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ABSTRACT. In this paper, we study 1D autonomous fractional ODEs DJu =
f(u),0 < v < 1, where u : [0,00) — R is the unknown function and D7 is the
generalized Caputo derivative introduced by Li and Liu ( arXiv:1612.05103).
Based on the existence and uniqueness theorem and regularity results in previ-
ous work, we show the monotonicity of solutions to the autonomous fractional
ODEs and several versions of comparison principles. We also perform a de-
tailed discussion of the asymptotic behavior for f(u) = AuP. In particular,
based on an Osgood type blow-up criteria, we find relatively sharp bounds of
the blow-up time in the case A > 0,p > 1. These bounds indicate that as
the memory effect becomes stronger (y — 0), if the initial value is big, the
blow-up time tends to zero while if the initial value is small, the blow-up time
tends to infinity. In the case A < 0,p > 1, we show that the solution decays to
zero more slowly compared with the usual derivative. Lastly, we show several
comparison principles and Gronwall inequalities for discretized equations, and
perform some numerical simulations to confirm our analysis.

1. Introduction. The fractional calculus in continuous time has been used widely
in physics and engineering for memory effect, viscoelasticity, porous media etc [11,
8,13, 18, 7, 1, 23]. There are two types of fractional derivatives that are commonly
used: the Riemann-Liouville derivatives and the Caputo derivatives (See [13]).

The Riemann-Liouville derivatives are named after Bernhard Riemann and Joseph
Liouville. Liouville was the first to study fractional derivative rigorously (see, for
example, [20, 10] for a better survey). On the other hand, the Caputo’s definition
of fractional derivatives was first introduced in [4] to study the memory effect of
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energy dissipation for some anelastic materials, and soon became a useful modeling
tool in engineering and physical sciences to construct physical models for nonlocal
interactions in time (see [26]).

Compared with Riemann-Liouville derivatives, Caputo derivatives remove the
singularities at the origin and have many properties that are similar to the ordinary
derivative so that they are suitable for initial value problems [14]. However, the
classical y-th Caputo derivative of a function requires an integer order derivative
no less than 7, which seems to be artificial. In [1], Allen, Caffarelli and Vasseur
have introduced an alternative form of Caputo derivatives to avoid using higher
regularity of the function. In [14], another extension of Caputo derivatives was
proposed, by which the higher derivative of the function is not needed either and
can recover the definition in [1]. Moreover, this new definition allows us to transform
fractional ODEs into Volterra type integral equations, by deconvolution through an
underlying group property without the higher regularity assumption. This provides
a convenient framework for us to study the fractional ODEs with Caputo derivatives.

There is a huge amount of literature discussing fractional differential equations.
However, few of them discuss the behavior of the solutions to fractional ODEs
systematically. For reference, some results can be found in [8, 7] using the traditional
Caputo derivatives.

In this paper, we use the new definition of Caputo derivative in [14] (also see
Definition 2.2 below) to make a detailed investigation of the nonlinear fractional
ODE

DZUZf(U)a U(O)ZUO, (1)

for v € (0,1). Here f is locally Lipschitz whose domain contains ug, and D7)
represents the Caputo derivative of order . In the rest of this paper we will assume
ug > 0 without loss of generality (if ug < 0, we can do change of variables v = —u
and study DYv = f(v) where f(v) := —f(—v) = —f(u)). Studying the behavior of
the solution to this fractional ODE is important for the analysis of fractional partial
differential equations (fractional PDEs), as we usually need a priori estimates of
certain energies of the solution to a fractional PDE, which have form

DIE < AEP.

By the comparison principles in [14] or in Section 4, the energy norm may be
controlled by the solution of the fractional ODE (1). Hence, we will focus on the
particular cases f(u) = AuP in detail.

According to [14], the fractional ODE (1) is equivalent to a Volterra type integral
equation without assuming high regularity of the solution, which is the important
starting point for our study. It is well-known that the solutions of 1D autonomous
ODEs with usual first order derivative are monotone, since the solution curves
never cross zeros of f and f(u) has a definite sign. One of our main results is that
if f € C! and f’ is locally Lipschitz, the first order derivative of the solution to the
fractional ODE (1) does not change sign and therefore the solution is monotone (see
Theorem 3.3). This is based on Lemma 3.4, which is a slightly different version of
[24, Theorem 1]. Lemma 3.4 ensures the positivity of the solutions of the integral
equation that y = v’ or y = —u’ satisfies:

y(t) + /0 (t —s) " u(s)y(s)ds = at’™t, a >0,
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where v is continuous. The idea is to use the resolvent for the kernel At?~! to
transform this integral equation into another integral equation (see (11)) so that all
the functions involved are non-negative. The solution to the new integral equation
(11) is nonnegative, implying that the first derivative of the solution to (1) does not
change sign.

Another contribution of this paper is to discuss the special cases f(u) = AuP in
detail and to reveal several interesting roles of memory. In particular, for the cases
A > 0,p > 1, we find relatively sharp estimates of the blow-up time Tj. The lower
bound of T3 is important for the inequality DY E < AEP since it ensures that F is
defined and controlled by the solution of (1) up to this lower bound. Through these
bounds, we find that there exist ugs > wug; > 0 so that if ug < ugy, the blow-up
time T, — +00 as v — 0 (the memory becomes stronger) and if ug > w2, Tp — 0,
as v — 0 (See Theorem 5.2). For the cases A < 0,p > 1, we show that under the
memory, the solution decays to zero much more slowly compared with the usual
ODE (see Theorem 5.4).

By discretizing the differential equation (1) or the equivalent integral equation, we
obtain two classes of numerical schemes or discrete equations. Using some discrete
comparison principles, we show that if f is nonnegative, nondecreasing, then the
numerical solutions to the explicit schemes for the integral equation are absolutely
stable: u" < w(nk) where k is the time step (Proposition 8). In the case f is
nonnegative, nondecreasing and the solution to (1) is convex, we prove that the
numerical solutions to the explicit schemes for the differential equation are also
absolutely stable: u?, < wu(nk) and the numerical solutions to the implicit schemes
for the differential equation are bounded below as u}}, > wu(nk) (Theorem 6.5).
Hence, the explicit schemes may be used to prove the stability and convergence
of some approximation schemes for fractional PDEs and thus the convergence and
existence of solutions. The implicit schemes may be used to prove positivity of
solutions and to estimate the blow-up time.

The rest of the paper is organized as follows: In Section 2, we introduce the basic
definitions, notations and results that are mainly established in [14]. In Section 3, we
study the basic properties of the solutions. In particular, (1) given f(u) is smooth,
the solutions are smooth in (0,00) but only y-Hélder continuous at ¢t = 0; (2) the
solutions are monotone on the interval of existence; (3) an Osgood type finite time
blow-up criteria holds provided that f(u) is positive nondecreasing. In Section 4,
we prove several comparison principles. In Section 5, we study the special cases
f(u) = AuP. More precisely, for A > 0,p > 1, we provide relatively sharp bounds
for the blow-up time, while for A < 0,p > 1, we show the slow decaying as t — oc.
These discussions reveal the roles of memory introduced by fractional derivatives.
Lastly, in Section 6, we discuss the discrete equations. To be more specific, we
show several discrete comparison principles and use them to study some explicit
and implicit schemes. Some numerical simulations are then performed using these
schemes to verify our analysis for the continuous cases.

2. Preliminaries. In this section we collect some notations and definitions we will
use in this paper.

2.1. Fractional derivatives. First, let us make a brief introduction of the defini-
tion of fractional derivatives. Before we state the definition, we need the following
clarification of notation:
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Definition 2.1. For a locally integrable function u € Lj,(0,T), if there exists
ug € R such that

1
lim = [ |u(s)—uplds =0, (2)

we call ug the right limit of u at ¢ = 0, denoted as u(0+) := ug.

As in [14], we use the following distributions {gg} as the convolution kernels for
B> -1

o(t —
%B))tﬁ L 8>0,

g5 =4 0(t), B =0,
ﬁp (6)t?), B e (-1,0).

Here 6(t) is the standard Heaviside step function, I'(vy) is the gamma function, and
D means the distributional derivative.

g can also be defined for § < —1 (see [14]) so that these distributions form a
convolution group {gs : 8 € R}, and consequently we have

981 * 9B2 = 9B1+B2> (3)

where the convolution between distributions with special non-compact supports is
defined through the partition of unit of R.
Now we are able to give the definition of the fractional derivatives.

Definition 2.2. Let 0 < v < 1. Consider u € L},.(0,T) that has a right limit

u(0+) at ¢ = 0 in the sense of Definition 2.1. The «-th order Caputo derivative of
u is a distribution in 9’(—o00,T) with support in [0,T), given by

DYu=g_, + (9(t)u> — u(0+) g1y = gr * ((u . u(O—I—))G(t)).

Remark 1. In the case T' = oo, the convolution g_- *u is defined through partition
of unit of R. In the case of T' < 0o, g_~ * u should be understood as the restriction
of the convolution onto 2’'(—o0,T). One can refer to [14] for the technical details.

Remark 2. As discussed in [14], if there is a version of u (i.e. modifying u on a
Lebesgue measure zero set) that is absolutely continuous on (0,T"), which is denoted
as u again, then the Caputo derivative is reduced to

N S AT O
D= i J, T W

which is the traditional definition of Caputo derivative. Whenever u is v+ J-Holder
continuous (Vé > 0), we have

Yoy 1 u(t) — u(0) bu(t) — u(s) <
o= gy (0 ) ) ®)

Equation (5) is the definition for the Caputo derivative used in [1]. Intuitively, (5)
is obtained by integration by parts from (4).

Definition 2.2 is more useful than the traditional definition (Equation (4)) (see
for instance [11, 8, 13, 18, 7, 23]) theoretically, since it asks for little regularity
and reveals the underlying group structure. With the assumption that « is locally
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integrable and has a right limit at ¢ = 0, Definition 2.2 and the group property (3)
allow one to convert (1) into the integral form

u(t) = u(0+) + gy + (608 F(u(1)))
1! (6)
= u(0+) + ) /0 (t— )" f(u(s))ds, Vt € (0,T).

Remark 3. Obtaining Equation (6) from the traditional Caputo derivative (4)
needs us to assume in advance that the unknown function u has too much regu-
larity (for example, for the definition to make sense, we have to assume that u’(s)
exists). Using the new definition of Caputo derivative in [14], the integral form
(6) is equivalent to Equation (1) with the assumption that u is locally integrable
and has a right limit at ¢ = 0 in the sense of Definition 2.1 only. One can check
[8, 13, 7, 14] for more details.

Equation (6) is called Volterra integral equation, which has been studied exten-
sively. Analysis of Equation (1) (or equivalently (6)) can help us understand the
time-delay properties of Caputo derivatives.

2.2. Existence and uniqueness of solutions to (1). In this paper, we will use
the following definition of solutions:

Definition 2.3. u(:) € L'(0,T) that has a right limit at ¢+ = 0 in the sense of
Definition 2.1 is called a weak solution of (1) if the equation is satisfied in the
distribution sense and u(0+) = up. A weak solution u is called a strong solution
if DYu € L*(0,7T) and (1) is satisfied almost everywhere with respect to Lebesgue
measure.

By the equivalence of (1) and (6) established in [14], all weak solutions of (1) sat-
isfy the integral equation (6) almost everywhere with respect to Lebesgue measure.
By modifying the result in [14, Theorem 6], we have the following proposition:

Proposition 1. If f(u) is locally Lipschitz continuous on an interval (a, 8) C R,
then Yug € (a, ), there is a unique continuous strong solution with u(0) = wqg.
Either this solution exists globally on [0,00) or there exists T, > 0 such that either
liminf u(t) = «
t—=T,
or
limsup u(t) = .

t—T,

The claim is essentially the same as [14, Theorem 6], so we omit the proof.

Definition 2.4. If u(-) exists globally, we set T, = co (See Proposition 1). In the
case that max(|al, |f]|) = oo and limsupt_m: |u(t)] = oo, we call Ty, the blow-up
time.

3. Some basic properties of solutions to (1).

3.1. Regularity and monotonicity of solutions. In this subsection, we present
and prove the regularity and monotonicity results of solutions to (1). Lemma 3.1
is the result proved in [19] for integral equations. This lemma gives the regularity
of the solutions to (1) and lays the foundation for our later discussion. Theorem
3.3 is the main result in this subsection, which states that the solutions of the
autonomous equations are generally monotone. The proof of this theorem relies
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on Lemma 3.4, which ensures the positivity of the solutions to a certain class of
integral equations. Lemma 3.4 is a slightly different version of [24, Theorem 1]: the
author of [24] assumed y and h to be continuous at ¢ = 0 but we cannot assume
this for our purpose. However, the idea of the proof is the same.

We present the regularity lemma ([19, Theorem 1]):

Lemma 3.1. Suppose f € C(a, B) for some interval (o, 3) and f' is locally Lip-
schitz on (a,B). Let u be the unique solution to (1) with ug € («,8). Then,
u € C°0,T,) N CH0,Ty). Moreover, y = u' satisfies the integral equation

f(uO) -1 1 ! —1 ¢
y(t) = U 4 —— | ST (u(t —s))y(t — s)ds, Yt € (0,T). (7))
I'(v) I'(v) Jo
Ast = 0%, w(t) = O(1). If fluo) # 0, w/(t) ~ 44871 as - 0%,
For the idea of proof, one may fix T" € (0,7}) and show that (7) has a unique
continuous solution on (0,7"). Then using the equation for (u(t+ h) — u(t))/h, one
can verify that this finite difference converges to the solution of (7). One can refer

to [19] for a detailed discussion. For the last claim, as long as we have v/ = O(t7~1),
we can show that the integral is then dominated by the first term as ¢t — 0F.

Remark 4. Using the group property gny * gy = g(nt1)y (Equation (3)), we may
find that the solution to (1) is a power series of t7 if f is real analytic. This
observation tells us that ¢” power is intrinsic to the Caputo derivative D} and the
solution is only ~-Holder continuous at ¢ = 0, but smooth on (0,7}).

In the following theorem, we will show the sign of f(u(t)) does not change:

Theorem 3.2. Let f be locally Lipschitz continuous. Suppose f(ug) # 0. Then
Fu(®))f(up) >0, V¢ € (0,Ty), and the equal sign can only be achieved on a nowhere
dense set. Consequently, letting u. be a critical point for (1) in the sense that
flue) =0 and f changes signs near u., then all solution curves for (1) do not cross
U= Ue.

Proof. Without loss of generality, we assume f(ug) > 0. Define
= inf{t >0:30>0, s.t. f(u(s)) <0, Vs € [t,t+(5]}.

First of all, we have that ¢* > 0 since f(ug) > 0. To prove the theorem, we only
need to show t* = oco.

We argue by contradiction. Suppose t* < oo, then we can find a § > 0, s.t.
f(u(t)) <0 for ¥Vt € [t*,t* + 4.

We claim that u(t) < u(t*) for V¢ € (¢*,t* +9).

ult) — ult) = < ( / (t — )7 f(u(s))ds — / (t - 8)”‘1f(U(S))d8>

_ " — ) (2 — )Y f(u(s))ds t — 8)" L f(u(s))ds
—w</0 (6= = (=97 fluis + [ (1= f(())d>

Notice that f(u(t)) > 0 for t € (0,t*), and f(u(t)) is strictly positive when ¢ is
close to 0. In addition, f(u(t)) < 0 for ¢t € [t*,t* + d]. Therefore, the right hand
side is strictly negative. Hence u(t) < u(t*) and the claim is proved.

By the continuity of u, we conclude that there exist t1,t2, 0 < t; < ty < t*, such
that for any s € [t1,t2], there exists a t5 € [t*,t* + d], u(s) = u(ts). Then for any
s € [t1,ta], f(u(s)) = f(u(ts)) <0, which contradicts with the definition of ¢*. O
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For ordinary derivative, as long as we have shown that f(u(¢)) has a definite
sign, we have that the solution is monotone. For fractional derivatives, this is not
obvious, however we can also show the monotonicity provided f is close to C2. More
precisely, we have:

Theorem 3.3. Suppose f € C'(a,B) for some interval (a, 3) and f' is locally
Lipschitz on (o, 8). Then, the solution u to (1) with u(0) = ug € («, B) is monotone
on the interval of existence (0,Ty), where Ty is given by Proposition 1. If f(ug) # 0,
the monotonicity is strict.

Before proving this theorem, let us prove a useful lemma that ensures the positiv-
ity of the solution to an integral equation, which is a slightly different version of [24,
Theorem 1] (for more discussions on positivity of solutions to Volterra equations,
see [5, 24]) :

Lemma 3.4. Let T > 0. Assume h € L[0,T], h > 0 a.e., satisfying
h(t) — /Ot ra(t — s)h(s)ds > 0, a.e.¥A > 0.
Here 7y is the resolvent for kernel XtV™1 satisfying
ra(E) + A /0 (= 8y (s)ds = MO, (8)

Suppose v € C°[0,T), then the integral equation

u(t) + / (t — sy Lu(s)y(s)ds = h(t) (9)

has a unique solution y(t) € L[0,T]. Further, y(t) > 0,a.e.. In particular, if
h(t) = at?=L for a >0, then y > 0 a.e..

Proof. It can be computed explicitly that

(D) = =5 By (CATG)),

where

526 = 2 T

is the Mittag-Leffler function [17, 12]. E,(—=AT'(y)tY) is completely monotone that
goes from 1 to 0 on (0, 00) [17]. For the concept of completely monotone, see [25]. As
aresult, ry € L1(0,7)NCY(0,T) and ry > 0. Then, by the fact that the convolution
of two locally integrable functions is again locally integrable, all the convolutions
are well-defined. (Actually, by an abstract argument, it has also been shown in [5,
Lemma 2.1] that r) is completely monotone and thus non-negative.)

The existence and uniqueness of (9) are shown in [19, Lemma 1]. We now prove
y >0, a.e..

As v € C°)0,T], there exists M > 0 such that |v] < M on [0,T]. Convolving
Equation (9) with ry, we have

v(s)

/Ot rA(t — s)y(s)ds + /Ot /Ots At — s T)Vier(T)dTTy(s)ds
= /Ot rA(t — s)h(s)ds. (10)
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Taking the difference between (9) and (10),
t t v t
y(t) — / ra(t — s)y(s)ds +/ ra(t — s)xy(s)ds =h(t) — / ra(t — s)h(s)ds
0 0 0

where we used the fact A(t — s)771 — A fg_s(t —s—7)"tr\(7)dT = rA(t — s) from

().

As a result, y also solves the integral equation

y(t) = (h(t) - /Ot ra(t — s)h(s)ds> +/Ot ra(t — s) <1 - ”(;’)) y(s)ds.  (11)

h(t) — fot ra(t — s)h(s)ds > 0. Picking A > M, 1 — % > 0 and then y > 0 a.e. on
[0,T) follows from [19, Lemma 1]. Now from the assumption of this lemma, we have
h(t) — fot ra(t — s)h(s)ds > 0, in addition we also have ry >0 and 1 — % >0. As a
result, y > 0 a.e. from (11).

Lastly, if h(t) = at?™1, then

h(t) — /O s (t — $)h(s)ds = ) > 0.

The last claim is proved. O

Remark 5. In the proof of Theorem 1 of [24], the author assumed h to be contin-
uous and the solution to be continuous at ¢t = 0. In Lemma 3.4, we do not assume
y to be continuous, which is crucial in the case that h(t) = at? 1.

Now, we are able to prove Theorem 3.3:

Proof of Theorem 3.3. Clearly, if f(ug) = 0, then u = wug is the solution by the
uniqueness. This is trivially monotone.

Now, we assume f(ug) > 0. By Lemma 3.1, u € C*(0,Ty) N C°[0,T;). Now, we
fix T € (0,Tp). The derivative y = v’ satisfies the equation

f(Uo)t7_1 + L /t(t —8)7 ' (u(s))y(s)ds, t € (0,T)
I'(7) L'(y) Jo ’ s
Since f’(u(t)) is continuous on [0,7] and f(ug) > 0, applying Lemma 3.4, we find
y is positive on (0,7). Since T is arbitrary, y > 0 on (0,73). As a result, u is
increasing.

If f(up) < 0, we simply consider the equation for y = —u/. The argument is
similar. O

y(t) =

For usual ODEs, the solution curves do not intersect. For fractional ODEs, we
can conclude directly from the integral equation (6) that

Proposition 2. If f(u) is locally Lipschitz continuous, non-decreasing, then the
solution curves of (1) do not intersect with each other.

Remark 6. In the case that f(u) is non-decreasing only on some interval, then as
long as one can show that the solutions stay in this interval, then the curves with
initial value in this interval does not intersect. For general f, it is unclear whether
or not the solution curves intersect. The memory is playing a tricky role.
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3.2. Blow-up criterion. Now we present some results regarding the blow-up be-
havior. We first have the following observation

Lemma 3.5. Suppose f(u) is locally Lipschitz, non-decreasing on (0,00), ug > 0
and f(ug) > 0. Then, the solution to Equation (1) is non-decreasing on (0,Ty) and
limtﬁTb_ u(t) = +oo where Ty, € (0,00] is given by Proposition 1.

Proof. First of all, let us show that the solution u is non-decreasing on (0,73). Note
that the f in this lemma is less regular than the function in Theorem 3.3, hence we
cannot use Theorem 3.3 directly. To show the monotonicity of u, let us consider
the following sequence of functions {u"}52 ;:

u’ =g, DXu" = f(u"1), u"(0) = up, n > 1.

From the integral form of the fractional derivative (6), it is clear that u™ is contin-
uous on [0,00). Since f(u®) > 0, we have

1y 1 y-1 _
WL (1) = o + W/o (t = s)—LF(u¥)ds > ug = u(t)

for ¢t € [0,00). Consequently, f(u'(t)) > f(u°(¢)) and hence

2(t) =u 1 t —$)" " f(ut(s))ds
(0 =0+ 5 [ =7 )

1 ! ~y—1 0

> ug + ) /0 (t—s)"""f(u'(s))ds

= ul(t).
By induction, u™(t) > u™~1(¢) for all n > 1.

Next, we claim that u(t) > u® for t € (0,7,). For this purpose, we define

t* = sup{t € (0,Tp) : f(u(t)) > 0, V¢t € (0,)}. We show that t* = T,. First of
all, according to the continuity of u(t) and f(u), and the fact f(ug) > 0, we have
t* > 0. If t* < Ty, then f(u(t*)) = 0 by the continuity of f and u. In addition, by
the definition of t*:

u(t*) = u® + ﬁ/o (t* — s)Y L fu(s))ds > u°.

Since f is non-decreasing, we have f(u(t*)) > f(u") > 0, which is a contradiction.
Using u(t) > u®, we find

I vl
u(t) = uo + W/O (t—3)"""f(u(s))ds

RN a0 ds
> w0+ s [ =7
= u' (1)
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for t € [0,T3). Again by induction, u(t) > u?(t) and u(t) > u?(t), etc. Moreover,
since f is non-decreasing and f(u™) is positive, we find that for any 0 < ¢; < tg < co:

1 _ 1 = y—1
u (ta) = uo + W/o (ta — s) f(uo)ds

L " — s y—1 uO s
> ug + () /tztl(tz )7 f(u”)d
= i " — )L dr
= O+F(fy)/0 (t1—7)" f(u”)d
= ul(tl).

The second equality here is achieved by a change of variable 7 = s— (to —t1). Hence,

u! is non-decreasing on [0, c0). Similarly,

2 —u L * — )" f(ul(s))ds
W2 (ty) = o+m)/0 (ts — 5) L f(ul(s5))d

1 2 y—1 1
o / (2 — 5) 1 f(ul (3))ds

2—t1

>U0+

1 ” — )" f(ul (s — (ty — S
>t gy [ = e = (- )
=u2(t1).

u? is non-decreasing on [0,00). By induction, u™ is non-decreasing. As a conse-

quence, the sequence {u™(t)} converges to a non-decreasing function @(t) for any
t € [0,Tp). By monotone convergence theorem and taking the limit both sides of

"(t) = u, 1 t — ) (u N (s))ds
W) = w0t gy [ = s ),

@ satisfies (6). Thus by the uniqueness of solution (Proposition 1) it must be wu.
Hence, u is non-decreasing.

If T, < oo, according to the definition of 7, and the monotonicity, we have
lim, _, . u(t) = co. If T, = 0o, we find

f(uo)
I'(v)

t
/ (t—s)"tds — oo.
0
O

I y1
u(t) = up + W/0 (t — 5L (u(s))ds > uo +

The next result, which is an Osgood type criterion is essentially from [3] for the
Volterra type integral equations. Here, we reinterpret it for our fractional ODE (1),
and using similar ideas we present an improved proof, which enables us to improve
the bounds of blow-up time in Section 5:

Proposition 3. Suppose f(u) is locally Lipschitz, non-decreasing on (0,00), ug > 0
and f(ug) > 0. Then, T, < co if and only if there exists U > 0

/UOO (f&))m %“ < . (12)

Proof. Consider the equivalent Volterra type equation (6). By Lemma 3.5, u is

increasing and u(t) — oo as t = T, . Pick r > max(1, u(l)/’y). There exists ¢, < Tj
so that u(t,) =" forn=1,2,....
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I ye1
ut) = w0+ 5 / (tn — 8 f(u(s))ds

flulta)) [
Z F(’Y)/t‘nl(tn S) d
1

- mf(u(tnfl))(tn —tn1)”.

As a result, there exist constants C'(y) > 0 and Cy(,7) > 0 such that

" 1/~
tp —tn1 < C(7) (‘f@((;:—)l)))

T2 ,r,n—l _ ,rn—2

=0 Frm=Dm)1/y

rn—l 1
< Ci(v,7) /Mi2 WdT
On the other hand,

=u 1 " —8)7 f(u(s))ds
) = w0+ gy [t =97 u(s))a

tn_1 tn

<ot gy [ Gu = s+ s [ 7 o))
I'(1+7)
As a result, there exist two constants Cy(y) > 0 and Cy(v,7) > 0 such that
r—DYVrpntl g 1

T e 2 G0 [ gy
Hence, T, < oo if and only if [~
that

< ultn_1) + (tn — tn1)”.

70n+1

tn - tnfl 2 01(7)

Wdr < 00, or there exists some U > 0 such

[ () e

4. Comparison principles. The following comparison principle ([14, Theorem
7]) is useful when we study the behavior of (1) and derive certain Gronwall type
inequalities:

O

Proposition 4 ([14]). Suppose f(u) is locally Lipschitz, non-decreasing on some
interval (o, B). Suppose vy : [0,T) — (a, B) is continuous. If vi satisfies
ngl < f(v1)7 on [OaT)7

where this inequality means DYvy — f(v1) s a nonpositive distribution (see [14, Def.
6]). Let va be the unique solution to the equation

Dlvg = f(v2), v2(0) € (v, B),

on [0,Tp) provided by Proposition 1. If v2(0) > v1(0), then on [0,min(T,Ty)),
(%} (t) S Ug(t).
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Correspondingly, if vi satisfies
D)vy > f(v1), on [0,T),

where the inequality means DYvy — f(v1) is a nonnegative distribution and vq is the
solution to

Dlvy = f(v2), v2(0) € (o, B).
If v2(0) < v1(0), then v1(t) > va(t) on [0, min(T,T3)).

Using the idea of the proof for [14, Theorem 7], we are able to show some other
versions of comparison principles. For example, an integral version is as follows

Proposition 5. Suppose f(-) is locally Lipschitz, non-decreasing on (o, ). If a
continuous function v : [0,T) — (o, B) satisfies the following inequality

1 ¢ Y1
o(t) Suo—&—m/o (t = )1 f(v(s))ds, ¢ € [0,T),

where u is the solution of (1) with initial value ug € (o, B) on [0,T}), then we have
v <u on (0,min(T,Tp)).
Similarly, if

o) 2 w0+ g5 [ (=97 F0(s)ds, 1€ 0.7,

then we have v > w on (0, min(T, Ty)).

Note that the integral version is not a pure repetition of Proposition 4 since we
do not necessarily have DYv < f(v) (DYv > f(v)) for all t € (0,T). Another version
of comparison principle is a corollary of Proposition 4:

Corollary 1. Suppose both f1(u) and f2(u) are locally Lipschitz on (a, B), satisfying
fi(uw) > fa(u) for any u € (o, B). Assume that one of them is non-decreasing. Let
uyp and ug be the solutions of DYu = fi(u) and DYu = fa(u) on the intervals
(0,T}) and (0,T) with initial values u1(0) and uz(0) respectively. If in addition
a < uz(0) <wuq(0) < B, then

uy > ug,Vt € (0, min(T}, T2)).
Proof. First, assume that fs is non-decreasing. Then, we have
Dlui = fi(u1) > fo(ur).
Applying Proposition 4 for DYu; > fo(uy) yields the claim.
If for otherwise f; is non-decreasing, we have
Dlug = fa(uz) < fi(uz).
Applying Proposition 4 for DYus < f1(ug) yields the claim. O

5. Blowup and long time behavior for a class of fractional ODEs. In this
section, we will focus on the cases f(u) = AuP and (a, 8) = (0, 00) for simplicity.
D)u = AuP, u(0) = up > 0. (13)
This type of equations are general enough. For example, if p > 0 and there exist
Cy > 0, Cy > 0 such that CjuP < f(u) < CouP, then the solution is under control
according to Corollary 1. We will discuss in different cases to show that (13) shares

the regularity properties of normal time derivative ODE. Moreover, one can also
prove some “time-delay properties” of (13).
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5.1. Finite time blowup. As an application of Proposition 3, we have the follow-
ing theorem:

Theorem 5.1. Let p > 0, A > 0,up > 0, and u(t) be the unique solution to
fractional ODE (13). Then, we have the following claims: (1). u(t) is an increasing
function and lim, . u(t) = oco. (2). All the solution curves with ug > 0 do not
intersect with each other. (3). If 0 <p <1, T, = 00, i.e. the solution exists globally.
(4). If p> 1, u(t) blows up in finite time (i.e. T, < oo and lithTb_ u(t) = 00).

Proof. By Lemma 3.5, u(-) is an increasing function and limt_>T; u(t) = co. Since
u > ug > 0, and AuP is increasing in (0, 00), by Proposition 2 and Remark 6, the
solution curves wtih ug > 0 do not intersect.

On [ug, ), f(u) = Au? is locally Lipschitz continuous. As a corollary of Propo-
sition 3, when 0 < p < 1, the solution exists globally, i.e T, = co. And when p > 1,
the solution blows up in finite time. O

5.2. The bounds of blow-up time. In this subsection, our main goal is to find
suitable bounds of the blow-up time and to understand the effects of the memory
introduced by the Caputo derivatives. Clearly, one possible lower bound is the
radius of convergence of the power series u = >~ a,t"7, however the asymptotic
behavior of a, is hard to find. In [21], the author provided some bounds for the
blow-up time of the integral equation (6). In this paper, we have the following
improved result:

Proposition 6. Suppose v € (0,1), p > 1, A > 0, and uy > 0. Let T, be the
blow-up time of the solution to (13). Then, we have the following inequality

T, <T, <1y (14)

where

1/~
I'(1 T 1)
T, = <( +_Y)> sup 7(7" )
U

Aub r>1 r(rPml = 1)

I'l+7) 1/~ _ 7P 1 — pma=p\ 1
Ty = T%)H r>11,¥lnf€Z+ r(m+1)(p—1) _ pm(p—1) " < p—1 > |

Proof. Let r > 1. We now choose t,, such that

u(tn) = upr™.

It is then clear that 0 = ty < t; < t5.... For convenience, we denote
1 1
k(t) = 7 K(t) = =———17.
I'(v) (1 +7)

The following relation

um»:w+4”ﬂuw—@ﬂww@+/"kw—$ﬂwmm

tn—1

sW+AW%mH=@ﬂmwm+Kmfm4ﬁmm»

yields that
ugr™ (1 —r~7)

f(uorm)

V

K(tn - tn—l) =
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Hence

1/ -1/
by —tp1 > (F(lﬂ)) a—r)'" (15)

rn(p—l)

As a result,

1/~
= ra T 1)
E—Z%ﬁmlz<(+”> (7~ 1)
n=1

Augfl r(rr=t —1)

To prove the upper bound, we fix m > 1, and then find

u(t) > ug +/0 ﬁ(tm —8)7 L f(u(s))ds :=v(t), t € (0,t,). (16)
It is clear that v(t,,) = u(t;,). As a result,
V() = g5t =77 HW(0) = o5 =077 1 010)
and
W g 1
L 7wz et

implying

o< <M> " (1— ,,mv(lfp))l/v. (17)

"=\ A -

For n > m + 1, we find
tnq )
u(t,) > u —|—/ ——(tn — 8)"" " f(u(t,_1))ds,
(tn) = uo tHF(V)( )7 f (u(tn-1))

and thus
1

m(tn —tn—1)" f(u(tn—1)) < uor™ —up < upr™”. (18)

Combining (17) and (18), we finally have the upper bound,

T, = Z (tn - tnfl) +tm
n=m-+1
1/
< T'(147) ! rP .
=\ a4 PO — D)

ra+y)” i T
- Aug_l p(m+1)(p—1) _ pm(p—1) T ( p—1 > ’

In the proof of the upper bound, the estimate we did for t¢,, essentially follows
the method in [21]. By optimizing the constants we get in the Proposition 6, we
have

O
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Theorem 5.2. Let v € (0,1), p > 1, A> 0 and uy > 0. The following bounds for
the blow-up time T, of Equation (13) hold,

(m”)>/ <Ty< (m”’>/ (19)
Aub™"G(p) Aug H(p,7)
where

G(p) = min (2”, (p_pf)pl) , H(p,v) = max (p—l,?fpp%l) . (20)

Consequently, with A > 0,p > 1 fized, there exist ugs > ugy > 0 such that
whenever ug < uo1, limy_,o+ Ty = 00, while ug > ugz implies lim,_,o+ Ty = 0.

Proof. For the lower bound, picking r = 2'/7 > 1, we find

(r7 — 1)1/"/ 11/~ 1
> > .
?;11) rp—p T 9p/y —9l/y — 9p/v

Similarly, picking r = (p/(p — 1))*/7 yields

Y 1\1/v _ 1yp—1\ /Y
qp =DV ((p D ) .
r>1 rP—r pP

For the upper bound, we fix m > p%l, and let r — oo:

rP 1 — pmy(1=p) R 1 1/
r(m+1)(p—1) _ pm(p—1) + p—1 - Ifl .

If instead we choose m = 1 and 7 = 2/(P=1) > 1, we have

e 1o\ e 1\
= —2p—1 —
G- — -1 T ( P > 5271+ 3 ( P ) :

p 1/~
Consider Q(p) := 2771 ( p—1 ) . By elementary calculus, we have

27 -1

Q'(p) = Q(p) (log Q(p))" = Q(p) ! E %(p —1—~log2).

(p—1
Hence,

~velog 2
27 —1

For the second inequality, note that v — 27 + 1 is concave on (0,1) and equals zero
at v=0,1,80v>2Y—1 for v € (0,1). We find

1/~
1o 1(2-1 3, e .
T, < =2p—1 — < —92p—-1 2p—1
b=3 +2(p—1> S

1/
Q(p)ZQ(’ylog2—|—1):2< ) ’Y22(elog2)1/722.

and the upper bound follows.
As long as we have these two bounds, it is clear that we can pick

1 _» p-1 1. 1 \Ve-D
ugr = A7 7T max (2 Pt pp/(pl)> , Upz = A7 7=T min (1, (zi) .

O
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Remark 7. From Theorem 5.2, one can clearly see how the memory plays the role.
The memory is getting stronger as v goes closer to 0. When wug is very small, the
strong memory defers the blowup. If ug is large, the strong memory accelerates the
blowup. For the critical value of ug, we believe it is determined by the limiting case
v=0:

Dlu=u—uy = AuP.
)1/ (r—1)

p—1 1
If ug > > (*

oA , this algebraic equation has no solution and it means the

1/(p—1)
blow-up time is zero. If ug < %1 (;;171) , there is a constant solution for ¢ > 0

which means the blow-up time is infinity.
Remark 8. The estimates (p_;# and (p%l)l/ 7 for the blow-up time can also
be obtained by the results in [22] for the Volterra integral equations, but we have

better constants here. One may observe the following two facts:

e p > 2 if and only if (p_;# > 5. Hence for p € (1,2), G(p) = 27 in (20)

while for p € (2,00), G(p) = #. The latter gives asymptotic behavior
for large p.

e For the upper bound, if p < 2, as « is small enough, 275 T > p—1 and
H(p,v) = 2757 in (20) while for large p, H(p,7) = p — 1 and it gives the
asymptotic bound for large p.

Remark 9. One may wonder the asymptotic behavior, or so-called growth rate
of the solution near the blow-up time. There are a lot of references about this
topic. Ome can check, for instance [21, 22]. To find the correct power of the
blow-up profile, one can plug ﬁ into (13) and use the heuristic calculation

DZ((T_lt)a) ~ (T_tl)aﬂ, which means a +v = pa, or a = -23. In fact, from (3.2)
in [22], the solution to (13) satisfies

(2L p—1 e
u(t) — ug ~ z‘lF((p;le))l (T, =)' =Ty, ast =Ty . (21)

One can find the proof in the appendix (Section 7). In addition, as in [21, 22], one
can expect explicit asymptotic behavior for more general f(u).

5.3. Other cases. In this subsection, we discuss other choices of the parameters
A and p in (13).
First of all, we investigate the cases A > 0 and p < 0.

Theorem 5.3. Let A > 0,p < 0 and ug > 0, and u(t) be the solution to (13).
Then, u ezists globally on (0,00) and is increasing. Moreover,

1
<u(t) < Aul ———¢7.
UO_U()_UO+ uOF(l—i—'y)

Proof. We define
~ AuP, u > uy,
ﬂw={Ap ’
ug, u < ug.

Consequently, f is locally Lipschitz.
By Proposition 1, DJv = f(v) has a unique solution v with an interval of ex-

istence [0,73). Clearly, f(v(t)) > 0 on [0,7}p), and consequently v(t) > wug for
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t € (0,T). This implies that v is actually the solution to DYu = AuP on [0,T}).
We therefore identify v with w. The monotonicity of u follows from Theorem 3.3.

We compare u with the solution of DJw = Auf}, w(0) = ug using Corollary 1
and find that
1
u(t) < w(t) = up + Aul ———17.
This implies that T}, = oc. O

We now consider A < 0.

Proposition 7. Let A < 0, ug > 0 and p € R. There exists T, € (0,00], such
that (13) has a unique solution u on (0,Ty). Moreover, 0 < u(t) < wug and it is
decreasing on (0,Ty), satisfying
lim wu(t) = 0. (22)
t—T,
Proof. Since AuP (p € R) is locally Lipschitz on (0, 00), applying Proposition 1 for
the interval (o, 8) = (0,00), (13) has a unique solution u with u(0) = ug > 0 on
(Oa Tb)

Since f(u) = AuP (A < 0,p € R) is smooth on (0, 00) and f(ug) # 0, by Theorem
3.3, w is strictly monotone. Using the integral form (6), it is clear that u(t) < ug
for ¢ > 0. Hence u is decreasing. From Proposition 1, either T, = co or T < oo
and limt%Tb_ u(t) = 0. To finish the proof, we only need to show that if T; = oo,
lim;_, 7, u(t) = 0. Suppose for otherwise lim; 7, u(t) # 0. Then, u(t) is bounded
below by § > 0. Then, as t — T, = oo,

1
L'(v)

1 /t : -
<up — —— A|min(6P, ub)(t — 5)""tds — —o0,
") S 0

u(t) =up —

/ |Alu(s)P(t — s)7"ds
0

which is a contradiction. O

Remark 10. In the case p < 1, it is possible that T, < co and AuP is defined on
R. The solution may be extended beyond T,. However, AuP may not be Lipschitz
continuous at v = 0 and it makes the analysis complicated (of course p = 0 case is
trivial and we have u(t) = ug + Agy41)-

In the case p < 1, AuP? may not be Lipschitz at u = 0. Hence, for simplicity, we
only consider A < 0,p > 1 for further discussion. Actually, we are able to show:

Theorem 5.4. Fiz v € (0,1), p > 1, ug > 0 and A < 0. Let u(t) be the unique
solution to (13) with initial value ug. Then, u(t) > 0,Vt > 0. u(-) is decreasing and
lim; oo u(t) = 0. Moreover, there exists C(ug, A,p) > 0 such that when t is large
enough,

t=/p

u(t) = C(U(MA,P)W~

(23)
Proof. First of all, by Proposition 7, u is decreasing. Pick r € (0,1). By the fact
lim, o u(t) = 0, we are able to pick disjoint intervals J,, = (t,—1,t,) such that u

stays between u(t,—1) and wu(t,) inside J,, and u(t,,) = ugr™? .
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Therefore,

2 ’U,(tnfl) — Clup(tn,1)|Jn|7.

This implies that
|Jn‘ > C2(7A7 Uuo, P, V)Ti(nil)(pil)'

As a result,
Ty > | Jn] = oo

It follows that for any t > 0, u(t) > 0, u is decreasing and
tliglo u(t) = 0.

Since u € C1(0,T3) N C°[0,T}), integrating by parts from (4) gives us the alter-
native expression for Caputo derivative (5). Now, u(t) < u(s) for all s <t and as a
result,

[(1 =) Dlu(t) < (u(t) = u(0))t™7.
When t is large enough,

O

Remark 11. The proof of Theorem 5.4 is quite indirect. The equation may be
rewritten as

u(t) + [Algy * (0(t)u”) = uo
and |A|uP is an m-accretive operator (see [6]) of u when p > 1,u > 0. This form
is related to the equations studied in [6] and may yield some direct proof using
functional analysis. In the case that the kernel is not L!, [6] requires that m-
accretive operator to be coercive which does not apply here.

Remark 12. It is well known that v = 1 yields u(t) ~ Ct~%/®=1 which decays
to zero faster than t~7/P. The memory really gives a slow decaying rate. As v — 1,
I'(1 —v) — oo and the dominant term in (23) vanishes. This means ¢/~ must
appear in the next order and the slow decaying dominate term (23) is an effect of
memory.

Remark 13. Regarding the asymptotic behavior of Caputo derivative, we may
consider the derivative of (1 +¢)P. If p > 0,

DY(1+¢)P ~CptP™, t > 0

since (1 + ¢)P is smooth and one can use (4) to compute. In the decaying cases
p <0,

DY1+t)?P ~Cpt™7, t = 0.
This means no matter how fast the function decays, the Caputo derivative is al-
ways like —C't~7 asymptotically, which can also be confirmed through the proof of
Theorem 5.4.

Actually, —t~7 should be the intrinsic rate for the Caputo derivative of decaying
functions. If, for example, DYu(t) < —C(1+t)~7*° for some C > 0 and & > 0, then
u(t) — —oo. Conversely, if DYu(t) ~ —(1+t)~77%, then u, though is less than uo,
will eventually go back to ug. Notice that though the Caputo derivative is negative,
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the function does not always decay. This is because the decaying property at the
earlier stage lingers to later stage due to memory.

6. Discrete equations and numerical simulations. In this section, we study
discrete equations obtained from discretizing the differential equation (1) or the
integral equation (6). We will consider some typical numerical schemes which are
useful in different situations (e.g. stability analysis for numerical schemes or the
proof of existence of weak solutions to fractional PDEs).

In this section, k£ > 0 is the time step, and ¢,, = nk. u™ is the computed numerical
value at ¢, and u(t,) is the value of the solution to (1) evaluated at ¢,

6.1. Schemes for the integral equation. Consider discretizing (6) with explicit
schemes. We have

n—1

n_ kY m 5 8
Qquw+ﬁT:$2;fm mmfnngwnfmfn) (24)
n kY = m -1
u :u0+WZf(u Y(n—m)Y (25)
m=0

To study these two schemes, we first prove the following discrete Gronwall in-
equalities:

Lemma 6.1. Let f(u) be nonnegative, non-decreasing, locally Lipschitz on [0, 00)
and let ug > 0. Suppose w™ (0 < n < N) is a nonnegative sequence (w™ > 0) such
that

n—1
w"ﬁuo—l—r(ll’y)mz_:of(wm)((n—m)'y—(n—m—l)v),OSnSN,
or
n K e my L 0< < N
w _UO+F(7)n;)f(w J(n—=m)""", 0<n<N,
then

w" <wu(nk), 0<n <N, n<Tp/k,

where u(t) is the unique solution to the fractional ODE (1) with initial condition
u(0) = ug.

Proof. We prove by induction. n = 0 is clearly true. Now, let 1 < n < N and
assume that w™ < u(mk) for all m < n — 1. Then, by the non-decreasing property
of f and the induction assumption, we have

kY n—1

w" gu0+wéf<wm>(<nm>”<nml>7)

< g+ F(lk—vi—fy) T;)f(u(mk))((n —m)? —(n—m— 1)7)
ST ﬁ > / " (ks — ) f (k) ds.

m=0"tm
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Since f(-) is non-negative, by Lemma 3.5, u(-) is increasing. As a result,

s ot ﬁ mZ_ /tm%mk — 5)77 1 f(u(mk))ds

1
0
1 nk L
<up+ = / (nk —s)Y7" f(u(s))ds = u(t").
L'(v) Jo
The proof for the other inequality is similar due to the fact

kY v—1 L tm“n — )" s
™ Sr<v>/tm (nk = o) ds

This lemma recovers the discrete Gronwall inequality in [9]:

Corollary 2 ([9]). Let {a,} be a non-negative sequence. If {a,} satisfies

n—1
kY Z(n — m)'y_lam, 0<n<N,

m=0

an < B+
L'(v)

where B > 0 and A > 0 are independent of n, k,~y, then,
an < u(nk) = BE,(A(nk)”), 0 <n < N.

Here, u(t) is the solution to DYu = Au with initial value B and E. is the Mittag-
Leffler function.

We conclude the following stability result about the schemes, which is useful
when studying numerical schemes of fractional PDEs.

Proposition 8. Let f(u) be nonnegative, non-decreasing, locally Lipschitz on [0, 00)
and ug > 0. Suppose u™ solves the numerical scheme (24) or (25), and u is the
unique solution to (1) with initial value ug. Then, we have

u" T <u™ <wu(nk), 1 <n<Ty/k.

Proof. u™ < u(nk) follows directly from Lemma 6.1.

Now, let us show that {u™} is non-decreasing under the scheme (24) by induction.
For n = 1, it is clear that u! > wg by direct computation. Now, let n > 2 and assume
that u™ >u™ M foralll <m<n-—1.

no_ A m 2! 2!
u —uo+mmz::0f(u )((n—m) —(n—m—l))

kY n—1

Fi T 2 S (= m) = (nmm—1y)

=1

> ug +

B m v ¥
:wﬂ—mmz::of(u )((n—l—m) —(n—m-—2) )

="

The proof for scheme (25) is similar. O
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6.2. Schemes for the differential equation. Now, let us discretize Equation
(1) directly. We assume the solution is C1(0,7}), and use the following first order
scheme from [16, 15] based on the explicit formula (4):

n

DYultnsn) = s > / tm el Z DR 1 o)
-t ;)(u(tnﬂm) =t + DI = 1) + O,
Denote
(DRss = e mn_o / ller) =0 E g,
- ;)(u(tnﬂ_m) ulta )+ ) = (2)
-

=k bt —m).
m=0

We can determine that for all n > 0,
L2 -y =1,
F2-—tt =m+ D) —2m' 7 4+ (m - 1), 1 <m < n, (27)
P2 - =—(n+1)'"7 +n7.
It is clear that b does not depend on n if m < n. Hence, for simplicity, we write
1, m =0,
(m+1D7 —2m7+ (m - 1)1 <0, m>1.

Using this basic discretization, we can formulate the explicit and implicit schemes
respectively as

(Dpu)ns1 = f(u") (28)
and
(Dlu)nsr = f(u™). (29)

First of all, we discuss the explicit scheme:
(D) u)ns1 = f(u™) & bou" Tt = k7 f(u") — Z b T — b (30)
m=1

The following result follows from the facts b,,, < 0 for m > 1 and b,, + bﬁi} =0
Lemma 6.2. Suppose f(u) is nonnegative, non-decreasing on [0,00) and ug > 0,
then u™ given by the explicit scheme (28) is nondecreasing.

We have the following discrete comparison principles:

Lemma 6.3. Suppose f(u) is nonnegative, non-decreasing on [0,00) and ug > 0.
If {w™} is a sequence satisfying w® > ug and

(Dzw>m+1 > f(wm)7 m < N — 17
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then w™ > u™ for n < N. Correspondingly, if w® < u® and
(D) w)mi1 < f(w™), m <N —1,
then w™ < u” forn < N.

Proof. We only prove ‘>’ case while the other case is similar. It follows directly
from the following induction inequality

bow" ! = k7(D D) w)nt1 — Z bwtti—m b”Hw
> k7 f(w Z by w1 — o
>k f(u Z by — b O
— boun-‘,-l7
since bg > 0 and b, < 0 for m > 1. O

We now move on to the implicit scheme (29), which is given by
(D)w)ni1 = Fu™h) & bou™ T — KV f(uT) Z bpu T — bl (31)

Assume that f € C1[0, 00), non-decreasing and by — k7 f’(ug) > 0. Hence, f’(z) > 0.
In this case, the implicit scheme is solved by finding the root of bgz — k7 f(z) =
> bmu”+1 m — b 1u® on [ug, M] where

M :=sup{Mp > 0:by — k7 f'(2) > 0,Vz € [0, Mo]}.

It is clearly that limy_,g M = co. Hence, it is sufficient for us to find the numerical
solution on [0, M]. If there is no root of the scheme on [0, M] for n = N*, then the
numerical solution breaks up, and the corresponding time

Ty(k) = N*k (32)
is regarded as numerical blow-up time.

With this convention, similarly we can show that

Lemma 6.4. Assume that f € C1[0,00) is nonnegative, non-decreasing and ug >
0. Then, {u™} given by the implicit scheme (29) is non-decreasing. Moreover, if
w® > u® and
(Dpw)m = f(w™), m <N,
then w™ > u"™ forn < N, n < N*.
Correspondingly, if w® < u® and
(Dpw)m < f(w™), m <N,
then w" <u"™ form < N, n < N*.
Combining these facts, we have the following claim

Theorem 6.5. Assume that f is nonnegative, non-decreasing and ug > 0 on [0, 00).
In addition, suppose f € C1[0,00), f' is locally Lipschitz and the solution u to (1)
is convex. Let ul, be the solution given by the explicit scheme (28) and ull,, be given
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by the implicit scheme (29). Then {ul,} and {ull,} are monotone sequences, and
we have

up, <u(nk) <wul,, n<min(N*, Tp/k).
Proof. The monotonicity for {u?,} and {ul } follows Lemma 6.3 and Lemma 6.4.
We only need to show u?, < u(nk) < u?,. If f € C'0,00) and f’ is locally
Lipschitz, then v € C(0,Ty) N C°[0,T;) by Lemma 3.1. Since u is convex, u’ is
non-decreasing. Denoting
w" = u(nk),
and thus

n

_ b
L1 —7v) &=

For the explicit scheme, we have

/tm+1 (u(tm+1) . /’thrl )
tm (tn-i-l - 3 e n+1 - 3)7

m

(th)n—i-l =

/tm+1 (u(tms1) — u(tm))/kd&

(tnt1 —8)7

m

> / ———ds.
tm—1 n+1 - 5)7

As a result, we have (Dpw)n+1 > DYu(t,) = f(u(tn)) = f(w™) and the result
follows from Lemma 6.3.
For implicit scheme,

f(“(tn+1)) - (th)n—&-l = D’T“(tn-&-l) - (th)n—&-l

_ Z / " e (u/(s) o /t o u'(T)dT> ds > 0,

m

since u’ is non-decreasing. The last inequality is obtained by applying

b 1 b b
[ tode= = [ gds [ gaa, (33)

if both f and g are non- decreasing non-negative continuous functions. In fact, there
is € € (a,b) such that g(¢& f g(x)dz, and

b £ b
/ f(x)(g(ﬂf)—g(ﬁ))dw=/ f(m)(g(w)—g(é))dw+/ f(@)(g9(x) — g(§))dz
a a 3

b
> f(f)/ (g(z) — g(&))dz = 0.
The claim then follows from Lemma 6.4. O

Remark 14. The explicit schemes can be used to prove the stability and conver-
gence of some approximation schemes for fractional PDEs and thus the convergence
and existence of solutions. The implicit schemes can be used to prove positivity of
solutions and to estimate the blow-up time.
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FIGURE 1. Solution curves for f(u) = Au? with u(0) = ug. (a).
A=1,up=012,7 = 0.6; (b). A=1,ug=12~ =06
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FIGURE 2. Blow-up time versus . The red solid line shows the
numerical results of the blow-up time. The blue dotted line is
the estimated upper bound and the green dashed line is the lower
bound, provided by Theorem 5.2. (a). A = 1,uy = 0.12; (b).
A=1,uy=12.

6.3. Numerical simulations. For f(u) = AuP, the numerical solutions using ex-
plicit schemes (24), (25) and (28) never break up (i.e. u™ can be computed for any
n > 1). The implicit scheme is more suitable for the study of blowup. If we use the
implicit scheme (29), we look for the root of the scheme (31) in [u™, M] to find u"+!
where M = (k=7 /(pAT'(2—~))"/®=1). Suppose that the sequence terminates at N*
and numerically we set Ty(k) = N*k. It is expected that Ty(k) — T} as k — 0.

For p = 2, the implicit scheme (31) can be solved exactly and therefore this allows
us to compute the numerical solutions accurately and fast enough. Below, we do
the numerical simulations using the implicit scheme for f(u) = u? by choosing k
sufficiently small.

In Figure 1, we sketch two typical solution curves. Figure 1 (a) shows the solution
curve with ug = 0.12,7 = 0.6, while Figure 1 (b) shows the solution curve with
ug = 1.2, = 0.6. Comparing the blow-up time in both cases, we find clearly that
small ug defers the blowup while large uy accelerates the blowup.

To investigate this issue further, in Figure 2, we plot the blow-up time versus -,
meanwhile we also plot the estimated upper and lower bounds gained from Theorem
5.2. In the case ug = 0.12, the line of real blow-up time around v = 0.2 is quite steep.
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In the case ug = 1.2, the line of real blow-up time around v = 0 is approximately
equal to 0. The numerical results agree with our analysis in Section 5.2. If wug is
big enough such that u — u? = ug has no solution, i.e. uy > 0.25, the blow-up time
decreases as v decreases, which means samller v accelerates the blowup. However,
if ug is small, i.e. ug < 0.25, then the blow-up time increases as v decreases, which
means samller v defers the blowup. These observations agree with intuition that as
the smaller ~ is, the stronger the memory effect is.

7. Appendix. In this section, we restate the result in [22] regarding the growth
rate of (13), as we mentioned in Remark 9. The statement is tailored to our prob-
lem, and we also present the proof for convenience. In fact, we have the following
statement.

Proposition 9 ([22]). Forp > 1, v € (0,1), A > 0, up > 0, the solution of (13)
satisfies (21), where Ty, is the blow-up time guaranteed by Theorem 5.1.

Proof. We set v(t) = u(t) — ug. First, we use the following transformation:

n(t) = (T~ )" —m, m=T;" wn=uv) (34)
Now based on the definition of T}, we have w(n) — oo asp — co. The corresponding
equation for w is as follows:

w(n) = Fé)/on(n—&)”1(£+no)”(n+no)”(§+no)Q(w(f) + u)Pdg, (35)

where
D(&) = (§+no) > (w(€) + uo)?. (36)
Now let £ = 57, then

w(n) = F?ﬁ/{) T =) o a0) T T (i 0) T (w(nT) o). (37)

v

Now based on [2], the right hand side as n — oo has the following asymptotic
behavior:

A n 7—1 00 A o5}
s ~nges () [T RO~ g [T RO R,

where
K(r)=1—-7)"101-7), F(nr)=(nm+m0)""""(w(nT) + uo)?.

Here 6(s) is the standard Heaviside function. As in [2], we use Parseval formula
and Mellin transform, then

c+i00
wln) ~ s [ MUK = M)l

where

M(v(r);z) = /0 T Ly(r)dr.
Now notice that

MI[F(nt); 2] = n~"M(F(7); 2),
and
L(yI(1 - 2)

M[K(7T);1—2] = T+ =2)
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Hence,

c+ioco F(I—Z)
~ N F————MI[F(7);2|dz.
7727m/c I(l+~-2) [F(r); 1=

By pluging in the anzats w(n) ~ Cn' and checking the simple pole of the integrand,
we have

AT (pl — )

ST

w(n)Pn™ as n — oo,

which is what we need. O

Acknowledgments. The work of J.-G Liu is partially supported by KI-Net NSF
RNMS11-07444 and NSF DMS-1514826. Y. Feng is supported by NSF DMS-
1252912.

[1]
2]
3]
(4]
[5]

[6]

7

8

(10]

11]
(12]

(13]

14]
(15]
(16]
(17)
(18]
19]

20]

REFERENCES

M. Allen, L. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative,
Archive for Rational Mechanics and Analysis, 221 (2016), 603—-630.

N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Courier Corporation,
1975.

H. Brunner and Z. W. Yang, Blow-up behavior of Hammerstein-type Volterra integral equa-
tions, J. Integral Equations Appl, 24 (2012), 487-512.

M. Caputo, Linear models of dissipation whose Q is almost frequency independent—II, Geo-
physical Journal International, 13 (1967), 529-539.

P. Clément and J. A. Nohel, Abstract linear and nonlinear Volterra equations preserving
positivity, STAM Journal on Mathematical Analysis, 10 (1979), 365-388.

P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations
with completely positive kernels, SIAM Journal on Mathematical Analysis, 12 (1981), 514—
535.

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-oriented
Ezxposition Using Differential Operators of Caputo Type, Springer, 2010.

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, Journal of Mathe-
matical Analysis and Applications, 265 (2002), 229-248.

J. Dixon and S. McKee, Weakly singular discrete Gronwall inequalities, ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift fir Angewandte Mathematik und Mechanik,
66 (1986), 535-544.

C. S. Drapaca and S. Sivaloganathan, A fractional model of continuum mechanics, Journal
of Elasticity, 107 (2012), 105-123.

R. Gorenflo and F. Mainardi, Fractional Calculus, Springer, 1997.

H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler functions and their applica-
tions, Journal of Applied Mathematics, 2011 (2001), Art. ID 298628, 51 pp.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional
differential equations, North-Holland Mathematics Studies, 204 (2006), xvi+523 pp, URL
http://www.sciencedirect.com/science/article/pii/S0304020806800010.

L. Li and J.-G. Liu, A generalized definition of Caputo derivatives and its application to
fractional ODEs, arXiv preprint, arXiv:1612.05103v2.

Y. Lin, X. Li and C. Xu, Finite difference/spectral approximations for the fractional cable
equation, Mathematics of Computation, 80 (2011), 1369-1396.

Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion
equation, Journal of Computational Physics, 225 (2007), 1533—-1552.

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution pro-
cesses, Journal of Computational and Applied Mathematics, 118 (2000), 283-299.

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional
diffusion equations, arXiv preprint, arXiv:0704.0320.

R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with
weakly singular kernels, STAM Journal on Mathematical Analysis, 2 (1971), 242-258.

J. D. Munkhammar, Riemann-Liouville fractional derivatives and the Taylor-Riemann series,
UUDM project report, 7 (2004), 1-18.


http://www.ams.org/mathscinet-getitem?mr=MR3488533&return=pdf
http://dx.doi.org/10.1007/s00205-016-0969-z
http://www.ams.org/mathscinet-getitem?mr=MR863284&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3041508&return=pdf
http://dx.doi.org/10.1216/JIE-2012-24-4-487
http://dx.doi.org/10.1216/JIE-2012-24-4-487
http://www.ams.org/mathscinet-getitem?mr=MR523852&return=pdf
http://dx.doi.org/10.1137/0510035
http://dx.doi.org/10.1137/0510035
http://www.ams.org/mathscinet-getitem?mr=MR617711&return=pdf
http://dx.doi.org/10.1137/0512045
http://dx.doi.org/10.1137/0512045
http://www.ams.org/mathscinet-getitem?mr=MR2680847&return=pdf
http://dx.doi.org/10.1007/978-3-642-14574-2
http://dx.doi.org/10.1007/978-3-642-14574-2
http://www.ams.org/mathscinet-getitem?mr=MR1876137&return=pdf
http://dx.doi.org/10.1006/jmaa.2000.7194
http://www.ams.org/mathscinet-getitem?mr=MR2899005&return=pdf
http://dx.doi.org/10.1007/s10659-011-9346-1
http://www.ams.org/mathscinet-getitem?mr=MR2800586&return=pdf
http://dx.doi.org/10.1155/2011/298628
http://dx.doi.org/10.1155/2011/298628
http://www.ams.org/mathscinet-getitem?mr=MR2218073&return=pdf
http://www.sciencedirect.com/science/article/pii/S0304020806800010
http://www.ams.org/mathscinet-getitem?mr=MR2785462&return=pdf
http://dx.doi.org/10.1090/S0025-5718-2010-02438-X
http://dx.doi.org/10.1090/S0025-5718-2010-02438-X
http://www.ams.org/mathscinet-getitem?mr=MR2349193&return=pdf
http://dx.doi.org/10.1016/j.jcp.2007.02.001
http://dx.doi.org/10.1016/j.jcp.2007.02.001
http://www.ams.org/mathscinet-getitem?mr=MR1765955&return=pdf
http://dx.doi.org/10.1016/S0377-0427(00)00294-6
http://dx.doi.org/10.1016/S0377-0427(00)00294-6
http://www.ams.org/mathscinet-getitem?mr=MR0287258&return=pdf
http://dx.doi.org/10.1137/0502022
http://dx.doi.org/10.1137/0502022

1D AUTONOMOUS FRACTIONAL ODES 3135

[21] C. A. Roberts, D. G. Lasseigne and W. E. Olmstead, Volterra equations which model explosion
in a diffusive medium, J. Integral Equations Appl., 5 (1993), 531-546.

[22] C. A. Roberts and W. E. Olmstead, Growth rates for blow-up solutions of nonlinear Volterra
equations, Quarterly of Applied Mathematics, 54 (1996), 153-159.

[23] M. Taylor, Remarks on fractional diffusion equations, Preprint.

[24] D. G. Weis, Asymptotic behavior of some nonlinear Volterra integral equations, Journal of
Mathematical Analysis and Applications, 49 (1975), 59-87.

[25] D. V. Widder, Laplace Transform (PMS-6), Princeton University Press, 2015.

[26] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371
(2002), 461-580.

Received March 2017; 1st revision July 2017; final revision July 2017.

E-mail address: yuanyuaf@andrew.cmu.edu
E-mail address: leili@math.duke.edu
E-mail address: jliu@phy.duke.edu
E-mail address: xxu@math.cmu.edu


http://www.ams.org/mathscinet-getitem?mr=MR1264062&return=pdf
http://dx.doi.org/10.1216/jiea/1181075776
http://dx.doi.org/10.1216/jiea/1181075776
http://www.ams.org/mathscinet-getitem?mr=MR1373844&return=pdf
http://dx.doi.org/10.1090/qam/1373844
http://dx.doi.org/10.1090/qam/1373844
http://www.ams.org/mathscinet-getitem?mr=MR0367596&return=pdf
http://dx.doi.org/10.1016/0022-247X(75)90162-6
http://www.ams.org/mathscinet-getitem?mr=MR1937584&return=pdf
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
mailto:yuanyuaf@andrew.cmu.edu
mailto:leili@math.duke.edu
mailto:jliu@phy.duke.edu
mailto:xxu@math.cmu.edu

	1. Introduction
	2. Preliminaries
	2.1. Fractional derivatives
	2.2. Existence and uniqueness of solutions to (1)

	3. Some basic properties of solutions to (1)
	3.1. Regularity and monotonicity of solutions
	3.2. Blow-up criterion

	4. Comparison principles
	5. Blowup and long time behavior for a class of fractional ODEs
	5.1. Finite time blowup
	5.2. The bounds of blow-up time
	5.3. Other cases

	6. Discrete equations and numerical simulations
	6.1. Schemes for the integral equation
	6.2. Schemes for the differential equation
	6.3. Numerical simulations

	7. Appendix
	Acknowledgments
	REFERENCES

