of the dynamics model using Gaussian processes, and

finds optimal policies using TRPO reinforcement learning

algorithm, alternately. We demonstrate that the proposed

approach converges to a near optimal policy requiring fewer

real-world trajectories than a direct data-driven approach to

policy learning.

REFERENCES

[1] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in Proceedings of the 23rd international

conference on Machine learning. ACM, 2006, pp. 1–8.
[2] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning

to poke by poking: Experiential learning of intuitive physics,” in
Advances in Neural Information Processing Systems, 2016, pp. 5074–
5082.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint

arXiv:1606.01540, 2016.
[4] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using

deep neural networks,” in Robotics and Automation (ICRA), 2017

IEEE International Conference on. IEEE, 2017, pp. 173–180.
[5] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades,

and J.-B. Mouret, “Black-box data-efficient policy search for robotics,”
in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ Interna-

tional Conference on. IEEE, 2017, pp. 51–58.
[6] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell,

J. Tobin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint

arXiv:1610.03518, 2016.
[7] M. P. Deisenroth, Efficient reinforcement learning using Gaussian

processes. KIT Scientific Publishing, 2010, vol. 9.
[8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control

a low-cost manipulator using data-efficient reinforcement learning,”
2011.

[9] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference

on Machine Learning, 2016, pp. 2829–2838.
[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[13] J.-I. Nagumo and A. Noda, “A learning method for system identifi-
cation,” IEEE Transactions on Automatic Control, vol. 12, no. 3, pp.
282–287, 1967.

[14] O. Nelles, Nonlinear system identification: from classical approaches

to neural networks and fuzzy models. Springer Science & Business
Media, 2013.

[15] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Advanced lectures on machine learning. Springer, 2004, pp. 63–71.

[16] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” arXiv preprint arXiv:1610.04286, 2016.

[17] M. Saveriano, Y. Yin, P. Falco, and D. Lee, “Data-efficient control
policy search using residual dynamics learning,” in International

Conference on Intelligent Robots and Systems (IROS), 2017.
[18] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust

region policy optimization,” in International Conference on Machine

Learning, 2015, pp. 1889–1897.
[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[20] R. S. Sutton, A. G. Barto, F. Bach, et al., Reinforcement learning: An

introduction. MIT press, 1998.
[21] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for

model-based control,” in Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.
[22] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:

Perceiving physical object properties by integrating a physics engine
with deep learning,” in Advances in neural information processing

systems, 2015, pp. 127–135.
[23] S. Zhu, A. Kimmel, K. E. Bekris, and A. Boularias, “Fast model

identification via physics engines for data-efficient policy search,” in
IJCAI, 2018, pp. 3249–3256.

861

