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1. Introduction

The fractional calculus in time has been used widely in physics and engineering for memory effect,
viscoelasticity, porous media etc. [1-5]. There is a huge amount of literature discussing time fractional
differential equations. For instance, one can find some results in [3,6] using the classic Caputo derivatives.
In this paper, we study the following time fractional ODE:

Dlu= f(t,u), u(0) = uo, (1.1)

for v € (0,1) and f measurable. Here D)u is the generalized Caputo derivative introduced in [7,8]. As we
will see later, this generalized definition is theoretically more convenient, since it allows us to take advantage
of the underlying group structure.

As in [7], we use the following distributions {gs} as convolution kernels for g € (—1,0):

1

95(t) = mD (0(t)t7) .
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Here 6(t) is the standard Heaviside step function, I'(-) is the gamma function, and D means the distributional
derivative on R. Indeed, gg can be defined for 5 € R (see [7]) so that {gs : § € R} forms a convolution
group. In particular, we have

9p1 * 9By = 9B1+B2- (1.2)

Here since the support of g, (i = 1,2) is bounded from left, the convolution is well-defined. Now we are
able to give the generalized definition of fractional derivatives:

Definition 1.1 (/7,8]). Let 0 < v < 1. Consider u € L. [0,T). Given ug € R, we define the y-th order
generalized Caputo derivative of u, associated with initial value ug, to be a distribution in 2’(—oo,T) with

support in [0,T), given by
Dlu=g_,* ((u - uo)ﬁ(t)).
If limt_>0+% fg|u(s) — uglds = 0, we call DYu the Caputo derivative of w.

As in [7], if the function w is absolutely continuous, the generalized definition reduces to the classical
definition. However, the generalized definition is theoretically useful because it reveals the underlying group
structure (see Proposition 1.1).

Definition 1.2. Let 7' > 0. A function u € L{ _[0,T) is a weak solution to (1.1) on [0,T) with initial value
uo, if f(t,u(t)) € 2'(—o0,T) and the equality holds in the distributional sense. We call a weak solution u a
strong solution if (i). lim¢_,o4 f0t|u(s) — up|ds = 0; (ii). both DJu and f(t,u(t)) are locally integrable on

[0,T).
By the group property (1.2), we have

Proposition 1.1 (/7). Suppose f € L2.([0,00) x R;R). Fiz T > 0. Then, u(t) € L _[0,T) with initial
value ug is a strong solution of (1.1) on (0,T) if and only if lim; o, %fot |u(s) — uo|ds = 0 and it solves

the following integral equation
1 t
u(t) = up + —/ (t — )1 f(s,u(s))ds, Vt € (0,T). (1.3)
I'(v) Jo
Using this integral formulation, the following has been shown in [7].

Proposition 1.2. Suppose f :[0,00) X («, 8) = R is continuous and locally Lipschitz continuous in u. For
any given nitial value ug € (a, f), there is a unique strong solution, which either exists globally on [0, 00)
or approaches the boundary of («, 3) in finite time. Moreover, this solution is continuous on the interval of
existence.

Below in Section 2, we will establish some generalized comparison principles consistent with the new
definition of Caputo derivatives. In Section 3, we establish the full asymptotic behaviors of the solutions for
DYy = AuP. In Section 4, we provide a new proof for the strict monotonicity and stability in initial values
with weak assumptions.
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2. Generalized comparison principles

The comparison principles are important in the analysis of time fractional PDEs (See [9]). There are
many versions of comparison principles proved in literature using various definitions of Caputo derivatives.
In [7], the authors assumed f(¢,-) to be non-decreasing. In [10, Lemma 2.6], f(¢,-) was assumed to be
non-increasing. In [11, Theorem 2.3], there is no assumption on the monotonicity of f(¢,-) , but the function
v is assumed to be C! so that the pointwise value of D)v can be defined. Combining these ideas and
establishing a crucial lemma (Lemma 2.1), we prove some generalized comparison principles in this section.
Similar to [7], we define the inequality in the distributional sense:

Definition 2.1. Let U be an open interval. We say f € 2’(U) is a nonpositive (nonnegative) distribution
if for any ¢ € C°(U) with ¢ > 0, we have (f,) <0 ({f,¢) > 0). We say f1 < fo in the distributional

sense for f1, fo € 2'(U), if fi — f2 is nonpositive. We say fi > fa in the distributional sense if f; — fo is
nonnegative.

In order to prove the comparison principle, we first prove the following auxiliary lemma:

Lemma 2.1. Suppose u € Ll _[0,T) and lim, o+ 1 fot|u(s) — ug|lds = 0. If there exists a function f €
L .(0,T) such that on interval (0,T) we have in the distributional sense that DJu < f, then for any given
A € R, we have in the distributional sense

DY(u—A)T <x(u>A)f, on(0,T).

Proof. First, recall the following result in [7, Proposition 3.11]: if u € C[0,T7) N C*(0,T) and u + E(u) is
C' and convex, we have

DYE(u) < E'(u)D]u.

Now let us consider € C2°(—1,0) with n > 0 and [ ndt = 1. Define n°(t) = L1n(t) and u® = 7« u. As
showed in [7, Proposition 3.11], u¢(0) — uo and u(t) — u(t) in L] [0,T).

Denote E(u) = (u— A)T and define E?(u) = (E*n°)(u). Clearly, (E?) (u) = 1’ * x(u > A) is nonnegative
and increasing, which implies that E? is a convex increasing function. Then, we have

DYE°(u€) < (E°)| e DY ue. (2.1)

It is not hard to see limsup,_,o(E%) |ueDYu¢ < (E°)'|,f(t). Since E°(u€) converges to E°(u) in L,
and E%(u(0)) converges to E’(ug), according to Definition 1.1, DYE?(u€) — DYE°(u) as distributions.
Moreover, notice that the inequality is preserved in the distributional sense (Definition 2.1). We have
DYE’(u) < (E?)'|,f(t). Taking 6 — 0, similarly we have DY E°(u) converges as distributions to DY (u— A)*.
Then the right hand side of (2.1) converges to x(u > A)f(t), and the inequality is preserved in the
distributional sense. [J

As is well-known, if u € H*(0,T), D(u — A)* = x(u — A)Du. Since Caputo derivative is nonlocal, the
equality is no longer true in general. However, we have similar inequalities and Lemma 2.1 provides an
answer.

Corollary 2.1. Suppose u(t) is a locally integrable function with lim,_,+ fot|u(s) —ug|lds =0. Let AeR
and t1 € (0,T) is a Lebesgue point. If u < A for a.e. t < t1, and on the interval (t1,T) we have DYu < 0
in the distributional sense, then we have u < A, a.e. (0,T).
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Let u€ be the mollification in the proof of Lemma 2.1. Consider v¢ = uf — %t” such that v¢ < A
for t € [0,¢1 + €]. C(e) — 0 since ¢; is a Lebesgue point. Applying Lemma 2.1, D) (v¢ — A)t < x(t >
t1 +€)(DYuf — Cle)) < x(t > t1 + €)(DYu¢ — n. * DYu). Taking € — 0 yields DY (u — A)™ < 0. The details

are left to readers. Now several versions of comparison principles can be stated as follows:

Theorem 2.1.

(i) Suppose u; € L [0, T) with limt%0+%fg|ui(s) —u;olds =0 (i=1,2). Suppose ui(t) < ua(t) on [0,;]

loc

for a Lebesgue point t1, and the y-th Caputo derivatives of uy, ua on [0,t1] are locally integrable. Define

tAt1
hi(t :ui,o—i—i/ t—s7_1D3uisd8,i:1,2.
() o [ =9 D)

Then, hq(t) < ha(t) for all t € [0,T]. Moreover, assume there exists a measurable function f(t,u)
such that (i) f(-,u;(+)) (¢ = 1,2) is locally integrable on [t1,T); (ii) f(t,-) is non-decreasing on [t1,T);
(7ii) D)uy < f(t,u1) and DYug > f(t,uz2) in the distributional sense on (t1,T), then u; < uz a.e. on
[0,T).

(ii) Suppose u; € Li .[0,T) with limt_>0+%fg|ui(s) —uiolds =0 (i =1,2). If uy < ug on [0,t1] for a
Lebesgue point t1 and DY (uy — ug) < f(t,u1) — f(t,ua) as distributions on (t1,T), with f(t,-) being
non-increasing on (t1,T) and f(-,u;(+)) (i = 1,2) being locally integrable on [t1,T), then u; < us a.e
on [0,T).

(iii) Suppose u(t) is a continuous function on [0,T]. If u(t1) = supg<s<;, u(s) for some t; € (0,7] and
f(t) = DYu(t) is a continuous function, then f(t1) > 0.

Proof. (i) Clearly, DYh; = DYu; for t < t; and DYh; = 0 for t > t;. Let w = hy —ha, A = 0 in Corollary 2.1,
we find hy < hy. On [t1,T), we have

() ghl(t)+r(17)/t (t— sy~ f(s,un)ds,  ua(t) zhg(t)+m/t (t = 5)~Lf (s, uz) ds.

As hq(t) < ha(t) and f(t,-) is non-decreasing, one has u;(t) < ua(t) (see [7, Theorem 4.10]).

(ii) Apply Lemma 2.1 for u; — uz and A = 0. (The proof is similar as in Corollary 2.1.)

(iii) Consider u(t) = u(t) + Fe((i(_i),y) t7, where € > 0. Then, t; is the unique maximizer of u¢ on [0, ¢1]. Let
f¢=DYu = f+ e It suffices to show

FE(t1) > 0, Ve > 0. (2.2)

Otherwise, there is an ey > 0 such that f(¢;) < 0. Since f0 is continuous, we can find 6 > 0 such that
on [t — d,t1] f€0 is negative and u®(t) < u(t; — ) for t < t; — d. Applying Corollary 2.1, we have
u(t) < u(ty —0) for t € [t; — 0, 1], which is a contradiction. Taking € — 0 then gives the result. O

Remark 2.1. Though the conditions here are weaker under the new definition of Caputo derivative, (ii) is
essentially [10, Lemma 2.6] and (iii) is well-known for C! functions (see, for example [11,12]).

Now, we establish a generalized Gronwall inequality (or another version of comparison principle), consis-
tent with the new definition of Caputo derivative. The main construction is inspired by [11].

Theorem 2.2. Suppose f(t,u) is continuous and locally Lipschitz in u. Let v(t) be a continuous function.
If DYv < f(t,v) in the distributional sense, and D)u = f(t,u), with vo < ug. Then, v < u on the common
interval. Similarly, if we have DYv > f(t,v) as distributions and vy > wg, then v > u on the common
interval.
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Proof. We only prove the first claim (the proof for the other is similar). By Proposition 1.2, DYu = f(¢,u)
with initial value u(0) = uo has a unique solution on the interval [0,7}), where T} is the largest time of
existence. Moreover, u is continuous on [0, T}).

Fix T € (0,T3). Pick M large enough so that w(t) and v(t) fall into [0,T] x [-M, M]. Let L be the
Lipschitz constant of f(¢,-) for the region [0, 7] x [-2M,2M]. Consider

v¢ =0 — ew.

n

Here w = E,(2Lt") is the solution to DJw = 2Lw with initial value 1, where E,(z) = fozom is the

Mittag-Leffler function [13,14]. Clearly, if € is sufficiently small, v¢ falls into [0, T] x [-2M,2M]. Then, we
find that in the distributional sense

DYv¢ = DJv —e2Lw < f(t,v) — e2Lw < f(¢t,v°) — eLw.
We claim that for all such small e,
v¢ () < u(t),Vt € [0, 7). (2.3)
If not, define
t1 = sup{t € (0, 7] : v°(s) <wu(s), Vs € [0,¢]}.
Since v¢(0) = vy — € < g, by continuity we have ¢; > 0. By assumption, (2.3) is not true, and we have

t1 < T. Consequently, there exists 01 > 0, such that v°(t1) = u(t1) and v*(¢t) > u(t) for ¢ € (t1,t1 + 01).
Moreover,

DY (v —u) < f(t,v°) — eLw — f(t,u).

By continuity, for some d2 € (0,d1), DY (v¢ — u) is a nonpositive distribution on the interval (¢1,¢; + d2). By
Corollary 2.1, we have v¢(t) < u(t) for ¢t € (t1,t1 + d2), which is a contradiction. Hence, (2.3) is true. Taking
e — 0 in (2.3) yields the result on [0,T]. Since T is arbitrary, the result is true. [

3. Asymptotic behaviors for a class of fractional ODEs

In this section, we study the solution curves to the following autonomous fractional ODEs:
D)u = AuP, u(0) =wug > 0. (3.1)

The monotonicity of the solutions to (3.1) and some partial results for the asymptotic behaviors have been
established in our previous work [15]. The asymptotic behaviors of the solutions for the A < 0,p > 0 case
have also been discussed in [10, Theorem 7.1]. However, the discussion on all the range of A and p is not
complete. Here, we will give a complete description on asymptotic behaviors of the solution curves.

By Proposition 1.2, the strong solution u to (3.1) exists on [0,7}) for T, € (0,00]. If T, < oo, either
1imt_>Tl;u(t) =0 or limt_>Tb7u(t) = 00. We give a complete description regarding the solutions curves to
(3.1):

Theorem 3.1. Consider (3.1). If A = 0, then u(t) = ug. If A > 0, then all the solutions are strictly
increasing on (0,Ty). If A <0, then all solutions are strictly decreasing before they touch 0.

Py =T
(i) Suppose A > 0. If p > 1, then Ty, < co and u(t) ~ { F(”l))} ! (Tb—t)fp%l, ast =T, . If p=1, then

AF(ZJ%1
u(t) = uwoE,(AtY). If p < 1, then there exist ¢ > 0 and co > 0 such that cyf% <u(t) < CQtl%P, t>1.

(ii) Suppose A < 0. If p < 0, the solution curve touches u = 0 in finite time where the right hand side
blows up. If p =0, then u = ug + Agi+~. If p > 0, then T}, = oo, and there exist c; > 0,c2 > 0 such
that c1t™ % < u(t) < ept 7, t > 1.
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Proof. The A =0 or p = 0 cases are trivial. The monotonicity has been proved in [15]. The A > 0,p > 1
case has also been discussed there. Indeed, there is also an accurate estimate of Ty in [15]. The p = 1 case
is trivial. The A < 0,p > 0 case has been discussed in [10, Theorem 7.1]. In fact, they established a version
of comparison principle and used a subsolution and a supersolution to get cltf% <ut) < cztf%, t>1.
For the case A < 0,p < 0, since the solution is decreasing, we have DYu < Auf, < 0 before u touches zero.
Hence, the claim follows.

Now, we establish the results for A > 0,p < 1 case. First, let us construct the sub-solution as follows:

w(t) _ {Uo, te [O,to],

e
atTr,  t>t.

o
Here a > 0 is to be determined and ?( is determined by até P = wy. Clearly, w is absolutely continuous on
any finite interval. For ¢ < ¢y, DYw = 0 < AwP. For t > ty, we have

Dee=a=pra—y ), e~ aopra—' T Tehpli-p D

where B(-,-) is the Beta function. Clearly, if we choose a > 0 such that % < AaP, then D)w <

ay /t T ayB(:55,1=7) w  al(y/(1—p)+1), 2o
to

AwP. Such a exists because p < 1.
For the super-solution, let us consider

t € [0,1],
Byt 75, > 1.

Bs is determined by By = wug + %. This choice of By makes v absolutely continuous on any finite
interval. We now determine B;. On [0, 1], one has DJv = B;. For ¢t > 1, we have

L 41 t i1
Dlv = By / UL S - T /T * _ar.
B(l+v,1=9) Jy (t—7) Fl=y)1-pJy (t—7)

On [1,2], one has DYv > B(lf{{_v) fl O dr = B1C4 (7). For t > 2, we have

0 @=7)7

O _q
1 ol p 1 T71-p P
D'v>By——————tT-p ———d1t > BotT-r (. .
COPTa-Ty Sy aep T 2(p,7)

It is clear that there exists M (A4, p,7) such that as long as Bs > My, DYv > AvP for t > 2 since p < 1. For

v to be a super-solution, one needs

B —
ug + 1F(1—|—’y)

Such B; exists since p < 1. Hence, applying comparison principle Theorem 2.2 yields the result. [

B, Py
> i = 6 a2
> My, Bimin(1,C1(v)) > Amax (uo, (uo + ra +’Y)> 2 P)

4. Strict monotonicity and stability in initial values

It is well-known that solution curves for well-behaved ODEs do not touch each other. However, for
fractional ODEs, similar results are not trivial since the dynamics is non-Markovian. By the comparison
principles (or generalized Gronwall inequality), if f(¢,u) in (1.1) is continuous and locally Lipschitz in wu,
u(0) < v(0) implies u(t) < v(t) for t > 0. However we do not have strict inequality. In [3, Theorem 6.12], the



Y. Feng et al. / Applied Mathematics Letters 83 (2018) 87-94 93

strict inequality has been established following a series of contraction techniques. Using our new definition

of Caputo derivative, we provide a new proof of that solutions are strict monotone in initial values, by

[eS)
loc*

assuming f € L
The following lemma (a variant of [15, Lemma 3.4] or [16, Theorem 1}), is important:

Lemma 4.1. Let ry\(t) = —%E,(—A'(y)t7) be the resolvent for kernel X7~ (in other words, rx(t) +
)\fot(t —8)7 ey (s)ds = ML), Let T > 0. Assume h € L'[0,T], h > 0 a.e., satisfying

¢
h(t) — / ra(t — s)h(s)ds > 0, a.e., YA >0.
0

Suppose v € L0, T], then the integral equation

t
y(t) + / (t — )" tu(s)y(s)ds = h(t) (4.1)
0
has a unique solution y(t) € L[0,T]. Moreover, y(t) > 0, a.e.

The proof is exactly the same as [15, Lemma 3.4], though we only assume v € L*°[0,T] here. Next, we
provide a new proof for the strict monotonicity in initial value. We also prove the stability of solutions with
respect to initial values.

Theorem 4.1. Assume that f(-,-) € LiS.([0,00) x R). Moreover, assume for every compact set K, there is
Lk > 0 such that |f(t,u) — f(t,v)| < Li|u—v| for a.e. (t,u),(t,v) € K. Then, for a given initial value uy,

the solution in L

= [0,Ty) is unique. Further, we have

o Any two solutions u; € L0, T}) (i = 1,2) with initial values u1 o < uzpo satisfy ui(t) < usz(t) on
[0, min(T, T;))-
e For any T >0, M > 0, there exists C(M,T) > 0 such that any two solutions with ||u;||gep,r) < M

(i =1,2) and initial values uy 9, u2,0 satisfy

[ur — uzl[Loojo,r) < C(M, T)|ur,0 — uz,.

Proof. Fix T € (0,min(7}},77)). There exists K compact such that for a.e t € [0,7], (t,u;(t)) € K. By
Proposition 1.1, one has

t
u;(t) = wio + F(IW)/O (t —s) " f(s,ui(s)) ds.
The boundedness of f(s,u;(s)) implies that u;(t) € C[0,T]. If u1,0 = usg,0, by taking the difference, |u;(t) —
ug(t)| < C’fot(t — 5)7 1 uy(s) — ua(s)|ds and the uniqueness therefore follows.

Now, assume uq,9 7# ug,0. Define y(t) = (ua(t) — u1(t))/(uz,0 — u1,0), we have

y(t) + /0 (t —s)" " tu(s)y(s) ds = 1, where v(s) = 7]“(17) f(s’uijz(ii; : Zf?;?l(s))

If u1(s) = ua(s), we define v(s) = 0. Note that |v| < Lg/I'(v) a.e. for t € (0,T). By setting h = 1 in
Lemma 4.1, one has

t
1- / ra(t — s)ds = E,(=AI'(v)t?) > 0.
0
By Lemma 4.1, y(t) > 0. Since y is continuous, satisfying
t
v0) <1+ [ (6= 97 ol my(s) ds
0

we have y(t) < C(||v||re~,T) by [15, Proposition 5]. This verifies the last claim. [
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