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Abstract

In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study
of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar
pressure of the underlying biological network coupled to a diffusion equation for the conductance vector
of the network. There are several different types of nonlinearities in the system. Of particular mathematical
interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial
function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the
system have been shown to exist. The regularity theory for the system remains fundamentally incomplete.
In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain
a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of
possible singular points.
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1. Introduction

Let © be a bounded domain in RY and T a positive number. Set Q7 = Q x (0, T'). We study
the behavior of weak solutions of the system

—div[({ +m@m)Vp]=S(x) inQr, (1.1)
dm—D*Am — E*m-Vp)Vp+|m** PVm=0 inQr (1.2)

for given function S(x) and physical parameters D, E, y with properties:

(H1) S(x) € LY(Q), ¢ > 5;and
(H2) D,E €(0,00),y € (%,00).

This system has been proposed by Hu and Cai ([10], [11]) to describe natural network formula-
tion. Then the scalar pressure function p = p(x, t) follows Darcy’s law, while the vector-valued
function m = m(x,t) is the conductance vector. The function S(x) is the time-independent
source term. Values of the parameters D, E, and y are determined by the particular physical
applications one has in mind. For example, y = 1 corresponds to leaf venation [10]. Of partic-
ular physical interest is the initial boundary value problem: in addition to (1.1) and (1.2) one
requires

m(x,0) =mp(x), xe€, (1.3)
px,t)=0, m(x,1)=0, (x,H)eXr=02x(0,T), (1.4)

at least in a suitably weak sense; here the initial data should satisfy

mo(x) =0 on 0S2.

The existence of weak solutions of this initial boundary value problem was proved by Haskovec,
Markowich, and Perthame [8]. However, the regularity theory remains fundamentally incom-
plete. In particular, it is not known whether or not weak solutions develop singularities.

Let us call a point (x, t) € Q7 singular if m is not Holder continuous in any neighborhood of
(x, t); the remaining points will be called regular points. By a partial regularity theorem, we mean
an estimate for the dimension of the set S of singular points. It is well-known that weak solutions
to even uniformly elliptic systems of partial differential equations are not regular everywhere.
We refer the reader to [6] for counter examples. Thus it is only natural to seek partial regularity
theorems for these weak solutions. The system under our consideration exhibits a rather peculiar
nonlinear structure. The first equation in the system degenerates in the 7-variable and the elliptic
coefficients there are singular in the sense that they are not uniformly bounded above a priori,
while the second equation contains the term (m - Vp)V p, which is a cubic nonlinearity. Thus
the classical partial regularity argument developed in ([6], [1]) does not seem to be applicable
here. Our system does resemble the so-call thermistor problem considered in ([ 16—18]). The key
difference is that the elliptic coefficients in the preceding papers and also in [6] are assumed to
be bounded and continuous functions of solutions. As a result, the modulus of continuity can be
taken to be a bounded, continuous, and concave function. This fact is essential to the arguments
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in both [16] and [6]. Our elliptic coefficients here are quadratic in m, and thus a new proof must
be developed.

Definition. A pair (m, p) is said to be a weak solution if:
N
(D1) m € L®,T; (ngz(sz) n L2V(sz)) ).dm e L20.T; (L2)").p e L®(,T;

Wy (Q)),m - Vp e L0, T; L*());

(D2) m(x,0) =mq in C([0, TT; (L2()™);
(D3) (1.1) and (1.2) are satisfied in the sense of distributions.

A result in [8] asserts that (1.1)—(1.4) has a weak solution provided that, in addition to assuming
S(x) € L*(R) and (H2), we also have

(H3) mo e (W (@) N L2V(Q))N.

Note that the question of existence in the case where y = % is addressed in [9]. In this case the
term |m|>Y~Dm is not continuous at m = 0. It must be replaced by the following function

| 1mPY"Dmifm #£0,
g(x’t)_{e[—LuN if m #0.

Partial regularity relies on local estimates [6]. One peculiar feature about our problem
(1.1)—(1.4) is that certain important global estimates have no local versions. This is another

source of difficulty for our mathematical analysis. We are ready to state our main result:

Theorem 1.1. Let (HI)—(H3) be satisfied. Assume that N < 3. Then the initial boundary value
problem (1.1)—(1.4) has a weak solution on Qt whose singular set S satisfies

PNFTE(S) =0 (1.5)
for each ¢ > 0.

Here P*,s > 0, denotes the s-dimensional parabolic Hausdorff measure. Recall that the s-
dimensional parabolic Hausdorff measure of a set E C RY x R is defined as follows:

o
PS(E) = suginf{er : U?OZOQ” (zj)) DE,rj <e},
E> ]:0

where Q,;(z;) are parabolic cylinders with geometric centers at zj; = (y;, 7;), i.e., one has

1, 1,
0r;(zj) = By (yj) x (tj — 2Tt Erj)

with
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By (vj)={x e RN :|x — yjl <rj}.
It is not difficult to see that P* is an outer measure, for which all Borel sets are measurable; on its
o -algebra of measurable sets, PX is a Borel regular measure (cf. [5], Chap. 2.10). If P*(E) < oo,

then PST¢(E) = 0 for each ¢ > 0. We define the parabolic Hausdorff dimension dimpE of a
set E to be

dimp E =inf{s e RT : P*(E) =0}.
Then Theorem 1.1 says that
dimpS < N. (1.6)

Hausdorff measure H* is defined in an entirely similar manner, but with Q,,(z;) replaced by

an arbitrary closed subset of RN x R of diameter at most r ;- (One usually normalizes H* for
integer s so that it agrees with surface area on smooth s-dimensional surfaces.) Clearly,

HA(X) < c(k)P*(X) foreach X c RN x R. 1.7)
To characterize the singular set S, we will need to invoke the following known result.

Lemma 1.1. Ler f € L} (Q7) and for0<s < N +2 set

loc
E;={z€Qr :limsupp~* / | fldxdt > 0}.
p—0t
0,(2)

Then P*(Es) =0.
The proof of this lemma is essentially contained in [1].
A key observation about our weak solutions in the study of partial regularity is the following

proposition.

Proposition 1.1. Let (H1)—(H3) be satisfied and (p, m) be a weak solution to (1.1)—(1.4). Then
we have

p e C([0, T1; LA()). (1.8)
The proof of this proposition will be given at the end of Section 2.
Let (m, p) be a weak solution. In view of ([3],[16]), to establish Theorem 1.1, we will need to

define a suitable scaled energy E,(z) for our system. For this purpose, let z = (y, 7) € Qr,r >0
with Q,(z) C Q7 and pick

O<ﬂ<min{2—ﬁ,1}, (1.9)
q

where ¢ is given as in (H1). We consider the following quantities:



J.-G. Liu, X. Xu / J. Differential Equations 264 (2018) 5489-5526 5493

1
P = f plxindr= = | penx, (1.10)
r
B (y) B (y)
Mg, = ][ m(x, t)dxdt, (1.11)
0,(2)
1
M=y max [ - p0) (1.12)
r ze[r—%r2,1+%r2]B()
rly

The right choice for E,(z) seems to be

1
E,(z)zm / lm —m |2dxdt + A, (z) +r?P. (1.13)
Qr(Z)

The last term in E, (z) accounts for the non-homogeneous term S(x) in (1.1). Due to the fact that
the first equation (1.1) does not have the 9; p term, we are forced to use the term A, (z) instead of
r,\,% er(Z) |p—pzr |>dxdt in E,(z). This will cause two problems: one is that in our application
of the classical blow-up argument ([3],[6],[16]), the resulting blow-up sequence is not compact
in the desired function space; the other is the characterization of the singular set S. That is, it is
not immediately clear how one can describe the set

Qr\{zeQr: lin})A,(z)=0} (1.14)

in terms of the parabolic Hausdorff measure. (Note that this issue is rather simple in the context
of [16].) To overcome these two problems, we find a suitable decomposition of p. This enables
us to show that the lack of compactness in the blow-up sequence does not really matter. To be
more specific, we obtain that the blow-up sequence can be decomposed into the sum of two
other sequences, one of which converges strongly while the terms of the other are very smooth
in the space variables, and this is good enough for our purpose. This idea was first employed in
[16]. However, as we mentioned earlier, the nature of our mathematical difficulty here is totally
different. A similar decomposition technique can also be used to derive the parabolic Hausdorff
dimension of the setin (1.14).
The key to our development is this assertion about energy:

Proposition 1.2. Let the assumptions of Theorem 1.1 hold. For each M > O there exist constants
0 <e,8 < 1 such that

Imzr| <M and E,(z) <¢ (1.15)
imply
1
Esr(2) < EEr(Z) (1.16)

forall z € Qr and r > 0 with Q,(z) C Q.
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The proof of this proposition is given in Section 4. It relies on the decomposition of the
function p we mentioned earlier. An immediate consequence of this proposition is:

Corollary 1.1. Let the assumptions of Theorem 1.1 hold. To each M > 0 there corresponds a
pair of numbers 81, €1 in (0, 1) such that whenever

M
lmz,| < 5 and E, () < € (1.17)

we have
1 k
E‘S]f’ () < <§> &1 for each positive integer k. (1.18)

Proof. We essentially follow the proof of Corollary 3.8 in [16] (also see [6]). Let M > 0 be
given. By Proposition 1.2, there exist 0 < &, 8 < 1 such that (1.15) and (1.16) hold. We claim that
we can take

61 =26, (1.19)

2
MSNT2(2 = 1) JoN
&1 = min e,( (vV2-1) wN) ,

(1.20)
26N+2 zﬁ

where wy is the volume of the unit ball in RV . To see this, let (1.17) hold. Obviously, (1.18) is
satisfied for k = 1. Now for each positive integer j suppose (1.18) is true for all k < j. We will
show that it is also true for k = j + 1. To this end, we integrate the inequality

lm, sip —my gi1,| < |my 5ip —m(x, )|+ |m(x, 1) —m si-1,|

over Qg (z) to derive

|my iy —mg gi1,] < ][ |m, 5i, —m(x,t)|dxdt
Qi) (2)

1
sN+2
Qsi-1,(2)

+ lm(x,1) —m_ si-1,|dxdt

< ][ Im, i, —m(x,1)|*dxdt

Sir (2)

Bl —

1
+m ][ lm(x, 1) _mz’gi—lr|2dxd[

s5i—1,(2)
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1

1
1 2 1 1
<\ —Esi, @) +—5|—Esi-1,(2)
wN SN+2 N
(1 n %+ 1 1 /1\' ! :
S\ay \2) 7 vz \wy \2) &) >
i=1,-,]. (1.21)

Subsequently, we have

J
m 5| < mzr + Z m i — My 5i-1,|
i=1
1

. 1 . . 1
M /1y 2 K1 /1! \?
< — | = | — | =
) +Z<w1v (2) 61) +§5N+2 (a)N (2) .
M+ 3N+2+\/§
2 SNRA(V2 - 1) Jon

JEI< M. (1.22)

By Proposition 1.2, (1.18) holds for k = j 4 1. This completes the proof. O

This corollary combined with the argument in ([6], p. 86) asserts that there exist ¢ =
c(61,e1,r)€(0,1),y =y (81) > 0 such that

E,(2) <cp” forall0<p<r. (1.23)

Obviously, m; , er(Z) lm —mg , |2dxdt are both continuous functions of z. By Proposition 1.1,
E, (z) is also a continuous function of z. Thus whenever (1.17) holds for some z = 7z there is an
open neighborhood O of zp over which (1.17) remains true. As a result, (1.23) is satisfied on O.
This puts us in a position to apply a result in [12]. To state the result, we define, for u € (0, 1),

Im(x, 1) —m(y, )

7 - (X, 1), (y, 1) €0
(= yl+1—71%)

[m]M,O = sup
Parabolic Holder spaces can be characterized by the following version of Campanato’s theorem
([12], Theorem 1).
Lemma 1.2. Let u € L%(Q7). If there exist a € (0, 1) and Ro > 0 such that

][ lu—u, ,[*dxdt < A*p*®
0,(2)

for all z in an open subset O of Qr and all p < Rg with Q,(z) C Qr, then we have
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[mle,0 <c(N)A.
That is, u is Holder continuous in O.

To describe the singular set S, we set

R={z=(y,7) € Q7 :sup|m,| < o0, hmE(z) 0}. (1.24)

r>0

Here and in what follows lim,_,o means lim,_, o+ because we always have r > 0. If z € R, we
take M > 2sup,_ |m ,|. By Corollary 1.1, there exist 61, &1 € (0, 1) such that (1.17) and (1.18)
hold. We can find a r such that

E.(2) <er.

For the same r we obviously have

|mz | < Eh
Consequently, m is Holder continuous in a neighborhood of z. That is, R is a set of regular points.
Obviously, R is an open set.

Note that since we have the term A, (z) instead of —+5 N+2 fQ @ |p— Per |2dxdt in E,(2) Propo-
sition 1.2 does not imply that p is locally Holder continuous in the space—time domain R. The
difference between the two quantities can be seen from the following calculation:

T—t—lr2
][|p pe Pdxdt = / ][|p per Pdxdt
0,(2) f——rzB (63
T—t—lr2
<—/ ][|p Py (O Pdxdt
12 B )
r+%r2
2 2
+r_2 |py,r(t) _Pz,r| dt
T—4r2
r+%r2
2 2 )
<2 4@+ 2 | 1per)— po . (1.25)
wN r
T—%rz

Obviously, the last term above causes the problem. Of course, for each t =1y, p(x, fp) is locally
Holder continuous in x in R N {t = fp}.

To estimate the parabolic Hausdorff dimension of the singular set S € Q7 \ R, we have the
following proposition.
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Proposition 1.3. Let (H1)—(H3) hold and (p, m) be a weak solution. Then we have
dimp(Qr \ R) = N. (1.26)

The proof of this proposition relies on almost the same decomposition of p as that in the proof
of Proposition 1.2. The details will be given in Section 3.

Thus Theorem 1.1 is a consequence of Propositions 1.1-1.3. The rest of the paper is organized
as follows. In Section 2, we develop some new global estimates. They serve as a motivation for
our local estimates. The section will end with the proof of Proposition 1.1. In Section 3, we
will first establish some local estimates and then proceed to prove Proposition 1.3. Section 4 is
devoted to the proof of Proposition 1.2. Note that the three propositions are independent, and
thus the order of their proofs is not important.

2. Global estimates

In this section, we first summarize the main a priori estimates already established in [8]. Then
we present our new global estimates. The proof of Proposition 1.1 is given at the end.
To begin with, we use p(x,t) as a test function in (1.1) to obtain

/|Vp|2dx+/(m-Vp)2dx=/S(x)pdx. 2.1
Q Q

Q

Here and in what follows we suppress the dependence of p, m on (x, t) for simplicity of notation
if no confusion arises. Let t € (0, T), Q2; = 2 x (0, 7). Take the dot product of both sides of
(1.2) with m, integrate the resulting equation over 2;, and thereby yield

/|m(x r)|2dx+D2/|Vm|2dxdt

Qe

—E? / (m -V p)*dxdt + / \m|?Y dxdt = / Imo|%dx, (2.2)
Qq Q

where |[Vm|2 = |V@m|? = Zl = 1 ( ax’ )2. Multiply through (2.1) by 2E2, integrate over (0, ),
and then add it to (2.2) to arrive at

/|m(x r)|2dx+D2/|Vm|2dxdt+E2/(m V p)ldxdt
Qr Qq

+/|m|2”dxdt+2E2/|Vp|2dxdr
Q Q

/ Imo|>dx + 2E> / S(x)pdxdt. (2.3)
Qo

Take the dot product of (1.2) with d,m and integrate the resulting equation over €2 to obtain
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/|8tm| dx+——/|Vm|2dx

Q

— EZ/(m V p)V pdmdx +5 /|m|27’a’x = (2.4)
Q

Use 9; p as a test function in (1.1) to derive

2dt/|Vp|2dx—i—/(m Vp)mV&tpdx—/S(x)B,pdx 2.5
Q Q

Multiply through this equation by —E? and add the resulting one to (2.4) to obtain

/|a 2d +D2d/|v 2d Ezd/u Vp)ld
m X _ m X ——— m - X
! 2 d 2 dr P

Q Q Q

E* d
- TE |Vp|2dx+——/|m|2ydx— E2/S(x)a,pdx (2.6)
Q

Differentiate (2.1) with respect to ¢, multiply through the resulting equation by EZ, then add it to
the above equation, and thereby deduce

/|a,m| dxdt+—/|Vm(x r)|2dx+—/(m Vp)ldx

+—/|vp|2dx+ /|m|27’dx

= —/|Vm0|2dX+ —/(Wlo V po)dx + —/|m0|2de

2 / IV polPdx, 27

where pg is the solution of the boundary value problem

—div[(I +mo ® mg)Vpo]l = S(x), in L, (2.8)
po=0 ond. 2.9)

Local versions of (2.1) and (2.3) will be established in Section 3. Unfortunately, they are not
enough to yield a partial regularity result. Naturally, one tries to seek a local version of (2.7). But
this cannot be done because we have no control over 9, p. To partially circumvent this, we have
developed some new estimates.
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Proposition 2.1. Let (H1) and (H2) be satisfied and (m, p) a weak solution of (1.1)—(1.4). Then:

(Cl1) There is a positive number ¢ = c(S2, N) such that || pllec,@; = ess supg,.|p| < c[|S(X)llg.0,
where || - ||l4, denotes the norm in L9(2). We shall write | - ||5 for || - |Is.q for simplicity;
(C2) Foreach K > 0 we can choose B € (0, 1) suitably small such that

lm(x,7)[?
(s — KHt + K*Pdsdx + / VP |\ Vm|?dxdt
Q 0 Qr
+/uﬂ*1 |Vo|2dxdt + / Im|?Y vPdxdr
Qr Q
+/vﬂ|Vp|2dxdt —|—/v’3(m . Vp)zdxdt
Qr Qq
Imo|?
< c/ |S(x)|vPdxdt +/ / (s — K)T + K*VPdsdx + ¢ forallt € (0,T),
Qr Q 0
where
v=(m|*—K)"+K?>> K> (2.10)

By the Sobolev embedding theorem, we have
2N
me L0, T; LV-2(RQ)).
Thus the first integral on the right-hand side of the above inequality is finite.

Proof. The proof of (C1) is standard. See, e.g., ([2], p. 131). For the reader’s convenience, we
shall reproduce the proof here. Let « be a positive number to be determined. Write

Kn=K—2K—n, Ant)={xeQ:px,t)>x,}, n=0,1,2,---.

Use (p — k)T as a test function in (1.1) to deduce

/ V(p — ) Pedx + / m -V (p — ) ) dx
Q Q

=/S(X)(p—/<n)+dx
Q

N+2
2N

2N "
=| [ serm= | e —k iy
n(t)
N+2
= cllSE)llg|An(O]

1
IV (p—ra)Tll2, (2.11)



5500 J.-G. Liu, X. Xu / J. Differential Equations 264 (2018) 5489-5526

from whence follows

2Nn
2N YN=2

N— 1+2502-X
|Ans1(D] < el S 172 514, (0)| 722740, (2.12)
Kk N=2

By (H1), we have o = 1= 2(2 — ﬂ) > 0. This enables us to apply Lemma 4.1 in ([2], p. 12) to
obtain

|Aco(t)| =0, provided that k¥ = ¢||S(x) ||, for some ¢ = c(£2, N).

This implies (C1).
Let K > 0, 8 > 0 be given and v be defined as in (2.10). For L > K, define

L? ifs> L2
Ors)=1{s ifKZ<s<lL? (2.13)
K? ifs<K.

Set vy = OL(|m|2). Then the function vfm is a legitimate test function for (1.2). Upon using it,

we arrive at

m|?

1d
——/ /[eL(s)]/’dsderD2/vf|Vm|2dx
2dt

Q 0

—ﬁ/v VoL |? +/|m|2y Pa
Q

— E? / v (m -V p)ldx. (2.14)
Q

In the derivation of the third term above, we have used the fact that

Vuz =0 on the set where |m|? > L2 or |m|? < K2. (2.15)

Use vﬁ p as atest function in (1.1) to deduce

/v§|Vp|2dx+/v§(m'Vp)2dx
Q Q

— / Vppﬂvf*1 Vurdx
Q

_/(m . Vp)mpﬁvi_lede —i—/S(x)vfpdx
Q
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geﬁ/vf‘1|vUL|2dx+c(e)ﬁ/ B=1 521V p2dx
Q Q

+s/v§(m.Vp)2dx+c(e)ﬂ2/vf*2|m|2p2|vw|2dx
Q

+/S(x)v§pdx, e > 0. (2.16)
Q

By virtue of (2. 15) we have that vf *|m|2| Vo, |2 = vf 7! |Vug 2. Remember that B € (0, 1).

This gives vf p? < ||p||goK 2(6=D_ Multiply through the above inequality by 2E?, add the

resulting inequality to (2.14), thereby obtain

m|?

—/ /[eL(s)]Bdsder/vamFdx

Q

+/3/ |VvL|2dx+/|m|2Vv§dx
Q
B 2 B 2
+/UL|Vp| dx+/vL(m-Vp) dx
Q Q
Pl [ g 2 o2 [l 2
56,3? vy IVplidx +cB°lpls | vy [Vur|“dx
Q Q

+ / S(x)vf pdx. 2.17)

Q

Choosing 8 sufficiently small so that the second term on the right-hand in the above inequality
can be absorbed into the third term on the left-hand side there, integrating the resulting inequality
with respect to ¢, and then taking L — oo yields (C2). The proof is complete. O

It turns out that a local version of (C2) is possible only if N < 3. This accounts for the restric-
tion on the space dimension in Theorem 1.1.
At the end of this section, we present the proof of Proposition I.1.

Proof of Proposition 1.1. It is easy to see that m(x,t) € C([0, T]; (LQ(Q))N). By the proof of
Lemma 2.3 in [19], we can conclude that for each ¢ € [0, T'] there is a unique weak solution
p = p(x,1) in the space Wy'*(R) to (1.1) with m(x, ) - Vp(x,1) € L*(£2). Fix a t* in [0, T].
Let {¢;} be a sequence in [0, T'] with the property

tj — 1", (2.18)

Set m; = m(x,t;) and denote by p; the solution of (1.1) with m being replaced by m ;. Obvi-
ously, we have
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mj— m*=m(x,1*) strongly in (L*(©))" as j — oc. (2.19)
‘We claim that we also have

pj — p* = p(x,t¥), the solution of (1.1) corresponding to r = r*,

strongly in L2(Q) as j — oo, (2.20)

and this will be enough to imply the proposition. To see this, note that m; @ m;Vp; =
(mj - Vpj;)m;, and thus we have the equation

—div(Vpj + (m; - Vpj)m;)=S(x) inL. 2.21)

Using p; as a test function, we can easily derive

/|ij|2dx+/(mj .vpj)zdxgc/m(x)ﬁdx. (2.22)
Q Q Q

Thus we may assume that

pj — p weakly in W,">(2) and strongly in L?(2) (2.23)
(passing to a subsequence if need be). This together with (2.19) implies

mj-Vp;—m*-Vp weakly in L' (), and therefore also weakly in L2().

Subsequently, we have

(mj-Vpjm;— (m*-Vp)m* weakly in (L'(2))".
Thus we can take j — oo in (2.21) to obtain

—div(Vp + (m* - Vp)m*) = S(x) in Q. (2.24)

The solution to this equation is unique in Wol’z(Q), and therefore p = p* and the whole sequence
{p;} tends to p* strongly in L*(R2). The proof is complete. O

3. Local estimates

In this section we begin with a derivation of local versions of (2.1) and (2.3). Then we proceed
to prove Proposition 1.3.
Letz=(y,t) € Qp,r > 0 with Q,(z) C Qr be given. Pick a C* function & on RN+ gatis-

fying
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§=1 on Q%r(z),
§=0 off 0,(2),
0<& <1 onQ,(2),

c
10:€] < ok

IVE| < <.
;

Note that m @ mVp = (m - Vp)m. Keep this in mind, while using £2(p — Dy.r(1)) as a test
function in (1.1), to obtain

/ V pl2E2dx + / (m -V p)*E2dx

By (y) B (y)
< 2 c 2 2
<= | Ip=py@Pdx+= [ mPip— py.0)Pdx
r r
B (y) B (y)
+ / ISC)IE2p — py.r ()]dx. (3.1
B (y)

Set My =ess Supg, |p(x, t)|. Then the fourth integral in (3.1) can be estimated as follows:

/ mPlp — pyr () 2dx <2 / m = me Plp — py (1) Pdx
B, (y) By (y)

+2|m.,? / |p — py.r(OPdx
B (y)
§8M§ / |m—mz,,|2dx

B (y)

+2|m - |* / |p — py.r(O2dx. (3.2)

B.(y)
We apply Poincaré’s inequality to the last integral in (3.1) to yield

N+42
2N

/ ISCIE>|p = py.r(D)ldx < / 1S (x)| 742

Br(y) Br(y)

N-2
2N

: / E(p — pyr (1) 72

Br(y)
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N+2
2N

2N
< / Nk
r(y)

C
|2 / |p— py.r(Pdx + / £2|Vp|Pdx

Br(y) B (y)

Cc&
< / &IV pldx + % / 1P — Py ()P

Br(y) Br(y)

_2N
+c(e9)rNJr2 q

D=

(3.3)

for each ¢ > 0. Use (3.3) and (3.2) in (3.1), choose ¢ sufficiently small in the resulting inequality,

and thereby arrive at

/ ¥ pl22dx + / (m -V p)?E2dx

B (y) B (y)
c(1+|mz %) ¢
<—22 [ p—pyr®Pdx+— [ |m—m,|"dx
r r
By (y) B (y)
2N
erV T

Now we use (m — mz,r)é2 as a test function in (1.2) to obtain

d 1
- E|m—mz,r|2§2dx+c / |Vm|?&%dx + / Im|?Y €2dx
B (y) B (y) B (y)

C
< / Im —m_,*dx + E* / (m - Vp)*£*dx

r

B, (y) B (y)

veme, P [ 1vpPEdx tme, [ P Umear.

Br(y) Br(y)

In view of the interpolation inequality ([7], p. 145), we have

Mg, / Im?Y Vmg2dx| <e / |m|27’§2dx+c(8)|mz,r|2”rN, £>0.

Br(y) B (y)

(3.4)

(3.5)

(3.6)

Substitute (3.6) into (3.5), choose ¢ so small in the resulting inequality that the second integral

in (3.6) can be absorbed into the third term in (3.5), then integrate with respect to ¢ to yield
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1
max / —|m —m“|2dx
te[r—%rz,r+%r2] 2

Br

+c / |Vm|?dxdt + / Im|? dxdt
Q%(Z) Q%(z)

<c(mey P+ 1) / V p2e2dxds + / (m -V p)&2dxds
r(z) Qr(Z)

C
+ / lm —m_,|*dxdt + c|m .Y rV 2. (3.7)
Qr(Z)

We are ready to prove Proposition 1.3.

Proof of Proposition 1.3. For each ¢ > 0 we consider the set

rN+e
0,(2)

. 1
He ={z€Qr: lim — / (|m|" +18m|* + |Vm|* + |Vp|* + (m - Vp)z) dxdt =0},
r—

(3.8)

whe;fe d= % if N # 2 and any number bigger than 2 + % if N =2.On account of Lemma 1.1,
we have

PNTE(Qr \ Hy) =0. (3.9)
Thus it is enough for us to show
H, CR, (3.10)

where R is defined in (1.24). We divide the proof of this into several claims. O

Claim 3.1. If z = (v, T) € H,, then we have

sup [m | < oo. (3.11)
r>0

Proof. We follow the argument given in ([6], p. 104). That is, we calculate

—mg | =

d
dp

d
— ][ m(y +¢p, T+ p*w)d¢dw
dp

01(0)



5506 J.-G. Liu, X. Xu / J. Differential Equations 264 (2018) 5489-5526

- ][ (Vm(y 2. T+ p20)C + dm(y + p. T + ,Oza))Zpa)> dedw
N0

< ][ |Vm|dxdt + 2 ][ |0;mp|dxdt
0,(2) 0,(2)

ol—

2
1 2 1 2
<c W |Vm| dxdt +c p_N |aﬂ’l’l| dxdt
0,(2) 0,(2)
1
2 2

1 2 1 5
=T ¢ W / |Vm|“dxdt +c W / |0;m|“dxdt
0,(2) 0,(2)

(3.12)

Here and in the remainder of the proof of Proposition 1.3 the constant ¢ may depend on ¢ and z.
It immediately follows that

) i
mz, p _mz,pz‘ = / %mz,p dp
1
<c ,01i —,027 . (3.13)
Thus the claim follows. O
Claim 3.2. If z € H, then
][ |m — mz,r|2dxdt <crf. (3.14)
0,(2)
Proof. Note that
r+%r2 r+%r2
1 1
My, = 2 / ][ m(x, t)dxdt = 2 / my (t)dt.
r—%rz B (y) t—%rz

That is, m_ , is the average of my ,(t) over [t — %rz, T+ %rz]. Subsequently, we have
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r+%r2
d
Iy (£) — iz | < / 'amy,r«o) do
rf%r2

1
r+%r2 2

<r /][Iawm|2dxda) ,

‘L'—%r2 B, (y)

from whence follows

r+%r2

1 ) c ,
2 Iy () =me,Pdt < —=5 [ 1im|dxd.

12 0, (2)
In view of Poincaré’s inequality ([4], p. 141), we have
][ |m — my,r(t)|2dx <cr? ][ |Vm|2dx.
Br(y) B (y)
We compute

T 2

,
1
][ |m — mz,,|2dxdt == ][ |m — mz,r|2dxdt
r
0,(2) r—%r2 B (y)

—r

T+%r2
2 2
<= |m —my (t)|"dxdt
r
r—%rz B, (y)
t+%r2

2 2
+ﬁ lmy (1) —mg ,|"dt

T—5r

C C
<5 / |Vm|2dxdt+rN—_2 / |0, m|*dxdt

0r(2) 0r(2)
cre.

IA
™

This completes the proof. O
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(3.15)

(3.16)

(3.17)

(3.18)

Claim 3.3. Let 7 € H;. Then for each a € (0, min{ﬁ, %}] there is a positive number ¢ such

that

2a+2)e
max ][ lm —my (O dx <cra .
te[r—%rz,r+%r2]

Br(y)

(3.19)
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Proof. It follows from (3.18) and (3.7) that

max ][ lm —my ,(t)dx < cr®. (3.20)
Z‘E[‘L’f%rz,‘bi*%rz]B .
r(y

Note that the corollary in ([15], p. 144) is not applicable here. We offer a direct proof. To this
end, we estimate from Poincaré’s inequality that

r+%r2
1 )
— |m —my )|V " dxdt

r
t—%rz Br(y)

12 ¥ N2
1 2 2N
< 2 lm —my ,(t)|"dx |m —my ()| N-2dx dt
r—%rz B (y) B (y)
2
N
<c max |m —my,r(t)|2dx
relr—1r2 1442
B (y)
—3r?
/ ][ |Vm|?dxdt < cr® (3.21)
=12 B ()
Leta € (0, min{ﬁ, %}] be given. For r € [t — §r T4+ 5 rz] set
£ = ][ i — my ()P dx.
B (y)
Observe that
m— my‘r(t)|2+20l S 220!-‘1-1 |m|2+2a + |m|2+20ldx , (322)
B (y)
2
'dtmy (1) ]l [o;mldx | < ][ |8,m|2dx. (3.23)
() B (y)

Keeping these two inequalities in mind, we calculate that
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d
=2+4a) ][ |m_my,r(t)|a(m_my,r(t))'E(m_my,r(t))dt

()

e
A0

d
<c ][ =y O = om0l

By (y)
1 1
2 2
20042 d 2
<c |m —my ()] dx |0ym — Emy,r(m dx
Br(y) Br(y)
1 1
2 2
<c ][ Im|?*2dx ][ |om|>dx | . (3.24)
B (y) Br(y)

Note that 2 + 2o < d, where d is given in (3.8). We estimate

r+%r2
1
mx 0 mx G0 [ Ao
reft—1r2t4+4r2) relv—1r2 04402 r
f—%rz
T+%72
1
= | fdo
r
T—4r2
r+%r2 r—i—%rz

d 1
< / ‘Efrm i+ / £ @dt

T—4r2 L
1 1
2 2
<c L Im|2* 2 dx € [0,m|>dx
= I‘N rN t
0r(2) 0,(2)
r+%r2
+ / ][ Im —my ()% 2dxdt
r
=12 B (y)
2042 1
2d 2
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2+a
r+%r2 2+
+| 5 / ][ lm —my, ()| ¥ 2dxdt
r
'[——rz Br(y)
<cr e +erf+D) < ¢ e (3.25)
The proof is complete. 0O
Claim 3.4. If z € H,, then there is €1 > 0 such that
Ar(2) Scrfl. (3.26)
Obviously, this claim implies (3.10).
Proof. Let z = (v, t) € H, be given. Fix r > 0 with Q,(z) C Q7. Set
wy =m —my ,(t). (3.27)
Note that
m@m=(m— my,r(t)) Q@m +my,r(t) ® (m — my,r(t))
+my,r(t) ®my,r(t)
=w,Q@m +my,r(t) @ wy +my,r(t) ®my,r(t)~
Thus p satisfies the system
—div[({ + my,r(t) ® my,r(t))vp]
=div[(m - Vp)w,] +div[(w, - Vp)my ()] + Sx) in Q,(2). (3.28)

Here we have used the fact that (w, ® m)Vp = (m - Vp)w,. We decompose p into  + ¢ on
0 (2) as follows: 7 is the solution of the problem

~div[(I +my, (1) @my (1)Vn] =0

. 1 2 1 2
in B-(y), t €[t — Er , T+ Er 1, (3.29)

1 2 1 2
n=p ondB,(y), te[r—ir ,T+§r 1, (3.30)

while ¢ is the solution of the problem
—div [(I +my (1) ® my,r(t))Vd)] =div[(m - Vp)w,] + div [(wr . Vp)my,r(t)]
1 1
+S8(x) in B:(y), t €[t — 5r2, T+ 5r2], (3.31)

1 1
$=0 ondB.(y), t €[t — 72]’ T+ 5r2 (3.32)
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Recall from (3.15) that

|my,r(t)| = |my,r(t) —my |+ |mg |

1

2
— / |aym|*dxdt | + |m..,|. (3.33)
Qr(Z)

IA
Q

By Theorem 2.1 in ([6], p. 78), there is a positive number ¢ depending only on sup,_q |my ,(2)]
such that

][ [n— 1yl dx<c ][ In — ny,rI%dx (3.34)

B, (y) Br(y)

foral0<p<R<randt e[t — %rz, T+ %rz]. On the other hand, another classical regularity
result [13] for linear elliptic equations with continuous coefficients asserts that for each s €
(1, 00) there is a positive number ¢ with the property

IVolls < clim - Vp)w,lls +cll(wy - Vp)my ()]s

1 1
S|y, t e[t —=r? T+ =2 (3.35)
s+N 2 2

Note that the constant ¢ here is also independent of r. We remark that in general the above
inequality is not true for s = 1. This is why Claim 3.3 is crucial to our development. Obviously,
if we replace m; , by my ,(¢) in (3.4), the resulting inequality still holds. This implies

1
[rax N2 / (|VP|2+(m-Vp)2) dx <c. (3.36)
1.2 1271V
te[r—ir JTH3T ]
Br(y)
We can easily find a s € (1,2) so that
25 4= 1) 2 4
=2 <2 =} 3.37

We estimate

1
S / [ - V pyw, | dx

max
te[r—%rz,r+%r2]
B (y)
s
2
< max =3 /(m Vp)zdx
te[r——r2 T+5 r2]r

B (y)
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2—s
=
1 25
max — |wy|2=sdx
12 12N
te[‘rfir \T+5r 1
By (y)
2—s
=
1 25
<c max — |wy|2=5dx
1o 1o N
te€[t—5r-,t+5r7]
B, (y)
(2=9)Qa+2)e
<cr 2d , (3.38)

where ¢ = 4(25;1). Similarly, we have

/ [(wy 'Vp)my,r(t)lxdx

max N s
te[r—%rz,r+%r2] r
By (y)
s
2
1
< max — |Vp|2dx
1,2 12 rN=2
te[t—5r°,t+517] B0
(Y
2-s
2
1 25
max |wy |25 dx
te[f—irz,r+7r2] r
Br(y)
2-s
2
1 25
<c max |wy| 2= dx
teflt—5r2 1451217
B (y)
(2—5)(2a+2)e
<cr 22 (339)
s+N
N
1 Ns
e |S ()| W5 dx
r(y)
s
q
1 _Ns N
<= | [ s@eax | P <ot (3.40)
r —S
Br ()
To summarize, we have
1 . (2=5)Qa+2)e _N
max : Vo[ dx < ™t 30+ sC@= ) (3.41)
tefe—Lr2 oyl rN s
A 2

B (y)

It follows from Poincaré’s inequality that
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1

Ns

s s 1 s
fo-soifsar| sl fverar| —cf = [ 1veras

() (V) B (y)

K

o=

(3.42)

Remember that |¢]lco < [|7llec + | Pllcc < 2|l plloc- Hence we can always find a positive number
&1 € (0,2) so that

max ][ g — py.r()|Pdx < cr®l. (3.43)
ze[r—%r2,1+%r2]B ®

For 0 < p <r we derive from (3.34) and (3.43) that

/ |p — Py, p(0)*dx

Bp(y)
<2 / 17— 1y (1) P +2 / 16 — . (1)
By (y) By (y)
0 N+2
sc(;) /|n—ny,r(z>|2dx+2 / |6 — ¢y, (D) dx
Br(y) B, (y)
N+2
=c(%) / 1P = Py (O2dx +cr e, (3.44)
B, (y)

Here we have used the fact that f By(») | — oy (1) |2dx is an increasing function of p. We set

o(r) = max ]/|p—py,,(z)|2dx.

relr—1r2t4+5r2 )
- (y

We easily infer from (3.44) that

o(p)=<c (?)NHU(r) 4 crN e (3.45)

for all 0 < p <r. This puts us in a position to apply Lemma 2.1 in ([6], p. 86), from whence
follows

o(p)=c (p)Nm o (r) +cpN e (3.46)

r

for all 0 < p <r. This gives the claim. O
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4. Proof of Proposition 1.2

In this section we present the proof of Proposition 1.2. We would like to remark that the proof
of this proposition is more challenging than that of Proposition 1.3 mainly because we do not
have a local estimate for d,m or a local L* estimate for p. This also causes us to impose the
restriction N < 3. Note that this restriction is not needed in Propositions 1.1 and 1.3.
Proof of Proposition 1.2. We argue by contradiction. Suppose that the proposition is false. Then
for some M > 0 (1.15) and (1.16) fail to hold no matter how we pick numbers &, § from the
interval (0, 1). In particular, we can choose a sequence {¢;} C (0, 1) with the property

e —>0 ask— 0. “4.1)

The selection of § from (0, 1) is more delicate, and it will be made clear later. Let § be chosen as
below. For each k there exist cylinders Q,, (zx) C €27 such that

Mzl <M and E, (zx) < &, 4.2)
whereas
1
Esr (zk) > EErk(Zk)a k=1,---. (4.3)
Set
i = Ep, (2).
Then (4.1) asserts

A — 0 ask — oo.

We rescale our variables to the unit cylinder Q1(0), as follows. If z = (y, 7) € Q1(0), write

. POk +rey, T +’"]%f) — Py (T +r,37:)

Yr(y, t) = 5 , “4.4)
k

ni(y, ©) =m(ye + rey, o + g0, 4.5)

wi(y, 7) = ’M\% (4.6)

We can easily verify

1
max [ vR0.ndy = AL <1
vel-3.3] M

!
[ e nPaydr = s [ e = Pxdr <1,
01(0) Kk 0 @
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but

1 ) 1 5
N2 / lwk — (wi)o,s"dydt + S_NTG[_T??LBz] / 1Yk — (Wr)o,s(T)|dy
292
05(0) Bs(0)
827
i S-S 4.7)
22

Here and in what follows we suppress the dependence of ¥, wy, ng on (y, ) for simplicity of
notation. Our plan is to show that the lim sup of the left-hand side of the above inequality as
k — 0o can be made smaller than % if we adjust § to be small enough, and thus the desired
contradiction follows.

We easily see from the definition of A that

82ﬁr]§ﬁ

< 8%, (4.8)
2
)‘k

To analyze the first two terms in (4.7), we first conclude from the proof in [3] that Y (y, 7),
wi (v, T) satisfy the system

2
— Ay — div[(ng - Vngl = ;—iS(yk +ry) = Fi(y) in 01(0), 4.9

dwr — D*>Awg — E*Ap(nge - V) Vi + |nk|2<V Vg =0 in 01(0).  (4.10)

We can infer from (3.4) that

IV *dydt + / Ink - V| *dydt <c. (4.11)
Q%(O) 0100

2

Similarly, we can derive from (3.7) that

8

2 2
r
/|wk|2dy+ / |Vwr|*dydt + /\—"2 / |nk|2ydydr§c+c)\—k2§c. (4.12)
Bl<0) 0,0 ko010 k

BIl—

Consequently, we have

2 1
2}%1 2?1 rl? o rl? 2y
dydt = 2 2 |nk|“"dydt
k ko010

2 2

— 0 ask— 0. (4.13)

|nk|
A
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This together with (4.10), (4.11), and (4.12) implies that the sequence {0, wy} is bounded in
Lz(—%, %; W=L2(B1(0)) + Ll(Ql (0)). By a well-known result in [14], wy is precompact in
2 2

L*(Q 1 (0)). Passing to subsequences if necessary, we have

mzk’rk —a,
ng = hwg +my, ,, — a strongly in L2(Q1(0)),

wy — w strongly in LZ(Q% (0))

and weakly in L*(— 3, & WI’Z(B% 0))),

Y — ¢ and weakly in L?(—§, & WI’Q(B%(O))).

In view of (4.11) and (4.13), we can send k to infinity in (4.10) to obtain
9;w—D*Aw =0 in 0100
in the weak, and therefore classical sense. It follows from (4.15) and (4.17) that
n Vir — aViy weakly in LI(Q% 0)),
and therefore weakly in L*(Q 1 (0)) due to (4.11). This, in turns, implies
(ke Vi)ng — aVira weakly in Ll(Q% 0)).

We estimate the last term in (4.9) as follows

2q
[ 1mtay =" [ 5o niay
B1(0) NGO
r,?q_N
= )\-Z / [S(x)|9dx
By, (k)
Pl ge-Y-p  qe-Y2-p
§cﬁrk <cr, — 0.

The last step is due to (1.9). We are ready to let k£ go to infinity in (4.9), thereby obtaining

—div[(I +a®a)Vy]=0 in 0}(0).

(4.14)
(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

Remember that a is a constant vector. By the classical regularity theory for linear elliptic equa-

tions, there exist ¢ > 0, o € (0, 1) determined only by M and N with the property
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max ][ ¥ —vos(Pdy < max 5™ ][ ¥ — o 1 (@OFPdy < 8™
2’_52] ] ’

Te[-518 Te[— 4162, 582

Bs(0) B% )
(4.23)
for all § < %. Subsequently,
1 2 20
v  max [ — Yo,s(T)|"dy < cé (4.24)
8% rer-1152,162)
Bs(0)

forall0 < < L—IL. It is also well-known (see, e.g., Claim 1 in [17]) that there exist ¢ > 0, « € (0, 1)
determined only by N, D such that

][ lw — wo s|*dydt < c8* ][ lw — w, %|2dydr <5 (4.25)
05(0) Q% 0)

forall0 <é < %.

If we could pass to the limit in (4.7), this would result in the desired contradiction. What
prevents us from doing so is the lack of compactness of the sequence {y} in the t-variable. To
circumvent this problem, we fix a suitably small number % > 8o > 0 and consider the decompo-
sition Y = ng + ¢ on Qs,(0), where 7y is the solution of the problem

. . 1,1
—div[(I +myp, @mz ,)Vik] =0 in By (0), T € [—553, E53], (4.26)

1,1
N =i on dBs,(0), re[—isg,iag], (4.27)

while ¢ is the solution of the problem

—div[(I +myy p @ myy ) Vr] = hidiv((ng - V) wi) + Adiv((wy - Vrdme, r,)

1,1

+F in Bs,(0), T € [—553, E53], (4.28)
1,1

¢ =0 ondBs,(0), t e[—Eag,E(sg]. (4.29)

We will show that {¢y} is precompact in L°(— %88, %85; LZ(B,sO (0))), and this is enough for our
purpose in spite of the fact that {n;} may not be precompact in the preceding function space. To
see this, we first infer from (3.4) that

max /|vwk|2dy+ /(nk-Vwk)zdy <c+ max /|wk|2dy§c. (4.30)
Tel—55.55] rel—§.4]

- B (0) B (0) B1(0)

4 4 2

|—
=
el

s

®l

Using nx — ¥ as a test function in (4.26) yields
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max. / VPdys  max o / IV 2y <. 431)
_152 142 152 142
T€[-285.3 O]B(SO(O) T€[—585. 3651 By (0)

Note that (4.26) is an uniformly elliptic equation with constant coefficients. The classical regu-
larity theory asserts that there exist ¢ > 0, « € (0, 1) depending only on M, N such that

1
¥ / Ink — (n)o,s(T)*dy < c8* ][ 11k — (M)0.s, (T)*dy
B (0) Bs, (0)

<828} ]l |Vnel2dy < 8% (4.32)

Bs, (0)

for all § < 18o.
Now we turn our attention to the sequence {¢}. We wish to show

¢x — 0 strongly in L%(—182, 162 L(Bs, (0))). (4.33)

This is where the subtlety of our analysis lies. We observe from (4.30) that

2N
max. / [V N-2dy <c. (4.34)
rE[_ﬁ’ﬁ]laj_t(m

In view of (4.31), {¢«} also satisfies the above estimate. By the interpolation inequality ([6],
p. 146)

ldr (-, D2 < ellge (-, f)ll% +c@®llge(-, D, €>0, (4.35)
it is sufficient for us to show

max / |ox (v, T)|dy — 0 as k — oo. (4.36)
cel-433. 43

B50 (0)
Note that the elliptic coefficients in (4.28) are constants. This puts us in a position to invoke the
classical W5 estimate for ¢k That is, for each s € (1, 0o) there is a positive number ¢ with the

property

(4.37)

IVorlls < chell(mg - Vi wills + el ((wi - Vrdme, r s + cll Fill sn .

s+N

Remember that (4.37) does not hold for s = 1. To find a s > 1, we will show that thereisa 8 > 0
such that

max lwi (v, )PPy < c. (4.38)
_ 12 162
€[ 250,280]
By, (0)
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Obviously, this will imply that

max  ([1(ng - Vg wills + [ (w - Vimz, e lls) < ¢ (4.39)

vel=385.335]

for some s > 1. Consequently, the right-hand side of (4.37) goes to 0 as k — oco. To establish
(4.38), we will develop a suitable local version of (C2) in Proposition 2.1. This effort is compli-
cated by the fact that a local version of (C1) in the proposition is not available. The remaining
part of this section will be dedicated to the proof of (4.38), which will be divided into two
claims.

Claim 4.1. We have:

/ [V Ve Pdydt + / (ni - V) 1y P dydt < c. (4.40)
01(0) Qé(O)

oall

Proof. Let & be a C™ function on RY x R with the properties
&£ =0 outside Q1(0), and “4.41)
£ €[0,1] in Q1(0). (4.42)
Upon using w,f’é‘z as a test function in (4.9), we deduce
| wvwnigdy s [ o vntviga
B1(0) B1(0)

<c / YRIVEPdy + ¢ / I |2yt IVEPdy + / | Fiel W &% dy. (4.43)

B1(0) B1(0) B1(0)

Observe that

x| < c. (4.44)

Subsequently, we have

2,4 2.4
[nk ¥ = |Akwr + my |79
2,4, 0 4

<200 lwe|” + ey

22 4
= cyilwil” + ey

2N

<7 +clwelN + ey (4.45)
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We estimate from (4.12) and the Sobolev Embedding Theorem that

2 N=2
1 N N
8
244 2 o
lwe|""Ndydt < lwi|“dy lwi|¥-2dy dt
01(0) _% B1(0) B1(0)
2 2 2
~
<c max |wk|2dy
re(—§. %)
B1(0)

/|Vwk|2dydt+ / |wi|*dydt

010 0,10
2 2
<c. (4.46)
Our assumption on the space dimension N implies
4 2N
N <2+ —, >4,
N N-=2
By virtue of (4.30), we obtain
2AN=2)
N
2N
[ viav=e| [ v
B (0) B (0)
7 7
2
2 2
sc| [ vwrs [ i
B1(0) B1(0)
7 7
<c foreacht € [—3%, 3%]. 4.47)
We finally arrive at
/ i |*yidydt <c. (4.48)
210
4
Recall that g > % Then we have (N-',-ZZ)% < % Keeping this in mind, we calculate

from (4.21) that
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2 2 2
I Feud 1o < I1F%lly, gy o) 1VREN 2wy
Nt2 (N+2)q—2N

2
<cllYréll o
N2

<c / VYl *&2dy + ¢ / [Val?|VE [Pdy. (4.49)
B1(0) By (0)
The last term in (4.43) can be estimated as follows

/ |Fiel | PE%dy < | i || an I1WEEN an
N+2 N-=-2

B1(0)

< el Fedié | IVWRE) 2

<SIVEEOI3 + c(a)qumsnzN%, §>0. (4.50)

Substituting this and (4.45) into (4.43) and choosing § suitably small in the resulting inequality
yield

/ [y Ve 262 dy + / (i - V)2 2E2dy

B1(0) B1(0)

<c / YLIVEPdy + ¢ / |nk|2w,‘§|VS|2dy+c||Fk1/fksn2N2N2. (4.51)
+
B1(0) B1(0)

Integrate this inequality over [—11%, llﬁ], then choose & suitably, i.e., £ =1 on Q1(0) and 0
8
outside Q 1 (0), and thereby obtain the claim. O

Fix K > 0. Define
+
Vg = (|wk|2 — Kz) + K2

Claim 4.2. There is a 8 > 0 such that

Jwy |2
max / / [(s — KD + K2Pdsdy <. (4.52)
relsmsmly o)
16

Obviously, this claim implies (4.38).

Proof. Let & be given as in (4.41)—(4.42) and 8 > 0. We may assume that w; € L*°(Q2r) for

each k. (Otherwise, we use the cut-off function in (2.13).) Then the function vf wrElis a legiti-
mate test function for (4.10). Upon using it, we derive
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1 DB -1
3 / WP E20, lwiPdy + D? / U£§2|Vwk|2d)’+7 / Ve v Pdy
B1(0) B1(0) B1(0)

2
.
+D? / vawkwkZEVSdY“‘i / i 27~V ngof wes2dy
B1(0) B1(0)

= E%) /(nk'Vlﬁk)Vlﬂkvfwk%de
B1(0)

Note that

2 2
r _ r _
7’; / |2 1>nkv£wk$2dy=r§ / 20 Vngof (g — my, )82y

B1(0) N0

r/% 2y Bs2
=)L_2 / |nil Vka dy
kB0

B

2

r

k 2(y—1 2
Y Ingl 4 )nkvkmzk,rkg dy

*B1(0)

”13 2y B2 r/? Bs2
> Ing|= v & dy—c)\— / v E°dy.

2

=252
k1) k1)

Now we analyze the last term in (4.53) to obtain

M / (k- V) Vb wgdy = / (nk - VY Vvl (ng —my, ,)E2dy
B1(0) B1(0)

= / (i - V) ol £2dy

B1(0)

- / (nk'VWk)Vwkv[émzk,rk$2dy

B1(0)

<2 / (n - V) L E2dy

B1(0)

+c / Vil vf 2dy.

B1(0)

Combining the preceding three estimates gives

(4.53)

(4.54)

(4.55)
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5523
|w|?
2de / /[‘s K*)*+ K dsg?dy + D? / of €2V uy2dy
B 0 B (0)
2'3 B—1g2 2 r]% 2 B2
N / Ve §7IVud dy+g / e v &°dy
B (0) B1(0)
[we)?
<c / /[(s K)Ht + K*Pdsgoedy + ¢ / vflwklzlvélzdy
B1(0) B1(0)
+C;—% / vfézdy—l—ZEz /(nk'vl/fk)zvfézdy—}—c / |VWk|2Uf$2dy. (4.56)
B1(0) B1(0)

B1(0)

To estimate the last two terms in the above inequality, we use wkv,’f 52 as a test function in (4.9)
to obtain

/ Vol e2dy + / Vv Bul T v eldy + / Vvl 26 VEdy

B1(0) B1(0) B1(0)

(- VYWl E2dy + | (- Vomeur ol Vugldy

B1(0) B1(0)

4 / (i - Voo 26 Vedy

B1(0)
- / Feypvl €2dy. (4.57)
B1(0)

Observe that

_ D? _
| Ve vugar| < o [ o Evulay
1(0) B1(0)
B—1.2 2
+cp / v, E° VUl dy
B1(0)

_16E2ﬁ / ve  EX|Vul*dy

B1(0)
+eBK2PTD £V *dy. (4.58)
B1(0)
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Here we have used the fact that vy > K2 and B < 1. The fifth integral in (4.57) can be estimated
as follows.

-1
< emh / vf e Vue Pdy
1(0) B1(0)

p—1 2 D’
(g - VYo, Vurgdy| < ——
—1
+cp / eyl g - V)ldy.  (4.59)
B1(0)
Remember
Ik |2WE = hwwi + mey 27

< 22w PYE + ey}

< clwg]® + cyf (4.60)

and vffl lwe | < vf. Consequently,

2
1 D |
[ o vvomanpif " Vugay < o [ o Eivulay
1(0) B1(0)

tep / WP (ny - V) dy
B1(0)

FeBKAD / Ey2ne -V dy.  (461)
B1(0)

Using the preceding estimates in (4.57)

/ VPl E2dy + (1= cB) / (ni - V2ol €2y

B1(0) B1(0)

D? _
<P / VT E |V Pdy + cBRPED / 2|V 2dy
B1(0) B1(0)

4 eBK2AD / E292(ng - V) dy + ¢ / oL Y2IVEPdy

B (0) B1(0)

te / of w2 VEPdy + / Fiyol €2dy. (4.62)
B1(0) B/ (0)
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Plugging this into (4.56) and choosing B suitably small in the resulting inequality, we ob-
tain

lwl?
1d
Ed_/ /[(s—1r<2)++1(2]/3dsg2dy+02 / v 2|V Pdy
T
B1(0) 0 B1(0)
D’ B—1.2 2 r/? 2y B2
+T Uy &7 V| dy—i‘p [kl Uké dy
B1(0) kg0
lw?
<c / / [(s — KT+ K*Pdsgd.Edy + ¢ / of [wie 2 VE[2dy
Bi(0) 0 B1(0)

2
.
+C7k2 / v E2dy + cfK>PFD / £Vl Ady

kBl(O) B1(0)
FepKAAD / Ey2(ne - Vi) Pdy + ¢ / P Y2IVERdy
B1(0) B (0)
+ / Fiyol €2dy. (4.63)
B1(0)

In view of (4.46), (4.47), and (4.49), if B is sufficiently small, we have

Jwy |2
/ (s — KHt + K*VPdsdydr <,
0100 0
2

/ v£|wk|2dydr <c,
010

(S}

/ viyddy <c forte[—1, L1,
B1(0)

[S']

/ Fiynvpdy| <c forte[—1, L1.
10
2

Integrate (4.63) with respect to 7, choose & suitably, and remember Claim 1 to yield the desired
result. O

This finishes the proof of Proposition 1.2. O
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