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Abstract

In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study 
of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar 
pressure of the underlying biological network coupled to a diffusion equation for the conductance vector 
of the network. There are several different types of nonlinearities in the system. Of particular mathematical 
interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial 
function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the 
system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. 
In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain 
a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of 
possible singular points.
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1. Introduction

Let � be a bounded domain in RN and T a positive number. Set �T = � × (0, T ). We study 
the behavior of weak solutions of the system

−div [(I + m ⊗ m)∇p] = S(x) in �T , (1.1)

∂tm − D2�m − E2(m · ∇p)∇p + |m|2(γ−1)m = 0 in �T (1.2)

for given function S(x) and physical parameters D, E, γ with properties:

(H1) S(x) ∈ Lq(�), q > N
2 ; and

(H2) D, E ∈ (0, ∞), γ ∈ ( 1
2 , ∞).

This system has been proposed by Hu and Cai ([10], [11]) to describe natural network formula-
tion. Then the scalar pressure function p = p(x, t) follows Darcy’s law, while the vector-valued 
function m = m(x, t) is the conductance vector. The function S(x) is the time-independent 
source term. Values of the parameters D, E, and γ are determined by the particular physical 
applications one has in mind. For example, γ = 1 corresponds to leaf venation [10]. Of partic-
ular physical interest is the initial boundary value problem: in addition to (1.1) and (1.2) one 
requires

m(x,0) = m0(x), x ∈ �, (1.3)

p(x, t) = 0, m(x, t) = 0, (x, t) ∈ �T ≡ ∂� × (0, T ), (1.4)

at least in a suitably weak sense; here the initial data should satisfy

m0(x) = 0 on ∂�.

The existence of weak solutions of this initial boundary value problem was proved by Haskovec, 
Markowich, and Perthame [8]. However, the regularity theory remains fundamentally incom-
plete. In particular, it is not known whether or not weak solutions develop singularities.

Let us call a point (x, t) ∈ �T singular if m is not Hölder continuous in any neighborhood of 
(x, t); the remaining points will be called regular points. By a partial regularity theorem, we mean 
an estimate for the dimension of the set S of singular points. It is well-known that weak solutions 
to even uniformly elliptic systems of partial differential equations are not regular everywhere. 
We refer the reader to [6] for counter examples. Thus it is only natural to seek partial regularity 
theorems for these weak solutions. The system under our consideration exhibits a rather peculiar 
nonlinear structure. The first equation in the system degenerates in the t -variable and the elliptic 
coefficients there are singular in the sense that they are not uniformly bounded above a priori, 
while the second equation contains the term (m · ∇p)∇p, which is a cubic nonlinearity. Thus 
the classical partial regularity argument developed in ([6], [1]) does not seem to be applicable 
here. Our system does resemble the so-call thermistor problem considered in ([16–18]). The key 
difference is that the elliptic coefficients in the preceding papers and also in [6] are assumed to 
be bounded and continuous functions of solutions. As a result, the modulus of continuity can be 
taken to be a bounded, continuous, and concave function. This fact is essential to the arguments 
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in both [16] and [6]. Our elliptic coefficients here are quadratic in m, and thus a new proof must 
be developed.

Definition. A pair (m, p) is said to be a weak solution if:

(D1) m ∈ L∞(0, T ; 
(
W

1,2
0 (�) ∩ L2γ (�)

)N

), ∂tm ∈ L2(0, T ; (L2(�)
)N

), p ∈ L∞(0, T ;
W

1,2
0 (�)), m · ∇p ∈ L∞(0, T ; L2(�));

(D2) m(x, 0) = m0 in C([0, T ]; (L2(�)
)N

);
(D3) (1.1) and (1.2) are satisfied in the sense of distributions.

A result in [8] asserts that (1.1)–(1.4) has a weak solution provided that, in addition to assuming 
S(x) ∈ L2(�) and (H2), we also have

(H3) m0 ∈
(
W

1,2
0 (�) ∩ L2γ (�)

)N

.

Note that the question of existence in the case where γ = 1
2 is addressed in [9]. In this case the 

term |m|2(γ−1)m is not continuous at m = 0. It must be replaced by the following function

g(x, t) =
{ |m|2(γ−1)m if m 	= 0,

∈ [−1,1]N if m 	= 0.

Partial regularity relies on local estimates [6]. One peculiar feature about our problem 
(1.1)–(1.4) is that certain important global estimates have no local versions. This is another 
source of difficulty for our mathematical analysis. We are ready to state our main result:

Theorem 1.1. Let (H1)–(H3) be satisfied. Assume that N ≤ 3. Then the initial boundary value 
problem (1.1)–(1.4) has a weak solution on �T whose singular set S satisfies

PN+ε(S) = 0 (1.5)

for each ε > 0.

Here Ps , s ≥ 0, denotes the s-dimensional parabolic Hausdorff measure. Recall that the s-
dimensional parabolic Hausdorff measure of a set E ⊂R

N ×R is defined as follows:

Ps(E) = sup
ε>0

inf{
∞∑

j=0

rs
j : ∪∞

j=0Qrj (zj ) ⊃ E, rj < ε},

where Qrj (zj ) are parabolic cylinders with geometric centers at zj = (yj , τj ), i.e., one has

Qrj (zj ) = Brj (yj ) × (τj − 1

2
r2
j , τj + 1

2
r2
j )

with
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Brj (yj ) = {x ∈R
N : |x − yj | < rj }.

It is not difficult to see that Ps is an outer measure, for which all Borel sets are measurable; on its 
σ -algebra of measurable sets, Pk is a Borel regular measure (cf. [5], Chap. 2.10). If Ps(E) < ∞, 
then Ps+ε(E) = 0 for each ε > 0. We define the parabolic Hausdorff dimension dimPE of a 
set E to be

dimPE = inf{s ∈R
+ :Ps(E) = 0}.

Then Theorem 1.1 says that

dimPS ≤ N. (1.6)

Hausdorff measure Hs is defined in an entirely similar manner, but with Qrj (zj ) replaced by 
an arbitrary closed subset of RN × R of diameter at most rj . (One usually normalizes Hs for 
integer s so that it agrees with surface area on smooth s-dimensional surfaces.) Clearly,

Hk(X) ≤ c(k)Pk(X) for each X ⊂R
N ×R. (1.7)

To characterize the singular set S, we will need to invoke the following known result.

Lemma 1.1. Let f ∈ L1
loc(�T ) and for 0 ≤ s < N + 2 set

Es = {z ∈ �T : lim sup
ρ→0+

ρ−s

ˆ

Qρ(z)

|f |dxdt > 0}.

Then Ps(Es) = 0.

The proof of this lemma is essentially contained in [1].
A key observation about our weak solutions in the study of partial regularity is the following 

proposition.

Proposition 1.1. Let (H1)–(H3) be satisfied and (p, m) be a weak solution to (1.1)–(1.4). Then 
we have

p ∈ C([0, T ];L2(�)). (1.8)

The proof of this proposition will be given at the end of Section 2.
Let (m, p) be a weak solution. In view of ([3],[16]), to establish Theorem 1.1, we will need to 

define a suitable scaled energy Er(z) for our system. For this purpose, let z = (y, τ) ∈ �T , r > 0
with Qr(z) ⊂ �T and pick

0 < β < min{2 − N

q
,1}, (1.9)

where q is given as in (H1). We consider the following quantities:
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py,r (t) = −
ˆ

Br(y)

p(x, t)dx = 1

|Br(y)|
ˆ

Br (y)

p(x, t)dx, (1.10)

mz,r = −
ˆ

Qρ(z)

m(x, t)dxdt, (1.11)

Ar(z) = 1

rN
max

t∈[τ− 1
2 r2,τ+ 1

2 r2]

ˆ

Br (y)

(p(x, t) − py,r (t))
2dx. (1.12)

The right choice for Er(z) seems to be

Er(z) = 1

rN+2

ˆ

Qr(z)

|m − mz,r |2dxdt + Ar(z) + r2β . (1.13)

The last term in Er(z) accounts for the non-homogeneous term S(x) in (1.1). Due to the fact that 
the first equation (1.1) does not have the ∂tp term, we are forced to use the term Ar(z) instead of 

1
rN+2

´
Qr(z)

|p−pz,r |2dxdt in Er(z). This will cause two problems: one is that in our application 
of the classical blow-up argument ([3],[6],[16]), the resulting blow-up sequence is not compact 
in the desired function space; the other is the characterization of the singular set S. That is, it is 
not immediately clear how one can describe the set

�T \ {z ∈ �T : lim
r→0

Ar(z) = 0} (1.14)

in terms of the parabolic Hausdorff measure. (Note that this issue is rather simple in the context 
of [16].) To overcome these two problems, we find a suitable decomposition of p. This enables 
us to show that the lack of compactness in the blow-up sequence does not really matter. To be 
more specific, we obtain that the blow-up sequence can be decomposed into the sum of two 
other sequences, one of which converges strongly while the terms of the other are very smooth 
in the space variables, and this is good enough for our purpose. This idea was first employed in 
[16]. However, as we mentioned earlier, the nature of our mathematical difficulty here is totally 
different. A similar decomposition technique can also be used to derive the parabolic Hausdorff 
dimension of the set in (1.14).

The key to our development is this assertion about energy:

Proposition 1.2. Let the assumptions of Theorem 1.1 hold. For each M > 0 there exist constants 
0 < ε, δ < 1 such that

|mz,r | ≤ M and Er(z) ≤ ε (1.15)

imply

Eδr(z) ≤ 1

2
Er(z) (1.16)

for all z ∈ �T and r > 0 with Qr(z) ⊂ �T .
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The proof of this proposition is given in Section 4. It relies on the decomposition of the 
function p we mentioned earlier. An immediate consequence of this proposition is:

Corollary 1.1. Let the assumptions of Theorem 1.1 hold. To each M > 0 there corresponds a 
pair of numbers δ1, ε1 in (0, 1) such that whenever

|mz,r | < M

2
and Er(z) < ε1 (1.17)

we have

Eδk
1r (z) ≤

(
1

2

)k

ε1 for each positive integer k. (1.18)

Proof. We essentially follow the proof of Corollary 3.8 in [16] (also see [6]). Let M > 0 be 
given. By Proposition 1.2, there exist 0 < ε, δ < 1 such that (1.15) and (1.16) hold. We claim that 
we can take

δ1 = δ, (1.19)

ε1 = min

⎧⎨
⎩ε,

(
MδN+2(

√
2 − 1)

√
ωN

2δN+2 + 2
√

2

)2
⎫⎬
⎭ , (1.20)

where ωN is the volume of the unit ball in RN . To see this, let (1.17) hold. Obviously, (1.18) is 
satisfied for k = 1. Now for each positive integer j suppose (1.18) is true for all k ≤ j . We will 
show that it is also true for k = j + 1. To this end, we integrate the inequality

|mz,δi r − mz,δi−1r | ≤ |mz,δi r − m(x, t)| + |m(x, t) − mz,δi−1r |

over Qδir (z) to derive

|mz,δi r − mz,δi−1r | ≤ −
ˆ

Q
δi r

(z)

|mz,δi r − m(x, t)|dxdt

+ 1

δN+2 −
ˆ

Q
δi−1r

(z)

|m(x, t) − mz,δi−1r |dxdt

≤
⎛
⎜⎝ −
ˆ

Q
δi r

(z)

|mz,δi r − m(x, t)|2dxdt

⎞
⎟⎠

1
2

+ 1

δN+2

⎛
⎜⎝ −
ˆ

Q (z)

|m(x, t) − mz,δi−1r |2dxdt

⎞
⎟⎠

1
2

δi−1r
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≤
(

1

ωN

Eδir (z)

) 1
2 + 1

δN+2

(
1

ωN

Eδi−1r (z)

) 1
2

≤
(

1

ωN

(
1

2

)i

ε1

) 1
2

+ 1

δN+2

(
1

ωN

(
1

2

)i−1

ε1

) 1
2

,

i = 1, · · · , j. (1.21)

Subsequently, we have

|mz,δj r | ≤ mz,r +
j∑

i=1

|mz,δi r − mz,δi−1r |

≤ M

2
+

j∑
i=1

(
1

ωN

(
1

2

)i

ε1

) 1
2

+
j∑

i=1

1

δN+2

(
1

ωN

(
1

2

)i−1

ε1

) 1
2

≤ M

2
+ δN+2 + √

2

δN+2(
√

2 − 1)
√

ωN

√
ε1 ≤ M. (1.22)

By Proposition 1.2, (1.18) holds for k = j + 1. This completes the proof. �
This corollary combined with the argument in ([6], p. 86) asserts that there exist c =

c(δ1, ε1, r) ∈ (0, 1), γ = γ (δ1) > 0 such that

Eρ(z) ≤ cργ for all 0 < ρ ≤ r . (1.23)

Obviously, mz,r , −́Qr(z)
|m − mz,r |2dxdt are both continuous functions of z. By Proposition 1.1, 

Er(z) is also a continuous function of z. Thus whenever (1.17) holds for some z = z0 there is an 
open neighborhood O of z0 over which (1.17) remains true. As a result, (1.23) is satisfied on O . 
This puts us in a position to apply a result in [12]. To state the result, we define, for μ ∈ (0, 1),

[m]μ,O = sup

⎧⎨
⎩

|m(x, t) − m(y, τ)|(
|x − y| + |t − τ | 1

2

)μ : (x, t), (y, τ ) ∈ O

⎫⎬
⎭ .

Parabolic Hölder spaces can be characterized by the following version of Campanato’s theorem 
([12], Theorem 1).

Lemma 1.2. Let u ∈ L2(�T ). If there exist α ∈ (0, 1) and R0 > 0 such that

−
ˆ

Qρ(z)

|u − uz,ρ |2dxdt ≤ A2ρ2α

for all z in an open subset O of �T and all ρ ≤ R0 with Qρ(z) ⊂ �T , then we have
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[m]α,O ≤ c(N)A.

That is, u is Hölder continuous in O .

To describe the singular set S, we set

R = {z = (y, τ ) ∈ �T : sup
r>0

|mz,r | < ∞, lim
r→0

Er(z) = 0}. (1.24)

Here and in what follows limr→0 means limr→0+ because we always have r > 0. If z ∈ R, we 
take M > 2 supr>0 |mz,r |. By Corollary 1.1, there exist δ1, ε1 ∈ (0, 1) such that (1.17) and (1.18)
hold. We can find a r such that

Er(z) < ε1.

For the same r we obviously have

|mz,r | < M

2
.

Consequently, m is Hölder continuous in a neighborhood of z. That is, R is a set of regular points. 
Obviously, R is an open set.

Note that since we have the term Ar(z) instead of 1
rN+2

´
Qr(z)

|p−pz,r |2dxdt in Er(z) Propo-
sition 1.2 does not imply that p is locally Hölder continuous in the space–time domain R. The 
difference between the two quantities can be seen from the following calculation:

−
ˆ

Qρ(z)

|p − pz,r |2dxdt = 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

|p − pz,r |2dxdt

≤ 2

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

|p − py,r (t)|2dxdt

+ 2

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

|py,r (t) − pz,r |2dt

≤ 2

ωN

Ar(z) + 2

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

|py,r (t) − pz,r |2dt. (1.25)

Obviously, the last term above causes the problem. Of course, for each t = t0, p(x, t0) is locally 
Hölder continuous in x in R ∩ {t = t0}.

To estimate the parabolic Hausdorff dimension of the singular set S ⊆ �T \ R, we have the 
following proposition.
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Proposition 1.3. Let (H1)–(H3) hold and (p, m) be a weak solution. Then we have

dimP (�T \ R) = N. (1.26)

The proof of this proposition relies on almost the same decomposition of p as that in the proof 
of Proposition 1.2. The details will be given in Section 3.

Thus Theorem 1.1 is a consequence of Propositions 1.1–1.3. The rest of the paper is organized 
as follows. In Section 2, we develop some new global estimates. They serve as a motivation for 
our local estimates. The section will end with the proof of Proposition 1.1. In Section 3, we 
will first establish some local estimates and then proceed to prove Proposition 1.3. Section 4 is 
devoted to the proof of Proposition 1.2. Note that the three propositions are independent, and 
thus the order of their proofs is not important.

2. Global estimates

In this section, we first summarize the main a priori estimates already established in [8]. Then 
we present our new global estimates. The proof of Proposition 1.1 is given at the end.

To begin with, we use p(x, t) as a test function in (1.1) to obtain

ˆ

�

|∇p|2dx +
ˆ

�

(m · ∇p)2dx =
ˆ

�

S(x)pdx. (2.1)

Here and in what follows we suppress the dependence of p, m on (x, t) for simplicity of notation 
if no confusion arises. Let τ ∈ (0, T ), �τ = � × (0, τ). Take the dot product of both sides of 
(1.2) with m, integrate the resulting equation over �τ , and thereby yield

1

2

ˆ

�

|m(x, τ)|2dx + D2
ˆ

�τ

|∇m|2dxdt

−E2
ˆ

�τ

(m · ∇p)2dxdt +
ˆ

�τ

|m|2γ dxdt = 1

2

ˆ

�

|m0|2dx, (2.2)

where |∇m|2 = |∇ ⊗m|2 =∑N
i,j=1(

∂mj

∂xi
)2. Multiply through (2.1) by 2E2, integrate over (0, τ), 

and then add it to (2.2) to arrive at

1

2

ˆ

�

|m(x, τ)|2dx + D2
ˆ

�τ

|∇m|2dxdt + E2
ˆ

�τ

(m · ∇p)2dxdt

+
ˆ

�τ

|m|2γ dxdt + 2E2
ˆ

�τ

|∇p|2dxdτ

= 1

2

ˆ

�

|m0|2dx + 2E2
ˆ

�τ

S(x)pdxdt. (2.3)

Take the dot product of (1.2) with ∂tm and integrate the resulting equation over � to obtain
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ˆ

�

|∂tm|2dx + D2

2

d

dt

ˆ

�

|∇m|2dx

− E2
ˆ

�

(m · ∇p)∇p∂tmdx + 1

2γ

d

dt

ˆ

�

|m|2γ dx = 0. (2.4)

Use ∂tp as a test function in (1.1) to derive

1

2

d

dt

ˆ

�

|∇p|2dx +
ˆ

�

(m · ∇p)m∇∂tpdx =
ˆ

�

S(x)∂tpdx. (2.5)

Multiply through this equation by −E2 and add the resulting one to (2.4) to obtain

ˆ

�

|∂tm|2dx + D2

2

d

dt

ˆ

�

|∇m|2dx − E2

2

d

dt

ˆ

�

|(m · ∇p)2dx

− E2

2

d

dt

ˆ

�

|∇p|2dx + 1

2γ

d

dt

ˆ

�

|m|2γ dx = −E2
ˆ

�

S(x)∂tpdx. (2.6)

Differentiate (2.1) with respect to t , multiply through the resulting equation by E2, then add it to 
the above equation, and thereby deduce

ˆ

�τ

|∂tm|2dxdt + D2

2

ˆ

�

|∇m(x, τ)|2dx + E2

2

ˆ

�

(m · ∇p)2dx

+E2

2

ˆ

�

|∇p|2dx + 1

2γ

ˆ

�

|m|2γ dx

= D2

2

ˆ

�

|∇m0|2dx + E2

2

ˆ

�

(m0 · ∇p0)
2dx + 1

2γ

ˆ

�

|m0|2γ dx

+E2

2

ˆ

�

|∇p0|2dx, (2.7)

where p0 is the solution of the boundary value problem

−div[(I + m0 ⊗ m0)∇p0] = S(x), in �, (2.8)

p0 = 0 on ∂�. (2.9)

Local versions of (2.1) and (2.3) will be established in Section 3. Unfortunately, they are not 
enough to yield a partial regularity result. Naturally, one tries to seek a local version of (2.7). But 
this cannot be done because we have no control over ∂tp. To partially circumvent this, we have 
developed some new estimates.
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Proposition 2.1. Let (H1) and (H2) be satisfied and (m, p) a weak solution of (1.1)–(1.4). Then:

(C1) There is a positive number c = c(�, N) such that ‖p‖∞,�T
≡ ess sup�T

|p| ≤ c‖S(x)‖q,�, 
where ‖ · ‖q,� denotes the norm in Lq(�). We shall write ‖ · ‖s for ‖ · ‖s.� for simplicity;

(C2) For each K > 0 we can choose β ∈ (0, 1) suitably small such that

ˆ

�

|m(x,τ)|2ˆ

0

[(s − K2)+ + K2]βdsdx +
ˆ

�τ

vβ |∇m|2dxdt

+
ˆ

�τ

vβ−1|∇v|2dxdt +
ˆ

�τ

|m|2γ vβdxdt

+
ˆ

�τ

vβ |∇p|2dxdt +
ˆ

�τ

vβ(m · ∇p)2dxdt

≤ c

ˆ

�τ

|S(x)|vβdxdt +
ˆ

�

|m0|2ˆ

0

[(s − K2)+ + K2]βdsdx + c for all τ ∈ (0, T ),

where

v = (|m|2 − K2)+ + K2 ≥ K2. (2.10)

By the Sobolev embedding theorem, we have

m ∈ L∞(0, T ;L 2N
N−2 (�)).

Thus the first integral on the right-hand side of the above inequality is finite.

Proof. The proof of (C1) is standard. See, e.g., ([2], p. 131). For the reader’s convenience, we 
shall reproduce the proof here. Let κ be a positive number to be determined. Write

κn = κ − κ

2n
, An(t) = {x ∈ � : p(x, t) > κn}, n = 0,1,2, · · · .

Use (p − κn)
+ as a test function in (1.1) to deduce

ˆ

�

|∇(p − κn)
+|2dx +

ˆ

�

|(m · ∇(p − κn)
+)2dx

=
ˆ

�

S(x)(p − κn)
+dx

≤
⎛
⎜⎝ ˆ

An(t)

|S(x)| 2N
N+2

⎞
⎟⎠

N+2
2N

‖(p − κn)
+‖ 2N

N−2

≤ c‖S(x)‖q |An(t)|
N+2
2N

− 1
q ‖∇(p − κn)

+‖2, (2.11)
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from whence follows

|An+1(t)| ≤ c‖S(x)‖
2N

N−2
q

2
2Nn
N−2

κ
2N

N−2

|An(t)|1+ 2
N−2 (2− N

q
)
. (2.12)

By (H1), we have α ≡ 2
N−2 (2 − N

q
) > 0. This enables us to apply Lemma 4.1 in ([2], p. 12) to 

obtain

|A∞(t)| = 0, provided that κ = c‖S(x)‖q for some c = c(�,N).

This implies (C1).
Let K > 0, β > 0 be given and v be defined as in (2.10). For L > K , define

θL(s) =
⎧⎨
⎩

L2 if s ≥ L2,
s if K2 < s < L2,
K2 if s ≤ K .

(2.13)

Set vL = θL(|m|2). Then the function vβ
Lm is a legitimate test function for (1.2). Upon using it, 

we arrive at

1

2

d

dt

ˆ

�

|m|2ˆ

0

[θL(s)]βdsdx + D2
ˆ

�

v
β
L|∇m|2dx

+D2β

2

ˆ

�

v
β−1
L |∇vL|2 +

ˆ

�

|m|2γ v
β
Ldx

= E2
ˆ

�

v
β
L(m · ∇p)2dx. (2.14)

In the derivation of the third term above, we have used the fact that

∇vL = 0 on the set where |m|2 > L2 or |m|2 < K2. (2.15)

Use vβ
Lp as a test function in (1.1) to deduce

ˆ

�

v
β
L|∇p|2dx +

ˆ

�

v
β
L(m · ∇p)2dx

= −
ˆ

�

∇ppβv
β−1
L ∇vLdx

−
ˆ

(m · ∇p)mpβv
β−1
L ∇vLdx +

ˆ
S(x)v

β
Lpdx
� �
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≤ εβ

ˆ

�

v
β−1
L |∇vL|2dx + c(ε)β

ˆ

�

v
β−1
L p2|∇p|2dx

+ε

ˆ

�

v
β
L(m · ∇p)2dx + c(ε)β2

ˆ

�

v
β−2
L |m|2p2|∇vL|2dx

+
ˆ

�

S(x)v
β
Lpdx, ε > 0. (2.16)

By virtue of (2.15), we have that vβ−2
L |m|2|∇vL|2 = v

β−1
L |∇vL|2. Remember that β ∈ (0, 1). 

This gives vβ−1
L p2 ≤ ‖p‖2∞K2(β−1). Multiply through the above inequality by 2E2, add the 

resulting inequality to (2.14), thereby obtain

d

dt

ˆ

�

|m|2ˆ

0

[θL(s)]βdsdx +
ˆ

�

v
β
L|∇m|2dx

+β

ˆ

�

v
β−1
L |∇vL|2dx +

ˆ

�

|m|2γ v
β
Ldx

+
ˆ

�

v
β
L|∇p|2dx +

ˆ

�

v
β
L(m · ∇p)2dx

≤ cβ
‖p‖2∞
K2

ˆ

�

v
β
L|∇p|2dx + cβ2‖p‖2∞

ˆ

�

v
β−1
L |∇vL|2dx

+
ˆ

�

S(x)v
β
Lpdx. (2.17)

Choosing β sufficiently small so that the second term on the right-hand in the above inequality 
can be absorbed into the third term on the left-hand side there, integrating the resulting inequality 
with respect to t , and then taking L → ∞ yields (C2). The proof is complete. �

It turns out that a local version of (C2) is possible only if N ≤ 3. This accounts for the restric-
tion on the space dimension in Theorem 1.1.

At the end of this section, we present the proof of Proposition 1.1.

Proof of Proposition 1.1. It is easy to see that m(x, t) ∈ C([0, T ]; (L2(�)
)N

). By the proof of 
Lemma 2.3 in [19], we can conclude that for each t ∈ [0, T ] there is a unique weak solution 
p = p(x, t) in the space W 1,2

0 (�) to (1.1) with m(x, t) · ∇p(x, t) ∈ L2(�). Fix a t∗ in [0, T ]. 
Let {tj } be a sequence in [0, T ] with the property

tj → t∗. (2.18)

Set mj = m(x, tj ) and denote by pj the solution of (1.1) with m being replaced by mj . Obvi-
ously, we have
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mj → m∗ ≡ m(x, t∗) strongly in
(
L2(�)

)N
as j → ∞. (2.19)

We claim that we also have

pj → p∗ ≡ p(x, t∗), the solution of (1.1) corresponding to t = t∗,

strongly in L2(�) as j → ∞, (2.20)

and this will be enough to imply the proposition. To see this, note that mj ⊗ mj∇pj =
(mj · ∇pj )mj , and thus we have the equation

−div(∇pj + (mj · ∇pj )mj ) = S(x) in �. (2.21)

Using pj as a test function, we can easily derive

ˆ

�

|∇pj |2dx +
ˆ

�

(mj · ∇pj )
2dx ≤ c

ˆ

�

|S(x)|2dx. (2.22)

Thus we may assume that

pj ⇀ p weakly in W
1,2
0 (�) and strongly in L2(�) (2.23)

(passing to a subsequence if need be). This together with (2.19) implies

mj · ∇pj ⇀ m∗ · ∇p weakly in L1(�), and therefore also weakly in L2(�).

Subsequently, we have

(mj · ∇pj )mj ⇀ (m∗ · ∇p)m∗ weakly in
(
L1(�)

)N
.

Thus we can take j → ∞ in (2.21) to obtain

−div(∇p + (m∗ · ∇p)m∗) = S(x) in �. (2.24)

The solution to this equation is unique in W 1,2
0 (�), and therefore p = p∗ and the whole sequence 

{pj } tends to p∗ strongly in L2(�). The proof is complete. �
3. Local estimates

In this section we begin with a derivation of local versions of (2.1) and (2.3). Then we proceed 
to prove Proposition 1.3.

Let z = (y, τ) ∈ �T , r > 0 with Qr(z) ⊂ �T be given. Pick a C∞ function ξ on RN+1 satis-
fying
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ξ = 1 on Q 1
2 r

(z),

ξ = 0 off Qr(z),

0 ≤ ξ ≤ 1 on Qr(z),

|∂t ξ | ≤ c

r2 ,

|∇ξ | ≤ c

r
.

Note that m ⊗ m∇p = (m · ∇p)m. Keep this in mind, while using ξ2(p − py,r (t)) as a test 
function in (1.1), to obtain

ˆ

Br (y)

|∇p|2ξ2dx +
ˆ

Br(y)

(m · ∇p)2ξ2dx

≤ c

r2

ˆ

Br(y)

|p − py,r (t)|2dx + c

r2

ˆ

Br(y)

|m|2|p − py,r (t)|2dx

+
ˆ

Br(y)

|S(x)|ξ2|p − py,r (t)|dx. (3.1)

Set M0 = ess sup�T
|p(x, t)|. Then the fourth integral in (3.1) can be estimated as follows:

ˆ

Br(y)

|m|2|p − py,r (t)|2dx ≤ 2
ˆ

Br(y)

|m − mz,r |2|p − py,r (t)|2dx

+2|mz,r |2
ˆ

Br (y)

|p − py,r (t)|2dx

≤ 8M2
0

ˆ

Br (y)

|m − mz,r |2dx

+2|mz,r |2
ˆ

Br (y)

|p − py,r (t)|2dx. (3.2)

We apply Poincaré’s inequality to the last integral in (3.1) to yield

ˆ

Br(y)

|S(x)|ξ2|p − py,r (t)|dx ≤
⎛
⎜⎝ ˆ

Br(y)

|S(x)| 2N
N+2

⎞
⎟⎠

N+2
2N

·
⎛
⎜⎝ ˆ |ξ(p − py,r (t))| 2N

N−2

⎞
⎟⎠

N−2
2N
Br(y)
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≤
⎛
⎜⎝ ˆ

Br (y)

|S(x)| 2N
N+2

⎞
⎟⎠

N+2
2N

·
⎛
⎜⎝ c

r2

ˆ

Br (y)

|p − py,r (t)|2dx +
ˆ

Br(y)

ξ2|∇p|2dx

⎞
⎟⎠

1
2

≤ ε

ˆ

Br (y)

ξ2|∇p|2dx + cε

r2

ˆ

Br (y)

|p − py,r (t)|2dx

+c(ε)r
N+2− 2N

q (3.3)

for each ε > 0. Use (3.3) and (3.2) in (3.1), choose ε sufficiently small in the resulting inequality, 
and thereby arrive at

ˆ

Br (y)

|∇p|2ξ2dx +
ˆ

Br(y)

(m · ∇p)2ξ2dx

≤ c(1 + |mz,r |2)
r2

ˆ

Br(y)

|p − py,r (t)|2dx + c

r2

ˆ

Br (y)

|m − mz,r |2dx

+cr
N+2− 2N

q . (3.4)

Now we use (m − mz,r )ξ
2 as a test function in (1.2) to obtain

d

dt

ˆ

Br(y)

1

2
|m − mz,r |2ξ2dx + c

ˆ

Br(y)

|∇m|2ξ2dx +
ˆ

Br(y)

|m|2γ ξ2dx

≤ c

r2

ˆ

Br(y)

|m − mz,r |2dx + E2
ˆ

Br (y)

(m · ∇p)2ξ2dx

+c|mz,r |2
ˆ

Br (y)

|∇p|2ξ2dx + mz,r

ˆ

Br (y)

|m|2(γ−1)mξ2dx. (3.5)

In view of the interpolation inequality ([7], p. 145), we have

∣∣∣∣∣∣∣mz,r

ˆ

Br (y)

|m|2(γ−1)mξ2dx

∣∣∣∣∣∣∣≤ ε

ˆ

Br (y)

|m|2γ ξ2dx + c(ε)|mz,r |2γ rN , ε > 0. (3.6)

Substitute (3.6) into (3.5), choose ε so small in the resulting inequality that the second integral 
in (3.6) can be absorbed into the third term in (3.5), then integrate with respect to t to yield
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max
t∈[τ− 1

8 r2,τ+ 1
8 r2]

ˆ

B r
2
(y)

1

2
|m − mz,r |2dx

+c

ˆ

Q r
2
(z)

|∇m|2dxdt +
ˆ

Q r
2
(z)

|m|2γ dxdt

≤ c(|mz,r |2 + 1)

⎛
⎜⎝ ˆ

Qr(z)

|∇p|2ξ2dxdt +
ˆ

Qr(z)

(m · ∇p)2ξ2dxdt

⎞
⎟⎠

+ c

r2

ˆ

Qr(z)

|m − mz,r |2dxdt + c|mz,r |2γ rN+2. (3.7)

We are ready to prove Proposition 1.3.

Proof of Proposition 1.3. For each ε > 0 we consider the set

Hε = {z ∈ �T : lim
r→0

1

rN+ε

ˆ

Qr(z)

(
|m|d + |∂tm|2 + |∇m|2 + |∇p|2 + (m · ∇p)2

)
dxdt = 0},

(3.8)

where d = 2N
N−2 if N 	= 2 and any number bigger than 2 + 8

N
if N = 2. On account of Lemma 1.1, 

we have

PN+ε(�T \ Hε) = 0. (3.9)

Thus it is enough for us to show

Hε ⊂ R, (3.10)

where R is defined in (1.24). We divide the proof of this into several claims. �
Claim 3.1. If z = (y, τ) ∈ Hε , then we have

sup
r>0

|mz,r | < ∞. (3.11)

Proof. We follow the argument given in ([6], p. 104). That is, we calculate

∣∣∣∣ d

dρ
mz,ρ

∣∣∣∣=
∣∣∣∣∣∣∣

d

dρ
−
ˆ

m(y + ζρ, τ + ρ2ω)dζdω

∣∣∣∣∣∣∣
Q1(0)
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=

∣∣∣∣∣∣∣ −
ˆ

Q1(0)

(
∇m(y + ζρ, τ + ρ2ω)ζ + ∂ωm(y + ζρ, τ + ρ2ω)2ρω

)
dζdω

∣∣∣∣∣∣∣
≤ −
ˆ

Qρ(z)

|∇m|dxdt + 2 −
ˆ

Qρ(z)

|∂tmρ|dxdt

≤ c

⎛
⎜⎝ 1

ρN+2

ˆ

Qρ(z)

|∇m|2dxdt

⎞
⎟⎠

1
2

+ c

⎛
⎜⎝ 1

ρN

ˆ

Qρ(z)

|∂tm|2dxdt

⎞
⎟⎠

1
2

= 1

ρ1− ε
2

⎡
⎢⎢⎣
⎛
⎜⎝ 1

ρN+ε

ˆ

Qρ(z)

|∇m|2dxdt

⎞
⎟⎠

1
2

+ c

⎛
⎜⎝ 1

ρN−2+ε

ˆ

Qρ(z)

|∂tm|2dxdt

⎞
⎟⎠

1
2
⎤
⎥⎥⎦

≤ c

ρ1− ε
2
. (3.12)

Here and in the remainder of the proof of Proposition 1.3 the constant c may depend on ε and z. 
It immediately follows that

∣∣mz,ρ1 − mz,ρ2

∣∣≤
∣∣∣∣∣∣

ρ2ˆ

ρ1

∣∣∣∣ d

dρ
mz,ρ

∣∣∣∣dρ
∣∣∣∣∣∣

≤ c

∣∣∣ρ ε
2
1 − ρ

ε
2
2

∣∣∣ . (3.13)

Thus the claim follows. �
Claim 3.2. If z ∈ Hε , then

−
ˆ

Qρ(z)

|m − mz,r |2dxdt ≤ crε. (3.14)

Proof. Note that

mz,r = 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

m(x, t)dxdt = 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

my,r (t)dt.

That is, mz,r is the average of my,r(t) over [τ − 1 r2, τ + 1 r2]. Subsequently, we have
2 2
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|my,r (t) − mz,r | ≤
τ+ 1

2 r2ˆ

τ− 1
2 r2

∣∣∣∣ d

dω
my,r (ω)

∣∣∣∣dω

≤ r

⎛
⎜⎜⎝

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br(y)

|∂ωm|2dxdω

⎞
⎟⎟⎠

1
2

, (3.15)

from whence follows

1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

|my,r (t) − mz,r |2dt ≤ c

rN−2

ˆ

Qr(z)

|∂tm|2dxdt. (3.16)

In view of Poincaré’s inequality ([4], p. 141), we have

−
ˆ

Br (y)

|m − my,r (t)|2dx ≤ cr2 −
ˆ

Br(y)

|∇m|2dx. (3.17)

We compute

−
ˆ

Qρ(z)

|m − mz,r |2dxdt = 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

|m − mz,r |2dxdt

≤ 2

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

|m − my,r (t)|2dxdt

+ 2

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

|my,r (t) − mz,r |2dt

≤ c

rN

ˆ

Qr(z)

|∇m|2dxdt + c

rN−2

ˆ

Qr(z)

|∂tm|2dxdt

≤ crε. (3.18)

This completes the proof. �
Claim 3.3. Let z ∈ Hε . Then for each α ∈ (0, min{ 2

N−2 , 4
N

}] there is a positive number c such 
that

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

−
ˆ

|m − my,r (t)|2+αdx ≤ cr
(2α+2)ε

d . (3.19)
Br (y)
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Proof. It follows from (3.18) and (3.7) that

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

−
ˆ

Br(y)

|m − my,r (t)|2dx ≤ crε. (3.20)

Note that the corollary in ([15], p. 144) is not applicable here. We offer a direct proof. To this 
end, we estimate from Poincaré’s inequality that

1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br(y)

|m − my,r (t)| 4
N

+2dxdt

≤ 1

r2

τ− 1
2 r2ˆ

τ− 1
2 r2

⎛
⎜⎝ −
ˆ

Br (y)

|m − my,r (t)|2dx

⎞
⎟⎠

2
N
⎛
⎜⎝ −
ˆ

Br(y)

|m − my,r (t)| 2N
N−2 dx

⎞
⎟⎠

N−2
N

dt

≤ c

⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
−
ˆ

Br(y)

|m − my,r (t)|2dx

⎞
⎟⎠

2
N

·
τ− 1

2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

|∇m|2dxdt ≤ crε+ 2ε
N . (3.21)

Let α ∈ (0, min{ 2
N−2 , 4

N
}] be given. For t ∈ [τ − 1

2 r2, τ + 1
2 r2] set

fr(t) = −
ˆ

Br(y)

|m − my,r (t)|2+αdx.

Observe that

|m − my,r (t)|2+2α ≤ 22α+1

⎛
⎜⎝|m|2+2α + −

ˆ

Br(y)

|m|2+2αdx

⎞
⎟⎠ , (3.22)

∣∣∣∣ d

dt
my,r (t)

∣∣∣∣
2

≤
⎛
⎜⎝ −
ˆ

Br (y)

|∂tm|dx

⎞
⎟⎠

2

≤ −
ˆ

Br (y)

|∂tm|2dx. (3.23)

Keeping these two inequalities in mind, we calculate that
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∣∣∣∣ d

dt
fr(t)

∣∣∣∣= (2 + α)

∣∣∣∣∣∣∣ −
ˆ

Br(y)

|m − my,r (t)|α(m − my,r (t)) · d

dt
(m − my,r (t))dt

∣∣∣∣∣∣∣
≤ c −
ˆ

Br (y)

|m − my,r (t)|α+1|∂tm − d

dt
my,r (t)|dx

≤ c

⎛
⎜⎝ −
ˆ

Br (y)

|m − my,r (t)|2α+2dx

⎞
⎟⎠

1
2
⎛
⎜⎝ −
ˆ

Br(y)

|∂tm − d

dt
my,r (t)|2dx

⎞
⎟⎠

1
2

≤ c

⎛
⎜⎝ −
ˆ

Br (y)

|m|2α+2dx

⎞
⎟⎠

1
2
⎛
⎜⎝ −
ˆ

Br (y)

|∂tm|2dx

⎞
⎟⎠

1
2

. (3.24)

Note that 2 + 2α ≤ d , where d is given in (3.8). We estimate

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

fr(t) ≤ max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

∣∣∣∣∣∣∣∣
fr(t) − 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

fr(ω)dω

∣∣∣∣∣∣∣∣

+ 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

fr(ω)dω

≤
τ+ 1

2 r2ˆ

τ− 1
2 r2

∣∣∣∣ d

dt
fr(t)

∣∣∣∣dt + 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

fr(t)dt

≤ c

⎛
⎜⎝ 1

rN

ˆ

Qr(z)

|m|2α+2dx

⎞
⎟⎠

1
2
⎛
⎜⎝ 1

rN

ˆ

Qr(z)

|∂tm|2dx

⎞
⎟⎠

1
2

+ 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br (y)

|m − my,r (t)|α+2dxdt

≤ c

⎛
⎜⎝ 1

rN

ˆ
|m|ddx

⎞
⎟⎠

2α+2
2d
⎛
⎜⎝ 1

rN

ˆ
|∂tm|2dx

⎞
⎟⎠

1
2

Qr(z) Qr (z)
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+

⎛
⎜⎜⎝ 1

r2

τ+ 1
2 r2ˆ

τ− 1
2 r2

−
ˆ

Br(y)

|m − my,r (t)| 4
N

+2dxdt

⎞
⎟⎟⎠

2+α

2+ 4
N

≤ cr
(2α+2)ε

d + crε(1+ α
2 ) ≤ cr

(2α+2)ε
d . (3.25)

The proof is complete. �
Claim 3.4. If z ∈ Hε , then there is ε1 > 0 such that

Ar(z) ≤ crε1 . (3.26)

Obviously, this claim implies (3.10).

Proof. Let z = (y, τ) ∈ Hε be given. Fix r > 0 with Qr(z) ⊂ �T . Set

wr = m − my,r (t). (3.27)

Note that

m ⊗ m = (m − my,r (t)) ⊗ m + my,r (t) ⊗ (m − my,r (t))

+my,r (t) ⊗ my,r (t)

= wr ⊗ m + my,r (t) ⊗ wr + my,r (t) ⊗ my,r (t).

Thus p satisfies the system

−div[(I + my,r (t) ⊗ my,r (t))∇p]
= div [(m · ∇p)wr ] + div

[
(wr · ∇p)my,r (t)

]+ S(x) in Qr(z). (3.28)

Here we have used the fact that (wr ⊗ m)∇p = (m · ∇p)wr . We decompose p into η + φ on 
Qr(z) as follows: η is the solution of the problem

−div
[
(I + my,r (t) ⊗ my,r (t))∇η

]= 0

in Br(y), t ∈ [τ − 1

2
r2, τ + 1

2
r2], (3.29)

η = p on ∂Br(y), t ∈ [τ − 1

2
r2, τ + 1

2
r2], (3.30)

while φ is the solution of the problem

−div
[
(I + my,r (t) ⊗ my,r (t))∇φ

]= div [(m · ∇p)wr ] + div
[
(wr · ∇p)my,r (t)

]
+S(x) in Br(y), t ∈ [τ − 1

2
r2, τ + 1

2
r2], (3.31)

φ = 0 on ∂Br(y), t ∈ [τ − 1
r2], τ + 1

r2 (3.32)

2 2
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Recall from (3.15) that

|my,r (t)| ≤ |my,r (t) − mz,r | + |mz,r |

≤ cr

⎛
⎜⎝ 1

rN

ˆ

Qr(z)

|∂tm|2dxdt

⎞
⎟⎠

1
2

+ |mz,r |. (3.33)

By Theorem 2.1 in ([6], p. 78), there is a positive number c depending only on supr>0 |my,r (t)|
such that

−
ˆ

Bρ(y)

|η − ηy,ρ |2dx ≤ c
( ρ

R

)2 −
ˆ

BR(y)

|η − ηy,R|2dx (3.34)

for all 0 < ρ ≤ R ≤ r and t ∈ [τ − 1
2 r2, τ + 1

2 r2]. On the other hand, another classical regularity 
result [13] for linear elliptic equations with continuous coefficients asserts that for each s ∈
(1, ∞) there is a positive number c with the property

‖∇φ‖s ≤ c‖(m · ∇p)wr‖s + c‖(wr · ∇p)my,r (t)‖s

+c‖S(x)‖ sN
s+N

, t ∈ [τ − 1

2
r2, τ + 1

2
r2]. (3.35)

Note that the constant c here is also independent of r . We remark that in general the above 
inequality is not true for s = 1. This is why Claim 3.3 is crucial to our development. Obviously, 
if we replace mz,r by my,r (t) in (3.4), the resulting inequality still holds. This implies

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

1

rN−2

ˆ

Br (y)

(
|∇p|2 + (m · ∇p)2

)
dx ≤ c. (3.36)

We can easily find a s ∈ (1, 2) so that

2s

2 − s
= 2 + 4(s − 1)

2 − s
≤ 2 + min{ 2

N − 2
,

4

N
}. (3.37)

We estimate

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

1

rN−s

ˆ

Br (y)

|(m · ∇p)wr |sdx

≤
⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
1

rN−2

ˆ
(m · ∇p)2dx

⎞
⎟⎠

s
2

Br (y)
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·
⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
1

rN

ˆ

Br(y)

|wr | 2s
2−s dx

⎞
⎟⎠

2−s
2

≤ c

⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
1

rN

ˆ

Br(y)

|wr | 2s
2−s dx

⎞
⎟⎠

2−s
2

≤ cr
(2−s)(2α+2)ε

2d , (3.38)

where α = 4(s−1)
2−s

. Similarly, we have

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

1

rN−s

ˆ

Br(y)

|(wr · ∇p)my,r (t)|sdx

≤
⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
1

rN−2

ˆ

Br(y)

|∇p|2dx

⎞
⎟⎠

s
2

·
⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
1

rN

ˆ

Br(y)

|wr | 2s
2−s dx

⎞
⎟⎠

2−s
2

≤ c

⎛
⎜⎝ max

t∈[τ− 1
2 r2,τ+ 1

2 r2]
1

rN

ˆ

Br(y)

|wr | 2s
2−s dx

⎞
⎟⎠

2−s
2

≤ cr
(2−s)(2α+2)ε

2d , (3.39)

1

rN−s

⎛
⎜⎝ ˆ

Br (y)

|S(x)| Ns
N+s dx

⎞
⎟⎠

s+N
N

≤ 1

rN−s

⎛
⎜⎝ ˆ

Br (y)

|S(x)|qdx

⎞
⎟⎠

s
q

r
s+N− Ns

q ≤ cr
s(2− N

q
)
. (3.40)

To summarize, we have

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

1

rN−s

ˆ

Br(y)

|∇φ|sdx ≤ cr
min{ (2−s)(2α+2)ε

2d
, s(2− N

q
)}
. (3.41)

It follows from Poincaré’s inequality that
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⎛
⎜⎝ −
ˆ

Br (y)

|φ − φy,r (t)| Ns
N−s dx

⎞
⎟⎠

N−s
Ns

≤ cr

⎛
⎜⎝ −
ˆ

Br(y)

|∇φ|sdx

⎞
⎟⎠

1
s

= c

⎛
⎜⎝ 1

rN−s

ˆ

Br (y)

|∇φ|sdx

⎞
⎟⎠

1
s

.

(3.42)

Remember that ‖φ‖∞ ≤ ‖η‖∞ + ‖p‖∞ ≤ 2‖p‖∞. Hence we can always find a positive number 
ε1 ∈ (0, 2) so that

max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

−
ˆ

Br (y)

|φ − φy,r (t)|2dx ≤ crε1 . (3.43)

For 0 < ρ ≤ r we derive from (3.34) and (3.43) that

ˆ

Bρ(y)

|p − py,ρ(t)|2dx

≤ 2
ˆ

Bρ(y)

|η − ηy,ρ(t)|2dx + 2
ˆ

Bρ(y)

|φ − φy,ρ(t)|2dx

≤ c
(ρ

r

)N+2
ˆ

Br(y)

|η − ηy,r (t)|2dx + 2
ˆ

Br(y)

|φ − φy,r (t)|2dx

≤ c
(ρ

r

)N+2
ˆ

Br(y)

|p − py,r (t)|2dx + crN+ε1 . (3.44)

Here we have used the fact that 
´
Bρ(y)

|φ − φy,ρ(t)|2dx is an increasing function of ρ. We set

σ(r) = max
t∈[τ− 1

2 r2,τ+ 1
2 r2]

ˆ

Br (y)

|p − py,r (t)|2dx.

We easily infer from (3.44) that

σ(ρ) ≤ c
(ρ

r

)N+2
σ(r) + crN+ε1 (3.45)

for all 0 < ρ ≤ r . This puts us in a position to apply Lemma 2.1 in ([6], p. 86), from whence 
follows

σ(ρ) ≤ c
(ρ

r

)N+ε1
σ(r) + cρN+ε1 (3.46)

for all 0 < ρ ≤ r . This gives the claim. �
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4. Proof of Proposition 1.2

In this section we present the proof of Proposition 1.2. We would like to remark that the proof 
of this proposition is more challenging than that of Proposition 1.3 mainly because we do not 
have a local estimate for ∂tm or a local L∞ estimate for p. This also causes us to impose the 
restriction N ≤ 3. Note that this restriction is not needed in Propositions 1.1 and 1.3.

Proof of Proposition 1.2. We argue by contradiction. Suppose that the proposition is false. Then 
for some M > 0 (1.15) and (1.16) fail to hold no matter how we pick numbers ε, δ from the 
interval (0, 1). In particular, we can choose a sequence {εk} ⊂ (0, 1) with the property

εk → 0 as k → 0. (4.1)

The selection of δ from (0, 1) is more delicate, and it will be made clear later. Let δ be chosen as 
below. For each k there exist cylinders Qrk(zk) ⊂ �T such that

|mzk,rk | ≤ M and Erk (zk) ≤ εk, (4.2)

whereas

Eδrk (zk) >
1

2
Erk (zk), k = 1, · · · . (4.3)

Set

λ2
k = Erk (zk).

Then (4.1) asserts

λk → 0 as k → ∞.

We rescale our variables to the unit cylinder Q1(0), as follows. If z = (y, τ) ∈ Q1(0), write

ψk(y, τ ) = p(yk + rky, τk + r2
k τ ) − pyk,rk (τk + r2

k τ )

λk

, (4.4)

nk(y, τ ) = m(yk + rky, τk + r2
k τ ), (4.5)

wk(y, τ ) = nk(y, τ ) − mzk,rk

λk

. (4.6)

We can easily verify

max
τ∈[− 1

2 , 1
2 ]

ˆ

B1(0)

ψ2
k (y, τ )dy = 1

λ2
k

Ark (zk) ≤ 1,

ˆ

Q (0)

|wk(y, τ )|2dydτ = 1

λ2
kr

N+2
k

ˆ

Q (z )

|m(x, t) − mzk,rk |2dxdt ≤ 1,
1 rk k
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but

1

δN+2

ˆ

Qδ(0)

|wk − (wk)0,δ|2dydτ + 1

δN
max

τ∈[− 1
2 δ2, 1

2 δ2]

ˆ

Bδ(0)

|ψk − (ψk)0,δ(τ )|2dy

+δ2βr
2β
k

λ2
k

>
1

2
. (4.7)

Here and in what follows we suppress the dependence of ψk, wk, nk on (y, τ) for simplicity of 
notation. Our plan is to show that the lim sup of the left-hand side of the above inequality as 
k → ∞ can be made smaller than 1

2 if we adjust δ to be small enough, and thus the desired 
contradiction follows.

We easily see from the definition of λk that

δ2βr
2β
k

λ2
k

≤ δ2β. (4.8)

To analyze the first two terms in (4.7), we first conclude from the proof in [3] that ψk(y, τ),

wk(y, τ) satisfy the system

−�ψk − div [(nk · ∇ψk)nk] = r2
k

λk

S(yk + rky) ≡ Fk(y) in Q1(0), (4.9)

∂twk − D2�wk − E2λk(nk · ∇ψk)∇ψk + r2
k

λk

|nk|2(γ−1)nk = 0 in Q1(0). (4.10)

We can infer from (3.4) that

ˆ

Q 1
2
(0)

|∇ψk|2dydτ +
ˆ

Q 1
2
(0)

|nk · ∇ψk|2dydτ ≤ c. (4.11)

Similarly, we can derive from (3.7) that

max
τ∈[− 1

8 , 1
8 ]

ˆ

B 1
2
(0)

|wk|2dy +
ˆ

Q 1
2
(0)

|∇wk|2dydτ + r2
k

λ2
k

ˆ

Q 1
2
(0)

|nk|2γ dydτ ≤ c + c
r2
k

λ2
k

≤ c. (4.12)

Consequently, we have

ˆ

Q 1
2
(0)

∣∣∣∣∣ r
2
k

λk

|nk|2γ−1

∣∣∣∣∣
2γ

2γ−1

dydτ = λ

2γ
2γ−1
k

(
r2
k

λ2
k

) 1
2γ−1 r2

k

λ2
k

ˆ

Q 1
2
(0)

|nk|2γ dydτ

→ 0 as k → 0. (4.13)
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This together with (4.10), (4.11), and (4.12) implies that the sequence {∂τwk} is bounded in 
L2(− 1

8 , 18 ; W−1,2(B 1
2
(0))) + L1(Q 1

2
(0)). By a well-known result in [14], wk is precompact in 

L2(Q 1
2
(0)). Passing to subsequences if necessary, we have

mzk,rk → a, (4.14)

nk = λkwk + mzk,rk → a strongly in L2(Q1(0)), (4.15)

wk → w strongly in L2(Q 1
2
(0))

and weakly in L2(− 1
8 , 1

8 ;W 1,2(B 1
2
(0))), (4.16)

ψk → ψ and weakly in L2(− 1
8 , 1

8 ;W 1,2(B 1
2
(0))). (4.17)

In view of (4.11) and (4.13), we can send k to infinity in (4.10) to obtain

∂τw − D2�w = 0 in Q 1
2
(0) (4.18)

in the weak, and therefore classical sense. It follows from (4.15) and (4.17) that

nk∇ψk ⇀ a∇ψ weakly in L1(Q 1
2
(0)), (4.19)

and therefore weakly in L2(Q 1
2
(0)) due to (4.11). This, in turns, implies

(nk∇ψk)nk ⇀ a∇ψa weakly in L1(Q 1
2
(0)). (4.20)

We estimate the last term in (4.9) as follows

ˆ

B1(0)

|Fk|qdy = r
2q
k

λ
q
k

ˆ

B1(0)

|S(yk + rky)|qdy

= r
2q−N
k

λ
q
k

ˆ

Brk
(yk)

|S(x)|qdx

≤ c
r
βq
k

λ
q
k

r
q(2− N

q
−β)

k ≤ cr
q(2− N

q
−β)

k → 0. (4.21)

The last step is due to (1.9). We are ready to let k go to infinity in (4.9), thereby obtaining

−div [(I + a ⊗ a)∇ψ] = 0 in Q 1
2
(0). (4.22)

Remember that a is a constant vector. By the classical regularity theory for linear elliptic equa-
tions, there exist c > 0, α ∈ (0, 1) determined only by M and N with the property
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max
τ∈[− 1

2 ]δ2, 1
2 δ2]

−
ˆ

Bδ(0)

|ψ − ψ0,δ(τ )|2dy ≤ max
τ∈[− 1

2 ]δ2, 1
2 δ2]

cδ2α −
ˆ

B 1
2
(0)

|ψ − ψ0, 1
2
(τ )|2dy ≤ cδ2α

(4.23)

for all δ ≤ 1
4 . Subsequently,

1

δN
max

τ∈[− 1
2 ]δ2, 1

2 δ2]

ˆ

Bδ(0)

|ψ − ψ0,δ(τ )|2dy ≤ cδ2α (4.24)

for all 0 < δ ≤ 1
4 . It is also well-known (see, e.g., Claim 1 in [17]) that there exist c > 0, α ∈ (0, 1)

determined only by N, D such that

−
ˆ

Qδ(0)

|w − w0,δ|2dydτ ≤ cδ2α −
ˆ

Q 1
2
(0)

|w − w0, 1
2
|2dydτ ≤ cδ2α (4.25)

for all 0 < δ ≤ 1
4 .

If we could pass to the limit in (4.7), this would result in the desired contradiction. What 
prevents us from doing so is the lack of compactness of the sequence {ψk} in the t-variable. To 
circumvent this problem, we fix a suitably small number 1

16 ≥ δ0 > 0 and consider the decompo-
sition ψk = ηk + φk on Qδ0(0), where ηk is the solution of the problem

−div
[
(I + mzk,rk ⊗ mzk,rk )∇ηk

]= 0 in Bδ0(0), τ ∈ [−1

2
δ2

0,
1

2
δ2

0], (4.26)

ηk = ψk on ∂Bδ0(0), τ ∈ [−1

2
δ2

0,
1

2
δ2

0], (4.27)

while φk is the solution of the problem

−div
[
(I + mzk,rk ⊗ mzk,rk )∇φk

]= λkdiv((nk · ∇ψk)wk) + λkdiv((wk · ∇ψk)mzk,rk )

+Fk in Bδ0(0), τ ∈ [−1

2
δ2

0,
1

2
δ2

0], (4.28)

φk = 0 on ∂Bδ0(0), τ ∈ [−1

2
δ2

0,
1

2
δ2

0]. (4.29)

We will show that {φk} is precompact in L∞(− 1
2δ2

0, 12δ2
0; L2(Bδ0(0))), and this is enough for our 

purpose in spite of the fact that {ηk} may not be precompact in the preceding function space. To 
see this, we first infer from (3.4) that

max
τ∈[− 1

32 , 1
32 ]

⎛
⎜⎜⎝
ˆ

B 1
4
(0)

|∇ψk|2dy +
ˆ

B 1
4
(0)

(nk · ∇ψk)
2dy

⎞
⎟⎟⎠≤ c + max

τ∈[− 1
8 , 1

8 ]

ˆ

B 1
2
(0)

|wk|2dy ≤ c. (4.30)

Using ηk − ψk as a test function in (4.26) yields
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max
τ∈[− 1

2 δ2
0 , 1

2 δ2
0 ]

ˆ

Bδ0 (0)

|∇ηk|2dy ≤ max
τ∈[− 1

2 δ2
0 , 1

2 δ2
0 ]

c

ˆ

Bδ0 (0)

|∇ψk|2dy ≤ c. (4.31)

Note that (4.26) is an uniformly elliptic equation with constant coefficients. The classical regu-
larity theory asserts that there exist c > 0, α ∈ (0, 1) depending only on M, N such that

1

δN

ˆ

Bδ(0)

|ηk − (ηk)0,δ(τ )|2dy ≤ cδ2α −
ˆ

Bδ0 (0)

|ηk − (ηk)0,δ0(τ )|2dy

≤ cδ2αδ2
0 −
ˆ

Bδ0 (0)

|∇ηk|2dy ≤ cδ2α (4.32)

for all δ ≤ 1
2δ0.

Now we turn our attention to the sequence {φk}. We wish to show

φk → 0 strongly in L∞(− 1
2δ2

0, 1
2δ2

0;L2(Bδ0(0))). (4.33)

This is where the subtlety of our analysis lies. We observe from (4.30) that

max
τ∈[− 1

32 , 1
32 ]

ˆ

B 1
4
(0)

|ψk| 2N
N−2 dy ≤ c. (4.34)

In view of (4.31), {φk} also satisfies the above estimate. By the interpolation inequality ([6], 
p. 146)

‖φk(·, τ )‖2 ≤ ε‖φk(·, τ )‖ 2N
N−2

+ c(ε)‖φk(·, τ )‖1, ε > 0, (4.35)

it is sufficient for us to show

max
τ∈[− 1

2 δ2
0 , 1

2 δ2
0 ]

ˆ

Bδ0 (0)

|φk(y, τ )|dy → 0 as k → ∞. (4.36)

Note that the elliptic coefficients in (4.28) are constants. This puts us in a position to invoke the 
classical W 1,s estimate for φk . That is, for each s ∈ (1, ∞) there is a positive number c with the 
property

‖∇φk‖s ≤ cλk‖(nk · ∇ψk)wk‖s + cλk‖((wk · ∇ψk)mzk,rk‖s + c‖Fk‖ sN
s+N

. (4.37)

Remember that (4.37) does not hold for s = 1. To find a s > 1, we will show that there is a β > 0
such that

max
τ∈[− 1

2 δ2
0 , 1

2 δ2
0 ]

ˆ

B (0)

|wk(y, τ )|2(1+β)dy ≤ c. (4.38)
δ0
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Obviously, this will imply that

max
τ∈[− 1

2 δ2
0 , 1

2 δ2
0 ]
(‖(nk · ∇ψk)wk‖s + ‖(wk · ∇ψk)mzk,rk‖s

)≤ c (4.39)

for some s > 1. Consequently, the right-hand side of (4.37) goes to 0 as k → ∞. To establish 
(4.38), we will develop a suitable local version of (C2) in Proposition 2.1. This effort is compli-
cated by the fact that a local version of (C1) in the proposition is not available. The remaining 
part of this section will be dedicated to the proof of (4.38), which will be divided into two 
claims.

Claim 4.1. We have:

ˆ

Q 1
8
(0)

|ψk∇ψk|2dydτ +
ˆ

Q 1
8
(0)

(nk · ∇ψk)
2|ψk|2dydτ ≤ c. (4.40)

Proof. Let ξ be a C∞ function on RN ×R with the properties

ξ = 0 outside Q1(0), and (4.41)

ξ ∈ [0,1] in Q1(0). (4.42)

Upon using ψ3
k ξ2 as a test function in (4.9), we deduce

ˆ

B1(0)

|ψk∇ψk|2ξ2dy +
ˆ

B1(0)

(nk · ∇ψk)
2ψ2

k ξ2dy

≤ c

ˆ

B1(0)

ψ4
k |∇ξ |2dy + c

ˆ

B1(0)

|nk|2ψ4
k |∇ξ |2dy +

ˆ

B1(0)

|Fk||ψk|3ξ2dy. (4.43)

Observe that

|λkψk| ≤ c. (4.44)

Subsequently, we have

|nk|2ψ4
k = |λkwk + mzk,rk |2ψ4

k

≤ 2λ2
kψ

4
k |wk|2 + cψ4

k

≤ cψ2
k |wk|2 + cψ4

k

≤ cψ
2N

N−2
k + c|wk|N + cψ4

k . (4.45)
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We estimate from (4.12) and the Sobolev Embedding Theorem that

ˆ

Q 1
2
(0)

|wk|2+ 4
N dydτ ≤

1
8ˆ

− 1
8

⎛
⎜⎜⎝
ˆ

B 1
2
(0)

|wk|2dy

⎞
⎟⎟⎠

2
N
⎛
⎜⎜⎝
ˆ

B 1
2
(0)

|wk| 2N
N−2 dy

⎞
⎟⎟⎠

N−2
N

dτ

≤ c

⎛
⎜⎜⎝ max

τ∈(− 1
8 , 1

8 )

ˆ

B 1
2
(0)

|wk|2dy

⎞
⎟⎟⎠

2
N

·

⎛
⎜⎜⎝
ˆ

Q 1
2
(0)

|∇wk|2dydτ +
ˆ

Q 1
2
(0)

|wk|2dydτ

⎞
⎟⎟⎠

≤ c. (4.46)

Our assumption on the space dimension N implies

N ≤ 2 + 4

N
,

2N

N − 2
> 4.

By virtue of (4.30), we obtain

ˆ

B 1
4
(0)

ψ4
k dy ≤ c

⎛
⎜⎜⎝
ˆ

B 1
4
(0)

ψ
2N

N−2
k dy

⎞
⎟⎟⎠

2(N−2)
N

≤ c

⎛
⎜⎜⎝
ˆ

B 1
4
(0)

|∇ψk|2 +
ˆ

B 1
4
(0)

|ψk|2dy

⎞
⎟⎟⎠

2

≤ c for each τ ∈ [− 1
32 , 1

32 ]. (4.47)

We finally arrive at

ˆ

Q 1
4
(0)

|nk|2ψ4
k dydτ ≤ c. (4.48)

Recall that q > N
2 . Then we have 2Nq

(N+2)q−2N
≤ 2N

N−2 . Keeping this in mind, we calculate 
from (4.21) that
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‖Fkψkξ‖2
2N

N+2
≤ ‖Fk‖2

q,B1(0)‖ψkξ‖2
2Nq

(N+2)q−2N

≤ c‖ψkξ‖2
2N

N−2

≤ c

ˆ

B1(0)

|∇ψk|2ξ2dy + c

ˆ

B1(0)

|ψk|2|∇ξ |2dy. (4.49)

The last term in (4.43) can be estimated as follows

ˆ

B1(0)

|Fk||ψk|3ξ2dy ≤ ‖Fkψkξ‖ 2N
N+2

‖ψ2
k ξ‖ 2N

N−2

≤ c‖Fkψkξ‖ 2N
N+2

‖∇(ψ2
k ξ)‖2

≤ δ‖∇(ψ2
k ξ)‖2

2 + c(δ)‖Fkψkξ‖2
2N

N+2
, δ > 0. (4.50)

Substituting this and (4.45) into (4.43) and choosing δ suitably small in the resulting inequality 
yield

ˆ

B1(0)

|ψk∇ψk|2ξ2dy +
ˆ

B1(0)

(nk · ∇ψk)
2ψ2

k ξ2dy

≤ c

ˆ

B1(0)

ψ4
k |∇ξ |2dy + c

ˆ

B1(0)

|nk|2w4
k |∇ξ |2dy + c‖Fkψkξ‖2

2N
N+2

. (4.51)

Integrate this inequality over [− 1
128 , 1

128 ], then choose ξ suitably, i.e., ξ = 1 on Q 1
8
(0) and 0

outside Q 1
4
(0), and thereby obtain the claim. �

Fix K > 0. Define

vk =
(
|wk|2 − K2

)+ + K2.

Claim 4.2. There is a β > 0 such that

max
τ∈[− 1

512 , 1
512 ]

ˆ

B 1
16

(0)

|wk |2ˆ

0

[(s − K2)+ + K2]βdsdy ≤ c. (4.52)

Obviously, this claim implies (4.38).

Proof. Let ξ be given as in (4.41)–(4.42) and β > 0. We may assume that wk ∈ L∞(�T ) for 
each k. (Otherwise, we use the cut-off function in (2.13).) Then the function vβ

k wkξ
2 is a legiti-

mate test function for (4.10). Upon using it, we derive
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1

2

ˆ

B1(0)

v
β
k ξ2∂τ |wk|2dy + D2

ˆ

B1(0)

v
β
k ξ2|∇wk|2dy + D2β

2

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy

+D2
ˆ

B1(0)

v
β
k ∇wkwk2ξ∇ξdy + r2

k

λk

ˆ

B1(0)

|nk|2(γ−1)nkv
β
k wkξ

2dy

= E2λk

ˆ

B1(0)

(nk · ∇ψk)∇ψkv
β
k wkξ

2dy. (4.53)

Note that

r2
k

λk

ˆ

B1(0)

|nk|2(γ−1)nkv
β
k wkξ

2dy = r2
k

λ2
k

ˆ

B1(0)

|nk|2(γ−1)nkv
β
k (nk − mzk,rk )ξ

2dy

= r2
k

λ2
k

ˆ

B1(0)

|nk|2γ v
β
k ξ2dy

− r2
k

λ2
k

ˆ

B1(0)

|nk|2(γ−1)nkv
β
k mzk,rk ξ

2dy

≥ 1

2

r2
k

λ2
k

ˆ

B1(0)

|nk|2γ v
β
k ξ2dy − c

r2
k

λ2
k

ˆ

B1(0)

v
β
k ξ2dy. (4.54)

Now we analyze the last term in (4.53) to obtain

λk

ˆ

B1(0)

(nk · ∇ψk)∇ψkv
β
k wkξ

2dy =
ˆ

B1(0)

(nk · ∇ψk)∇ψkv
β
k (nk − mzk,rk )ξ

2dy

=
ˆ

B1(0)

(nk · ∇ψk)
2v

β
k ξ2dy

−
ˆ

B1(0)

(nk · ∇ψk)∇ψkv
β
k mzk,rk ξ

2dy

≤ 2
ˆ

B1(0)

(nk · ∇ψk)
2v

β
k ξ2dy

+c

ˆ

B1(0)

|∇ψk|2vβ
k ξ2dy. (4.55)

Combining the preceding three estimates gives
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1

2

d

dτ

ˆ

B1(0)

|wk |2ˆ

0

[(s − K2)+ + K2]βdsξ2dy + D2
ˆ

B1(0)

v
β
k ξ2|∇wk|2dy

+D2β

2

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy + r2

k

λ2
k

ˆ

B1(0)

|nk|2γ v
β
k ξ2dy

≤ c

ˆ

B1(0)

|wk |2ˆ

0

[(s − K2)+ + K2]βdsξ∂τ ξdy + c

ˆ

B1(0)

v
β
k |wk|2|∇ξ |2dy

+c
r2
k

λ2
k

ˆ

B1(0)

v
β
k ξ2dy + 2E2

ˆ

B1(0)

(nk · ∇ψk)
2v

β
k ξ2dy + c

ˆ

B1(0)

|∇ψk|2vβ
k ξ2dy. (4.56)

To estimate the last two terms in the above inequality, we use ψkv
β
k ξ2 as a test function in (4.9)

to obtain

ˆ

B1(0)

|∇ψk|2vβ
k ξ2dy +

ˆ

B1(0)

∇ψkψkβv
β−1
k ∇vkξ

2dy +
ˆ

B1(0)

∇ψkψkv
β
k 2ξ∇ξdy

+
ˆ

B1(0)

(nk · ∇ψk)
2v

β
k ξ2dy +

ˆ

B1(0)

(nk · ∇ψk)nkψkβv
β−1
k ∇vkξ

2dy

+
ˆ

B1(0)

(nk · ∇ψk)nkψkv
β
k 2ξ∇ξdy

=
ˆ

B1(0)

Fkψkv
β
k ξ2dy. (4.57)

Observe that

∣∣∣∣∣∣∣
ˆ

B1(0)

∇ψkψkβv
β−1
k ∇vkξ

2dy

∣∣∣∣∣∣∣≤
D2

16E2 β

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy

+cβ

ˆ

B1(0)

v
β−1
k ξ2|∇ψkψk|2dy

≤ D2

16E2 β

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy

+cβK2(β−1)

ˆ
ξ2|∇ψkψk|2dy. (4.58)
B1(0)
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Here we have used the fact that vk ≥ K2 and β < 1. The fifth integral in (4.57) can be estimated 
as follows.

∣∣∣∣∣∣∣
ˆ

B1(0)

(nk · ∇ψk)nkψkβv
β−1
k ∇vkξ

2dy

∣∣∣∣∣∣∣≤
D2

16E2 β

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy

+cβ

ˆ

B1(0)

v
β−1
k ξ2n2

kψ
2
k (nk · ∇ψk)

2dy. (4.59)

Remember

|nk|2ψ2
k = |λkwk + mzk,rk |2ψ2

k

≤ 2λ2
k|wk|2ψ2

k + cψ2
k

≤ c|wk|2 + cψ2
k (4.60)

and vβ−1
k |wk|2 ≤ v

β
k . Consequently,

∣∣∣∣∣∣∣
ˆ

B1(0)

(nk · ∇ψk)nkψkβv
β−1
k ∇vkξ

2dy

∣∣∣∣∣∣∣≤
D2

16E2 β

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy

+cβ

ˆ

B1(0)

v
β
k ξ2(nk · ∇ψk)

2dy

+cβK2(β−1)

ˆ

B1(0)

ξ2ψ2
k (nk · ∇ψk)

2dy. (4.61)

Using the preceding estimates in (4.57)

ˆ

B1(0)

|∇ψk|2vβ
k ξ2dy + (1 − cβ)

ˆ

B1(0)

(nk · ∇ψk)
2v

β
k ξ2dy

≤ D2

8E2 β

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy + cβK2(β−1)

ˆ

B1(0)

ξ2|∇ψkψk|2dy

+cβK2(β−1)

ˆ

B1(0)

ξ2ψ2
k (nk · ∇ψk)

2dy + c

ˆ

B1(0)

v
β
k ψ2

k |∇ξ |2dy

+c

ˆ
v

β
k |wk|2|∇ξ |2dy +

ˆ
Fkψkv

β
k ξ2dy. (4.62)
B1(0) B1(0)
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Plugging this into (4.56) and choosing β suitably small in the resulting inequality, we ob-
tain

1

2

d

dτ

ˆ

B1(0)

|wk |2ˆ

0

[(s − K2)+ + K2]βdsξ2dy + D2
ˆ

B1(0)

v
β
k ξ2|∇wk|2dy

+D2β

2

ˆ

B1(0)

v
β−1
k ξ2|∇vk|2dy + r2

k

λ2
k

ˆ

B1(0)

|nk|2γ v
β
k ξ2dy

≤ c

ˆ

B1(0)

|wk |2ˆ

0

[(s − K2)+ + K2]βdsξ∂τ ξdy + c

ˆ

B1(0)

v
β
k |wk|2|∇ξ |2dy

+c
r2
k

λ2
k

ˆ

B1(0)

v
β
k ξ2dy + cβK2(β−1)

ˆ

B1(0)

ξ2|∇ψkψk|2dy

+cβK2(β−1)

ˆ

B1(0)

ξ2ψ2
k (nk · ∇ψk)

2dy + c

ˆ

B1(0)

v
β
k ψ2

k |∇ξ |2dy

+
ˆ

B1(0)

Fkψkv
β
k ξ2dy. (4.63)

In view of (4.46), (4.47), and (4.49), if β is sufficiently small, we have

ˆ

Q 1
2
(0)

|wk |2ˆ

0

[(s − K2)+ + K2]βdsdydτ ≤ c,

ˆ

Q 1
2
(0)

v
β
k |wk|2dydτ ≤ c,

ˆ

B 1
2
(0)

v
β
k ψ2

k dy ≤ c for τ ∈ [− 1
8 , 1

8 ],

∣∣∣∣∣∣∣∣
ˆ

B 1
2
(0)

Fkψkv
β
k dy

∣∣∣∣∣∣∣∣
≤ c for τ ∈ [− 1

8 , 1
8 ].

Integrate (4.63) with respect to τ , choose ξ suitably, and remember Claim 1 to yield the desired 
result. �

This finishes the proof of Proposition 1.2. �
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