On the Feasibility of SISO Control-Theoretic DVFS for
Power Capping in CMPs

Sina Shahhosseini'*, Kasra Moazzemi'*, Amir M. Rahmani'*?, Nikil Dutt*

! Department of Computer Science, University of California Irvine, USA
2 Institute of Computer Technology, TU Wien, Vienna, Austria

Abstract

Power capping are increasingly being deployed in modern processors to
meet performance/power requirements of new workloads. These comput-
ing systems are limited in their power dissipation, demanding a dependable
power management scheme to guarantee the system’s efficiency and depend-
ability. Although several ad-hoc and heuristic power management approaches
can be found in the literature, their main shortcoming is the lack of formal
guarantees to ensure dependability of the processors. Control-theoretic ap-
proaches promise flexibility and robustness for DVFS strategies. However,
the creation of a responsive yet stable controller requires the often neglected
tasks of proper system identification and performance analysis for target
applications. This paper presents dependability evaluation of Single-Input
Single-Output (SISO) controllers for power capping on single-core as well as
multi-core processor architectures. We evaluate responsiveness of different
class of applications to computer system control inputs (i.e., DVFS). We il-
lustrate the feasibility of SISO controllers for power capping using the Sniper
simulator running PARSEC, SPLASH2 and a set of custom microbench-
marks. Based on our observations, we provide guidelines for developing
stable and robust SISO controllers for power capping, show the scenarios
where simple classic SISO controllers might not be effective, and identify
early symptoms that may result in instability for power capping controllers.

Keywords:
SISO, Control theory, Robust Control, Power Capping, CMP, SPLASH2,
PARSEC, PID controller

*These authors contributed equally to this work.

Preprint submitted to MICPRO Journal September 29, 2019

1. Introduction

Modern many-core platforms provide high performance but are increas-
ingly constrained by power dissipation. In addition, applications typically ex-
hibit dynamic characteristics (e.g., memory-bound, compute-bound) through-
out their execution, resulting in continual changes in the power state of the
system. It is essential to control the peak and average power based on appli-
cation behavior in order to achieve the proper performance with minimum
cost [29]. This requires thorough analysis and sophisticated power man-
agement methods to control power and provide necessary performance for
a diverse set of workloads [13, 14]. Some approaches [18, 17| use analyti-
cal models to estimate the average or worst case power consumption of the
system based on frequency and voltage level of the system. These meth-
ods fail to take into account the effects of workload and input variability
during system execution. A promising and well-established approach is the
use of control-theoretic solutions based on rigorous mathematical formalisms
that can provide bounds and guarantees for system power consumption. In
the past, different control methods have been proposed [24, 25| for resource
management in the presence of a specific type of workload running on the
system. A majority of these methods use Single-Input Single-Output (SISO)
controllers. These SISO controllers often deploy proportional Integral (PI),
proportional integral derivative (PID), or lead-lag methods. Although these
controllers theoretically provide guarantees for stability and robustness, sig-
nificant care must be taken in their practical implementation to ensure that
these properties continue to hold in the implemented designs. For instance,
SISO controller can be implemented at the various layers of the abstraction
stack (e.g., application, OS, hypervisor or hardware), resulting in different
challenges and design trade-offs: software controllers provide ease of imple-
mentation and flexibility, while, hardware controllers provide higher respon-
siveness to sensor measurements. In many cases, the controller configuration
needs to be changed to manage power for a new set of applications. Software-
based controllers provide such flexibility but are limited on response time to
changes in the system, currently in the order of milliseconds. This could pose
problems when an application’s phase can change faster than the settling
time of the controller. In addition, some applications cannot be controlled
using classic static controllers and require more advanced solutions. These

are examples of many issues that demand a thorough analysis of application
behavior early enough (e.g., at the time of system identification) and well
before controller deployment.

In this paper, we present a comprehensive evaluation of SISO control-
theoretic methods for power management. We use Intel’s Sniper multi-core
simulator to control power using DVFS while executing a variety of bench-
marks including the PARSEC and SPLASH2 benchmark suites as well as
stress-test benchmarks. A preliminary version of the approach has been pro-
posed in [1] with the following contributions:

e We highlighted the need for careful and early system identification and
performance evaluation for SISO controller design through several ob-
servations.

e We presented an analysis of multiple controller responses and outlined
a general robustness classification of workloads based on their compu-
tation and communication intensity.

e We identified early symptoms that can cause instability in controller
for a single-core processor and show application classes for which sim-
ple classic SISO controllers are not effective in managing single-core
Processors.

We extend this work to consider power management of multi-core plat-
forms executing multithreaded applications by adding the following contri-
butions:

e We extend the study platform to perform VF scaling on multi-core
systems. Analysis is done on multi-core systems of different core counts.

e We included multi-threaded benchmark suites (e.g., PARSEC) in our
system identification and performance analysis to study multi-threaded
applications.

e We provide a benchmark categorization with respect to the applica-
tions’ level of parallelism, run-time behavior and power consumption
to be used in the choice of control design methods.

e We improve our evaluations on the efficiency of control theoretic ap-
proaches to provide scalable management to various types of cores and
communication schemes.

The rest of this paper is organized as follows. Section II presents the
background and motivation for our evaluation of SISO controllers. Section
1T outlines the general experimental setup. We present our detailed analysis
in Section I'V. and discuss the insights learned for two benchmark suites and
microbenchmarks in Section V. We position our work with related efforts in
Section VI, and finally conclude in Section VII.

2. Background and Motivation

Controller design for feedback loops consists of three main stages: Mod-
elling, Controller Design, Performance Evaluation. In the modelling
stage, the system is described either using analytical or statistical (i.e., black-
box) methods. A poorly modeled system, which does not properly consider
the corner cases, can result in instability of the controller. Thus, it is essen-
tial to make sure that the modeling stage captures the holistic dynamics of
the system. In our study, we utilize a black-box method based on System
Identification Theory [27, 28] for isolating the deterministic and stochastic
components of the system to build the model. Controller design is a mature
field which utilizes many tools that provide off-the-shelf controllers. We use
Matlab PID tuner toolbox [30] to design and deploy our controllers. Finally,
performance evaluation is conducted to ensure key properties of the system
including accuracy, overhead, robustness and flexibility. In this work, we
argue that the first stage (i.e., modelling) is often over-simplified in existing
controllers deployed for computer systems, and the third step (i.e., perfor-
mance evaluation) is most often neglected which is essential to ensure the
robustness and efficiency of the controller as well as the dependability of
the systems. In this study, we focus on issues that might arise from poorly
performed models and the lessons learned from performance evaluation.

In our study of SISO controllers, we design and deploy PI controllers
for power capping. It is important to note that although derivative control
law is helpful to add predictability to the controller, stochastic variations in
the system output may cause inaccuracy in the controller. This issue be-
comes more severe in computer systems as they commonly have a significant
stochastic component. Therefore, for computer systems PI controllers are
preferred over PID controller [21]. PI control benefits from both integral
control (zero steady-state error) and proportional control (fast transient re-
sponse). In most computer systems a first-order PI controller provides rapid
response and is sufficiently accurate [21]. In the rest of this paper, when SISO

4

PI Controller K(z)

\ 4
=
A 4

System G(z)
b Y(z)

R(z) E(z) Ulz)

v

v

Ky

Figure 1: Feedback loop with PI control for a first-order system

controller is mentioned, it would refer to a PI controller. Figure 1 depicts a
first-order feedback PI controller modeled in Z-domain. The error F(z) = R
- Y(z) is the input to the controller. The control input U(z) is a sum of the
proportional term Kp x F(z) and the integral term K; x (z/(z—1)) x E(2).

Equation 1 describes a simple discrete PI control form that can later be
transformed to transfer function. Note that to compute the current control
input u(k), the controller needs to have the current value of the error e(k)
along with the past value of the error e(k-1) and the past value of the control
input wu(k-1). The PI control law has the form:

wk) =u(k —1)+ (Kp+ Kr)e(k) — Kpe(k — 1) (1)
It is important to note that a power management controller designed
for only a specific class of applications might not perform well in managing
power for other types of workloads. The merit of a controller is measured
in terms of four properties: Accuracy, Overhead, Robustness and Flexibility.
Thus, a designer’s major concern is to evaluate how well a controller satisfies
these properties while executing different types of workloads (e.g., compute-
bound or memory-bound). The dependability evaluation presented in this
work offers designers a better insight on how to properly model (i.e., identify)
their system and what kind of considerations they need to take into account
when designing controllers for processors.

SNIPER simulator

Global Manager

Processor

Core 1| |Core 2| |Core 3 Core N

L

1VdON

Figure 2: Simulation framework overview

3. Experimental Setup

In this section, we describe our framework and the experimental setup.
A workload categorization is presented in order to clarify the performance
analysis performed on the SISO controllers. Understanding the behavior of
applications is essential in evaluation of identified systems and implemented
controllers.

3.1. Simulation Framework

For processor architectural simulation, we use the Sniper [26] simulator
which provides micro-architectural details of power and performance of vari-
ety of processors. This architectural simulator enables evaluation of single-
core and multi-core processors with different communication mechanisms
such as bus and Network-on-Chip (NoC). A series of additions was made to
this simulator in order to enable run time closed-loop power capping which
are discussed in the rest of this section.

3.1.1. Framework Overview

In our work, in order to enable run time power capping using PI con-
trollers, a mechanism called “Global manager” is added to this simulator to
manage the DVF'S settings at run-time based on computer system response
to application behavior. Figure 2 represents overview of this framework. By
default, the global manager is invoked every 2.5 ms (common software con-
troller epoch) to obtain the state of the computational cores and determine
the next level for their frequency. In addition, MCPAT [3] is used to capture
and estimate power consumption.

3.1.2. Architecture Configuration
We model the Gainestown (Nehalem-EP) 45nm microarchitecture for our
evaluations. This model simulates an in-order core with the issue width of

Workload

Domain

Problem size

Barnes

High-Performance

32768 particles

Ocean-Contiguous

High-Performance

1024*1024 matrix

Ocean Non-contiguous

High-Performance

1024*1024 matrix

FMM High-Performance | 32768 particles
Radiosity Graphics room
Raytrace Graphics Car -m64

Water-NSQ High-Performance | 2197 Molecules
Water-SP High-Performance | 2197 Molecules
Volrend Graphics head

Table 1: SPLASH-2 benchmark list and their problem size

two. In addition each core has 64 KB of L1 cache for data and instruction. L2
and L3 cache for each core has 256 KB and 8192 KB capacity respectively.
Data access time for L1 and L2 cache is 4 and 8 clock cycles and for L3
cache, it is 30 clock cycles. Also, DRAM latency is 45 clock cycles and
DRAM bandwidth is 7.6 GB/s. In case of multicore simulations, framework
is tuned to simulate homogeneous cores controlled by the global manager.

3.2. Benchmark Categorization

Two sets of workloads have been utilized in our work in order to make
a comprehensive study of capabilities of SISO controllers for power capping
regarding the wide variety of applications behavior. There have been many
efforts to construct benchmark suites that can comprehensively represent real
world software execution. For example, SPEC [36] workloads include differ-
ent high performance computing applications. ALPBench [35] is a suite of
multimedia workloads. Minebench [37] includes benchmarks for Data Min-
ing Workloads. In the recent years comprehensive benchmark suites like
SPLASH2 [34] and PARSEC [33] gained a lot of attention as they cover
many domains and in addition they scale well for multi-core systems. In our
studies we use these two benchmark suites (PARSEC and SPLASH-2) and
provide a detailed analysis on the effects of application behavior on control-
lability of the system. In addition, a set of micro-benchmarks are devised
to stress various parts of a system that are further explained in discussion
section.

Workload | Application Domain | Parallelization
Blackscholes Financial Analysis Data-parallel
Bodytrack Computer Vision Pipeline
Canneal Engineering Data-parallel
Dedup Enterprise Storage Pipeline
Facesim Animation Data-parallel
Ferret Similarity Search Pipeline
Fluidanimate Animation Data-parallel
Freqmine Data Mining Data-parallel
Raytrace Visualization Data-parallel
Streamcluster Data Mining Data-parallel
Swaptions Financial Analysis Data-parallel
Vips Media Processing Data-parallel
X264 Media Processing Pipeline

Table 2: PARSEC benchmark list and their Application Domain [32]

3.2.1. SPLASH?2

The SPLASH-2 suite is one of the most widely used collections of multi-
threaded workloads [34]. Table 1 represents a detailed description of work-
loads included in this benchmark suite. Parallel machines were not as com-
mon as nowadays and were mostly used for scientific objectives when SPLASH-

2 benchmark suite was released. This fact is reflected in high performance
nature of the workloads included in SPLASH-2 benchmarks.

3.2.2. PARSEC

PARSEC as one of the emerging multithreaded benchmark sets contains
applications that have been designed to take advantage of multiprocessor
computers with shared memory [33]. Applications included in the benchmark
suite are composed of programs from a wide range of application domains
(e.g., engineering, machine learning, storage, finance, Etc.) in order to cap-
ture the increasingly diverse ways in which computers are used. Containing
applications with different parallel programming models that are geared to-
ward common CMPs, brings out the possibility of using PARSEC benchmark
suite to test the performance of a diverse set of computer systems including
embedded systems.

3.2.3. Benchmark Comparison

PARSEC benchmark suite was designed and maintained with the goal
of capturing recent trends in computing. Low-degree of similarities between
SPLASH-2 and PARSEC indicated that these developments might have an
impact on workloads that fundamentally alters their characteristics [32]. For
example, PARSEC includes many workloads that follow the pipeline pro-
gramming model. On the other hand, SPLASH-2 set is mostly composed of
high-performance and graphics applications. Furthermore, the input data-
set prepared for PARSEC workloads are tuned towards CMPs. In contrast,
SPLASH-2 input set are optimized for large shared memories in high perfor-
mance systems.

4. Evaluation

In this section, we evaluate two often-neglected important aspects in the
design of a controller: System Identification and Performance Anal-
ysis. For system identification, we show examples of both well identified
systems and poorly modeled systems with some hints about what kind of
behavior in the model may result in imprecise controller design. These eval-
uations are done for both single-core systems and CMPs with demonstration
of effect of increasing number of cores. This can be valuable for cases where a
controller must be implemented in hardware and changing its configuration is
costly. For performance analysis, we evaluate various types of controllers for
SPLASH2 and PARSEC workloads and highlight the pros and cons of each
method. In addition, the trend of controlling behavior is analyzed for mul-
tithreaded applications running on different size of CMPs. Furthermore, as
part of our evaluation we categorize the workloads based on measurement of
their power consumption and instruction per second (IPS) and then analyze
the settling time (all time measurements done by epoch units), maximum
overshoot and controllability of each class of application.

4.1. System Identification

After defining the controlled system, the first step would be to generate
test wave forms from training applications for system identification [28]. Ideal
training applications represent the behavior of applications to be executed
on the real system [27]. A test waveform contains a series of samples for
controller inputs and outputs for a training application, and should exercise
as many input permutations as possible. Once the training data is collected,

9

—_
(&3]
T
1

—predicted
——measured

Total Power(W)
=)

()]

0.2 04 0.6 0.8 1 1.2
Time

Figure 3: CPU bound microbenchmark with well identified model

the model can be created. During this stage, the system dynamics is exercised
often by applying a staircase waveform to the control input (e.g., operating
frequency). Such staircase would stimulate system behavior in response to
various levels of control input. In our work, we change CPU frequency from
1 GHz to 3.3 GHz with steps of 100 MHz. In this method, training sets use
varying frequency (e.g., a set of out-of-phase staircase signals for the control
inputs) in order to isolate the deterministic and stochastic aspects of the
system. Voltage level is assumed to be fixed in this simulation. This model
is then evaluated to predict the expected data from the identified system.
Abnormal behavior from this model can raise a flag that the controller to be
designed from this model might be inaccurate. In our work, we used Matlab’s
system identification toolbox for this process [31]. Below, we showcase some
of these scenarios.

Figures 3 and 4 demonstrate positive and negative examples that design-
ers have to look for in system identification phase. These two figures show
the result of system identification of two hand-tuned workloads. More pre-
cisely, they show how well a model can predict the system’s output running
an application when operating frequency is changed in a staircase form over
time. Figure 3 shows that the predicted model for a performance regulated
benchmark that closely fits the measured model. On the other hand, Fig-
ure 4 shows a memory bound benchmark that lacks the ability to fit into the
expected model. Although the controller changes the frequency levels, this
change does not have a clear correlation to system output due to the system
stalling for memory accesses instead of executing instructions for a majority
of simulation cycles.

10

W)

1571

— predicted
——measured

Total Power(
)

(&)

0 0.2 0.4 0.6 0.8 1
Time

Figure 4: Memory bound microbenchmark model with limited tracking range

=X
26
)
o4
T — predicted
S 2 —— measured 1
|_
0 C 1 1 Il 1 1 -
0.2 0.4 0.6 0.8 1
Time

Figure 5: Barnes workload well identified model with noise

4.1.1. Single-Core Models

Next, we investigate a selected set of models that show a series of stochas-
tic behavior that can manifest in the system identification stage. System
identification results shown in this section are performed for a single core
processor running one thread of each benchmark. Majority of these bench-
marks are selected from SPLASH-2 benchmark suite to isolate the effect of
off-chip memory accesses. Section 4.1.2 focuses on system identification for
CMP models that mostly utilizes PARSEC benchmarks optimized for these
architectures.

Figure 5 shows a part of the Barnes workload that closely fit the expected
model while demonstrating spikes at certain points of time. These spikes can
be the result of a change in the workload execution behavior which is common

11

in many real-time applications. As the duration of these spikes are very short
and the model can rapidly respond to such changes, they are considered as
the stochastic part of the system dynamics which should be isolated from the
deterministic part, and would not cause any issue in the performance of the
system. In contrast, Figure 6 demonstrates part of an identified model for
the Raytrace workload that exhibit a long period of underestimation. There
are restrictions (such as level of aggressiveness and transient state) that can
be applied during controller design stage which can mitigate these abnormal
conditions, motivating the need to consider these issues upfront.

31

26

)

o .

= 41 — predicted

° ——measured

=27

0.2 0.4 0.6 0.8 1

Time

Figure 6: Raytrace workload model exhibiting error in prediction

4.1.2. CMP Models

After identifying models for single-core processors, we aim to identify
models for CMP systems. This change expands the exploration space for
controller design. On one side, exceeding number of cores can be a challenge
for system identification phase and controller design process. On the other
hand, the multithreaded behavior of applications over different cores can
add a large noise when controlling the whole system complex with solely
one SISO controller. To address some of the mentioned challenges we study
the capability of SISO controllers in power capping of CMPs with following
scenarios for the system identification phase:

e We demonstrate a single threaded application running on a multi-core
processor. One core is executing the application thread and other cores
simply have idle power consumption. The goal of this experiment would
be to see the static effect of idle cores on system identification.

12

S 10— ' ' :
5 10

= 8

£ 6

o 4

§ 2 — Predicted — Measured 1
< 1000 2000 3000

Time

Figure 7: System identification for a 4-core system using one thread of Freqmine bench-
mark executing on one core. Model fits general flow with a static shift at the bottom.

e We analyze the power model for CMPs using DVFS. We demonstrate
the variety of dynamic power changes on a 4-core processor based on
run-time behavior of each application thread. In addition, we evaluate
the accumulated total power for the whole system in respect to power
consumption of each core and platform communication mechanism.

e We assess the system identification capability for CMP systems with
low number of homogeneous cores.

e We illustrate the trend of increase in inaccuracy of system identification
stage as the number of cores grows larger.

The first transition from a single-core processor to a multi-core processor
system identification model is extending the architecture while keeping the
same configuration for the software execution. This would reveal some of the
key points to look after in design process of a controller for the multi-core
systems. In order to evaluate this case, we evaluate same benchmarks on
a 4-core platform while restricting the number of threads to one. Figure 7
shows the result of system identification for Freqmine benchmark. While the
application is running on only one of the four cores, the other cores consume
power in their idle state. This constant power usage would manifest itself
with slight shift at the bottom of each staircase period. If the model can fit
the general trend, this shift can easily be eliminated in control design step.

Furthermore, we take a look at general power actuations during black-
box system identification for a 4-core multi-processor. Figure 8 shows power

13

Total Power

0 1 | | | | | | | 1
50 100 150 200 250 300 350 400 450 500
Core 1 Time Core 2
10| -
10+
571 1 5t
0 R — Or - ' - X
100 200 300 400 500 100 200 300 400 500
Core 3 Core 4
10+ 10
5% 5
Ot 0

100 200 300 400 500 100 200 300 400 500

Figure 8: Power usage of a 4-core system while tuning Bodytrack benchmark. Top figure
represents Total power of the whole system and the rest are break down of each core power.

measurement while execution of Bodytrack benchmark on a homogeneous 4-
core system. Top part of Figure 8 shows the staircase model of total power of
the whole system that shows a good response to changes in system frequency.
This model is able to rapidly recover from spikes and slopes that are caused
by application stochastic behavior on each individual core. Four bottom
system identification models in Figure 8 show individual core response to
frequency changes. We can observe that each core depending on the running
a thread shows unique run-time behavior but at the end we are concerned
with aggregated total power model.

Next step is to analyze how well this model can fit the predicted model.
Figure 9 demonstrates the system identification of the 4-core system that

14

w
o

—_
o

— Predicted —— Measured

4-Core Power(W)
N
o

50 100_.. 150 200
Time

o

Figure 9: 4-core system identification for bodytrack benchmark

|

20 40 60 80 100 120
Time

N

o

o
e

o

—— Predicted — Measured

64-Core Power(W)
S
o

Figure 10: 64-core system identification for bodytrack benchmark

we have seen previously using Bodytrack benchmark. This model shows a
promising trend for design of a SISO controller for the 4-core CMP. Majority
of PARSEC benchmarks show similar results for system identification stage
using a 4-core system. We were curious to see if it is possible to identify
larger systems for an accurate control design. We extended the simulated
architecture to a 64-core network on chip system. Figure 10 shows system
identification for 64 thread of the same benchmark application (Bodytrack)
on the 64-core platform. It can be easily inferred from Figure 10 that this
model cannot be easily identified and the controller designed from this model
might lead to unresponsive system.

To demonstrate the trend of decrease in accuracy of system identification,
we picked one of the benchmarks (Swaptions) that showed well-fitted model

15

Benchmark 4-cores | 8-cores | 16-cores | 32-cores
Fit to estimation | 78.99% | 40.7% 9.529% 3.004%

Table 3: Fit to estimation data trend with increase in number of computing cores while
executing one thread of Swaptions Benchmark on each core.

for 4-core platform for further evaluation. We extended the simulation to &,
16 and 32 cores to see the fit to model trend. Table 3 shows the decrease in the
ability to fit the predicted model while increasing the number of processing
cores. The two important notes from system identification stage is to evaluate
the responsiveness of the controller to control inputs and grasp a better
understanding of stochastic and deterministic behavior of application.

To give better insight regarding the decrease in accuracy of system iden-
tification when moving form small number of cores (4-cores) to a platform
with large number of cores (64-cores) a cross-validation of residuals has been
done. Figure 11 demonstrates both cross-correlation and autocorrelation
evaluation for bodytrack benchmark. Residual is the stochastic component
(e.g., disturbance, noise, etc.) of the system output, which is not supposed
to be included in the model. When validating the model, the model output
is compared to noisy system outputs. Therefore we expect the residual to be
pure noise. To verify this, the residual is analyzed for correlation. If there
is no correlation between the residual and itself or any inputs, the model is
accurate enough. Confidence can be used to specify a range. In this work,
commonly used 99 percent boundaries have been set for the confidence. A
confidence level is the probability with which the true output will fall into
the range of confidence boundaries. After an estimated system dynamics is
produced using system identification techniques, it is cross-validated using
different data sets. Cross-correlation is a standard method of estimating the
degree to which two series are correlated. In our case, cross-correlation (bot-
tom part of Figure 11) is evaluated for power as the output of the system
based on the frequency as the input of the identified system. We can observe
that the 4-core system model can retain in the confidence boundaries while
the larger system model is outside these boundaries for all samples. The
cross-correlation is similar in nature to the convolution of two functions. In
an autocorrelation, which is the cross-correlation of a signal with itself, there
will always be a peak at a lag of zero. The top part of Figure 11 compares
auto-correlation of residuals for these two systems. Similar to the previous
part, only the 4-core system identification can stay in the boundaries. These

16

Autocorrelation of residuals for power (output)

1t . :

VAN
3 i, R T i, AR RE T
-1I5 -1I0 -;5 U 5 1ID 1I5 20

Cross correlation for freq (input) and power (output)

05T

- : N
0OF i i L T SR

-0.5T

-1F ‘ ==

-15 -10 -5 0 5 10 15 20
Samples
——B4-core system ——4-core system --=--99% boundaries

Figure 11: Auto/Cross-correlation of residuals for 4-core and 64-cor systems.

results show controllers for a system with large number of cores are often in-
feasible to design due to the lack of a sufficiently accurate system dynamics
model.

4.2. Performance Analysis

After the system identification stage, controller design is performed by
using the Matlab PI tuner [30]. Typically there are three ways that design-
ers choose to design a controller for a computer system. The first set of
methods take a statistical average of metrics gathered from system identi-
fication phase to represent the general case. The second scenario involves
designing a controller for a system that runs predefined workloads (i.e., ap-
plication specific) such as a smart watch or industrial plant machines. In
this case, designers have the opportunity to tune the controller based on the
application at hand for better accuracy. Table 4 shows these workload spe-
cific control parameters (i.e., gains) used to control the system running each

17

benchmark (i.e., optimal application specific parameters extracted from Mat-
lab). Finally, the third scenario uses a worst case configuration that performs
conservatively for all benchmarks and is more robust against disturbances,
however suffers from slow settling time. It should be mentioned that despite
all these methods and vast variety in off-the-shelf controllers, there are some
applications that cannot be controlled with a simple SISO controller and
that would either require more advanced controllers (e.g., non-linear, adap-
tive, self-tuning) or different/more configuration knobs. We describe these
scenarios in Subsection 4.2.4.

Workload Kp K; | Multithreaded | Kp K;
Barnes 114 229 Blackscholes 10.08 20.17
Ocean-Contiguous | 156 226 Bodytrack 12.50 25.10
FMM 114 229 Facesim 8.7 5.4
Radiosity 184 369 Ferret 23.2 46.4
Raytrace 244 247 | Fluidanimate | 20.17 40.35
Water-NSQ 139 228 Freqmine 68.1 136.01
Water-SP 175 250 Swaptions 39.1 40.2
Volrend 141 282 X264 137.1 47.85
Average 180 240 Average 38.86 45.18

Table 4: CPU core configuration for Nehalem-EP

4.2.1. Customized case

For many systems using control-theoretic power managers, we may have
design time knowledge regarding the workloads to be executed. This enables
control designers to customize the power manager based on these pre-defined
applications. System identification and controller design stages are performed
individually on each application. Table 4 shows these workload specific Kp
and K7 configurations. Figure 12 shows proper behavior of the Water_nsq
benchmark in tracking the 7 Watts power reference. Ability to track a specific
reference would be essential later on when DVFS manager wants to set a
power reference to optimize energy efficiency. Examples from multithreaded
applications are discussed in Section 4.2.3. We observe similar trends for all
other workloads except the two benchmarks discussed in Section 4.2.4.

4.2.2. Average and worst case
Many general-purpose systems do not have the flexibility to accommodate
customized controllers either due to variety of system workloads or because

18

Power (W)

N~ OO0 O

200 400 600 800
Time (epochs)

Figure 12: Example of well-tuned controller for Water-NS@Q benchmark following 7W
power reference

the controller cannot be easily reconfigured. In these situations, designers
choose a representative configuration that can meet their requirements. Here
two commonly reported control strategies use a statistical average case of
predicted applications [23] or use a worst case scenario that can respond
with slower speed but which provide larger margins of guarantees.

As an example for the average case, Figure 13 shows the difference be-
tween the customized controller and average case controller for the FMM
benchmark in tracking the 7 Watts power reference. Both cases can keep
the power close to the reference but the customized controller minimizes the
tracking error with minimal deviations from the reference, while the average
controller oscillates over the power reference. This is due to the fact that
fine-grain step of the average case controller is larger than what this work-
load requires. For the worst case, Figure 14 shows the comparison between
the customized case and worst case for the Raytrace workload. As expected,
the worst case scenario has slower settling time due to smaller steps (small-
est Kp and K;) but after reaching 7 Watts, it can reliably follow the power
reference.

4.2.8. CMP Controllers

Nowadays, most of computer systems including embedded systems utilize
Chip Multi-Processors (CMPs) or Heterogeneous Multi-Processors (HMPs).
The advantage of using multiple cores on a single die is that these multipro-
cessors become available commodity for parallel applications. In comparison
to majority of SPLASH-2 benchmarks evaluated in previous section which
are designed for high performance computers, PARSEC applications are op-
timized to take advantage of CMPs. Table 4 specifies the customized control

19

9 FT T T T T —
§ — Customized
=8r — Average]
2 N
Dcz 7r '«'vﬂ'v‘v‘fw W MMM vy""HWVvh‘-A'A'AVIVA'A'AAM
©
=
|_

5 C1 1 1 1 1 1 -

20 40 60 80 100 120

Time

Figure 13: FMM benchmark with average and customized case

751 — Customized |
. — Worst case

Total Power(W)
&

Time

Figure 14: Raytrace benchmark with average and customized case

parameters for some of these benchmarks.

To show some of the selected controllers designed for CMPs, we identify
all PARSEC benchmarks for a 4-core system using bus communication and
share memories. Insights from system identification phase were presented in
Section 4.1.2. Here, we select some of these applications for control design
using methods discussed in the beginning of Section4.2. Figurel5 shows
power reference tracking (20 Watts) for a customized controller for Swaptions
benchmark running on a 4-core system. As shown here the SISO controller
designed from a well-identified model has no trouble controlling the total
power of a 4-core system.

Figure 16 compares two controllers designed for Facesim benchmarks.
First controller is a custom designed controller for this benchmark which
shows rapid conversion to 20 Watts power reference with low overshoot. Sec-

20

.

Power (W
o

10f |

0 50 100 150
Time (epochs)

Figure 15: 4-core controller tracking 20 Watts for Swaptions benchmark.

40+ | — Customized |
= 30! —— Worst case
220 -
€ 10 ;
50 100 150

Time (epochs)

Figure 16: Comparison of customized and worst case controller for 4-core system tracking
20 Watts for Facesim benchmark.

ond controller is a worst case controller that follows the same trend but slower
and more sluggish. Also there is a bigger overshoot and steady-state error.

4.2.4. Corner cases

So far we evaluated both dynamic and static methods to design and deploy
a PI controller for power capping. Using lessons learned from these evalua-
tions, designers can choose the suitable method for their system. However, it
is important to note that the appropriateness and feasibility of these methods
depend on the system being controllable. The controllability property guar-
antees that the controller can always keep the plant within a set of boundaries
around the reference. In other words, if the controller is not provided with
proper means (actuators or configuration knobs), it would be unable to reach
the desired reference. Figures 17 and 18 show the system identification, and
controller deployment phases of the system running Ocean benchmark. Both

21

—_
EN

—_
N

— Predicted —Measured 7

-
o

Total Power(W)

N OO

50 100 150 200 250 300 350 400 450
Time

Figure 17: Ocean Non-Contiguous workload. System identification of uncontrollable work-
loads

(&)
T
L

W)

Total Power(
=)
T

[$)]
T

1 1 1 L Il 1 1 L
200 400 600 800 1000 1200 1400 1600
Time

Figure 18: Ocean Non-Contiguous workload. Performance analysis of uncontrollable work-
loads while trying to track 7 Watts reference

implementations of Ocean benchmark (contiguous and non-contiguous) show
similar behavior. These applications are not controllable using solely DVFS
actuation. In the following section, we analyze these benchmarks in more
details to elaborate of the reasons behind their abnormal behavior.

5. Discussion

In this section, we discuss the reliability and performance of SISO con-
trollers in power capping of different class of workloads based on the evalua-
tions done in the previous section. Performance analysis done on the deployed
controllers showed stability for majority of the workloads for single-core and
4-core CMPs. In addition, hand tuned controllers were able to meet the sec-
ond set of requirements which are maximum 30% overshoot and settling time
less than 150ms. In some cases, controllers using the statistical average were
not able to meet the overshoot requirements. The reason for more frequent
power overshoots in average case is that it does not have the fine grain tuning
that some of the workloads require. Although the worst case configuration

22

i e

0.5

A5

Controller accuracy improvement

barnas fimm radicsity raytrace water.nsg waler.sp volrand ocean.cont ooean.ncont
Benchmarks

Figure 19: Accuracy improvement from software controller to a faster hardware controller

was not as rapid as the customized controllers, overall it proved to be a
reliable controller. Therefore, for scenarios where the computer system is de-
signed to execute an application with similar computing characteristics, the
average case can be a valid candidate; and for systems sensitive to changes
in power levels that can tolerate some degree of performance overhead, worst
case controllers can be deployed.

In our experiments, we observed few benchmarks that exhibited abnormal
behavior in tracking power references with high standard deviation. Figure 18
shows the behavior of one of these benchmarks. Our first reasoning behind
this behavior was that slow response time of a software controller is longer
than the periods of time that these workloads change their application phases.
This can cause a late response (change in frequency) to a phase that is already
passed which can exacerbate the current power state. In order to check this
issue we moved our software SISO controller mechanism to the hardware
level with 10x faster sampling and DVFS epochs (from 2.5ms to around
0.25ms). Contrary to our expectations, the experiment showed that a faster
controller did not have much improvement on these cases. Although we were
able to capture power violations at an earlier stage, the responses of our
controllers were not able to mitigate this issue. Figure 19 shows controller
accuracy improvement when migrating from software controllers to hardware
controllers. For most of controllable benchmarks, faster hardware controller
shows small (less one percent) increase in accuracy but for the corner cases
this faster response causes ripple effect and reduction in accuracy.

23

Our next solution to this issue was to investigate these benchmarks in
more detail. We looked at a few measurable metrics and what stood out
was the average power consumption. The results in Table 5 shows the av-
erage power consumption of each benchmark in SPLASH-2 benchmark suite
while tracking 7-Watt power reference. As we can see, only the two irregular
benchmarks (Ocean-Contiguous and Ocean Non-contiguous) have the av-
erage power consumption higher than 7 Watts which results in many power
violations. Taking into account the inability to track the power reference and
the high average power indicated that there might be a barrier that prevents
the application behavior to rapidly follow changes in the CPU frequency. At
this stage, these two benchmarks were suspected to be memory-bound com-
pared to the rest of the workloads that are CPU-bound. In order to verify
this hypothesis, we measured the instruction per second (IPS) of all simi-
lar high performance workloads in our benchmark set and tailored the two
microbenchmarks that stress CPU and memory modules. The average IPS
gathered from each workload is reported in Table 5. We could clearly observe
that IPS for irregular workloads were far less than the other workloads in
the SPLASH2 benchmark suite. Memory-bound microbenchmarks exhibited
similar behavior with an average power higher than reference power and an
IPS less than one half of other benchmarks’ average IPS. This experiment
validated the theory that the abnormal behavior of the two Ocean bench-
marks is due to their high volume of memory accesses which prevents the
changes in CPU frequency to have a direct effect on power reference. In or-
der to enable controller to respond better to memory-bound applications, we
have increased the order of the controller three times. Our evaluations show,
compared to first order controllers, second, third and fourth order controllers
had [-2, 2| percent difference in controller performance which is neither suffi-
cient nor computationally effective. Such cases either require more advanced
controllers (e.g., MIMO adaptive, self-tuning) or different/more configura-
tion knobs such as memory bandwidth that can effect the system’s power
more efficiently.

6. Related work

There is a large body of literature on heuristic-based approaches for re-
source management [8, 9, 10, 11, 12]. There have been a variety of techniques
that are used for power and resource management in processors. Heuristics
such as [2, 4, 5] uses a rule-based method in contrast to threshold meth-

24

Workload Average power (Watts) IPS

Barnes 6.3289 2.21E409
Ocean-Contiguous 7.8306 1.07E4-09
Ocean Non-contiguous 7.5408 1.36E+09
FMM 6.9943 3.55E4-09
Radiosity 6.7472 2.82E409
Raytrace 6.4023 2.71E409
Water-NSQ 6.9931 3.14E4-09
Water-SP 6.9846 2.97E+09
Volrend 6.7491 3.30E4-09
Compute-bound ubench 6.7207 4.18E+09
Memory-bound ubench 7.1668 1.18E+409

Table 5: Comparison of average power and IPS

ods [6, 7]. Predictive methods [15, 16, 17] that typically benefit from nested
loops have been used to manage resources in computer systems. There are
shortcomings to ad-hoc and heuristic-based approaches in addressing some of
the important attributes of a controllable system. For example lack of guar-
antees, the need for exhaustive training and close to reality models. Further-
more, there have been control theory based methods [19, 20, 22, 23, 24, 25|
that provide formal and efficient means to address robustness and testability
for managing computer systems. The most successful of these concurrently
coordinate and control multiple goals and actuators in a non-conflicting man-
ner by adding an ad-hoc component to a controller or hierarchical loops. In
[38] the authors provide a guide for designing MIMO formal controllers for
tuning architectural parameters in processors to enhance coordination, and
demonstrate the coordinating management of multiple goals for unicore pro-
cessors. In addition, authors in [39] demonstrate design methodology of these
controllers for multicore platforms. In this work we analyze an ample set of
workloads in detail to point out benefits and shortcomings of SISO controllers
for power capping for both unicore and multicore processors.

7. Conclusion

In this paper, we evaluated the dependability of SISO control-theoretic
power managers and presented guidelines for system designer on how to prop-
erly model their system and verify the performance of the designed controller.

25

The growing significance of power and thermal issues in these system calls
for robust power capping schemes that provide guarantees on the system’s
efficiency and dependability. One of the viable solutions to this issue is the
use of control-theoretic methods with formal guarantees. We showed that
in the design phase of the existing power managers, system identification
and controller performance analysis phases are often neglected. In this work,
we took a closer look at issues that might arise from these two steps and
provided guidelines to designers on how to design and deploy more reliable
controllers. Our evaluations include power capping methods for both single-
core and multi-core processors. Moreover, an in-depth analysis has been
performed on multiple controller configurations using SPLASH2 and PAR-
SEC benchmark suites.

Acknowledgment

We acknowledge financial support by the Marie Curie Actions of the Euro-
pean Union’s H2020 Programme, as well as the National Science Foundation
under NSF grant CCF-1704859.

References

[1] Sina Shahosseini, Kasra Moazzemi, Amir M. Rahmani, Nikil Dutt. Depend-
ability Evaluation of SISO Control-Theoretic Power Managers for Processor
Architectures. In Proc. of NORCHIP, 2017.

[2] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Mar-
garet Martonosi. An Analysis of Efficient Multi-Core Global Power Manage-
ment Policies: Maximizing Performance for a Given Power Budget. In Proc.
of MICRO, 2006.

[3] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P.
Jouppi. McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In Proc. of MICRO, 2009.

[4] Ashutosh S. Dhodapkar and James E. Smith. 2002. Managing multi-
configuration hardware via dynamic working set analysis. In Proc. of ISCA,
2002.

[5] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. In Proc. of
MICRO, 2009.

26

[6] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch,
and Ricardo Bianchini. 2012. CoScale: Coordinating CPU and Memory System
DVFS in Server Systems. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-45).

[7] Hwisung Jung, Peng Rong, and Massoud Pedram. 2008. Stochastic modeling
of a thermally-managed multi-core system. In Proceedings of the 45th annual
Design Automation Conference (DAC ’08).

[8] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui
Wang, and Xiaoyun Zhu. 2008. No ”"power” struggles: coordinated multi-level
power management for the data center. SIGOPS Oper. Syst, 2008.

[9] Seungryul Choi and Donald Yeung. 2006. Learning-Based SMT Processor Re-
source Distribution via Hill-Climbing. SIGARCH Comput. Archit. News, 2006.

[10] Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan. 2010. A case for
coordinated resource management in heterogeneous multicore platforms. In

Proc. of ISCA, 2010.

[11] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011.
Pack & Cap: adaptive DVFS and thread packing under power caps. In Proc.
of MICRO, 2011.

[12] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. 2008. Power capping: a
prelude to power shifting. Cluster Computing 11, 2 (June 2008), 183-195.

[13] Hamid Nejatollahi and Mostafa E. Salehi. Voltage scaling and dark silicon
in symmetric multicore processors. The Journal of Supercomputing, Springer
Nature. 2015.

[14] Hamid Nejatollahi and Mostafa E. Salehi. Reliability-Aware Voltage Scaling
of Multicore Processors in Dark Silicon Era. Journal of Advances in Parallel
Computing. 2018.

[15] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated man-
agement of multiple interacting resources in chip multiprocessors: A machine
learning approach. In Proce. of MICRO, 2008.

[16] Christophe Dubach, Timothy M. Jones, and Edwin V. Bonilla. 2013. Dynamic
microarchitectural adaptation using machine learning. ACM Trans. Archit,
2013.

27

[17] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, and
Hadi Esmaeilzadeh. Towards statistical guarantees in controlling quality trade-
offs for approximate acceleration. In Proc. of ISCA, 2016.

[18] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. 2011. Dynamic knobs for responsive power-aware
computing. In Proc. of ASPLOS, 2011.

[19] A. M. Rahmani et al., ”Dynamic power management for many-core platforms
in the dark silicon era: A multi-objective control approach. In Proc. of ISLPED,
2011.

[20] Yefu Wang, Kai Ma, and Xiaorui Wang. 2009. Temperature-constrained power
control for chip multiprocessors with online model estimation. SIGARCH Com-
put. Archit. News, 2009.

[21] J. L. Hellerstein , Yixin Diao, Sujay Parekh, Dawn M. Tilbury. ,Feedback
Control of Computing Systems .John Wiley Sons, 2004

[22] A. Bartolini, M. Cacciari, A. Tilli and L. Benini, ”A distributed and self-
calibrating model-predictive controller for energy and thermal management of
high-performance multicores. In Proc. of DATE, 20009.

[23] Asit K. Mishra, Shekhar Srikantaiah, Mahmut Kandemir, and Chita R.
Das. 2010. CPM in CMPs: Coordinated Power Management in Chip-
Multiprocessors. In Proc. of SC, 2010.

[24] Q. Wu, P. Juang, M. Martonosi, L. S. Peh and D. W. Clark, ”Formal control
techniques for power-performance management. In Proc. of MICRO, 2005.

[25] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. 2004.
Formal online methods for voltage/frequency control in multiple clock domain
microprocessors. SIGARCH Comput. Archit, 2004.

[26] Trevor E. Carlson et al. Sniper: exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In Proc. of SC, 2011.

[27] L. Ljung, System Identification: Theory for the User. Prentice Hall PTR,
1999.

[28] L. Ljung, Black-box models from input-output measurements, in Proc. of
IMTC, 2001

28

[29] Rahmani, A.M. and Liljeberg, P. and Hemani, A. and Jantsch, A. and Ten-
hunen, H., The Dark Side of Silicon . Springer, Switzerland 1st Ed., 2016.

[30] MathWorks, “Designing PI Controllers with PID Tuner” Tech. Rep.,
2017.”https://www.mathworks.com/help/control/getstart /designing-pid-
controllers-with-the-pid-tuner-gui.html”

[31] MathWorks, “ System Identification Toolbox” Tech. Rep.,
2017.”https://www.mathworks.com/products/sysid.html”

[32] C. Bienia, S. Kumar and Kai Li, "PARSEC vs. SPLASH-2: A quantitative
comparison of two multithreaded benchmark suites on Chip-Multiprocessors,”

2008 IEEE International Symposium on Workload Characterization, Seattle,
WA, 2008, pp. 47-56.

[33] C. Bienia, S. Kumar, J. P. Singh and K. Li, ”The PARSEC benchmark suite:
Characterization and architectural implications,” 2008 International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), 2008

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, ”The SPLASH-2
programs: characterization and methodological considerations,” Proceedings
22nd Annual International Symposium on Computer Architecture, 1995

[35] Man-Lap Li, R. Sasanka, S. V. Adve, Yen-Kuang Chen and E. Debes, " The
ALPBench benchmark suite for complex multimedia applications,” IEEE In-
ternational. 2005 Proceedings of the IEEE Workload Characterization Sympo-
sium, 2005., 2005, pp. 34-45.

[36] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. 2007. Analysis of re-
dundancy and application balance in the SPEC CPU2006 benchmark suite.
SIGARCH Comput. Archit, 2007

[37] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik and A. Choudhary,
"MineBench: A Benchmark Suite for Data Mining Workloads,” 2006 IEEE
International Symposium on Workload Characterization, San Jose, CA, 2006.

[38] R. P. Pothukuchi, A. Ansari, P. Voulgaris and J. Torrellas, ” Using Multiple
Input, Multiple Output Formal Control to Maximize Resource Efficiency in
Architectures,” 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), Seoul, 2016, pp. 658-670

[39] T. R. Muck, B. Donyanavard, K. Moazzemi, A. M. Rahmani, A. Jantsch and
N. D. Dutt, ”Design Methodology for Responsive and Robust MIMO Control of

29

Heterogeneous Multicores,” in IEEE Transactions on Multi-Scale Computing
Systems.

30

	Introduction
	Background and Motivation
	Experimental Setup
	Simulation Framework
	Framework Overview
	Architecture Configuration

	Benchmark Categorization
	SPLASH2
	PARSEC
	Benchmark Comparison

	Evaluation
	System Identification
	Single-Core Models
	CMP Models

	Performance Analysis
	Customized case
	Average and worst case
	CMP Controllers
	Corner cases

	Discussion
	Related work
	Conclusion

