Trust, Resilience and Interpretability of Al
Models

Susmit Jha

Computer Science Laboratory,
SRI International
susmit.jha@sri.com

Abstract. In this tutorial, we present our recent work on building trusted,
resilient and interpretable AI models by combining symbolic methods
developed for automated reasoning with connectionist learning methods
that use deep neural networks. The increasing adoption of artificial in-
telligence and machine learning in systems, including safety-critical sys-
tems, has created a pressing need for developing scalable techniques that
can be used to establish trust over their safe behavior, resilience to adver-
sarial attacks, and interpretability to enable human audits. This tutorial
is comprised of three components: review of techniques for verification
of neural networks, methods for using geometric invariants to defend
against adversarial attacks, and techniques for extracting logical sym-
bolic rules by reverse engineering machine learning models. These tech-
niques form the core of TRINITY: Trusted, Resilient and Interpretabile
AT framework being developed at SRI. In this tutorial, we identify the
key challenges in building the TRINITY framework, and report recent
results on each of these three fronts.

1 Introduction

The rapid integration of intelligent and autonomous agents into our industrial
and social infrastructure has created an immediate need for establishing trust
between these agents and their human users. Decision-making and planning al-
gorithms central to the operation of these systems currently lack the ability
to explain the choices and decisions that they make. This is particularly prob-
lematic when the results returned by these algorithms are counter-intuitive. It is
important that intelligent agents become capable of responding to inquiries from
human users. For example, when riding in an autonomous taxi, we might expect
to query the Al driver using questions similar to those we would ask a human
driver, such as “why did we not take the Bay Bridge”, and receive a response such
as “there is too much traffic on the bridge” or “there is an accident on the ramp
leading to the bridge or in the middle lane of the bridge.” These explanations
are essentially formulae in propositional logic formed by combining the atomic
propositions corresponding to the user-observable system and the environment
states using Boolean connectives.

2 Susmit Jha

Even though the decisions of intelligent agents are the consequence of al-
gorithmic processing of perceived system and environment states, the straight-
forward approach of reviewing this processing is not practical. There are three
key reasons for this. First, Al algorithms use internal states and intermediate
variables to make decisions which may not be observable or interpretable by a
typical user. For example, reviewing decisions made by the A* planning algo-
rithm [38] could reveal that a particular state was never considered in the priority
queue. But this is not human-interpretable, because a user may not be familiar
with the details of how A* works. Second, the efficiency and effectiveness of many
AT algorithms relies on their ability to intelligently search for optimal decisions
without deducing information not needed to accomplish the task, but some user
inquiries may require information that was not inferred during the original exe-
cution of the algorithm. For example, a state may never be included in the queue
of a heuristic search algorithm like A* because either it is unreachable or it has
very high cost. Thus, the ability to explain why this state is not on the com-
puted path will require additional effort. Third, artificial intelligence is often a
composition of numerous machine learning and decision-making algorithms, and
explicitly modeling each one of these algorithms is not practical. Instead, we
need a technique which can treat these algorithms as black-box oracles, and ob-
tain explanations by observing their output on selected inputs. This is the first
challenge addressed in the TRINITY framework of improving interpretability of
AT models by extracting logical symbolic rules.

Among AT models, deep neural networks (DNNs) have emerged as an ubiq-
uitous choice of representation in machine learning due to the relative ease
and computational efficiency of training these models in the presence of large
amounts of data. The massive increase in computational power fueled by Moore’s
law and the emergence of architectures supporting parallel processing at a large
scale have made it possible to train these highly nonlinear deep learning networks
with thousands of parameters using millions of samples in a reasonable amount
of time. This has led to a quantum leap in the prediction accuracy of machine
learned models, and encouraged their rapid adoption in different aspects of our
social, economic and military infrastructure. Deep neural networks currently
provide state-of-the-art results in various applications ranging from computer
vision, network security, natural language processing to automatic control.

Unlike other traditional system design approaches, there are few known and
scalable methods to verify DNN models. This is the second challenge addressed
by the TRINITY framework for building trusted Al systems by developing tech-
niques for verifying DNNs [11,12] that has been implemented in a publicly avail-
able open-source tool, Sherlock. Sherlock uses mixed-integer linear programming
(MILP) solver but it does not merely compile the verification into an MILP prob-
lem. Sherlock first uses sound piecewise linearization of the nonlinear activation
function to define an encoding of the neural network semantics into mixed-integer
constraints involving real-valued variables and binary variables that arise from
the (piecewise) linearized activation functions. Such an encoding into MILP is a
standard approach to handling piecewise linear functions. As such, the input con-

Trust, Resilience and Interpretability of AT Models 3

straints ¢(x) are added to the MILP and next, the output variable is separately
maximized and minimized to infer the corresponding guarantee that holds on
the output. This enables us to infer an assume-guarantee contract on the overall
deep neural network. Sherlock augments this simple use of MILP solving with
a local search that exploits the local continuity and differentiability properties
of the function represented by the network. These properties are not exploited
by MILP solvers which typically use a branch-and-cut approach. On the other
hand, local search alone may get “stuck” in local minima. Sherlock handles local
minima by using the MILP solver to search for a solution that is “better” than
the current local minimum or conclude that no such solution exists. Thus, by
alternating between inexpensive local search iterations and relatively expensive
MILP solver calls, Sherlock can exploit local properties of the neural network
function but at the same time avoid the problem of local minima, and thus, solve
the verification of deep neural networks more efficiently.

Further, DNN models have been shown to be very brittle and vulnerable to
specially crafted adversarial perturbations to examples: given an input = and any
target classification t, it is possible to find a new input 2’ that is similar to x but
classified as t. These adversarial examples often appear almost indistinguishable
from natural data to human perception and are yet incorrectly classified by
the neural network. Recent results have shown that accuracy of neural networks
can be reduced from close to 100% to below 5% using adversarial examples. This
creates a significant challenge in deploying these deep learning models in security-
critical domains where adversarial activity is intrinsic, such as cyber-networks,
and surveillance. The use of neural networks in computer vision and speech
recognition have brought these models into the center of security-critical systems
where authentication depends on these machine learned models. How do we
ensure that adversaries in these domains do not exploit the limitations of machine
learning models to go undetected or trigger a non-intended outcome? The third
challenge addressed in TRINITY framework is to use geometric methods for
identifying invariants in training data that can be used for detecting adversarial
examples.

2 Interpretability of AT Models

2.1 Motivating Example

We describe a motivating example to illustrate the problem of providing human-
interpretable explanations for the results of an AI algorithm. We consider the
A* planning algorithm [38], which enjoys widespread use in path and motion
planning due to its optimality and efficiency. Given a description of the state
space and transitions between states as a weighted graph where weights are used
to encode costs such as distance and time, A* starts from a specific node in the
graph and constructs a tree of paths starting from that node, expanding paths
in a best-first fashion until one of them reaches the predetermined goal node.
At each iteration, A* determines which of its partial paths is most promising

4 Susmit Jha

and should be expanded. This decision is based on the estimate of the cost-
to-go to the goal node. Specifically, A* selects an intermediate node n that
minimizes totalCost(n) = partialCost(n) + guessCost(n), where totalCost
is the estimated total cost of the path that includes node n, obtained as the sum
of the cost (partialCost(n)) of reaching n from the initial node, and a heuristic
estimate of the cost (guessCost(n)) of reaching the goal from n . The heuristic
function guessCost is problem-specific: e.g., when searching for the shortest
path on a Manhattan grid with obstacles, a good guessCost is the straight
line distance from the node n to the final destination. Typical implementations
of A* use a priority queue to perform the repeated selection of intermediate
nodes. This priority queue is known as the open set or fringe. At each step of
the algorithm, the node with the lowest totalCost value is removed from the
queue, and “expanded”, This means that the partialCost values of its neighbors
are updated accordingly based on whether going through n improves them, and
these neighbors are added to the queue. The algorithm continues until some
goal node has the minimum cost value, totalCost, in the queue, or until the
queue is empty (in which case no plan exists). The totalCost value of the goal
node is then the cost of the optimal path. We refer readers to [38] for a detailed
description of A*. In rest of this section, we illustrate the need for providing
explanations using a simple example map and application of A* on it to find the
shortest path.

Figure 1 depicts the result of running A* on a 50x50 grid, where cells that
form part of an obstacle are colored red. The input map (Figure 1 (a)) shows
the obstacles and free space. A* is run to find a path from lower right corner to
upper left corner. The output map is shown in Figure 1 (b).

40

50
10 20 30 40 50 10 20 30 40 50

Fig. 1: (a) Input map to A* (b) Output showing final path and internal states

of A*. Cells on the computed optimal path are colored dark blue. Cells which

entered A*’s priority queue are colored light cyan, and those cells that never
entered the queue are colored yellow.

Trust, Resilience and Interpretability of AT Models 5

Consider the three cells X,Y,Z marked in the output of A* in Figure 1 (b)
and the following inquiries on the optimal path discovered by A*:

— Why was the cell Y not selected for the optimal path? Given the output and
logged internal states of the A* algorithm, we know that Y was considered
as a candidate cell but discarded due to non-optimal cost.

— Why was the cell X not selected for the optimal path? If we logged the internal
states of the A* algorithm, we would find that X was not even considered
as a candidate and it never entered the priority queue of the A* algorithm.
But this is not a useful explanation because a non-expert user cannot be
expected to understand the concept of a priority queue, or the details of how
A* works.

— Why was the cell Z not selected for the optimal path? The cell Z was also
never inserted into the priority queue and hence, it was never a candidate
to be selected on the optimal path similar to cell X. When responding to a
user query about why X and Z were not selected in the optimal path, we
cannot differentiate between the two even if all the internal decisions and
states of the A* algorithm were logged. So, we cannot provide the intuitively
expected explanation that Z is not reachable due to obstacles, while X is
reachable but has higher cost than the cells that were considered.

This example scenario illustrates the need for new information to provide ex-
planation in addition to the usual deduction by AI algorithm while solving the
original decision making problem.

2.2 Logic Extraction and Formal Synthesis

Our approach relies on learning logical explanations in the form of sparse Boolean
formula from examples that are obtained by carefully selected introspective sim-
ulations of the decision-making algorithm. The area of active learning Boolean
formula from positive and negative examples has been studied in literature [1,33]
in both exact and probably approximately correct (PAC) setting. Exact learn-
ing Boolean formula [3, 34] requires a number of examples exponential in the
size of the vocabulary. Under the PAC setting, learning is guaranteed to find an
approximately correct concept given enough independent samples [2,43,50]. It
is known that k-clause conjunctive normal form Boolean formula are not PAC
learnable with polynomial sample-size, even though monomials and disjunctive
normal form representations are PAC learnable [13,50]. Changing the represen-
tation from CNF to DNF form can lead to exponential blow-up. In contrast,
we consider only sparse Boolean formula and our goal is to learn the exact
Boolean formula with probabilistic confidence, and not its approximation. Effi-
cient learning techniques exist for particular classes of Boolean formulae such as
monotonic and read-one formulae [18,23], but explanations do not always take
these restricted forms, and hence, our focus on sparse Boolean formulae is better
suited for this context.

Another related research area is the newly emerged field of formal synthe-
sis, which combines induction and deduction for automatic synthesis of systems

6 Susmit Jha

from logical or black-box oracle specifications [25,29]. Unlike active learning,
formal synthesis is also concerned with defining techniques for the generation
of interesting examples and not just its inductive generalization, much like our
approach. While existing formal synthesis techniques have considered comple-
tion of templates by inferring parameters [6,52,55], composition of component
Boolean functions or uplifting to bitvector form [10, 21,25, 63|, inferring trans-
ducers and finite state-machines [7,8,17], and synthesis of invariants [56, 57],
our work is the first to consider sparsity as a structural assumption for learning
Boolean formulae.

The need for explanations of Al decisions to increase trust of decision-making
systems has been noted in the literature [40]. Specific approaches have been intro-
duced to discover explanations in specific domains such as MDPs [14], HTNs [22]
and Bayesian networks [64]. Explanation of failure in robotic systems by detect-
ing problems in the temporal logic specification using formal requirement anal-
ysis was shown to be practically useful in [51]. Inductive logic programming [15]
has also been used to model domain-specific explanation generation rules. In
contrast, we propose a domain-independent approach to generate explanations
by treating the decision-making AT algorithm as an oracle. Domain-independent
approaches have also been proposed in the Al literature for detecting sensitive
input components that determine the decision in a classification problem [53,60].
While these approaches work in a quantitative setting, such as measuring sensi-
tivity from the gradient of a neural network classifier’s ouput, our approach is
restricted to the discrete, qualitative setting. Further, we not only detect sensi-
tive inputs (support of Boolean formulae) but also generate the explanation.

2.3 Sparse Boolean Formula Learning for Explanations

A decision-making AT algorithm Alg can be modelled as a function that com-
putes the values of output variables out given input variables in, that is,
Alg:in — out

The outputs are the decision variables, while the inputs include the environment
and system states as observed by the system through the perception pipeline.
While the decision and state variables can be continuous and real valued, the
inquiries and explanations are framed using predicates over these variables, such
as comparison of a variable to some threshold. These predicates can either be
directly provided by the user or the developer of the Al system, or they can be
automatically extracted from the implementation of the Al system by includ-
ing predicates that appear in the control flow of the Al system. These must be
predicates over the input and output variables, that is, in and out, which are un-
derstood by the users. Our approach exploits the sparsity of Boolean formula for
learning the explanations and so, the vocabulary can include all possible predi-
cates and variables that might be useful for explaining Al decisions. We propose
methods to efficiently find relevant variables where these methods only depend
logarithmically on the size of the vocabulary. This ensures that the definition
of vocabulary can conveniently include all possible variables, and our approach

Trust, Resilience and Interpretability of AT Models 7

can automatically find the relevant subset and synthesize the corresponding ex-
planation.

We denote the vocabulary of atomic predicates used in the inquiry from the
user and the provided explanation from the system by V. We can separate the
vocabulary V into two subsets: Vg used to formulate the user inquiry and Vg
used to provide explanations.

Vo ={q1,92,---¢m},Vr = {r1,72,... 15} where g;,r; : in U out — Bool

Intuitively, V is the shared vocabulary that describes the interface of the Al
algorithm and is understood by the human-user. For example, the inquiry vo-
cabulary for a planning agent may include propositions denoting selection of a
waypoint in the path, and the explanation vocabulary may include propositions
denoting presence of obstacles on a map.

An inquiry ¢¢g from the user is an observation about the output (decision)
of the algorithm, and can be formulated as a Boolean combination of predicates
in the vocabulary Vg. Hence, we can denote it as ¢g(Vq) where the predicates
in Vg are over the set in U out, and the corresponding grammar is:

0qQ =90 Noq | 6V dq [=¢q | ¢i where g; € Vg

While conjunction and negation are sufficient to express any Boolean combina-
tion, we include disjunction and implication for succinctness of inquiries. Sim-
ilarly, the response ¢r(Vg) is a Boolean combination of the predicates in the
vocabulary Vi where the predicates in Vg are over the set in U out, and the
corresponding grammar is:

Or = OrRNOR | PRV ¢R | "0R | 7; where r; € VR

Definition 1. Given an Al algorithm Alg and an inquiry 6o(Vg), ¢r(Vr) is a
necessary and sufficient explanation when ¢r(Vr) <= ¢o(Vg) where Vg, Vo
are predicates over inUout as explained earlier, and out = Alg(in). ¢r(Vr) is
a sufficient explanation when ¢r(Vr) = ¢o(Vo).

If the algorithm out = Alg(in) could be modeled explicitly in appropriate
logic, then the above definition could be used to generate explanations for a given
inquiry using techniques such as satisfiability solving. However, such an explicit
modeling of these algorithms is currently outside the scope of existing logical
deduction frameworks, and is impractical for large and complicated Al systems
even from the standpoint of the associated modeling effort. The Al algorithm Alg
is available as an executable function; hence, it can be used as an oracle that can
provide an outputs for any given input. This motivates oracle-guided learning of
the explanation from examples using the notion of confidence associated with it.

Definition 2. Given an Al algorithm Alg and an inquiry ¢o(Vg), ¢r(Vr)
is a necessary and sufficient explanation with probabilistic confidence k when
Pr(pr(Vr) <= o0q(Vq)) > Kk, where Vg, Vq are predicates over in U out as
explained earlier, out = Alg(in) and 0 < k < 1. The probability of satisfaction

8 Susmit Jha

of pr(Vr) <= ¢o(Vq) is computed using uniform distribution over the vari-
ables in V. This uniform distribution is not an assumption over the context in
which an Al algorithm Alg is used. This uniform distribution is only used to
estimate the probability of finding the correct explanation. Similarly, ¢r(in) is
a sufficient explanation with confidence k when Pr(¢r(Vr) = ¢o(Vg)) > k.

The oracle used to learn the explanation uses the Al algorithm. It runs the
AT algorithm on a given input in; to generate the decision output out;, and
then marks the input as a positive example if ¢g(out;) is true, that is, the
inquiry property holds on the output. It marks the input as a negative example
if ¢g(out;) is not true. We call this an introspection oracle which marks each
input as either positive or negative.

Definition 3. An introspection oracle Oy, mg for a given algorithm Alg and
inquiry ¢q takes an input in; and maps it to a positive or negative label, that is,
O¢Q,Alg :in — {EB, @}

Opomgling) = @ if pg(Vg(out;)) and (’)¢Q,A1g(ini) =0 if ~po(Vg(out;)), where
out; = Alg(in;), and Vg(out;) is the evaluation of the predicates in Vg on out;

We now formally define the problem of learning Boolean formula with spec-
ified confidence x given an oracle that labels the examples.

Definition 4. The problem of oracle-guided learning of Boolean formula from
examples is to identify (with confidence k) the target Boolean function ¢ over
a set of atomic propositions V by querying an oracle O that labels each input
in; (which is an assignment to all variables in'V) as positive or negative {®, O}
depending on whether ¢(in;) holds or not, respectively.

We make the following observations which relates the problem of finding
explanations for decisions made by Al algorithms to the problem of learning
Boolean formula.

Observation 1 The problem of generating explanation ¢r for the Al algorithm
Alg and an inquiry ¢q is equivalent to the problem of oracle-guided learning of
Boolean formula ¢r using oracle Oy, mg as described in Definition 4.

¢[r;] denotes the restriction of the Boolean formula ¢ by setting r; to true
in ¢ and ¢[F;] denotes the restriction of ¢ by setting r; to false. A predicate r;
is in the support of the Boolean formula ¢, that is, r; € support(¢) if and only

if ¢[ri] # ¢[ril.

Observation 2 The explanation ¢r over a vocabulary of atoms Vg for the
Al algorithm Alg and a user inquiry ¢g is a sparse Boolean formula, that is,
|support(¢r)| << |Vrg|.

These observations motivate the following problem definition for learning
sparse Boolean formula.

Trust, Resilience and Interpretability of AT Models 9

Definition 5. Boolean function ¢ is called k-sparse if |support(¢r)| < k. The
problem of oracle-guided learning of k-sparse Boolean formula from examples is
to identify (with confidence k) the target k-sparse Boolean function ¢ over a
set of atomic propositions V by querying an oracle O that labels each input in;
(which is an assignment to all variables in V) as positive or negative {®, S}
depending on whether ¢(in;) holds or not, respectively.

The explanation of decisions made by an Al algorithm can be generated by
solving the problem of oracle-guided learning of k-sparse Boolean formula. We
recently formulated two algorithms to learn sparse Boolean formula where the
size of required examples grows logarithmically (in contrast to exponentially in
the general case) with the size of the overall vocabulary. The first algorithm is
based on a binary search in the Hamming space first described in our earlier
work [27]. The second algorithm is based on random walk in the Boolean hyper-
cube reported in our earlier work [28]. We refer the reader to [27,28] for technical
details of the formulation, and detailed case studies for empirical evaluation.

3 Verification of DNNs

At an abstract level, a deep neural network computes a function from a set of
inputs to some set of outputs. The question that we address here is as follows:

Given a neural network (NN), and constraints (assumptions) which de-
fine a set of inputs to the network, provide a tight over-approximation
(guarantee) of the output set.

This serves as one of the main primitives in verification of neural networks.
Deep neural networks are very common in applications such as image classifica-
tion and autonomous control. In image classification networks, since each image
is a point in the high dimensional pixel space, a polyhedral set may be used
to represent all possible bounded perturbations to a given image. If, for such a
set, we can guarantee that the output of the classification remains unaltered,
then we have proved that the neural network is robust to bounded pixel noise.
Besides image classification, neural networks are increasingly used in the con-
trol of autonomous systems, such as self-driving cars, unmanned aerial vehicles,
and other robotic systems. A typical approach to verify these systems involves a
reachability computation to estimate the forward reachable set as time evolves.
Using this, it is possible to prove that, no matter what the initial condition of a
system is, it always reaches a target region in finite time. For instance, we wish
prove that, an autonomous car whose inputs are provided by a neural network
controller’s feedback, will remain within a fixed lateral distance from the center
of the road (desired trajectory), while remaining under the speed limit.

We address the output range analysis problem for a neural network with a
single output. The extension to multiple output neural networks is straightfor-
ward. Let x € R™ be an input to a NN, and y € R be the output of the network. A

10 Susmit Jha

typical neural network consists of layers, where each layer computes some func-
tion on the outputs of the previous layer and feeds it’s output to the next layer.
That is, for a k layer neural network, we get a composition of k£ functions. Each
function is a matrix multiplication, followed by an element wise computation of
an activation function. A k layer neural network with N neurons in each hidden
layer is described by a set of matrices: [(Wo,bg), ..., Wk—1,bx—1), (W, bi)]-

Definition 6 (ReLU Unit). Each neuron in the network implements a non-
linear function o linking its input value to the output value. We consider ReLU
units that implement the function o(z) : max(z,0). We extend the definition of
o to apply component-wise to vectors z as o(z) : (0(21),0(22)...0(zn))-

Taking o to be the ReLLU function, we describe the overall function defined
by a given network N as follows:

Definition 7 (Function Computed by neural networks). Given a neural
network N as described above, the function F : R" — R computed by the neural
network is given by the composition F := Fyo---oFy wherein F;(2) : o(W;z+b;)
is the function computed by the i*" hidden layer with Fy denoting the function
linking the inputs to the first layer and Fy linking the last layer to the output.

3.1 Range Estimation

Let N be a neural network with n input vector, x, a single output y, and
weights [(Wo,bo), ..., (Wg,b). Let Fy be the function defined by such a net-
work. The general problem of verifying neural network and establishing an
assume-guarantee contract on its inputs and outputs can be simplified to range
estimation problem by suitably transforming the inputs and outputs such that
the assumption constraints are described by a polyhedron and the guarantee
constraints to be derived over the outputs can be represented as intervals. The
universal approximation property of neural networks can be used to approxi-
mately encode such transformation as a part of the network itself. Thus, we
focus on range estimation problem and rely on reducing other verification prob-
lems to it.

The range estimation problem is defined as follows:

— InpuTs: Neural Network N, input constraints P : Az < b and a tolerance
parameter ¢ > 0.

— OuTPUT: An interval [¢,u] such that (V z € P) Fy(z) € [{,u]. i.e, [{,u]
contains the range of Fy over inputs x € P. Furthermore, we require the
interval to be tight:

(I;leag Fn(z) > u—9), (glelg Fy(z) <£49).

We will assume that the input polyhedron P is compact: i.e, it is closed and
has a bounded volume. It was shown in [32] that even proving simple properties
is NP complete. Simple properties, like proving that there exists an assignment
from input set to an output set, which respects the constraints imposed by the
neural network. So, one of the fundamental challenges in this problem is to tackle
the exponential nature.

Trust, Resilience and Interpretability of AT Models 11

4 N\
u SN
Le
N\ Ls
Gz. “-F
U1 . 'L4
C G L
_as=
U Ll Lo -7 G
s N N
M N H N M M M M LN
To X1 T2 T5L423 T L7 Te 4

Fig. 2: A schematic figure showing our approach showing alternating series of
local search Ly, ..., Lg and “global search” G1, G iterations. The points
T9, T, xg represent local minima wherein our approach transitions from local
search iterations to global search iterations.

3.2 MILP based Approach

Without loss of generality, we will focus on estimating the upper bound u. The
case for the lower bound will be entirely analogous. First, we note that a single
Mixed Integer Linear Programming (MILP) problem can be formulated, and
then query a solver to directly compute u. Unfortunately, that can be quite
expensive in practice. Therefore, our approach will combine a series of MILP
feasibility problems alternating with local search steps.

Figure 2 shows a pictorial representation of the overall approach. The ap-
proach incrementally finds a series of approximations to the upper bound u; <
Uug < -++ < u*, culminating in the final bound v = u*.

1. The first level u; is found by choosing a randomly sampled point zy € P.

2. Next, we perform a series of local iteration steps resulting in samples z1, ..., x;
that perform gradient ascent until these steps cannot obtain any further im-
provement. We take us = Fy(x;).

3. A “global search” step is now performed to check if there is any point x € P
such that F(z) > ue + 6. This is obtained by solving a MILP feasibility
problem.

. If the global search fails to find a solution, then we declare u* = uy + 4.

. Otherwise, we obtain a new witness point x;41 such that Fn(z;41) > ua+9.

6. We now go back to the local search step.

[SARNTES

The ideas discussed here for the output range analysis have been implemented
in Sherlock [12]. For neural networks with multiple outputs, we can individually
find the bounds for each of the network outputs, and then combine them to form
a hyper-rectange in the output dimensional space. This can be extended to using
a template polyhedron to obtain tighter bounds, in the output dimension, de-
scribed in the next section. In general, we can obtain guarantees on the output
from a given class defined by the constraint template used in the minimiza-
tion/maximization step of the presented approach. Our current implementation
in Sherlock built on top of MILP solvers requires the template to be linear.

12 Susmit Jha

3.3 Application: Reachability Analysis

We briefly describe how we can use the above algorithm to verify behaviors of
autonomous systems, with neural networks as controllers. Details are presented
in [11]. A closed loop system, C, is described by the neural networks f,, for the
system model, and f5, for the control law. The plant model function f,, gives
the state of the system in the next time step, given the states of the system at
the current time step. That is, x(t + 1) = fp(z(t), fn(x(t))), where z(t) € R, is
the state of the system at time time ¢, in an n dimensional space.

Thus, given an initial state X (represented as a polyhedron over the state
space), we wish to compute symbolic representations for sets Xy, Xo,..., Xk
wherein X; represents the reachable states of the closed loop system given by
the composition of the plant f, and the feedback law f;, in ¢ steps. Here K
is some fixed time horizon. We will use range computation, as a primitive for
checking reachability, invariance and stability properties.

The computation of the reach sets of the closed loop system starts with an
effort to compute over-approximation of the post operator:

post(X; fp, fn) : {x € R"™ | (3x0 € X) x = fp(x0, fu(%0))} -

For an input set X, the exact set of the output map of the post operator can
be prohibitively expensive to compute: in general, it’s a union of polyhedrons, the
count of which is exponential in the number of neurons in the two given networks
fp and f,. Instead, we use a single polyhedron P(X) that approximates the post
condition.

For that purpose, we use a template polyhedra:

Definition 8 (Template Polyhedra). A template T is a set of expressions
T : {ei,...,e.} wherein each €; is an linear expression of the form cix over
the state variables. A template polyhedron P over a template T is of the form:

K
/\Ejgejguj,
j=1

for bounds £;,u; over each template expression e;.

For a fixed template T', the reachable sets are represented by template polyhe-
dra over the above templates. The post condition operation post(X; fp, fn), can
now be substituted by a template-based post-condition operator posty(X; fp, fr)
that produces bounds /;, u; for each e; € T' by solving the following optimization
problem:

£i(u;) : min(max) e;[x] s.t.xg € Xo, u= fu(x0), x = fp(xo,u).

The above optimization problem, is defined using neural network functions
fn and f,. However, the combination of local search and MILP encoding used
in our tool SHERLOCK can be modified almost trivially to solve this optimiza-
tion problem. Furthermore, the guarantees used in SHERLOCK extend. Thus, we

Trust, Resilience and Interpretability of AT Models 13

guarantee that the reported result is no more than € away from the true value,
for the given tolerance parameter e.

The computation of reach sets can be extended beyond single step using
Sherlock. It is possible to use the tool for a k step reachability postgC)(X i fpo)
with the tolerance factor €, in a very straight forward manner. A fundamental
goal in computing reachable sets is to prove that the system trajectories converge
to a target set, starting from the initial set. It suffices to show that the reach
sets computed eventually land inside the target set T, in a finite number of time
steps. Thus, the problem of checking reachability of a target set T is performed
iteratively as

Table 1: Performance results on networks trained on functions with known
maxima and minima . Legend: z number of inputs, £ number of layers, IV:
total number of neurons, T: CPU time taken, Nc¢: number of nodes explored.
All the tests were run on a Linux server running Ubuntu 17.04 with 24 cores,
and 64GB RAM (DNC : Did Not Complete)

23 cores single core

Sherlock Monolithic Sherlock Monolithic |Reluplex
IDx £k N T Nc T Nec T Nc T Nc T
No 2 1 100 1s 94 2.3s 24 0.4s 44 0.3s 25 9.0
Ni 2 1 200| 2.2s 166 3.6s 29 0.9s 71 0.8s 38 | 1mb0s
Ny 2 1 500| 7.8s 961 12.6s 236 2s 138 | 2.9s 257 | 15mb59s
N3 2 1 500| 1.5s 189 0.5s 43 0.6s 95 0.2s 53 |12m25s
Ny 2 1 1000| 3m52s 32FE3| 3mbH2s 3FE3 | 1m20s 4.8E3| 35.6s 5.3E3| 1h06m
N5 3 7 425 4s 6 6.1s 2 1.7s 2 0.9s 2 DNC
Ne¢ 3 4 762| 3md7s 3.3E3| 4mdls 3.6E3| 37.8s 685 | 56.4s 2.2E3| DNC
N7 4 7 731| 3.7s 1 7.7s 2 3.9s 1 3.1s 2 | 1h35m
Ng 3 8 478 | 6.5s 3 40.8s 2 3.6s 3 3.3s 2 DNC
No 3 8 778| 183s 114 | 1mlls 2 12.5s 12 43s 73 DNC
Nio 3 26 2340| 50m18s 4.6E4| 1h26m 6F4 | 17Tm12s 2.4E4|18m58s 1.9E4| DNC
Ni1 3 9 1527 5mdds 450 | 56ml2s 6.4E3| 56.4s 483 | 130.7s 560 | DNC
Ni2 3 14 2292| 24ml7s 1.8E3| 3h46m 2.4FE4| 8mlls 2.3E3| 1hOlm 1.6E4| DNC
Ni3 3 19 3057 4h10m 2.2E4|61h08m 6.6E4| 1h7m 1.5E4|15hlm 1.5E5| DNC
Nis4 3 24 3822| 72h39m 8.4E4|111h35m 1.1E5| 5h57m 3E4 |[timeout - DNC
Nis 3 127 6845| 2mb5ls 1 timeout - 3m27s 1 [timeout - DNC

We did comparisons with a recent solver for deep neural networks called

Reluplex [32], and detailed study is available in [11,12]. Even though Reluplex is
an SMT solver, it can be used to perform set propagation using a binary search
wrapper. The preliminary comparison shows that Sherlock is much faster than

14 Susmit Jha

Reluplex used with a binary search wrapper. Another set of comparisons was
using Sherlock, against a monolithic mixed integer linear programming (MILP)
solver. The results of the comparison has been presented in Table 1

We used Sherlock for verifying properties of various closed-loop cyberphysical
systems that have neural networks as controller. We could prove that in finite
number of steps, the sets did converge to the goal region. Details of the technical
approach and empirical evaluation are presented in [11,12].

4 Resilience of DNNs

There has been a recent explosion of methods for adversarial attacks on neural
network models along with techniques for making neural networks resilient to
attacks. No single resilient mechanism has yet been discovered which can be used
against any feasible attack method. We take a different approach to resilience by
focusing on the identification of suspicious adversarial examples. The overall idea
is to ensure that the machine learning models can identify adversarial attacks,
and not provide a prediction on them instead of providing a wrong prediction.
An approach to detect these adversarial examples will act as a runtime monitor
that finds the limits of the machine learning model.

We recently developed an approach to detect adversarial examples by iden-
tifying a low dimensional manifold in which the training data lie, and then mea-
suring the distance of a new sample to this manifold. The manifold corresponds
to a geometric invariant of the training data. Adversarial examples often rely on
lying outside this manifold, and since the model was learned using data samples
in the manifold, the model naturally mis-predicts on examples farther away from
the manifold. In our experiments, we used the CleverHans system [46] and em-
ployed the Projected Gradient Descent (PGD) attack method implemented in it.
This is an implementation of a very recent attack method described in Madry et
al [42]. We control the strength of the attack using one of the parameters in this
method e that bounds the maximum distortion of adversarial example compared
to the original input. Increasing this norm bound generates adversarial examples
with higher confidence.

Our empirical study on MNIST [39] and CIFAR10 [36] datasets suggests
that adversarial examples not only lie farther away from the data manifold,
but this distance from manifold of an adversarial example increases with the
confidence of adversarial examples. Consequently, our detection approach can
more easily detect adversarial examples generated with higher norm bound and
hence, more likely to cause mis-prediction in the machine learned model. Our
efforts constitute a first step towards formulating a computational geometric
approach to identifying boundaries of a machine learning model, and using it to
detect adversarial attacks. The details are described in [26].

4.1 Adversarial Attacks and Defenses

Multiple methods have been proposed in literature to generate adversarial ex-
amples as well as defend against adversarial examples. Adversarial example gen-

Trust, Resilience and Interpretability of AT Models 15

eration methods include both white-box and black-box attacks on neural net-
works [19,47,48,61], targeting feedforward classification networks [9], generative
networks [35], and recurrent neural networks [49]. These methods leverage gradi-
ent based optimization for normal examples to discover perturbations that lead
to mis-prediction - the techniques differ in defining the neighborhood in which
perturbation is permitted and the loss function used to guide the search. For ex-
ample, one of the earliest attacks [19] used a fast sign gradient method (FGMS)
that looks for a similar image 2’ in the L° neighborhood of x. Given a loss
function Loss(z,l) specifying the cost of classifying the point x as label [, the
adversarial example %’ is calculated as

' =z + € sign(VyLoss(z, 1)

FGMS was improved to iterative gradient sign approach (IGSM) in [37] by using
a finer iterative optimization strategy where the attack performs FGMS with a
smaller step-width «, and clips the updated result so that the image stays within
the € boundary of z. In this approach, the i-th iteration computes the following:

wiyy = cipe o (@] + a - sign(VyLoss(x,1,)))

In contrast to FGSM and IGSM, DeepFool [45] attempts to find a perturbed
image z’ from a normal image z by finding the closest decision boundary and
crossing it. In practice, DeepFool relies on local linearized approximation of the
decision boundary. Another attack method that has received a lot of attention
is Carlini attack that relies on finding a perturbation that minimizes change as
well as the hinge loss on the logits (pre-softmax classification result vector). The
attack is generated by solving the following optimization problem:

ming||8]|2 + ¢ - max(Z(2"),, — maxZ(z'); 1 i # lp, —k)]

where Z denotes the logits, [, is the ground truth label, k is the confidence
(raising which will force searcher for larger perturbations), and ¢ is a hyper-
parameter that balances the perturbation and the hinge loss. Another attack
method is projected gradient method (PGM) proposed in [42]. PGD attempts
to solve this constrained optimization problem:

max Loss(z*™,1,)
|l]| o <e

where S is the constraint on the allowed perturbation usually given as bound ¢
on the norm, and [, is the ground truth label of x. Projected gradient descent
is used to solve this constrained optimization problem by restarting PGD from
several points in the ., balls around the data points x. This gradient descent in-
creases the loss function Loss in a fairly consistent way before reaching a plateau
with a fairly well-concentrated distribution and the achieved maximum value is
considerably higher than that of a random point in the data set. We focus on
this PGD attack because it is shown to be a universal first order adversary [42],
that is, developing detection capability or resilience against PGD also implies
defense against many other first order attacks.

16 Susmit Jha

Defense of neural networks against adversarial examples is more difficult
compared to generating attacks. Madry et al. [42] propose a generic saddle point
formulation where D is the underlying training data distribution, Loss(0, z, 1)
is a loss function at data point x with ground truth label [, for a model with
parameter 6:

. dv
min F, D max Loss(0, 2% 1,
0 (z,y) [Hw”'d“facnge () ; :r)]

This formulation uses robust optimization over the expected loss for worst-case
adversarial perturbation for training data. The internal maximization corre-
sponds to finding adversarial examples, and can be approximated using IGSM [37].
This approach falls into a category of defenses that use adversarial training [59].
Instead of training with only adversarial examples, using a mixture of normal
and adversarial examples in the training set has been found to be more ef-
fective [45,61]. Another alternative is to augment the learning objective with
a regularizer term corresponding to the adversarial inputs [19]. More recently,
logit pairing has been shown to be an effective approximation of adversarial
regularization [31].

Another category of defense against adversarial attacks on neural networks
are defensive distillation methods [48]. These methods modify the training pro-
cess of neural networks to make it difficult to launch gradient based attacks di-
rectly on the network. The key idea is to use distillation training technique [24]
and hide the gradient between the pre-softmax layer and the softmax outputs.
Carlini and Wagner [9] found methods to break this defense by changing the loss
function, calculating gradient directly from pre-softmax layer and transferring
attack from easy-to-attack network to distilled network. More recently, Athalye
et al. [4] showed that it is possible to bypass several defenses proposed for the
whitebox setting.

Our approach falls into the category of techniques that focus on only detect-
ing adversarial examples. Techniques based on manually identified statistical
features [20] or a dedicated learning model [44] trained separately to identify
adversarial examples have been previously proposed in literature. These explicit
classification methods do not generalize well across different adversarial example
generation techniques.

In contrast to these defensive methods, our approach does not require any
augmentation of training data, modification of the training process or change in
the learned model. The design and training of the neural network is independent
to the manifold based filtering approach. Thus, our approach to detection is or-
thogonal to learning robust machine learning models and can benefit from these
methods. Further, we do not require access to the adversarial example gener-
ation method, and thus this defense is likely to generalize well across different
attack methods. Our approach relies on just identifying the manifold of typical
data which need not be even labeled and hence, this method is more practical
in contexts where labeled training data is very difficult to obtain.

Trust, Resilience and Interpretability of AT Models 17

4.2 Manifold Learning

Learning manifold in which data points lie has been itself an active area of
research [41,54,58,62]. ISOMAP, t-SNE and spectral embedding have been pro-
posed to learn the data manifold. The spectral embedding method performs di-
mensionality reduction in a way that preserves dot products between data points
as closely as possible by minimizing >, (27 z; — yl'y;)? where y; is embedding
of x;. ISOMAP [62] embeds the data points in a low dimensional space while
preserving the geodesic distances between data points. The geodesic distances
are measured in terms of shortest paths between the points in a graph formed by
computing k-nearest neighbors and introducing an edge between the neighbors.
After computing the geodesic distances, spectral methods can be used to com-
pute the embeddings that preserve this geodesic distance instead of Euclidean
distance. t-distributed Stochastic Nearest Embedding (t-SNE) [41] is another
method for computing manifold. It constructs a probability distribution over
pairs of high-dimensional data points in such a way that similar objects have a
high probability of being picked. This is followed by defining a similar distribu-
tion in the low dimension and minimized the KL divergence between the two
distributions.

LLE [54] is another graph-based dimensionality reduction method that tries
to preserve the local linear structure. LLE linearly approximates each data point
in the training set manifold with its closest neighbors where the approximation
is learned using linear regression. LLE requires computations of the k-nearest
neighbors followed by computing the weight matrix W that represents each point
as a linear combination of its neighbors. W is computes such that the overall
reconstruction error 3, [|z; — 3_; Wijz;||* is minimized subject to constraints
that W;; = 0 when z; and x; are not neighbors, and Zj Wi; =1 for all 4. The
low dimensional embedding is computed in LLE by minimizing the following
objective: 3, |lyi—>_; Wijyj| |2, where y; denotes the low dimensional embedding
of x;, and we can normalize the representation by requiring > ,y; = 0 and
YTY = I. W is constructed locally for each point, but the low dimensional
embeddings y; are computed globally in a single optimization step. This enables
LLE to uncover global structure. Further, the embedding discovered by LLE is
scale and rotation independent due to constraints on y;. Our experiments found
LLE to be most effective because of LLE’s better discovery of nonlinearity, and
sharper embedding in lower dimension.

Our approach relies on computing the distance of the new sample point from
the manifold of training data. The kernel density estimation can be used to mea-
sure the distance d(x) of x from the data manifold of training set. Specifically,

d(z) = \T1| Z k(x;,x), where X is the full data set and k(-,-) is a kernel func-
z;€X

tion such as Gaussian or a simple Lo, or Ly norm. In case of using Gaussian

kernel, the bandwidth ¢ needs to be carefully selected to avoid ‘spiky’ density es-

timate or an overly smooth density estimate. A typical good choice for bandwidth

is a value that maximizes the log-likelihood of the training data [30]. Further,

we can restrict the set of training points to be considered from the full set X to

18 Susmit Jha

a set of immediate neighbors of x. The neighborhood can be defined using the
maximum distance or bound on the number of neighbors. In our experiments,
we use Lo, norm with bound on the number of neighbors which yielded good
result.

It has been hypothesized in literature [5,16] that the deeper layers of a deep
neural network provide more linear and unwrapped manifolds in comparison to
the input space. Thus, the task of identifying the manifold becomes easier as we
progress from the input space to the more abstract feature spaces all the way to
the logit space. But the adversarial perturbations are harder to detect at higher
levels and might get hidden by the lower layers of the neural network. In our
experiments, we learned manifolds in input space as well as the logit space.

4.3 Empirical Evaluation

We evaluated our approach on MNIST dataset [39] and CIFAR10 dataset [36].
We report the key findings in this section.

s
Distance

Distance
w

~

00 003 006 009 012 015 018 021 024 027 03 000 003 006 009 012 015 018 021 024 027 030
Attack norm bound Attack norm bound

Fig. 3: Increase in adversarial distance from manifold for MNIST in input space
(Left) and logit space (Right). Each line of different color shows the increase in
distance with attack norm for one sample of a 1000 images. The distance
monotonically increased in each of the 100 experiments in the input space. The
logit space shows increase in distance with norm up to a threshold after which
the distance decreases before again increasing. This is because of high norm
bound allowing occasional discovery of ‘clever’ adversarial examples that are
closer to the logit manifold though farther from the input manifold.

As the norm bound in the PGD method for generating adversarial examples
is increased, the distance of adversarial examples from the manifold increases.
While the success of attack on the neural network increases with high norm
bound, it also becomes easier to detect these adversarial examples. We observed
this behavior to be common across MNIST and CIFAR10 data set as illustrated
in Figure 4. The distance from manifold monotonically increases in the input
space but in the logit space, higher norm bound beyond a threshold allows the
attack method to find examples that decrease the distance from logit manifold

Trust, Resilience and Interpretability of AT Models 19

ié%% :
16T

L“g' i
F° . '
+ . T

LI

IS

o
o oot}
o
o e

Distance
w

o

Distance
o
&
o

~

-

-

00 003 006 009 012 015 018 021 024 027 03 00 003 006 009 012 015 018 021 024 027 03
Attack norm bound Attack norm bound

Fig. 4: Increase in adversarial example’s distance from input manifold with
increase in attack norm: Left:MNIST, Right: CIFAR. The boxes in the box
plot denote the first and third quartile of the distance at a given attack norm.

even though they are farther from the input manifold. The consistent rise and
fall of distance in logit space for all the 100 samples is likely a property of the
used PGD method. This result is illustrated in Figure 3. The detection rate of
adversarial examples for MNIST as well as CIFAR10 improves with increase in
norm bound and increased distance from the manifold as illustrated in Figure 5.

100

Detection rate (%)
d 8 B 8 &
Detection rate (%)

@ 8

=
3

@
&

1 2 3 4 5 6 02 04 06 08 10 12 14 16
Threshold distance Threshold distance

Fig. 5: (Left) Detection rate for MNIST data set (Right) Detection Rate for
CIFAR

5 Conclusion

We summarized recent work on building trusted, resilient and interpretable Al
models. We identify the key challenges for each of these three fronts, and describe
recently proposed techniques that make progress on these challenges. These tech-
niques comprise the key elements of TRINITY framework for high-assurance
artificial intelligence being developed at SRI.

20

Susmit Jha

Acknowledgement

The author acknowledges support from the US ARL Cooperative Agreement
WO911INF-17-2-0196 on Internet of Battlefield Things (IoBT) and National Sci-
ence Foundation(NSF) #1750009 and #1740079.

References

10.

11.

12.

13.

14.

15.

16.

. Abouzied, A., Angluin, D., Papadimitriou, C., Hellerstein, J.M., Silberschatz, A.:

Learning and verifying quantified boolean queries by example. In: ACM symposium
on Principles of database systems. pp. 49-60. ACM (2013)

Angluin, D.: Computational learning theory: survey and selected bibliography. In:
ACM symposium on Theory of computing. pp. 351-369. ACM (1992)

Angluin, D., Kharitonov, M.: When won’t membership queries help? In: ACM
symposium on Theory of computing. pp. 444-454. ACM (1991)

Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420 (2018)

Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representa-
tions. In: International Conference on Machine Learning. pp. 552-560 (2013)
Bittner, B., Bozzano, M., Cimatti, A., Gario, M., Griggio, A.: Towards pareto-
optimal parameter synthesis for monotonie cost functions. In: FMCAD. pp. 23-30
(Oct 2014)

Boigelot, B., Godefroid, P.: Automatic synthesis of specifications from the
dynamic observation of reactive programs. In: TACAS. pp. 321-333 (1997).
https://doi.org/10.1007/BFb0035397

Botin¢an, M., Babi¢, D.: Sigma*: Symbolic learning of input-output specifications.
In: POPL. pp. 443-456 (2013). https://doi.org/10.1145/2429069.2429123

Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks.
arXiv preprint arXiv:1608.04644 (2016)

Cook, B., Kroening, D., Riimmer, P., Wintersteiger, C.M.: Ranking
function synthesis for bit-vector relations. FMSD 43(1), 93-120 (2013).
https://doi.org/10.1007/s10703-013-0186-4

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine
51(16), 151-156 (2018)

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods Symposium. pp.
121-138. Springer (2018)

Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on
the number of examples needed for learning. Information and Computation 82(3),
247 — 261 (1989). https://doi.org/10.1016,/0890-5401(89)90002-3

Elizalde, F., Sucar, E., Noguez, J., Reyes, A.: Generating Explanations Based on
Markov Decision Processes, pp. 51-62 (2009)

Feng, C., Muggleton, S.: Towards inductive generalisation in higher order logic. In:
9th International Workshop on Machine learning. pp. 154-162 (2014)

Gardner, J.R., Upchurch, P., Kusner, M.J., Li, Y., Weinberger, K.Q., Bala, K.,
Hopcroft, J.E.: Deep manifold traversal: Changing labels with convolutional fea-
tures. arXiv preprint arXiv:1511.06421 (2015)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Trust, Resilience and Interpretability of AT Models 21

Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction en-
codings from i/o samples. SIGPLAN Not. 47(6), 441-452 (Jun 2012).
https://doi.org/10.1145/2345156.2254116

Goldsmith, J., Sloan, R.H., Szoérényi, B., Turan, G.: Theory revision with queries:
Horn, read-once, and parity formulas. Artificial Intelligence 156(2), 139-176 (2004)
Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572

Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (sta-
tistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017)
Gurfinkel, A., Belov, A., Marques-Silva, J.: Synthesizing Safe Bit-Precise Invari-
ants, pp. 93-108 (2014)

Harbers, M., Meyer, J.J., van den Bosch, K.: Explaining simulations through self
explaining agents. Journal of Artificial Societies and Social Simulation (2010),
http://EconPapers.repec.org/RePEc:jas:jasssj:2009-25-1

Hellerstein, L., Servedio, R.A.: On pac learning algorithms for rich boolean function
classes. Theoretical Computer Science 384(1), 66-76 (2007)

Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ICSE. pp. 215-224. IEEE (2010)

Jha, S., Jang, U., Jha, S., Jalaian, B.: Detecting adversarial examples using data
manifolds. In: MILCOM 2018-2018 TEEE Military Communications Conference
(MILCOM). pp. 547-552. IEEE (2018)

Jha, S., Raman, V., Pinto, A., Sahai, T., Francis, M.: On learning sparse boolean
formulae for explaining AI decisions. In: NASA Formal Methods - 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings.
pp. 99-114 (2017)

Jha, S., Sahai, T., Raman, V., Pinto, A., Francis, M.: Explaining ai decisions
using efficient methods for learning sparse boolean formulae. Journal of Automated
Reasoning pp. 1-21 (2018)

Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica, Special Issue on Synthesis (2016)

Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection
for density estimation. Journal of the American Statistical Association 91(433),
401-407 (1996)

Kannan, H., Kurakin, A., Goodfellow, I.: Adversarial logit pairing. arXiv preprint
arXiv:1803.06373 (2018)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97-117. Springer (2017)

Kearns, M., Li, M., Valiant, L.: Learning boolean formulas. J. ACM 41(6), 1298
1328 (Nov 1994)

Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM) 41(1), 67-95 (1994)

Kos, J., Fischer, 1., Song, D.: Adversarial examples for generative models. arXiv
preprint arXiv:1702.06832 (2017)

Krizhevsky, A., Nair, V., Hinton, G.: The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html (2014)

Kurakin, A., Goodfellow, 1., Bengio, S.: Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533 (2016)

22

38.
39.

40.

41.

42.

43.

44.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Susmit Jha

LaValle, S.M.: Planning algorithms. Cambridge university press (2006)

LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

Lee, J., Moray, N.: Trust, control strategies and allocation of function in human-
machine systems. Ergonomics 35(10), 1243-1270 (1992)

Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learn-
ing research 9(Nov), 2579-2605 (2008)

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Mansour, Y.: Learning boolean functions via the fourier transform. In: Theoretical
advances in neural computation and learning, pp. 391-424 (1994)

Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. arXiv preprint arXiv:1702.04267 (2017)

. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate

method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2574-2582 (2016)
Papernot, N., Carlini, N., Goodfellow, 1., Feinman, R., Faghri, F., Matyasko, A.,
Hambardzumyan, K., Juang, Y.L., Kurakin, A., Sheatsley, R., et al.: cleverhans
v2. 0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768
2016
%aper)not, N., McDaniel, P., Goodfellow, 1., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security. pp. 506-519. ACM
2017
%aper)not, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: Security and Privacy (Eu-
roS&P), 2016 IEEE European Symposium on. pp. 372-387. IEEE (2016)
Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input
sequences for recurrent neural networks. In: Military Communications Conference,
MILCOM 2016-2016 IEEE. pp. 49-54. IEEE (2016)
Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Jour-
nal of the ACM (JACM) 35(4), 965-984 (1988)
Raman, V., Lignos, C., Finucane, C., Lee, K.C.T., Marcus, M.P., Kress-Gazit, H.:
Sorry Dave, I'm Afraid I can’t do that: Explaining unachievable robot tasks using
natural language. In: Robotics: Science and Systems (2013)
Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
Guided Quantifier Instantiation for Synthesis in SMT, pp. 198-216 (2015),
http://dx.doi.org/10.1007/978-3-319-21668-3 12
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?": Ex-
plaining the predictions of any classifier. In: KDD. pp. 1135-1144 (2016).
https://doi.org/10.1145/2939672.2939778
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. science 290(5500), 2323-2326 (2000)
Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos,
G.: A model-based approach to synthesizing insulin infusion pump us-
age parameters for diabetic patients. In: Annual Allerton Conference
on Communication, Control, and Computing. pp. 1610-1617 (Oct 2012).
https://doi.org/10.1109/Allerton.2012.6483413
Sankaranarayanan, S.: Automatic invariant generation for hybrid
systems using ideal fixed points. In: HSCC. pp. 221-230 (2010).
https://doi.org/10.1145/1755952.1755984

57.

59.

60.

61.

62.

63.

64.

Trust, Resilience and Interpretability of AT Models 23

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. FMSD 32(1), 25-55 (2008). https://doi.org/10.1007/s10703-007-0046-1

. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low di-

mensional manifolds. Journal of machine learning research 4(Jun), 119-155 (2003)
Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: In-
creasing local stability of neural nets through robust optimization. arXiv preprint
arXiv:1511.05432 (2015)

Strumbelj, E., Kononenko, I: Explaining prediction models and individ-
ual predictions with feature contributions. KIS 41(3), 647-665 (2014).
https://doi.org/10.1007/s10115-013-0679-x

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, 1., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. science 290(5500), 2319-2323 (2000)

Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing Ranking Functions from Bits
and Pieces, pp. 54-70 (2016), http://dx.doi.org/10.1007/978-3-662-49674-9 4
Yuan, C., Lim, H., Lu, T.C.: Most relevant explanation in bayesian networks. J.
Artif. Intell. Res.(JAIR) 42, 309-352 (2011)

