
HyPar: Towards Hybrid Parallelism for
Deep Learning Accelerator Array

Linghao Song†, Jiachen Mao†, Youwei Zhuo‡, Xuehai Qian‡, Hai Li†, Yiran Chen†

†Duke University, ‡University of Southern California
{linghao.song, jiachen.mao, hai.li, yiran.chen}@duke.edu, {youweizh, xuehai.qian}@usc.edu

ABSTRACT
With the rise of artificial intelligence in recent years, Deep
Neural Networks (DNNs) have been widely used in many
domains. To achieve high performance and energy efficiency,
hardware acceleration (especially inference) of DNNs is in-
tensively studied both in academia and industry. However,
we still face two challenges: large DNN models and datasets,
which incur frequent off-chip memory accesses; and the train-
ing of DNNs, which is not well-explored in recent accelerator
designs. To truly provide high throughput and energy effi-
cient acceleration for the training of deep and large models,
we inevitably need to use multiple accelerators to explore
the coarse-grain parallelism, compared to the fine-grain par-
allelism inside a layer considered in most of the existing
architectures. It poses the key research question to seek the
best organization of computation and dataflow among accel-
erators.

In this paper, we propose a solution HYPAR to determine
layer-wise parallelism for deep neural network training with
an array of DNN accelerators. HYPAR partitions the fea-
ture map tensors (input and output), the kernel tensors, the
gradient tensors, and the error tensors for the DNN accel-
erators. A partition constitutes the choice of parallelism
for weighted layers. The optimization target is to search
a partition that minimizes the total communication during
training a complete DNN. To solve this problem, we propose
a communication model to explain the source and amount
of communications. Then, we use a hierarchical layer-wise
dynamic programming method to search for the partition for
each layer. HYPAR is practical: the time complexity for the
partition search in HYPAR is linear. We apply this method
in an HMC-based DNN training architecture to minimize
data movement. We evaluate HYPAR with ten DNN mod-
els from classic Lenet to large-size model VGGs, and the
number of weighted layers of these models range from four
to nineteen. Our evaluation finds that: the default Model
Parallelism is indeed the worst; the default Data Parallelism
is not the best; but hybrid parallelism can be better than either
the default Data Parallelism or Model Parallelism in DNN
training with an array of accelerators. Our evaluation shows
that HYPAR achieves a performance gain of 3.39× and an
energy efficiency gain of 1.51× compared to Data Parallelism
on average, and HYPAR performs up to 2.40× better than
“one weird trick”.

1. INTRODUCTION
With the rise of artificial intelligence in recent years, Deep

Neural Networks (DNNs) have been widely used because of
their high accuracy, excellent scalability, and self-adaptiveness
properties [1,2]. Many applications employ DNNs as the core
technology, such as face detection [3], speech recognition [4],
scene parsing [5].

DNNs are computation and memory intensive and pose
intensive challenges to the conventional Von Neumann ar-
chitecture where computation and data storage are separated.
For example, AlexNet [6] performs 109 operations in process-
ing just one image data. During processing, a large amount
of data movements are incurred due to the large number of
layers and millions of weights. Such data movements quickly
become a performance bottleneck due to limited memory
bandwidth and more importantly, an energy bottleneck. A
recent study [7] showed that data movements between CPUs
and off-chip memory consumes two orders of magnitude
more energy than a floating point operations. Clearly, the cost
of computation and data movement are serious challenges for
DNNs.

To achieve high performance and energy efficiency, hard-
ware acceleration of DNNs is intensively studied both in
academia [8–90] and industry [91–101]. In particular, sev-
eral major companies developed 1) DNN accelerators, e.g.,
Google TPU [91,92], and neuro-processors, e.g., IBM TrueNorth
[93–95]; 2) corresponding standards, architectures, and plat-
forms [96, 98–100]. In academia, Eyeriss [15] is a represen-
tative design of spatial architecture to coordinate dataflow
between processing engines (PEs). Neurocube [19] takes
the advantage of in-memory processing by deploying PEs in
hybrid memory cubes (HMCs) [102] with a programmable
data packet scheme. Flexflow [20] is a systolic architecture
with tiling optimization. Furthermore, inter-layer data flow
for DNN acceleration are considered in [39, 42, 103].

Despite the explosion of neural network accelerators, there
are still fundamental challenges. First, with large model size
(e.g., for ImageNet dataset [104]), accelerators suffer from
the frequent access to off-chip DRAM, which consume signif-
icant energy, e.g., 200× compared to on-chip SRAM [15,17],
and can thus easily dominate the whole system power con-
sumption. Second, almost all of the recently proposed DNN
accelerators only focuses on DNN inference.

The inference of deep neural networks is a forward progress

of input images from the first layer to the last layer. Kernels
(weights) of a network are obtained through training before
the inference. The computations are performed one layer after
another. The training of deep neural networks is more com-
plex than inference due to more computations and additional
data dependencies. Besides data forward, error backward
and gradient computation are two additional computation
steps to generate new weights in training. With the increasing
importance of deep learning, we argue that DNN training
acceleration is a crucial problem. Currently, DNNs are typ-
ically trained by high-performance computer systems with
high-end CPUs/GPUs, which are not performance and energy
efficient. While many accelerators focused on acceleration
for DNN inference, training was only considered in a few
existing accelerators [19, 103] in restricted manner.

To truly provide high throughput and energy efficient ac-
celeration for training deep and large models [105, 106], we
inevitably need to use multiple accelerators as a general ar-
chitecture to explore the coarse-grain parallelism, compared
to the fine-grain parallelism inside a layer considered in the
existing research [15, 19, 20, 92]. It poses the key research
question to seek the best organization of computation and
dataflow among accelerators.

The problem is challenging due to the complex interactions
between the type of parallelism and different layers. Assume
we have N accelerators, in data parallelism, a batch of data
is partitioned into N parts, while the model (weights) are
duplicated N times. Each accelerator holds one part of the
partitioned data and a complete copy of the model. It incurs
no communication in data forward and error backward. To
update the weights, each accelerator requires remote access to
the gradient in the other accelerators, thereby results in com-
munication. In model parallelism, the kernel is partitioned
into N parts, and feature maps are partitioned accordingly.
Opposite to data parallelism, it incurs communications in
data forward but no communication in error backward and
weight updating. More details are discussed in Section 2.2.

The current accelerator designs do not provide a good an-
swer on how to determine parallelism for multiple accelera-
tors, because they focus on the acceleration of intra-layer
(fine-grain parallelism) computation and assume that the
needed data are already in memory. Clearly, the solution
is nontrivial. We cannot simply partition all layers in data
parallelism or model parallelism manner, because different
layer types imply different choices. Moreover, networks also
have various connection between different layers. Overall, it
can be phrased as a complex optimization problem.

To systematically solve this problem, we propose a solu-
tion HYPAR to determine layer-wise parallelism for deep
neural network training with an array of DNN accelerators.
The goal of HYPAR is to partition the feature map tensors (in-
put and output), the kernel tensors, the gradient tensors, and
the error tensors among the DNN accelerators. A partition
is determined by the choice of parallelism for all weighted
layers. The optimization target is to search a partition that
minimizes the total amount of communication during training
a complete deep neural network. In HYPAR, we propose a
communication model to explain where the communication
comes from in partitioned tensors (of feature maps and ker-
nels), and determine the amount of communication. Then we

uses a hierarchical layer-wise dynamic programming method
to search for the partition for each layer. We show that HY-
PAR is practical: the time complexity for the partition search
in HYPAR is linear. We apply this method in an HMC-based
DNN training architecture with an array of sixteen acceler-
ators organized in four hierarchical levels and minimize the
data movement.

Based on the architecture, we evaluate HYPAR with ten
DNN models from classic Lenet to large-size model VGGs,
and the number of weighted layers of these models ranges
from four to nineteen. Our evaluation shows that: the default
model parallelism is indeed worst; the default data paral-
lelism is also not the best; but hybrid parallelism can be better
than either the default data parallelism or model parallelism
in DNN training with an array of accelerators. Our eval-
uation shows that HYPAR achieves a performance gain of
3.39× and a energy efficiency gain of 1.51× compared to
data parallelism on average. In addition, we also study the
scalability and the effects of network topology to provide
deeper understanding of the HYPAR architecture.

This paper is organized as follows. Section 2 introduces
DNN background, parallelism in DNN computation, DNN ac-
celerators and our motivations. Section 3 proposes a commu-
nication model to quantify the communication in DNN com-
putation. Section 4 proposes the partition algorithm based
on the communication model to determines the parallelism
for each layer in training. Section 5 presents an HMC-based
accelerator array in which the partitions are generated by HY-
PAR. Section 6 evaluates the performance, energy efficiency
and communication of HYPAR architecture in DNN training,
and conducts studies to provide further insights. Section 7
concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 Inference and Training of DNNs
The inference of deep neural networks is a forward progress

of input data (typically images) from the first layer to the last
layer. Kernels (weights) of a network are obtained through
training before the inference. Images are typically grouped
into batches to ensure high throughput with efficient for-
ward propagation. The computations are performed one layer
after another. For a convolutional layer l, we use Fl to rep-
resent feature maps of this layer, and use B to denote the
batch size. We assume that each feature map is a three-
dimensional tensor, with a height of H, a weight of W and
a depth of Cl (Cl is also the number of channels of Layer
l). The size of the feature map slice is [Hl ×Wl ×Cl]. Thus,
Fl is of size B× [Hl ×Wl ×Cl]. The kernel Wl has a size
of [K ×K ×Cl]×Cl+1, where K is the height/width of ker-
nels and Cl+1 is the number of channels of next layer, Layer
l+1. f (·) is an activation function, performing element-wise
non-linear operations. We use ⊗ to denote convolutions. The
inference (forward propagation) can be represented as,

Fl+1 = f (Fl ⊗Wl) (1)

The training of deep neural networks is more complex than
inference. The purpose of training is to tune the kernels to
reduce the value of a loss function. The loss function com-
putes the difference between the output of a neural network

with the ground truth (i.e., labels) of a group of input images.
L2-norm and softmax are two examples of loss functions.
Besides forward, error backward and gradient computation
are two additional computation steps to generate new weights
in training. We use El to represent errors for Layer l, the
error backward can be represented as Equation 2,

El = (El+1 ⊗W∗
l)� f ′ (Fl) (2)

where W∗ is a reordered form of W (if W is a matrix then
W∗ = W�), � is an element-wise multiplication and f ′(·) is
the derivative of f (·). The gradient computation is,

�Wl = F∗
l ⊗El+1 (3)

with �Wl , we can update Wl .

2.2 Parallelisms
For DNNs training, the training data samples (images) are

grouped into batches. For each epoch, a batch of data need to
perform forward, error backward and gradient computation.
Since training requires more computations, it is typically
conducted with multiple DNN accelerators. In this context,
parallelism needs to be considered among the accelerators.
Data Parallelism [107,108] and Model Parallelism [109,110]
are the two types of parallelism used in DNN training. In
Data Parallelism, all accelerators hold a copy of model, but
data (training samples) are partitioned into parts and each
accelerator processes one part. In Model Parallelism, all
accelerators process on the same data (training samples), but
the whole model is partitioned and each accelerator holds a
part of the model.

Whether to use Data Parallelism or Model Parallelism is
currently determined empirically. For neural networks with
rich convolutions, Data Parallelism is employed, while for
neural networks with large model size, Model Parallelism
is employed. Thus for the training of deep learning (which
usually contains a lot of convolutions), Data Parallelism is the
default setting [107, 108]. Krizhevsky proposed “one weird
trick” [111] to outperform the default Data Parallelism, where
convolutional layers are configured with data parallelism and
fully connected layers are configured with model parallelism.
It is called “weird” because that method works but why is
works was not known. We will show that trick is not “weird”
with our communication model (Section 3), and HYPAR even
has higher performance.

2.3 DNN Accelerators
Many DNN accelerators were proposed to optimize the

data flow to improve performance and energy efficiency. Eye-
riss [14,15] is a representative design which employs a spatial
data flow to share data between processing engines (PEs).
Neurocube [19] takes the advantage of in-memory processing
by deploying PEs in hybrid memory cubes (HMCs) [102]
with a programming data packet scheme. Flexflow [20]
is a systolic architecture with tiling optimization. MAE-
STRO [112] explored even five types of fine-grained on-chip
data flow for DNN accelerator. All of these accelerators
focus on intra-layer computations in: computations for no
more than one layer are performed at one time slot. They
are all about the design of a stand-alone accelerator, which is
orthogonal to this work.

In comparison, inter-layer data flow for DNN acceleration
are considered in [39, 42, 103]. Alwani et al. [39] proposed
the fused-layer pipelining for DNN accelerators. Shen et
al. [42] further optimized the tiling parameters for inter-layers.
Song et al. [103] proposed an inter-layer accelerator for DNN
training.

2.4 Motivation
With the increasing importance of deep learning, we argue

that DNN training acceleration is a crucial problem. Cur-
rently, DNNs are typically trained by high-performance com-
puter systems with high-end CPUs/GPUs, which is not com-
putation and energy efficient. For this reason, DNN training
acceleration is of high interest to the companies with huge
amount of data. For example, Google released a new version
of TPU [113] for training after a first version of TPU [92]
designed for inference. In research community, many accel-
erators focused on accelerating DNN inference, and training
was only considered in a few existing accelerators [19, 103]
in restricted manner. Neurocube [19] partitions model into
HMC vaults, but does not consider the parallelism between
HMCs. Among vaults, it assumes fixed parallelism setting
for all layers, which may not be the best for all networks.
With inter-layer design (model parallelism), Pipelayer [103]
performs the computations of different layers simultaneously
in different processing units of the accelerator. Pipelayer also
used a intra-layer parallelism, which is actually intra-layer
data parallelism, to boost performance. However, the details
of data movement for intra-layer and inter-layer parallelism
was yet to be explored.

To truly support high throughput and energy efficient train-
ing acceleration of deeper and large models [105, 106], we
eventually need to use multiple accelerators to explore the
coarse-grain parallelism, compared to the fine-grain paral-
lelism inside a layer. It requires a systematic study to seek the
best organization of compute and dataflow among an array of
accelerators.

This problem is unsolved by existing solutions [10, 11,
15, 20]. They only consider the acceleration of intra-layer
computation and assumes that the needed data are already in
memory. For a stand-alone accelerator that processes a layer
separately, it is an acceptable assumption as the focus is the
fine-grained computation inside the layer. With an array of
accelerators, the input data of an accelerator (for the current
layer) are potentially produced by other accelerators (for the
previous layer), the computation and dataflow organization
affect the data movement, which is a critical factor affecting
the performance. That motivates us to find a solution to
determine tensor partition and dataflow organizations among
layers for neural network training with an array of DNN
accelerators.

3. COMMUNICATION MODEL
We propose HYPAR to determine layer-wise parallelism

for deep neural network training with an array of DNN accel-
erators. HYPAR partitions the feature map tensors Fl (input
and output) and Fl+1, the kernel tensor Wl , the gradient ten-
sor �Wl , and the error tensors El and El+1 for the DNN
accelerators. A partition constitutes the choice of parallelism
for all weighted layers. The optimization target is to search a

16
70

70

100

16
100

16
70

100

70

16
100

Forward

Backward

Gradient
Computation 70

16

70

100

16
100

32

35
35

100

32

100

Forward

Backward

Gradient
Computation

35

32

100

32

35

100

35

32

100

35

32

100

(a) data parallelism (b) model parallelism

⊕

⊕

F�
l F�

l

Fl FlWl Wl

�Wl �Wl

W�
l

W�
l

Fl+1 Fl+1

El+1

El+1

El+1

El+1El El

Figure 1: Forward, Backward and Gradient Computation in (a) data parallelism and (b) model parallelism. In data par-
allelism, intra-layer communication happens in kernel updating, and in model parallelism intra-layer communication
happens in computation for output feature map, both marked by a ⊕.

partition that minimizes the total communication during train-
ing a complete deep neural network. Thus, we first develop a
communication model that answers the questions such as: for
an accelerator and various parallelism settings, where does
the communication come from, and what is the amount of
communication?

Before the technical discussion, we clarify some termi-
nologies. When we use lowercase “data parallelism”, we
refer to the case where all accelerators have a copy of kernel
(weight) of one specific layer, while feature maps associ-
ated with that layer are partitioned. When we use lowercase
“model parallelism”, we refer to the case where the kernels
(weights) of one specific layer are partitioned and each accel-
erator has one partition. We discuss more details about data
parallelism and model parallelism in the following Section
3.1. In contrast, we use Uppercase “Data Parallelism” and
“Model Parallelism” to refer to cases where all layers of a
neural network are in data parallelism or model parallelism,
respectively.

3.1 Two Types of Parallelism
We discuss data parallelism and model parallelism using

a concrete example. Assume we have two accelerators, the
batch size is B = 32. Let us consider a fully-connected layer,
where the number of input and output neurons are 70 and 100,
respectively. Thus, the feature map Fl has a size of 32×70,
the kernel (weight matrix) has a size of 70× 100 and Fl+1

has a size of 32×100.

3.1.1 data parallelism
In data parallelism, a batch of data is partitioned into two

parts, while the kernels (weight matrix) are duplicated. Each
accelerator holds one part of the partitioned data and a com-
plete copy of the kernel.

Figure 1 (a) illustrates the shapes of tensors held by the
two accelerators. All of the rectangles with shadow lines are
held by one accelerator and all of the white rectangles are
held by the other.

In forward, each accelerator performs the computation
in Equation 1. Because f (·) is an element-wise operation,

which only requires local data in the accelerator itself but
does not require remote data from the other accelerator, we
focus on the multiplication and represent Equation 1 as Fl →
Wl ⇒ Fl+1. For the one holding the rectangles with shadow
lines, it performs a multiplication with a size of [16×70]→
[70×100]⇒ [16×100]. Since no remote data are required,
there is no communication between the two accelerators.

In error backward, the multiplication for each accelerator
is El+1 → W�

l ⇒ El , and the size of matrices in the multi-
plication is [16× 100] → [100× 70] ⇒ [16× 70]. Still, no
communication exists between the two accelerators.

However, the remote data access, which leads to communi-
cation, is required in kernel updating. The multiplication is
F�

l → El+1 ⇒�Wl , and the size of matrices in the multipli-
cation in gradient computation is [70×16]→ [16×100]⇒
[70×100]. Different accelerators compute the gradient with

different half of El+1 and different half of F�
l . Therefore,

elements in the computed gradient matrix ([70× 100]) are
just partial sums, and the actual gradient is the summation of
the two partial sums from the two accelerators. To update the
weights, each accelerator requires remote accesses to the gra-
dient partial sum in the other accelerator, and adds with the
local gradient partial sum. We use a ⊕ to indicate a remote
accesses (and the addition of the partial sum), which incurs
communication.

3.1.2 model parallelism
In model parallelism, the kernel is partitioned, and feature

maps are partitioned accordingly. In forward, each accelerator
performs computation for the matrices Fl → Wl ⇒ Fl+1 with
sizes of [32×35]→ [35×100]⇒ [32×100]. This scenario
is similar to gradient computation in data parallelism. To
get the result for Fl+1, remote accesses to the partial sum
feature maps from the other accelerator is required. In error
backward, the multiplication for each accelerator is El+1 →
W�

l ⇒ El , and the size of matrices in the multiplication is
[32× 100] → [100× 35] ⇒ [32× 35]. No communication
exists between the two accelerators. To compute gradient,
the multiplication is F�

l → El+1 ⇒ �Wl , and the size of
matrices in the multiplication in gradient computation is [35×

Table 1: Intra-layer communication amount in data par-
allelism and model parallelism.

data parallelism model parallelism
A(�Wl) A(Fl+1)

32]→ [32×100]⇒ [35×100].
In model parallelism, the gradient computed by one accel-

erator is the exact gradient needed for updating the kernel held
by itself. Therefore, no communication is required. However,
the communication between two accelerators happens in the
computation for output feature maps in forward, which is
marked by a ⊕ in Figure 1 (b).

3.2 Intra-Layer Communication
As shown in Figure 1, each layer performs three multiplica-

tions for forward, error backward, and gradient computation.
In each multiplication, three tensors are involved. Thus, in
total nine tensors need to be considered. Notice that Fl and
F�

l are the same, which is also true for Wl and W�
l , El+1 and

E�
l+1.
For one layer, we call the two tensors on the left hand

side of kernel or gradient tensors as L tensors; and the two
tensors on the right hand side of kernel or gradient tensors
as R tensors. As shown in Figure 1, Fl (F�

l) and El are L
tensors, and Fl+1 and El+1 are R tensors.

Following the idea of intra layer and inter layer from [103],
we decouple the communication into two parts: 1) intra-layer
communication by kernel updates within a layer, marked by
a ⊕ within Figure 1; and 2) inter-layer communication by
conversions of L and R tensors of feature maps and errors
between layers.

In data parallelism, we can see that communication for
kernel updating happens when one accelerator remotely ac-
cesses �Wl in the other to perform partial sum ⊕. We use
A(�Wl) to denote the amount of data in �Wl . Therefore,
the intra-layer communication in data parallelism is A(�Wl),
while the intra-layer communication in model parallelism
is 0. In model parallelism, partial sum is to be performed
to get �Fl+1, so the intra-layer communication is A(Fl+1).
The intra-layer communication for data parallelism (dp) and
model parallelism (mp) are summarized in Table 1.

3.3 Inter-Layer Communication
Next, we calculate the inter-layer communication due to

accessing feature maps and errors. Essentially, we calculate
the communication for conversion of L and R tensors, as
shown in Figure 2. Since the parallelism for each layer is
either data parallelism or model parallelism, to calculate the
communication for each layer, we should consider four cases:
dp-dp, dp-mp, mp-mp and mp-dp.

dp-dp In Figure 2 (a), the R tensors Fl+1 and El+1 belong
to a previous layer, Layer l, and L tensors belong to Layer
l+1. For the accelerator which holds the dashed-line tensors,
no remote access to the accelerator is necessary because the
R and L tensors have the same shape. Thus, the inter-layer
communication in dp-dp is 0.

dp-mp The R and L tensors in Figure 2 (b) have different
shapes, which causes communication between two accel-
erators. For the accelerator which holds the dashed-line

Table 2: Inter-layer communication amount for the tran-
sition of dp-dp, dp-mp, mp-mp and mp-dp.

dp-dp 0
dp-mp 0.25A(Fl+1)+0.25A(El+1)
mp-mp 0.5A(El+1)
mp-dp 0.5A(El+1)

tensors, it needs the L tensor Fl+1, but the R tensor Fl+1

held by this accelerator (from the computation it performs
on Layer l) has a different shape compared to the L tensor
Fl+1. Thus, this accelerator needs to remotely read part of
the white R tensor Fl+1 from the other accelerator. The shape
of the communication is the overlaps of the white R ten-
sor Fl+1 and the dashed-line L tensor Fl+1, i.e., the black
tensor. The black tensor is 1/4 of the tensor Fl+1, so the
inter-layer communication between R Fl+1 and L Fl+1 is
0.25A(Fl+1). Similarly, we can calculate and obtain that the
inter-layer communication between R El+1 and L El+1 is
0.25A(El+1). Therefore, the inter-layer communication in
dp-mp is 0.25A(Fl+1)+0.25A(El+1).

mp-mp Because the dashed-line R Fl+1 already contains the
dashed-line L Fl+1, the communication for Fl+1 is 0. But for
El+1, the dashed-line R El+1 requires remote access to obtain
the black part, the communication is 0.5A(El+1).

mp-dp Similar to mp-mp, we can calculate that the inter-
layer communication for mp-dp is 0.5A(El+1).

The results based on the above inter-layer communication
calculation are summarized in Table 2.

From Table 1 and Table 2, we can see that, for DNN infer-
ence, the best option is Data Parallelism, i.e., data parallelism
for every layers. It is because the intra-layer communication
is zero since no gradient computation is necessary in infer-
ence, and the inter-layer communication of dp-dp is also zero.
However, the assumption is different for DNN training, and
parallelism becomes a critical concern.

3.4 Parallelism in Training
We use the example in Figure 1 to compare the communi-

cation of data parallelism and model parallelism in our com-
munication model. In Figure 1, for a fully-connected layer,
we see that the communication amount between the two ac-
celerators in data parallelism is 56KB(= 2×70×100×4B)

(a) dp-dp (b) dp-mp

(c) mp-mp (d) mp-dp

R Fl+1 L Fl+1

L El+1R El+1

R Fl+1 L Fl+1R Fl+1 L Fl+1

R Fl+1 L Fl+1

L El+1R El+1

L El+1R El+1L El+1R El+1

Figure 2: Inter-layer communication for (a) dp-dp, (b)
dp-mp, (c) mp-mp and (d) mp-dp.

assuming a precision of 32-bit floating point and a batch size
of 32. The communication amount in model parallelism is
25.6KB(= 2×32×100×4B). In this case, model parallelism
is better than data parallelism. However, if we consider com-
putations in a convolutional layer, where the Fl has a size of
[12× 12× 20], Wl has a size of [5× 5× 20]× 50 and Fl+1

has a size of [8×8×50], the communication amount in data
parallelism is 200KB(= 2× 5× 5× 20× 50× 4B), while
communication amount in model parallelism is 819KB(=
2×32×8×8×50×4B). In this different scenario, data par-
allelism is better than model parallelism. From the simple
example, we see that a default approach that choose either
data parallelism or model parallelism for all layers in a net-
work would not get the highest performance because both
convolutional and fully-connected layers exist in most widely
used deep neural networks. That also explains why fully-
connected layers are configured with model parallelism and
convolutional layers are configured with data parallelism in
the empirical “one weird trick” [111], which outperforms
default Data Parallelism and Model Parallelism.

However, the empirical configuration in [111] will not
always work. With our general communication model, we can
see the trick [111] only considered intra-layer communication,
but did not consider the other communication source, inter-
layer communication. We will show that HYPAR performs
better than the trick in Section 6.5.2.

Realizing this fact, one may naturally choose a more com-
prehensive approach: choosing a parallelism for each layer
and enumerating all possibilities to determine the best choice.
Unfortunately, it is not feasible, because the time complexity
for such enumeration is O(2N) for a neural network with
N weighted layers. It motivates us to find a more practical
partitioning algorithm.

4. LAYER PARTITION
In this section, we discuss HYPAR, which partitions the

feature map tensors Fl (input and output) and Fl+1, the kernel
tensor Wl , the gradient tensor �Wl , and the error tensors
El and El+1 for the DNN accelerators. The parallelism for
one layer actually determines the tensor partitioning for two
accelerators, as shown in Figure 1. A partition constitutes
the choice of parallelism for each layer in a deep neural
network. The optimization target is to search a partition
that minimizes the total communication during training a
complete deep neural network. Rather than O(2N) brute-
force search, HYPAR is practical: the time complexity for the
partition search in HYPAR is linear, i.e. O(N) for a neural
network with N weighted layers.

4.1 Partition Between Two Accelerators
From Section 3.3, we can see that: 1) each layer is config-

ured with either data parallelism or model parallelism; 2) the
calculation for inter-layer communication only depends on
two adjacent layers; 3) the intra-layer communication only
depends on the parallelism of that layer, but does not depend
on any other layer. Thus, to minimize the total amount of
communication, we can use a layer-wise dynamic program-
ming method to search for the partitions for each layer. The
time complexity of this method is O(N) for a neural network
with N weighted layers.

Algorithm 1 Partition Between Two Accelerators.

Input:
1. Batch size, B,
2. The number of weighted layers in a DNN model, L,
3. A list of hyper parameters (layer type: conv or fc,
kernel sizes, parameter for pooling, activation function),
HP[l], l = 0, ..,L-1.

Output:
1. Total communication, com,
2. A list of parallelism for each weighted layer, P[l], l =
0, ..,L-1.

1: Generate tensor shapes for Fl , Wl , �Wl , El for each
layer.

2: Initiate com_d p[0] = 0, com_mp[0] = 0, P_d p =[],
P_mp =[].

3: for (l = 0; l < L; l++) do
4: Compute intra_d p, intra_mp using Table 1 and

inter_d p_d p, inter_mp_d p, inter_d p_mp,
inter_mp_mp using Table 2.

5: com_d p[l] = min(com_d p[l-1]+inter_d p_d p,
com_mp[l-1]+inter_mp_d p) + intra_d p.

6: Update P_d p.
7: com_mp[l] = min(com_d p[l-1]+inter_d p_mp,

com_mp[l-1]+inter_mp_mp)+intra_mp.
8: Update P_mp.
9: end for

10: return min(com_d p[L-1], com_mp[L-1])
and the corresponding parallelism list (P_d p or P_mp).

The idea is to use dynamic programming, for each layer,
to compute the intra-layer communication of dp and mp and
inter-layer communication of dp-dp, mp-dp, dp-mp, mp-mp
using the results in Table 1 and Table 2, and then calculate the
minimum accumulated communication for data parallelism
or model parallelism in this layer.

The pseudocode of the partition algorithm between two
accelerators is given in Algorithm 1. The inputs of our parti-
tion algorithm are identical to the parameters that are needed
for a normal mini batch training process. As shown in the
input section of Algorithm 1, the inputs include the batch size
(B), the number of model layers (L), and the necessary hyper
parameters (layer type: conv or fc, kernel sizes, parameter
for pooling, activation function: HP[l], l = 0, ..,L−1). The
outputs of our partition algorithm are composed of the mini-
mal total communication between two accelerators and a list
parallelism methods we should chose to realize such minimal
communication for each layer in the model.

4.2 Hierarchical Partition
So far, we assume only two accelerators. To expand to

partition for an array of accelerators, we use a hierarchical
approach.

Although Algorithm 1 performs partitions based on two
accelerators, we can view the two accelerators as two groups
of accelerators. Then, the Algorithm 1 can be used to parti-
tion between two groups. Based on this insight, we have a
hierarchical partition algorithm.

Figure 3 illustrates an example to partition eight acceler-

A1 A2 A3 A4 A5 A6 A7A0
A1A2A3A0 A4A5A6A7

A1A0 A4A5 A6A7A2A3
A1 A2 A3 A4 A5 A6 A7A0H3

H2
H1

Figure 3: Hierarchical partition for three levels.

ators with three levels. Originally, there are 8 accelerators
waiting to be assigned with the training workloads. As shown
in Figure 3, at hierarchy level H1, we first view A0 to A3 as
a group of accelerators and A4 to A7 as the other group. By
utilizing Algorithm 1, the workloads can be assigned to each
of these two groups. After that, the groups of A0 to A3 and
A4 to A7 are further divided in to 4 groups at hierarchy level
H2. Last, as illustrated in Figure 3, each accelerator is as-
signed its own workloads at hierarchy level H3 with the same
partition method. Such binary tree structure of our hierarchi-
cal partition method enables the partition of 8 accelerators in
logarithmic times of iteration, which equals 3 (log28). With
Figure 3, at each hierarchy level, we have a parallelism list
for every weighted layers for layers to be partitioned into the
two subarrays. In total three parallelism lists are generated by
the partition algorithm and we can use the lists to determine
the parallelism setting for each accelerator, and the tensors
they hold.

Algorithm 2 Hierarchical Partition.

Input:
1. The number of hierarchy levels, H,
2. Batch size, B,
3. The number of weighted layers in a DNN model, L,
4. A list of hyper parameters (layer type: conv or fc,
kernel sizes, parameter for pooling, activation function),
HP[l], l = 0, ..,L-1.

Output:
1. Total communication, com,
2. A list of parallelism for each weighted layer at each
hierarchy level, P[h][l],h = 0, ...,H-1, l = 0, ..,L-1.

1: if (H == 0) then
2: return (0, []).
3: else
4: (com_h,P_h) = PartitionBetweenTwoAccelerators().
5: (com_n,P_n) = HierarchicalPartition(H-1).
6: Update P.
7: com = com_h+2∗ com_n.
8: return (com, P).
9: end if

In the hierarchical partition algorithm, for one specific
hierarchy, we first partition an array of the accelerators into
two subarrays by Algorithm 1, and then recursively apply
the hierarchical partition algorithm to the subarray until there
is only one accelerator in one subarray. The hierarchical
partition can be summarized as Algorithm 2.

The inputs of Algorithm 2 are similar to those of Algorithm
1 except that the hierarchical partition algorithm also needs
the hierarchy levels(H) as the input to denote how many
times we divide the training workload into two groups. For
example, if hierarchy levels H equals 4, the total number of

DRAM Dies
Logic Die

(c) Accelerator array (H tree)
 (a) HMC

Row 1

Row 1
PE

Row 2

Row 2
PE

Row 3

PE

PE

Row 1 Row 2

(b) Row stationary PU

A15A14

A0,1,2,3,4,5,6,7

A8
,9

,1
0,

11

A12,13

(d) Accelerator array (Torus)

Fl Wl Fl+1

�Wl El+1El

Figure 4: Overall view of (a) an HMC-based accelerator,
(b) a row stationary processing unit, (c) an array of six-
teen accelerators in H tree, and (d) the accelerator array
in torus.

accelerators in the array are 2H . The outputs of hierarchical
partition algorithm include the total communication through
all the hierarchy levels (com) and a list containing all the
partition strategies for each layer of all the hierarchy levels
in the accelerator array.

Our hierarchical partition algorithm is a recursive function.
In each recursion, Algorithm 2 first calculates the minimal
communication (com_h) for current hierarchy level using 1.
Then, it calls itself with the input hierarchy levels(h) changed
to hierarchy levels(h−1) and obtains the total minimal com-
munication (com_n) for the lower hierarchy levels. At last
it returns the total communication com by adding current
communication com_h and 2× com_n.

5. HYPAR ARCHITECTURE
This section presents the HYPAR architecture composed

of an accelerator array, where the parallelism setting is de-
termined by HYPAR. The individual accelerator is based on
Hybrid Memory Cube (HMC) [102], as shown in Figure 4
(a). An HMC consists of stacked DRAM dies and logic die,
and they are connected by through silicon vias (TSVs), Pro-
cessing units (PUs) can be integrated on the logic die. HMC
provides high memory bandwidth (320 GB/s) [102], which is
suitable for the in-memory processing for DNNs. Since DNN
accelerators incur heavy memory accessing and intensive
computation operations, recent works [19, 22] demonstrated
that HMC-based neural network accelerator could drastically
reduce data movements.

For the PUs, as shown in Figure 4 (b), we implement a row
stationary design as [15]. In such design, weight rows (green)
are shared by processing engines horizontally, feature map
rows (blue) are shared by processing engines diagonally, and
partial sum rows (red) are accumulated vertically. The row
stationary design is suitable for convolution computations.

Figure 4 shows the overall HYPAR architecture composed
of a 2-D array of sixteen accelerators. Thus, the number of

conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv3_4
conv4_1
conv4_2
conv4_3
conv4_4
conv5_1
conv5_2
conv5_3
conv5_4
fc1
fc2
fc3

H1
H2
H3
H4 conv1_1

conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3
fc1
fc2
fc3

conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv4_1
conv4_2
conv5_1
conv5_2
fc1
fc2
fc3

conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3
fc1
fc2
fc3

H1
H2
H3
H4 conv1_1

conv2_1
conv3_1
conv3_2
conv4_1
conv4_2
conv5_1
conv5_2
fc1
fc2
fc3conv1
conv2
conv3
conv4
conv5
fc1
fc2
fc3conv1
conv2
conv3
fc1
fc2conv1
conv2
fc1
fc2conv1
conv2
conv3
conv4

fc1
fc2
fc3
fc4

X:: :

Figure 5: Optimized parallelism for weighted layers in four hierarchy levels of ten networks in HYPAR.

hierarchy levels for the accelerator array is four. To support
efficient hierarchical communication, the accelerators in the
array are connected with certain network topology. Notice
that HYPAR algorithm hierarchically partitions the acceler-
ators. In each level, the two subarrays of accelerators (or
two accelerators in the last level) communicate between each
other. The communication relationship is represented by the
two edges from their ancestor subarray. For example, as
shown in Figure 3, in level H2, the ancestor subarray {A0,
A1, A2, A3} has edges connected to the child subarray {A0,
A1} and {A2, A3}. That means subarray {A0, A1} and {A2,
A3} communicate with each other. For subarray {A0, A1} to
communicate with subarray {A4, A5}, the communication
“backtracks” to level H1. That is natural because in the hier-
archical partition Algorithm 2, subarray {A0, A1} and {A4,
A5} have no direct communication in level H2, but they may
communicate in level H1.

We consider two network topologies. Figure 4 (c) shows
the H tree topology, which can match the communication
patterns. As shown in Figure 4 (b), the tensors with shadow
lines are assigned to subarray {A0-7}, while the white tensors
are assigned to subarray {A8-15}, and the tensors in each
subarray are recursively assigned to sub-subarrays according
to the hierarchical partition.

Figure 4 (d) shows the torus topology for the accelerator
array. While torus is a common topology, it performs worse
than the H tree. It is because the tensor partition pattern
generated by Algorithm 2 does not match torus topology as
well as the H tree.

6. EVALUATION

6.1 Evaluation Setup
In the evaluation, we use three datasets, including small,

medium and large size: MNIST [114], CIFAR-10 [115] and
ImageNet [104]. We use ten deep neural network models in
the evaluation: SFC, SCONV, Lenet-c, Cifar-c, AlexNet,
VGG-A, VGG-B, VGG-C, VGG-D and VGG-E. SFC is a fully-
connected network (no convolutional layers), and SCONV is
a convolutional network without any fully-connected layers.
The hyper parameters of SFC and SCONV are shown in Table 3.
Notice that SFC and SCONV are valid networks, which have an
accuracy of 98.28% and 98.71%, respectively. We build the
two “strange” networks as extreme cases to demonstrate the

Table 3: Hyper parameters for SFC and SCONV.
SFC 784-8192-8192-8192-10

SCONV
20@5×5, 50@5×5(2×2 max pool),
50@5×5, 10@5×5(2×2 max pool)

effects of data and model parallelism. Lenet-c is a convo-
lutional neural network for MNIST, Cifar-c is for Cifar-10.
AlexNet and VGGs are for ImageNet, and the model hyper
parameters can be found in [6] and [105] respectively.

For the accelerator array, we employ sixteen accelerators
(as shown in Figure 4). The number of partition hierarchy
levels is four. Each accelerator is based on an HMC cube.
The batch size is 256. We use an event-driven simulation.
Within an HMC vault (i.e., an Eyeriss accelerator and its
local memory), we modeled the computation cost and the
memory access between vaults, we also considered the tensor
communication. For the HMC, the DRAM bandwidth is
320 GB/s and each HMC has 8 GB memory [102]. The
PUs used in the evaluation have an Eyeriss-like [15] row
stationary architecture, and each processing unit has 168
(12×14) processing engines, 108 KB on-chip buffer and 84.0
GPOS/s computation density. The accelerator works at 250
MHz and the link bandwidth is 1600 Mb/s (i.e. the total
network bandwidth is 25.6 Gb/s). The energy consumption
for a 32-bit float ADD operation is 0.9 pJ, a 32-bit float
MULT operation is 3.7 pJ, a 32-bit SRAM accessing is 5.0
pJ and a 32-bit DRAM accessing is 640 pJ [116]. We use a
precision of 32-bit floating point in the computation.

We compare the default Model Parallelism (where all lay-
ers at the four hierarchy levels are assigned to model paral-
lelism), the default Data Parallelism (where all layers at the
four hierarchy levels are assigned to data parallelism) and
HYPAR in the evaluation.

6.2 Overall Results

6.2.1 Optimized Parallelism in HYPAR

Figure 5 shows the optimized parallelisms for weighted
layers in the ten networks at four hierarchy levels. For most
networks, especially large-scale networks, such as AlexNet
and VGGs, in the convolutional layers, the parallelisms are
usually data parallelism, and in fully-connected layers, the
parallelisms usually are model parallelism. That is consis-
tent to our analysis in Section 3.2, i.e., convolutional layers

favor data parallelism while fully connected layers prefer
model parallelism to keep the communication as low as possi-
ble. The optimization of extreme cases is a slightly different.
For SFC, because all layers are fully-connected layer, except
fc1@H3 is optimized to data parallelism, all other layers at
the four hierarchy levels are optimized to model parallelism.
For SCONV, a network with all convolutional layers, all layers
at the four hierarchy levels are optimized to data parallelism.
We also see that except SCONV, the optimized parallelisms for
layers at four hierarchy levels consist of both data parallelism
and model parallelism, leading to hybrid parallelism.

6.2.2 Performance
The performance of the default Model Parallelism, the

default Data Parallelism and HYPAR are shown in Figure 6.
The performance results are normalized to the default Data
Parallelism.

HYPAR achieves a 3.39× performance gain compared to
Data Parallelism on average. We can also find that the per-
formance of Model Parallelism is almost always worse than
Data Parallelism. Thus, among these two, we should mostly
prefer Data Parallelism in DNN training. For the extreme
case SFC, Model Parallelism performs better than Data Paral-
lelism, but HYPAR still performs slightly better than Model
Parallelism. Although fully-connected layers prefer Model
Parallelism, as shown in Figure 5 (a), fc1@H3 is optimized
to Data Parallelism. Therefore, the optimized parallelisms
in HYPAR are not fully Model Parallelism, and this explains
why HYPAR performs better than Model Parallelism (23.48×
v.s. 22.19×). It validates the partitioning algorithm of HY-
PAR. For the other extreme case SCONV, HYPAR performs the
same as Data Parallelism. For other eight networks, HYPAR

achieves performance gains ranging from 1.23× to 4.97×
compared to Data Parallelism.

6.2.3 Energy Efficiency
The energy efficiency of the default Model Parallelism, the

default Data Parallelism and HYPAR are shown in Figure 7.
The energy efficiency is the the energy saving normalized to
the default Data Parallelism.

HYPAR achieves a 1.51× energy efficiency compared to
Data Parallelism on average. Again, Model Parallelism is
almost always less energy efficiency than Data Parallelism.
For the extreme case SFC, the energy efficiency of Model

SFC SCONV
Lenet-c

Cifar-c
AlexNet

VGG-A
VGG-B

VGG-C
VGG-D

VGG-E
Gmean

10-2

10-1

100

23
.4

8
22

.1
9

1.
00

0.
03

74

Model Parallelism
Data Parallelism
HyPar

0.
46

9
3.

05
0.

10
0 0.
18

3
1.

23

3.
27

0.
34

6
4.

97

0.
13

0
3.

21

0.
24

1
3.

39

0.
14

0
4.

06

0.
12

3
2.

73

0.
12

1
3.

92

0.01

0.10

1.00

6.00

Figure 6: Performance of Model Parallelism, Data Paral-
lelism and HYPAR normalized to Data Parallelism.

SFC SCONV
Lenet-c

Cifar-c
AlexNet

VGG-A
VGG-B

VGG-C
VGG-D

VGG-E
Gmean

S10-1

100

0.10

1.00

2.00 10
.2

7
9.

96

1.
00

0.
19

8

0.
48

6
1.

81
0.

16
9

0.
42

1
1.

03 1.
19

0.
54

9
1.

35

0.
36

5
1.

16

0.
47

4
1.

51

0.
34

8

1.
22

0.
37

7
1.

13

0.
32

1
1.

21

Model Parallelism
Data Parallelism
HyPar

Figure 7: Energy efficiency of Model Parallelism, Data
Parallelism and HYPAR normalized to Data Parallelism.

Parallelism is higher than that of Data Parallelism, but HY-
PAR performs better than Model Parallelism, and HYPAR has
higher energy efficiency (10.27×) than Model Parallelism
(9.96×). For the other extreme case SCONV, HYPAR has a
1.00× energy efficiency, the same as Data Parallelism. For
other eight networks, HYPAR achieves energy efficiencies
ranging from 1.03× to 1.81× compared to Data Parallelism.

6.2.4 Total Communication per Step
In HYPAR, the total communication of a network is op-

timized to improve the performance and energy efficiency.
We show the total communication per step of the default
Model Parallelism, the default Data Parallelism and HYPAR

in Figure 8.
The geometric means of total communication for Model

Parallelism, Data Parallelism and HYPAR are 8.88 GB, 1.83GB
and 0.318 GB respectively. Model Parallelism mostly has
much higher amount of total communication than Data Paral-
lelism and HYPAR. However, for the extreme case SFC, the
total communication of Model Parallelism is lower than that
of Data Parallelism. HYPAR has lower amount of total com-
munication (0.681 GB) than Model Parallelism (0.723 GB)
in SFC. For the other extreme case SCONV, HYPAR has the
same amount of total communication as Data Parallelism, and
the amount is lower than Model Parallelism. For other eight
networks, especially the large size networks, i.e., AlexNet,
VGG-A, VGG-B, VGG-C, VGG-D and VGG-E, the total commu-
nication in Data Parallelism is almost ten times lower than
that of Model Parallelism, and HYPAR is about another ten

SFC SCONV
Lenet-c

Cifar-c
AlexNet

VGG-A
VGG-B

VGG-C
VGG-D

VGG-E
Gmean

107

108

109

010

011

0.
72

3
16

.9
0.

68
1

0.
48

0
0.

01
21

0.
01

21
0.

11
2

0.
05

17
0.

01
61

0.
20

6
0.

01
74

0.
01

35
13

.0
 2

.0
0

0.
28

9
 5

0.
1

15
.9

 1
.4

7
13

4
 1

6.
0

 1
.4

7

15
7

16
.6

2.
13

18
0

 1
7.

2
 2

.7
6

15
7

16
.0

1.
58

 0
.3

18
 8

.8
8

 1
.8

3

0.01

0.10

1.00

10.0

100

Model Parallelism
Data Parallelism
HyPar

Figure 8: Total communication (in GB) of Model Paral-
lelism, Data Parallelism and HYPAR per step.

1.0

00
00

1.5

00
01

00
10

2.0

00
11 000001
00

0001

2.5

01
01

0010

01
10

0011

010001
11

3.0

010110
00

011010
01

0111

3.5

100010
10 100110
11

101011
00

1011

11
01

1100

110111
10

111011
11

1111

HyPar & Peak (0011,0011,3.05)

H4
H1

Figure 9: Normalized performance (to Data Parallelism)
in parallelism space exploration for Lenet-c. H2 and
H3 are fixed and parallelism for layers at H1 and H4 are
explored. 0 indicates data parallelism while 1 indicates
model parallelism.

times lower than Data Parallelism. We can find that the com-
munication is a key factor that determines the performance
and energy efficiency of an array of accelerators.

6.3 Case Studies

6.3.1 Parallelism Space Exploration for Lenet-c
We explore the parallelism space for Lenet-c to find the

maximum performance. Lenet-c has four weighted layers,
and four partition hierarchy levels, so the capacity of search-
ing space would be 24×4 = 65536, which is too large. As
an alternative, we fix the parallelisms of all four layers at
two hierarchy levels H2 and H3, and explore the possible
parallelisms for all four layers at two hierarchy levels H1 and
H4. The parallelisms of layers at H2 and H3 are fixed as the
optimized ones, as shown in Figure 5 (c). So the capacity of
the searching space is now 22×4 = 256.

The results are shown in Figure 9. The results are normal-
ized to the default Data Parallelism. As we can see, the peak
of the normalized performance is 3.05×, at H1 = 0011 and
H4 = 0011, which means the parallelisms for four layers at
H1 are dp, dp, mp, mp and the four layers at H4 are dp, dp,
mp, mp. That is exactly the performance gain of Lenet-c
with the parallelisms optimized by HYPAR.

6.3.2 Parallelism Space Exploration for VGG-A
We explore the parallelism space for VGG-A to find the

maximum performance. While the capacity of full searching
space would be 24×11 = 17.6 T, which is never possible to
enumerate every point. As an alternative, we fix the paral-
lelisms of nine layers in the network, except conv5_2 and
fc1. We then explore the possible parallelisms for conv5_2
and fc1 at the four hierarchy levels. The parallelisms of
the other layers are fixed as the optimized ones, as shown in
Figure 5 (f). The capacity of the searching space is reduced

1.00

11
11

2.00

11
10

11
01

11
00

3.00

111110
11

111010
10

110110
01

4.00

1100

101110
00

101001
11

1001
5.00

01
10

1000

5.10

011101
01

011001
00

010100
11

010000
10

0011

001000
01

000100
00

0000 fc1

Peak (1000,1111,5.05)
HyPar (0001,1111,4.97)

conv5_2

Figure 10: Normalized performance (to Data Paral-
lelism) in parallelism space exploration for VGG-A. All
weighted layers are fixed except conv5_2 and fc1. Paral-
lelism for H1 to H4 of conv5_2 and fc1 are explored.

to 24×2 = 256.
The exploration results are shown in Figure 10. The results

are normalized to the default Data Parallelism. As we can
see, the peak of the normalized performance is 5.05×, at
conv5_2 = 1000 and fc1 = 1111, which means the paral-
lelisms for conv5_2 at four hierarchy levels (H1 to H4) are
mp, dp, dp, dp and fc1 in four hierarchy levels (H1 to H4)
are mp, mp, mp, mp. However, the performance optimized
by HYPAR is 4.97×, and the corresponding parallelisms for
conv5_2 at four hierarchy levels (H1 to H4) are dp, dp, dp,
mp. That is because HYPAR optimizes the total communi-
cation as a proxy for optimizing performance. Even HYPAR

failed to provide the maximum performance with the opti-
mized setting, the performance of HYPAR is very close to the
maximum (4.97× vs. 5.05×), and is still much higher than
the baseline Data Parallelism (4.97× vs. 1.00×).

1 2 3 4 5 6 7
0

2

4

6

8

0

212.0

8.00

4.00

0.00 0.10

1.00

10.0

100

1 2 4 8 16 32 64

 HyPar
 Data Parallelism

Total Communication
 HyPar
 Data Parallelism

Performance Gain

Figure 11: Comparison of scalability of HYPAR and
Data Parallelism. Left Y axis: performance gain normal-
ized to one accelerator, right Y axis: total communica-
tion.

6.4 Scalability
We explore the scalability of HYPAR using VGG-A as an

example. In the exploration, we scale the number of accel-
erators from 1 to 64. We compare the performance gains
of HYPAR and the default Data Parallelism. The gains are
normalized to the performance of the performance of one
accelerator.

The results are shown in Figure 11. HYPAR always per-
forms better than the default Data Parallelism. The perfor-
mance gains of the default Data Parallelism become decreas-
ing after the number of accelerators exceeds 8. But the gains
of HYPAR increases until the number of accelerators exceeds
32. We can see that HYPAR scales better than the default
Data Parallelism. HYPAR is always better than the default
Data Parallelism in performance gains, and HYPAR always
has lower total communication.

6.5 Comparisons

6.5.1 Comparison of H Tree and Torus Topology
We compare the performance of H tree and torus typolo-

gies. The parallelisms for each layers are the optimized
choices by HYPAR, but the only difference is the connection
topology of the sixteen accelerators. For H-tree, it is physi-
cally it is a fat-tree, and switches are placed at each parent
node. The bandwidth between groups in a higher hierarchy
are doubled compared to that of a lower hierarchy (but the
number of links is halved). In a torus, the bandwidth for a
link is the same.

Figure 12 shows the performance of torus and H tree topol-
ogy, normalized to Data Parallelism. For SFC, both the two
typologies have a speedup of more than 10×, because all lay-
ers in SFC are fully-connected layers, and Data Parallelism
has lower performance regardless of connection typologies.
For the other networks, we can see, H tree outperforms torus
topology, because the parallelism and tensor partition are de-
termined in a binary tree pattern, and H tree is naturally more
suitable for the pattern. The geometric mean of performance
of torus and H tree typologies are 2.23× and 3.39×.

While three are many different possible topologies for the
accelerator array, HYPAR is topology independent. It is a
simplification, but the topology-independent communication
model and the dynamic programming method indeed reduced
the total communication between accelerators. From the
comparison of H tree and torus, we can see the partition
also works for torus although HYPAR prefers H tree, so the
simplification is reasonable.

SFC SCONV
Lenet-c

Cifar-c
AlexNet

VGG-A
VGG-B

VGG-C
VGG-D

VGG-E
Gmean

SF S L C AA VV VV VV VV VV G
0

1

2

3

4

5
Torus
H Tree

Figure 12: Normalized performance (to Data Paral-
lelism) of torus and H tree topology.

Performance
Energy E ciency

1.
051.
16

0.00

1.00

2.50

1.50

2.00

0.50

1.
16

1.
54

1.
40

2.
20

1.
19 1

.5
8

1.
071.

23 1.
22

1.
62

1.
51

2.
40

conv5-b32-h2

conv5-b32-h3

conv5-b32-h4

fc3-b4096-h2

fc3-b4096-h3

fc3-b4096-h4

Gmean

Figure 13: Performance and energy efficiency of HYPAR
compared to the trick in [111].

6.5.2 Comparison of HYPAR and the Trick in [111]
Batch size is an important hyper parameter in DNN train-

ing, and batch size should be customized for specific pur-
poses rather than a default setting. For for larger training
throughput [117], a larger batch size (eg. 4096) should be
selected, while for higher testing accuracy and ability to gen-
eralize [118], a small batch size (eg. 32) should be selected.

Thus we use the two batch size, i.e. b32 and b4096, to
evaluate HYPAR and the Trick in [111]. We use the fully-
connected and convolutional layers fc3 and conv5 in VGG-E,
under three hierarchy levels h2, h3 and h4. Figure 13 shows
the performance and energy efficiency of HYPAR compared
to the Trick. We can see, the performance of HYPAR is
1.62× better than the Trick and HYPAR is 1.22× more energy
efficient on average. HYPAR can be 2.40× faster than the
Trick.

So one may ask, what is wrong with the Trick [111]? Let’s
get back to our communication model (Section 3). With the
intra-layer communication model, for conv5, A(�Wl) =
CiCoK2 = 512 × 512 × 32 = 2,359,296, while A(Fl+1) =
BCoWH = 32×512×14×14= 3,211,264. Because A(�Wl)
< A(Fl+1), here conv5 should be configured to model par-
allelism rather than data parallelism in the Trick. For fc3,
A(�Wl)=CiCo = 4096×1000= 4,096,000, while A(Fl+1)=
BCo = 4096×1000= 4,096,000. A(�Wl) and A(Fl+1) are
the same, we can not clearly see which parallelism is better
than the other, but we can further use inter-layer communi-
cation model to explain. According to Table 2, the commu-
nication of dp-dp is 0 while that of either mp-mp or mp-dp
is not 0. So we should choose data parallelism for that layer,
but unfortunately, the Trick chose model parallelism.

7. CONCLUSION
We propose HYPAR to determine layer-wise parallelism

for deep neural network training with an array of DNN ac-
celerators. HYPAR partitions the feature map tensors (input
and output), the kernel tensor, the gradient tensor, and the
error tensors for the DNN accelerators. A partition consti-
tutes the choice of parallelism for all weighted layers. The
optimization target is to search a partition that minimizes the
total communication during training a complete deep neural
network. HYPAR is practical: the time complexity for the
partition search in HYPAR is linear. We apply this method
in HYPAR architecture, an HMC-based DNN training archi-
tecture to minimize data movement. We evaluate HYPAR

with ten DNN models from classic Lenet to large-size model
VGGs, and the number of weighted layers of these models
ranges from four to nineteen. Our evaluation shows that HY-
PAR achieves a performance gain of 3.39× and an energy
efficiency gain of 1.51× compared to the default data paral-
lelism on average, and HYPAR performs up to 2.40× better
than the trick [111].

ACKNOWLEDGEMENT
We thank the anonymous reviewers of HPCA 2019, MI-

CRO 2018, ISCA 2018 for their constructive and insightful
comments. This work is supported in part by NSF 1725456,
1615475, and DOE DE-SC0018064. This work is also sup-
ported by the National Science Foundation grants NSF-CCF-
1657333, NSF- CCF-1717754, NSF-CNS-1717984, and NSF-
CCF-1750656.

8. REFERENCES
[1] I. Goodfellow et al., Deep learning. MIT press Cambridge, 2016.

[2] Y. Bengio et al., “Deep learning,” Nature, 2015.

[3] Y. Sun et al., “Deepid3: Face recognition with very deep neural
networks,” arXiv, 2015.

[4] G. Hinton et al., “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, 2012.

[5] C. Farabet et al., “Learning hierarchical features for scene labeling,”
PAMI, 2013.

[6] A. Krizhevsky et al., “Imagenet classification with deep
convolutional neural networks,” in NIPS, 2012.

[7] A. Farmahini-Farahani et al., “Nda: Near-dram acceleration
architecture leveraging commodity dram devices and standard
memory modules,” in HPCA, 2015.

[8] S. Liu et al., “Cambricon: An instruction set architecture for neural
networks,” in ISCA, 2016.

[9] S. Zhang et al., “Cambricon-x: An accelerator for sparse neural
networks,” in MICRO, 2016.

[10] T. Chen et al., “Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[11] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in
MICRO, 2014.

[12] Z. Du et al., “Shidiannao: Shifting vision processing closer to the
sensor,” in ISCA, 2015.

[13] D. Liu et al., “Pudiannao: A polyvalent machine learning accelerator,”
in ASPLOS, 2015.

[14] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in ISCA, 2016.

[15] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” JSSC, 2017.

[16] Y.-H. Chen et al., “Using dataflow to optimize energy efficiency of
deep neural network accelerators,” IEEE Micro, 2017.

[17] S. Han et al., “Eie: efficient inference engine on compressed deep
neural network,” in ISCA, 2016.

[18] Z. Du et al., “Neuromorphic accelerators: A comparison between
neuroscience and machine-learning approaches,” in MICRO, 2015.

[19] D. Kim et al., “Neurocube: A programmable digital neuromorphic
architecture with high-density 3d memory,” in ISCA, 2016.

[20] W. Lu et al., “Flexflow: A flexible dataflow accelerator architecture
for convolutional neural networks,” in HPCA, 2017.

[21] A. Ren et al., “Sc-dcnn: Highly-scalable deep convolutional neural
network using stochastic computing,” in ASPLOS, 2017.

[22] M. Gao et al., “Tetris: Scalable and efficient neural network
acceleration with 3d memory,” in ASPLOS, 2017.

[23] S. B. Furber et al., “Overview of the spinnaker system architecture,”
IEEE Transactions on Computers, 2013.

[24] C. Zhang et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in FPGA, 2015.

[25] J. Qiu et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in FPGA, 2016.

[26] M. Motamedi et al., “Design space exploration of fpga-based deep
convolutional neural networks,” in ASP-DAC, 2016.

[27] N. Suda et al., “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in FPGA, 2016.

[28] C. Zhang et al., “Caffeine: Towards uniformed representation and
acceleration for deep convolutional neural networks,” in ICCAD,
2016.

[29] S. Han et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga.,” in FPGA, 2017.

[30] Y. Ma et al., “Optimizing loop operation and dataflow in fpga
acceleration of deep convolutional neural networks,” in FPGA, 2017.

[31] R. Zhao et al., “Accelerating binarized convolutional neural networks
with software-programmable fpgas.,” in FPGA, 2017.

[32] J. Zhang and J. Li, “Improving the performance of opencl-based fpga
accelerator for convolutional neural network.,” in FPGA, 2017.

[33] H. Esmaeilzadeh et al., “Neural acceleration for general-purpose
approximate programs,” in MICRO, 2012.

[34] C. Farabet et al., “Neuflow: A runtime reconfigurable dataflow
processor for vision,” in CVPRW, 2011.

[35] S. Venkataramani et al., “Scaledeep: A scalable compute architecture
for learning and evaluating deep networks,” in ISCA, 2017.

[36] Y. Ji et al., “Neutrams: Neural network transformation and co-design
under neuromorphic hardware constraints,” in MICRO, 2016.

[37] T. Na and S. Mukhopadhyay, “Speeding up convolutional neural
network training with dynamic precision scaling and flexible
multiplier-accumulator,” in ISLPED, 2016.

[38] A. Parashar et al., “Scnn: An accelerator for compressed-sparse
convolutional neural networks,” in ISCA, 2017.

[39] M. Alwani et al., “Fused-layer cnn accelerators,” in MICRO, 2016.

[40] Y. Shen et al., “Overcoming resource underutilization in spatial cnn
accelerators,” in FPL, 2016.

[41] Y. Shen et al., “Escher: A cnn accelerator with flexible buffering to
minimize off-chip transfer,” in FCCM, 2017.

[42] Y. Shen, M. Ferdman, and M. Peter, “Maximizing cnn accelerator
efficiency through resource partitioning,” in ISCA, pp. 535–547,
ACM, 2017.

[43] A. Mirhoseini et al., “Perform-ml: Performance optimized machine
learning by platform and content aware customization,” in DAC,
2016.

[44] M. S. Razlighi et al., “Looknn: Neural network with no
multiplication,” in DATE, 2017.

[45] Z. Takhirov et al., “Energy-efficient adaptive classifier design for
mobile systems,” in ISLPED, 2016.

[46] J. H. Ko et al., “Design of an energy-efficient accelerator for training
of convolutional neural networks using frequency-domain
computation,” in DAC, 2017.

[47] H. Sharma et al., “From high-level deep neural models to fpgas,” in
MICRO, 2016.

[48] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in ISCA, 2016.

[49] C. Zhang and V. K. Prasanna, “Frequency domain acceleration of
convolutional neural networks on cpu-fpga shared memory system,”
in FPGA, 2017.

[50] Z. Fan et al., “Red: A reram-based deconvolution accelerator,” in
DATE, 2019.

[51] F. Chen et al., “Regan: A pipelined reram-based accelerator for
generative adversarial networks,” in ASP-DAC, 2018.

[52] F. Chen and H. Li, “Emat: an efficient multi-task architecture for
transfer learning using reram,” in ICCAD, 2018.

[53] B. Li et al., “Reram-based accelerator for deep learning,” in DATE,
2018.

[54] H. Ji et al., “Recom: An efficient resistive accelerator for compressed
deep neural networks,” in DATE, 2018.

[55] X. Qiao et al., “Atomlayer: a universal reram-based cnn accelerator
with atomic layer computation,” in DAC, 2018.

[56] J. Mao et al., “Modnn: Local distributed mobile computing system
for deep neural network,” in DATE, 2017.

[57] J. Mao et al., “Mednn: A distributed mobile system with enhanced
partition and deployment for large-scale dnns,” in ICCAD, 2017.

[58] J. Mao et al., “Adalearner: An adaptive distributed mobile learning
system for neural networks,” in ICCAD, 2017.

[59] T. Tang et al., “Binary convolutional neural network on rram,” in
ASP-DAC, 2017.

[60] L. Jiang et al., “Xnor-pop: A processing-in-memory architecture for
binary convolutional neural networks in wide-io2 drams,” in ISLPED,
2017.

[61] Q. Deng et al., “Dracc: a dram based accelerator for accurate cnn
inference,” in DAC, 2018.

[62] Q. Lou et al., “3dict: a reliable and qos capable mobile
process-in-memory architecture for lookup-based cnns in 3d xpoint
rerams,” in ICCAD, 2018.

[63] H. Ji et al., “Hubpa: High utilization bidirectional pipeline
architecture for neuromorphic computing,” in ASP-DAC, 2019.

[64] T. Liu et al., “Mt-spike: A multilayer time-based spiking
neuromorphic architecture with temporal error backpropagation,” in
ICCAD, 2017.

[65] T. Liu et al., “Pt-spike: A precise-time-dependent single spike
neuromorphic architecture with efficient supervised learning,” in
ASP-DAC, 2018.

[66] X. Zhang et al., “Dnnbuilder: an automated tool for building
high-performance dnn hardware accelerators for fpgas,” in ICCAD,
2018.

[67] P. Wang et al., “Snrram: an efficient sparse neural network
computation architecture based on resistive random-access memory,”
in DAC, 2018.

[68] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,”
in MICRO, 2017.

[69] C.-E. Lee et al., “Stitch-x: An accelerator architecture for exploiting
unstructured sparsity in deep neural networks,” in SysML, 2018.

[70] J. Liu et al., “Processing-in-memory for energy-efficient neural
network training: A heterogeneous approach,” in MICRO, 2018.

[71] Q. Yang et al., “A quantized training method to enhance accuracy of
reram-based neuromorphic systems,” in ISCAS, 2018.

[72] X. Liu et al., “Reno: a high-efficient reconfigurable neuromorphic
computing accelerator design,” in DAC, 2015.

[73] H. Yan et al., “Celia: A device and architecture co-design framework
for stt-mram-based deep learning acceleration,” in ICS, 2018.

[74] Y. Wang et al., “Group scissor: Scaling neuromorphic computing
design to large neural networks,” in DAC, 2017.

[75] J. Albericio et al., “Cnvlutin: ineffectual-neuron-free deep neural
network computing,” in ISCA, 2016.

[76] P. Judd et al., “Stripes: Bit-serial deep neural network computing,” in
MICRO, 2016.

[77] D. Mahajan et al., “Tabla: A unified template-based framework for
accelerating statistical machine learning,” in HPCA, 2016.

[78] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep
learning,” in HPCA, 2016.

[79] J. Yu et al., “Scalpel: Customizing dnn pruning to the underlying
hardware parallelism,” in ISCA, 2017.

[80] J. Albericio et al., “Bit-pragmatic deep neural network computing,”
in MICRO, 2017.

[81] C. Ding et al., “Circnn: accelerating and compressing deep neural
networks using block-circulant weight matrices,” in MICRO, 2017.

[82] J. Park et al., “Scale-out acceleration for machine learning,” in
MICRO, 2017.

[83] R. Cai et al., “Vibnn: Hardware acceleration of bayesian neural
networks,” in ASPLOS, 2018.

[84] A. Yazdanbakhsh et al., “Ganax: A unified mimd-simd acceleration
for generative adversarial networks,” in ISCA, 2018.

[85] V. Akhlaghi et al., “Snapea: Predictive early activation for reducing
computation in deep convolutional neural networks,” in ISCA, 2018.

[86] K. Hegde et al., “Ucnn: Exploiting computational reuse in deep
neural networks via weight repetition,” in ISCA, 2018.

[87] E. Park et al., “Energy-efficient neural network accelerator based on
outlier-aware low-precision computation,” in ISCA, 2018.

[88] M. Song et al., “Prediction based execution on deep neural networks,”
in ISCA, 2018.

[89] H. Sharma et al., “Bit fusion: Bit-level dynamically composable
architecture for accelerating deep neural network,” in ISCA, 2018.

[90] C. Deng et al., “Permdnn: Efficient compressed deep neural network

architecture with permuted diagonal matrices,” in MICRO, 2018.

[91] “Google supercharges machine learning tasks with tpu custom chip.”
https://cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-learning-tasks-with-
custom-chip.html.

[92] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017.

[93] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, 2014.

[94] S. K. Esser et al., “Backpropagation for energy-efficient
neuromorphic computing,” in NIPS, 2015.

[95] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” PNAS, 2016.

[96] “Intel nervana platform delivers deep learning analytics.”
https://www.intel.com/content/www/us/en/financial-
services-it/deep-learning-delivers-advanced-
analytics-brief.html.

[97] “Intel’s new self-learning chip promises to accelerate artificial
intelligence.”
https://newsroom.intel.com/editorials/intels-new-
self-learning-chip-promises-accelerate-artificial-
intelligence/.

[98] “Nvidia ai.”
https://www.nvidia.com/en-us/deep-learning-ai/.

[99] “Qualcomm machine learning.”
https://www.qualcomm.com/invention/cognitive-
technologies/machine-learning.

[100] “Deephi tech.” https://www.xilinx.com/products/design-
tools/deephi.html.

[101] “Microsoft unveils project brainwave for real-time ai.”
https://www.microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/.

[102] “Hybrid memory cube specification 2.1.”
http://hybridmemorycube.org.

[103] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for
deep learning,” in HPCA, 2017.

[104] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR, 2009.

[105] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in ICLR, 2015.

[106] K. He et al., “Deep residual learning for image recognition,” in
CVPR, 2016.

[107] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in OSDI, 2014.

[108] M. Li et al., “Communication efficient distributed machine learning
with the parameter server,” in NIPS, 2014.

[109] A. Coates et al., “Deep learning with cots hpc systems,” in ICML,
2013.

[110] J. Dean et al., “Large scale distributed deep networks,” in NIPS,
2012.

[111] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv, 2014.

[112] H. Kwon et al., “Maestro: An open-source infrastructure for
modeling dataflows within deep learning accelerators,” arXiv, 2018.

[113] “Build and train machine learning models on our new google cloud
tpus.” https://www.blog.google/topics/google-
cloud/google-cloud-offer-tpus-machine-learning/.

[114] Y. LeCun et al., “The mnist database of handwritten digits,” 1998.

[115] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” 2014.

[116] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in ISSCC, 2014.

[117] P. Goyal et al., “Accurate, large minibatch sgd: Training imagenet in
1 hour,” arXiv, 2017.

[118] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” arXiv, 2018.

