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ABSTRACT
Virtual machines (VMs) are being deployed on embedded systems
to integrate multiple applications with different run-time require-
ments on the same physical platform. In scenarios such as au-
tonomous vehicles, these virtualized platforms must handle vary-
ing application requirements – from strict temporal predictabil-
ity to high performance – while simultaneously satisfying dis-
parate constraints such as energy efficiency, thermal bounds, and
system lifetime. To address these challenges we present CHIPS-
AHOy, a prediCtable HolIstic cyber-PhySicAl HypervisOr that
integrates VM isolation mechanisms with novel resource allocation
approaches within a holistic observe-decide-adapt loop to achieve
run-time predictability and simultaneously manage energy, ther-
mal and wearout constraints. We present experimental results on
several realistic MPSoC platforms that demonstrate the ability of
CHIPS-AHOy to achieve predictable operation while conserving
energy, managing temperature and extending system lifetime.

KEYWORDS
Heterogeneous Multi-core Processor, Power Management, Operat-
ing Systems, Virtualization, Real Time, Predictability

1 INTRODUCTION
The design of efficient computing platforms is essential for realiz-
ing future applications, such as complex cyber-physical systems
and handheld mobile systems, ensuring high-performance and ac-
ceptable quality of service at low power consumption and cost.
However, aggressive technology scaling has resulted in issues such
as process variations, failure of Dennard’s law and emergence of
dark silicon [1]. In this context, virtualization is gaining more atten-
tion, fueled by the growth in single-chip core count and the need
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Figure 1: Envisioned MPSoC consolidation scenario.

for embedded systems consolidation. Virtualization enables the
integration of applications with different run-time requirements
in the same physical platform, promotes cost reduction both in
terms of development and maintenance, and improves resource
utilization efficiency [2–4]. For many emerging CPS domains such
as autonomous vehicles, such virtualized platforms have to deal
with diverse, often conflicting, requirements (Fig. 1). Some appli-
cations, such as steering, fuel injection, and brake handling, are
life/mission critical and pose hard real-time requirements to the
system. Conversely, multimedia infotainment systems demand high-
performance and are programmed to tolerate large variations in
the quality of the services provided by best-effort operating systems
such as Linux. In addition, a third rapidly growing class of sensitive
applications call for both predictability and performance at the
same time. Applications such as vision-based driver assistance and
navigation have become too complex to fit within the traditional
development cycle of critical embedded systems, yet they cannot
be handled as best-effort ones. Sensitive applications needs to be
served considering all the new challenges of the dark silicon era,
including heterogeneity, energy proportionality, thermal issues,
and wear-out [5].
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The run-time system in MPSoCs supporting such a hybrid work-
load needs to efficiently manage resources to satisfy: i) system-
driven requirements such as reliability and power, ii) application-
specific objectives such as predictability and high-performance,
and iii) platform-wide co-management of different application cate-
gories and resources. Unfortunately, existing hypervisors are unable
to assist ordinary operating systems to better manage diverse sys-
tem resources without compromising response time and through-
put.

To address these challenges, we propose CHIPS-AHOy: a holistic
hypervisor that consolidates traditional predictable run-time sys-
tems with self-aware computing-communication-control (C3) plat-
forms to maximize the overall system resource utilization while
delivering an acceptable level of predictability to sensitive appli-
cations, as well as service guarantees for critical applications. We
exploit cyber-physical system concepts applied to MPSoCs with
on-chip and cross-layer sensing and actuation capabilities [6, 7]
to enable adaptations within the observe-decide-act (ODA) [8] par-
adigm. We devise mechanisms to manage the major sources of
unpredictability in modern architectures for applications exhibiting
a mix of critical and sensitive tasks while enabling best-effort tasks
– scenarios typical in emerging automotive and IoT worlds. The
main contributions of this paper are:

• we comprehensively analyze major sources of unpredictabil-
ity for runtime systems in emerging heterogenous MPSoCs,
and highlight scalability challenges.

• we present CHIPS-AHOy: a holistic and predictable cyber-
physical hypervisor capable of handling hybrid workloads
comprising critical, sensitive and best effort tasks, while
efficiently managing system resources.

• we demonstrate the efficacy of CHIPS-AHOy via a proof-of-
concept prototype on three real multi-core platforms (Odroid,
Zynq, and Intel i7) compared against a baseline Linux kernel.

2 RELATED WORK AND MOTIVATION
Modernmulticore systemsmake intense use of latency hidingmech-
anisms to exploit locality while multiplexing an ever growing set
of heterogeneous hardware resources to applications [7, 9]. In or-
der to achieve high-performance, opportunistic and speculative
algorithms have been developed, typically focusing on best perfor-
mance or, more recently, on best performance per watt [5]. Here we
discuss the most relevant sources of unpredictability in MPSoCs,
as well as recent efforts to overcome them.

Shared Memory Hierarchy: the path between main memory,
processors, and I/O devices is paved with latency hiding mecha-
nisms, including caches, scratchpads, buffers, and FIFOs, that enable
a variety of latency and bandwidth demands to coexist in a hierar-
chy at the price of poor predictability. Techniques such as private
memory, coherent cache (cc-NUMA), and distributed shared mem-
ory boost performance, but suffer from limitations in scalability,
energy efficiency, and timing. Consequently these techniques them-
selves become the primary sources of unpredictability in modern
MPSoCs [10].

False sharing – the unintentional sharing of mid-hierarchy re-
sources due to their placement and associativity – is the most
notorious source of unpredictability with respect to memory. Even

(a) (b)

Figure 2: (a) traditional RTS, (b) our holistic approach.

if each VM gets its own share of private and global memories, the la-
tency hiding mechanisms in the hierarchy are mostly unaware that
some VMs are running critical or sensitive software which can’t
cope with time variations. Allocation and mapping at those inter-
mediate levels are done in an application-agnostic manner, mostly
focusing on system performance, using models and predictors (e.g.,
LRU approximation). VMs running data-intensive applications (e.g.,
multimedia) can easily exhaust FIFOs and buffers and evict a large
number of cache lines. A VM running critical or sensitive applica-
tions needs to concur for those resources, suffering large variations
in access time as illustrated in Fig. 2(a). While best-effort applica-
tions can easily trade predictability for performance, critical and
sensitive ones perceive such variations as jitter, which eventually
can violate their requirements. One approach to improve the pre-
dictability is the partitioning and isolation of shared resources.
Cache partitioning has been widely studied [10]. Other approaches
focus on the design of predictable hardware components, such as
predictable memory controllers [11], or memory bandwidth reser-
vation schemes in software [12]. Thus, it is important to have a
holistic hypervisor to identify processor architecture bottlenecks
that affect predictability.

Shared I/O Subsystem: Modern I/O subsystems are also parti-
tioned and utilize latency hiding mechanisms but deliver lower
throughput compared to those designed to feed data-hungry
CPUs [13]. Many systems are designed assuming that just a few
I/O devices will be active at any given time, which is often a wrong
assumption for large MPSoCs. Contention in the I/O subsystem
entails large variations in response time, causing delays and – more
importantly for critical and sensitive applications – deadline misses.
Indeed, the periods and deadlines defined for such applications at
design-time are mostly based on the assumption that assessing the
state of a physical component (e.g., reading a sensor or capturing
an image) is a constant-time operation. This assumption has to be
preserved when those applications are hosted on a conventional
VM sharing the same set of I/O resources with others (Fig. 2(a)).
To handle contention, the whole I/O subsystem can be managed
via a traditional real-time scheduler, with time slots being dynami-
cally allocated to tasks [14]. This approach, however, requires I/O
delays to be estimated at design-time, which can be only done by
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eliminating contentions through the reduction of parallelism or by
over-provisioning, both of which fail to scale along with MPSoCs.
I/O interference can be accounted within the execution time of tasks
by profiling applications at design-time [15], which is infeasible for
highly dynamic environments. Another alternative is QoS manage-
ment performed by the interconnect itself. I/O flows are tagged and
dynamically accounted, ensuring each one gets the specified share
of the bandwidth [16]. However, effective resource reservation is
infeasible for a large number of concurring VMs, particularly for
network interfaces and storage devices being usually shared among
VMs.

Hardware Variability: Variability in deep sub-micron technol-
ogy is rapidly growing due to aggressive scaling. ITRS [17] predicts
that over the next decade performance variability will increase from
48% to 66% and total power consumption variability will increase by
up to 100%. Orthogonal to manufacturing induced process variabil-
ity, emerging embedded and battery operated devices are moving
towards MPSoC platforms with architecturally differentiated cores,
thus introducing platform-level variability as well. Moreover, the
dynamic nature of workloads and the way cores are allocated and
stressed over the lifetime span of a chip also results in significant
temperature gradients on the substrate leading to unbalanced cores’
aging and high variance of Mean Time To Failure (MTTF) [18].

Previous works have proposed ways to deal with such variability
by using adaptive guardbanding, adaptive reliability management,
and novel task mapping techniques [5, 19–21], however none of
them manage hardware unpredictability in a holistic manner to
enable steady co-existence of critical, sensitive, and best effort tasks
in the same system – which is one of our key contributions in
CHIPS-AHOy.

Fig. 2 highlights a motivational example showing how a holistic
hypervisor can open doors to new optimization opportunities. The
scenario shown in Fig. 2(a) is fairly optimal for best-effort applica-
tions, however, critical and sensitive ones usually fail to get minimal
guarantees from the platform w.r.t. their timing requirements. In
this case, even though a sensitive task needs certain performance re-
quirements to meet its deadlines, as new best-effort (BE) tasks enter
the system, the competition to access shared resources may cause it
to miss deadlines mainly due to (1) interference caused by conflicts
in the shared cache and (2) contention in the main bus triggered by
BE I/O. Our holistic approach (Fig. 2(b)) overcomes these problems
by techniques such as cache coloring (3) and I/O throttling (4) that
isolate the critical tasks from the BE tasks. In this case, since the
BE tasks have less available resources and cannot achieve the same
performance level, a smart task mapping approach which is aware
of the platform heterogeneity can detect this scenario and move
the BE tasks to lower power cores (5), thereby saving power and
reducing system temperature.

The rationale behind the introduction of a predictable hypervisor
in this paper is the holistic integration and consolidation of tradi-
tional predictable mechanisms of an RTOS with the state-of-the-art
best-effort centric approaches by leveraging the recent advances in
the design and implementation of sensor-actuator-rich computing
platforms (e.g., [6, 7]) to enable the realization of next generation
hypervisors for MPSoCs.

Figure 3: CHIPS-AHOy overview.

3 PREDICTABLE HOLISTIC
CYBER-PHYSICAL HYPERVISOR

Providing means for management of multiple classes of applica-
tions with different timing and predictability requirements while
utilizing the platform in an energy-efficient manner is a challenging
task. We propose the Predictable Cyber-Physical Hypervisor (CHIPS-
AHOy) as an exploratory attempt and proof-of-concept realization
of a holistic hypervisor to address the challenges in such scenarios
(Fig. 3). CHIPS-AHOy provides three classes of virtualized environ-
ments for applications with different predictability requirements:
critical, sensitive, and best-effort. Resource partitioning, isolation,
reliability, and power management are handled by the hypervisor
in a holistic manner, following a self-aware C3 strategy similar to
strategies in POET [6] and CPSoC [7]. This differentiates CHIPS-
AHOy from traditional hypervisors in several ways. Traditional
hypervisors multiplex hardware resources that are delivered to ap-
plications with minimal intervention under a strategy designed for
performance and fairness [22, 23]. They largely ignore predictabil-
ity, energy, and aging optimization opportunities, assuming guard-
bands typical of worst case design. They lack support for multi-level
actuation and adaptation mechanisms to aggressively meet compet-
ing and conflicting application demands. CHIPS-AHOy overcomes
these limitations through an ODA loop defined around three key
ideas as shown in Fig. 3: 1) cross-layer sensing; 2) predictive
models; and 3) self-aware actuation policies. We describe these
three concepts below.

Cross-layer sensing: CHIPS-AHOy leverages sensors available
across multiple layers in the platform stack to take control decisions.
At platform level, we leverage per-core PMUs available in most
commercial platforms today to assess workload properties at run-
time, such as number of instructions executed, cache misses, branch
mispredictions, etc. CHIPS-AHOy also leverages physical sensors,
such as temperature and power, to take actuation decisions. The
notion of cross-layer sensing also includes virtual sensors, which
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can be used to replace unavailable physical sensors (i.e., by us-
ing power/temperature models) and to encapsulate system-level
metrics such as core utilization and core throughput [7].

Predictive models: Predictive models take as input sensed in-
formation and the current system state to predict the effect of an
actuation action in the system. In contrast to previous works that
use static models to predict the result of actuation [24], our models
capture the dynamic behavior of system components (e.g. DVFS
controller, multicore scheduler, I/O controller, etc), thus enabling
different actuation policies to work in a holistic manner as described
in Fig. 2(b).

Self-aware actuation: Self-awareness at the actuation level is
enabled when policies are not only triggered by the instantaneous
systems state, but also utilize inputs from the predictive models as
described previously. In this work, we explore four main actuation
mechanisms employed by CHIPS-AHOy to ensure predictability
and improve the energy efficiency of the system: real-time sched-
uling, cache partitioning through page coloring, I/O throttling, and
reliability management. We describe these mechanisms below.

3.1 Scheduling
Within the ODA loop shown in Fig. 3, VM scheduling is performed
based on a holistic combination of factors, including a platform
description, information about the category of each active VM,
sensing information about power, thermal, and performance, and
feedback from the predictive models. From the platform description,
the scheduler is able to perform mappings based on the multicore
CPU topology considering the different performance/power trade-
offs of each CPU (e.g. ARM’s big.LITTLE). We follow the scheduler
design proposed by [9] and the mapping approach proposed by [19]
to achieve energy efficient core allocation while simultaneously
delivering the predictability needed to support critical and sensitive
VMs.

CHIPS-AHOy uses a multilevel queue with dynamic priority
as the primary policy and round-robin as the secondary policy to
schedule the virtual CPUs (VCPU) that are allocated to VMs. Each
VM can run in one or more virtual CPUs and virtual CPUs are not
shared by distinct VMs. VCPUs associated to critical and sensitive
VMs are handled as periodic real-time tasks. When they are cre-
ated, additional information about period, deadline, and utilization
is provided to the scheduler, which applies the Clustered Earliest
Deadline First (CEDF) [25] algorithm to dynamically determine their
priorities at run-time. Best-effort VMs are not periodic and their
VCPUs share the same, lower priority that is never reached by the
periodic ones. They are therefore scheduled using the round-robin
policy. An entity conceptually similar to the idle thread in ordinary
systems is used to speculatively perform functions pertaining the
ODA loop described earlier. Since the scheduling of these lowest
priority flows only occur when a core has no VPCU to run, they
present a strategic opportunity to perform sensing, prediction, and
actuation of the ODA loop.

In the envisioned scenario of a few critical and sensitive VMs
and many best-effort ones, energy efficiency is attained by care-
fully mapping best-effort VCPUs to cores as illustrated in Fig. 4.
In adaptive periodic epochs (typically every 200ms), information

from sensors and performance counters (Fig. 4(a)) is used as in-
put for performance/power predictive models (Fig. 4(b)). Bin-based
prediction models [19] are used to predict the performance and
power of individual VCPUs across the heterogeneous cores in the
system (e.g., predicting performance of a VCPU on a little core,
given measurements done on a big core). These prediction mod-
els are similar to regression-based models that have been used in
previous works for the same purpose [24, 26] and are trained of-
fline. The performance/power predictions are then used as input to
the dynamic predictive models (Fig. 4(c)) and the core allocation
algorithm (Fig. 4(d)). The dynamic models are interactively queried
by the scheduler to predict the effective performance and power
consumption of the system given a new actuation decision (e.g. a
new VCPU -> core mapping). These models account for the be-
havior of other actuators in the system (DVFS policy and memory
partitioning). The goal of the core allocation algorithm is to find the
most energy efficient allocation that meets the QoS or the perfor-
mance constraints for every VCPU in the system. Since finding the
optimal solution is NP-hard, we employ the list scheduling based
heuristic described by [19] augmented with reliability management
(Section 3.4) within the idle flows described earlier. Indeed, surges
of such flows directly drives DVFS and VCPU migration towards
less energetic levels, while their absence signals the scheduler to
expedite more resources.

3.2 Page Coloring
Static partitioning and reservation of resources have been exploited
as effective countermeasures to false sharing in the memory hier-
archy. CHIPS-AHOy relies on a platform description to partition
the memory hierarchy in order to isolate critical and sensitive VMs
from interference caused by best-effort ones. The description in-
cludes the multicore CPU topology, the size and associativity of
the caches, the size of buffers, and the topology of the DRAM. It
is used to map page-colored memory to VMs according to their
categories: critical VMs are assigned private colors, while sensitive
and best-effort VMs share colors that are not used by the critical
ones [9]. This scenario is depicted in Fig. 3.

Besides partitioning the memory hierarchy, CHIPS-AHOy uses
available sensing mechanisms to collect run-time data in order to
improve predictability. By observing cache coherence activities,
for instance, the scheduler can detect best-effort tasks interfering
with sensitive ones (that use the same color) and thus improve
predictability and response time by limiting the amount of time
a best-effort VM can run. Another possible action is migration:
two interfering VMs running on different cores (or clusters) can be
migrated so they reside on the same core, thus mitigating the impact
of the coherence protocol on the interconnect and consequently
reducing memory access time. If interference continues to grow and
reaches a certain threshold, the hypervisor temporarily suspends
a best-effort VM in favor of a sensitive one. Being fully isolated,
critical VMs perceive very little interference in terms of memory
access time as will be demonstrated in Section 4. Moreover, the
limitation in terms of partition size is in tune with our envisioned
scenario of many best-effort VMs and just a few critical ones.
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Figure 4: Holistic task mapping approach.

3.3 I/O Throttling
Somemodern I/O interconnects support per-device QoS [16], which
we fully exploit in CHIPS-AHOy. Critical VMs are mapped to cores
that get a fixed share of the I/O bandwidth, while sensitive and
best-effort ones run on cores that share the remaining fraction. I/O
devices capable of overwhelming the interconnect, such as network
adapters and disk controllers, are also given fixed shares. In addition,
the interference of best-effort VMs on sensitive ones is constantly
monitored through the PMU that is usually available in platforms
featuring I/O QoS. If a sensitive VM starts to receive too much
interference (configurable at VM creation time), a QoS reservation is
activated for it just like if it were a critical VM. If nomore bandwidth
is available to be allocated, then the devices causing the interference
in the name of best-effort VMs are put under a Dynamic Power
Management (DPM) policy, eventually even being put in sleep mode.
CHIPS-AHOy exposed I/O operations are intrinsically blocking, so
VMs trying to interact with a suspended device will temporally
block, immediately alleviating the interference on the sensitive
ones.

For platforms that do not support I/O QoS nor feature I/O per-
formance counters, a software solution is deployed. At machine
initialization time, I/O devices capable of performing DMA are pro-
filed to determine the typical duration of various size transfers (ma-
chine initialization is an interference-free scenario, so the obtained
times are roughly best-case ones). During regular operation, I/O
requests are time-stamped to implement a run-time monitor, which
is used by the hypervisor just like a PMU. The main difference being
that, without reservation, critical VMs are subjected to the same
scenario as sensitive ones: they share the I/O interconnect with
best-effort VMs until interference is detected. When this happens,
before applying DPM to I/O devices associated with best-effort VMs,
CHIPS-AHOy first tackles the DMA controller capabilities to adjust
burst lengths according to VM categories. Critical VMs continue
to use the optimized performance/energy values, while best-effort
ones are limited to very short bursts, with sensitive ones falling in
between (operating the I/O subsystem always on small bursts is
not an option, since this results in poor performance and energy
efficiency). The effectiveness of this approach is demonstrated in
Section 4.

3.4 Reliability Management
In addition to considering heterogeneity, cache, and I/O interfer-
ence as described previously, the performance and power models
also take into account the life-time reliability requirements. We
therefore incorporate reliability monitors and analysis units in
the hypervisor to enrich the core allocation algorithm (Fig. 4(c)).
Typically, systems are expected to work for a planned service life,
expressed in a number of years. Thus, we may use the classical sto-
chastic reliability model [27, 28] to estimate the probability that the
system will survive until the specified lifetime, which is modeled

by means of the Weibull distribution: R(t) = e
−
(

t
α (T )

)β
We augment the scheduler to consider aging effects due to temper-
ature variations using the extended model presented in [28]. We
then customize and incorporate the technique presented in [18]
to provide the scheduler with reliability awareness. To indicate
the expected lifetime and to measure system reliability during its
operational life, we express a minimum reliability level Rtarдet the
system must fulfill at the end of the service life ttarдet (as in [29]).

CHIPS-AHOy monitors the cores’ aging status and provides
reliability metrics to its scheduler. It defines a target reliability
curve Rtarдet (t), called aging reference, on the basis of the required
reliability target Rl i f et ime at the given lifetime tl i f et ime . Then,
every long-term epoch, the unit computes for each core nw,h , a
metric ∆Rw,h (t)measuring the divergence of the current reliability,
received by the reliability analysis unit, and its target value.

The aim of incorporating life-time reliability awareness in CHIPS-
AHOy is to optimize system performance, while guaranteeing reli-
ability requirements. In fact, when considering only performance
and energy requirements, a subset of the cores would be generally
preferred for applications execution, thus leading to a non-balanced
cores’ aging and poor predictability. On the other hand, when con-
sidering only reliability requirements, we would cause a high dis-
persion in application mapping, and, consequently, a considerable
on-chip interconnect congestion and low system performance.

We integrate the reliability monitor with core allocation to ap-
plications as described in Fig. 4. The reliability monitor and anal-
ysis units compute ∆Rw,h (t) as a function of the measured core
temperature and the core allocation. The first order optimization
goal is to meet the performance constraints of the application.
The second order goal is to minimize power while keeping the
aging profile balanced. We use ∆Rw,h (t) to compute a scaling fac-
tor ∆Rw,h (t)/∆Rmin (t), where Rmin is the smallest ∆Rw,h across
all cores in the platform, applied to the core power estimated by
the predictive models; thus cores with unbalanced aging are per-
ceived by the core allocation algorithm as less power efficient and
therefore less likely to be allocated.

4 EXPERIMENTAL RESULTS
We present a comparison between CHIPS-AHOy mechanisms for
managing hybrid workloads in a holistic and deterministic fashion
against traditional approaches in 4 scenarios: 1) HMP core alloca-
tion, 2) I/O monitoring and throttling, 3) Isolation of critical and
sensitive VMs via page coloring, and 4) Lifetime reliability manage-
ment. We compare a baseline Linux kernel with a proof-of-concept
CHIPS-AHOy prototype on three real platforms and a long-term
aging simulation.
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(a) Utilization (Linux) (b) Utilization (CHIPS-AHOy)

(c) Power (Linux) (d) Power (CHIPS-AHOy)

Figure 5: Traditional Linux (using GTS) vs CHIPS-AHOy core allocation for HMPs.

(a) (b)

Figure 6: (a) Impact of I/O overutilization on a task-set with a few critical/sensitive tasks and several BEs. (b) under different
execution regimens: uncontrolled, QoS and DPM .

4.1 HMP Core Allocation
Fig. 5 shows that the core allocation approach employed by CHIPS-
AHOy adapts at run time to improve energy efficiency in the con-
text of an HMP through a real implementation on 8-core ARM’s
big.LITTLE platform (4×big+4×Little OdroidXU3). In this experi-
ment, we run 4 instances of PARSEC’s x264 application with differ-
ent QoS requirements, 2 apps at 5 fps and the other 2 at 15 fps input
rate. The black dashed line in Figs. 5a-d shows when the 15 fps app
finish and the load on the system changes. Figs. 5b and 5d show how
the system behavior changes when CHIPS-AHOy’s core allocation
algorithm is employed (denoted by the green dashed line). By using
perf/power models, CHIPS-AHOy identifies that the little cores are
able to run x264 applications without performance degradation,
thus reducing power consumption and improving energy efficiency.
Figs. 5c and 5d show how these optimizations impact the thermal
profile of the system. On average, CHIPS-AHOy improves energy

consumption by 65% without performance degradation for this case
study.

4.2 I/O Monitoring and Throttling
CHIPS-AHOy is capable of sensing the jitter increase in I/O-bound
tasks running on VMs, identifing potential damage to the critical
VMs timing requirements, and evaluating hypervisor actions to
maintain the predictability of the system. In this experiment, we run
13 tasks (2 critical, 9 BE, and 2 sensitive), with a total utilization of
128% on CPU operations and of 130% on I/O operations, on a Zynq-
7000 (dual-core ARM Cortex-A9) with HPAXI traffic generators.
Critical tasks run on VMs under a RTOS, while sensitive ones mimic
the x264 Linux workload used previously, and BEs mimic Linux
background tasks. The task-set runs for 47 s, with a 1 s activation
delay for each task. Fig. 6(a) shows the jitter in the execution time
of each task caused by an uncontrolled (i.e., FIFO) I/O regimen. As
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Figure 7: Critical VMs scheduled naively, by Linux, and by
CHIPS-AHOy.

more tasks performing I/O are released, the total jitter increases to
unpredictable levels.

Fig. 6b shows the jitter imposed on a similar task-set sched-
uled under three different regimens: uncontrolled (i.e., Linux-like),
CHIPS-AHOy doing QoS by limiting the burst length of peripherals
associated to non-critical tasks, and CHIPS-AHOy powering off pe-
ripherals associated to non-critical tasks (DPM). The task-set used
has lower utilization than the previous one, since the goal here was
not to exacerbate the problem, but to demonstrate two potential
solutions in a more realistic scenario. The total I/O utilization was
adjusted to 90%. As can be observed, running multiple I/O-intensive
tasks on VMs without monitoring and throttling the interconnect
to protect critical and sensitive VMs can cause operations that in
the best case would finish in 50 ms to be delayed for up to 400 ms,
possibly disrupting their requirements.

4.3 C-EDF with Page Coloring
In CHIPS-AHOy, individual cache partitions (i.e., colors) are exclu-
sively assigned to critical tasks which are scheduled using a C-EDF
policy. We compared this mapping with two others on an Intel
i7-2600 with 8 cores: a global scheduling policy, in which tasks run
on the first available core, the ordinary Linux scheduler, in which
tasks are grouped in clusters (cgroups). We randomly generated
task-sets similar to [9], with each task allocating memory for its
working set (WSS) and subsequently reading and writing to it ran-
domly. Fig. 7 shows the ratio of missed deadlines as we increase the
utilization cap of the task-sets. A ratio of 0.6, for instance, means
that 60% of the total generated task-sets missed at least one deadline.
In contrast with the two less controlled scenarios, CHIPS-AHOy
can take the utilization close to the machine’s capacity without
disrupting critical VMs’ requirements.

4.4 Life-time Reliability Management
Fig. 8 demonstrates the efficacy of CHIPS-AHOy on the aging and
reliability profile of a heterogeneous multiprocessor system. We
use the same workload and experimental setup from Section 4.1
integrated with the aging simulation method presented in [28]. The
simulator uses the reliability model presented in [28] and calcu-
lates the reliability of each core from the thermal traces collected
at runtime from the physical on-chip thermal sensors on ARM’s
big.LITTLE platform (OdroidXU3). In other words, as aging analy-
sis is a long-term process, we use an analytical simulation method

Figure 8: Linux HMP mapping aging vs CHIPS-AHOy life-
time reliability-aware HMP mapping.

where the thermal sensors’ data is collected from a real hardware,
but analyized using an aging simulator. We assume the required
lifetime ttarдet = 6 years, and, in order to have a reasonable reli-
ability at the end of the operational life, we set a per-core target
reliability R(ttarдet ) = 30% (similar to [30]). The chip floorplan has
been defined according to available specifications on the ARM’s
big.LITTLE platform: a squared grid floorplan, and the chip area
of 122mm2 (22nm technology). The simulator uses the reliability
model presented in [28] and calculates the reliability of each core
from the thermal traces collected at runtime from the physical
on-chip thermal sensors on ARM’s big.LITTLE platform. Fig. 8
compares the results when an unmodified Linux kernel (GTS task
mapping [21], interactive DVFS governor) is used with the case
when GTS task mapping is controlled by CHIPS-AHOy, which uses
inputs from on-chip performance counters and models for perfor-
mance, power, and reliability to perform life-time reliability aware
scheduling. Each graph reports the minimum and the maximum
reliability values of the cores within the architecture. Fig. 8 shows
that CHIPS-AHOy is able to prolong the system life-time by 20%.
CHIPS-AHOy minimizes the variance in the reliability values thus
maximizing the overall lifetime of the system. In contrast, since the
unmodified Linux kernel is reliability-agnostic, it distributes the
applications without considering the aging values, and therefore
leads to an unbalanced distribution of the workload and, conse-
quently, aging of the cores. This leads to a lower reliability of some
cores that probabilistically will fail earlier.

5 CONCLUSIONS
Many emerging CPS and IoT applications such as autonomous
cars pose unique constraints based on different classes of appli-
cation tasks (requiring hard, soft and best-effort deadlines) that
demand strict temporal predictability, while delivering high per-
formance in the face of multi-dimensional design constraints. To
address this challenge, we presented CHIPS-AHOy, a predictable
holistic cyber-physical hypervisor for heterogeneous MPSoCs that
enables synergistic virtualization of critical, sensitive, and best-
effort tasks, while managing disparate constraints such as energy
minimization, thermal bounds, and system lifetime management.
CHIPS-AHOy holistically integrates several novel features, includ-
ing cross-layer sensing and actuation, predictive models, and self-
awareness embodied in the observe-decide-act paradigm. We pre-
sented four specific self-aware actuation mechanisms: scheduling,
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resource partitioning via page coloring, I/O throttling, and reliabil-
ity management. Our experimental results on three real multi-core
platforms (ODROID, Zynq and Intel I7) demonstrate the ability of
CHIPS-AHOy to manage these hybrid workloads in a holistic and
predictable manner in the face of variability imposed by the shared
memory hierarchy, the shared I/O subsystem, and the hardware
substrate. Our future work will extend our platform i) to manage
unpredictability for Networks-on-Chip based MPSoCs, ii) to an-
alyze the scalability of the hypervisor in the many-core system
era, iii) to manage the power consumption in a holistic manner to
be leveraged as another knob to enhance predictability, and iv) to
perform sensitivity analysis against variations in workload volume
and distribution.
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