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POSITIVITY-PRESERVING AND ASYMPTOTIC PRESERVING
METHOD FOR 2D KELLER-SEGAL EQUATIONS

JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

ABSTRACT. We propose a semi-discrete scheme for 2D Keller-Segel equations
based on a symmetrization reformation, which is equivalent to the convex split-
ting method and is free of any nonlinear solver. We show that, this new scheme
is stable as long as the initial condition does not exceed certain threshold, and
it asymptotically preserves the quasi-static limit in the transient regime. Fur-
thermore, we show that the fully discrete scheme is conservative and positivity
preserving, which makes it ideal for simulations. The analogical schemes for
the radial symmetric cases and the subcritical degenerate cases are also pre-
sented and analyzed. With extensive numerical tests, we verify the claimed
properties of the methods and demonstrate their superiority in various chal-
lenging applications.

1. INTRODUCTION

In this paper, we consider the following 2D Keller-Segel equations

(1.1) opS = Ap* =V - (p°Vc°), € Rt >0,
(1.2) €0, = At +p°, zeRAt>0,
(13) pa(x’o) = f(.’t), CE(Q:,O) = g(iL’)

This system was originally established by Patlak [23] and Keller and Segel [19] to
model the phenomenon of chomotaxis, in which cells approach the chemically fa-
vorable environments according to the chemical substance generated by cells . Here
p°(z,t) denotes the density distribution of cells and ¢°(x,t) denotes the chemical
concentration. Mathematically, this model describes the competition between the
diffusion and the nonlocal aggregation. This type of competition is ubiquitous in
evolutionary systems arisen in biology, social science and other interacting particle
systems, numerous mathematical studies of the Keller-Segel system and its variants
have been conducted in recent years; see [24] for a general discussion.

When ¢ > 0, the system (1.1), (1.2) is called the parabolic-parabolic model,
whereas when ¢ = 0, it is called the parabolic-elliptic model. When ¢ < 1, the
model is in a transition regime between the parabolic-parabolic and the parabolic-
elliptic cases. For the parabolic-elliptic model, it is well known that M, = 87 is the
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1166 JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

critical mass that distinguishes the global-existent solution from finite-time blow
up solution by utilizing the logarithmic Hardy-Littlewood Sobolev inequality [2,24].
More recently, Liu and Wang have proved the uniqueness of the weak solutions when
the initial mass is less than 87 and the initial free energy and the second moment
are finite [22]. For the parabolic-parabolic model, the global existence is analyzed
and the critical mass (which is also 87) is derived in [5]. Most analytical results
rely on the variational formation.
In particular, we denote the free energy of the parabolic-parabolic system as

1
(1.4) f(p,0)=/ {plogp—p—chrgIVClz} dz,
]R2

where we have suppressed the superscript e for simplicity; see [3,11]. Then the
system (1.1) and (1.2) can be formulated by the following mixed conservative and
nonconservative gradient flow

OF oF
pr=V- (PV%) =

This mixed variational structure is known as the Le Chéterlier Principle. For-
mally when p and ¢ solve the parabolic-parabolic system, the free energy F(t) =
F(p(-,t),c(-,t)) satisfies the following entropy-dissipation equality

d
E;E(t)+/ 01V (log.p — ) + 194ef?] d = 0,
RQ

In the parabolic-elliptic case, one can replace the equation of ¢ using the Newtonian
potential

1
C(l’,t) = % log “T| * p(I,t),

and the free energy for some proper p is given by

5 Fe)= [ loosp—pldo+s [

We also consider the extension of the 2D Keller-Segel equations with degenerate
diffusion

1
2, logla —ylp(z)p(y)dz dy.
2wR2 <70

(1.6) opS = A(p*)™ =V - (p°VcF), xR t >0,
(1.7) €0 = Acf +p°, xRt >0,
(18) ps(l’,O) = f(.’t), 06(11:,0) = g(iL’)

Here m is the diffusion exponent, and we call it supercritical when 0 < m < 1,
critical when m = 1 and subcritical when m > 1. It is worth noting that the
classification of the exponent is dimension dependent, the readers may refer to
[1,4] for a broad summary. The free energy can be similarly defined for this system
and the entropy-dissipation equality can be derived , which we shall skip in this
paper.

While the Keller-Segel equations have been well studied and understood in the
analytical aspect, there is much to explore in the numerical computations. Owing
to the similarity to the drift-diffusion equation, Filbet proposed an implicit Finite
Volume Method (FVM) for the Keller-Segel model [15]. However, instead of be-
ing repulsive, the aggregation term in the Keller-Segel equation is attractive which
competes against the diffusion term, the FVM method is constrained by severe
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POSITIVITY-PRESERVING AND ASYMPTOTIC PRESERVING METHOD 1167

stability constraint. In [9], Chertock and Kurganov designed a second-order pos-
itivity preserving central-upwind scheme for the chemotaxis models by converting
the Keller-Segel equations to an advection-reaction-diffusion system. The main is-
sue there is that the Jacobian matrices coming from the advection part may have
complex eigenvalues, which force the advection part to be solved together with the
stabilizing diffusion terms, and result in complicated CFL conditions. Based on
this formulation, Kurganov and his collaborators have conducted many extensions,
including more general chemotaxis flux model, multi-species model and construct-
ing an alternative discontinuous Galerkin method; see [10,13,20]. Very recently, Li
et. al have improved the results in by introducing the local discontinuous Galerkin
method with optimal rate of convergence [21]. Another drawback of the methods
based on the advection-reaction-diffusion formulation is, in the transient regime
when ¢ < 1, this methods suffer from the stiffness in € and the stability con-
strains are therefore magnified. Besides, there is a kinetic formulation modeling
the competition of diffusion and nonlocal aggregation, and some works on numeri-
cal simulation are available in [7,8].

In this work, we aim to develop a numerical method which preserves both pos-
itivity and asymptotic limit. Namely, the numerical method does not generate
negative density if initialized properly under a less strict stability condition. More-
over, such condition does not deteriorate with the decreasing of ¢, and when ¢ — 0,
the discrete scheme of the parabolic-parabolic system automatically becomes a sta-
ble solver to the parabolic-elliptic system. In other words, we expect the numerical
method to preserve the quasi-static limit of the Keller-Segel system in the transient
regime.

The key ingredient in our scheme is the following reformulation of the density
equation (1.1),

(1.9) Bpt =V - (Jv (:))

which is reminiscent of the symmetric Fokker-Planck equation. Therefore, we can
propose a semi-discrete approximation of (1.9) in the following way:

anrl _ pn B c(p") anrl
(1.10) =V <e Vo))

It is interesting to point out that the above time discretization (1.10) is equivalent
to a first order convex splitting scheme [16]. To see this, we reformulate (1.10) as

n+l _ n
% = Ap’ﬂ-i-l -V- (pn-i-lvc(pn)) =-V. (pn-i-lv log pn—i-l) _v. (p"“Vc(p")) .

Further, thanks to the similarity of the reformulation (1.9) with the Fokker-Planck
operator, the spatial derivatives can be treated via a symmetric discretization de-
veloped in [17,18], which has been shown to be conservative and preserve positivity.
The analog of the equation with the diffusion exponent m # 1 is
m m
1.11) 8,05 =V - (= e " eym—1 \v4 __ € o eym—1 .

(L.11) Oip [pexp(c L ) exp(c+m_1(p)
We shall design numerical methods based on this formulation as well.

The rest of the paper is organized as follows. We conduct asymptotic analysis to
the Keller-Segel equations in the transient regime (¢ < 1) in Section 1.1. In Sec-
tion 2, we give a detailed construction and analysis of the numerical method, prove
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1168 JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

its stability, asymptotic preserving and positivity preserving properties, explore its
high order accuracy analog and discuss its simplified structure in radial symmetric
cases. In Section 3, we extend the numerical method to the Keller-Segel equations
with degenerate diffusions. Several numerical examples are given in the last section
to verify the claimed properties and demonstrate its application in various chal-
lenging cases, including blow-up solutions, degenerate diffusions with large m (see
[12]) and two-species models with different blowup behavior (see [20]).

1.1. Asymptotic analysis for the quasi-static limit. We carry out the asymp-
totic analysis to the solutions of the Keller-Segel equations (1.1), (1.2) when € < 1
in the following. Due to the presence of the small parameter €, the solution ¢ is ex-
pected to experience a transient layer with a fast time scale 7 = ¢/e. In particular,
we construct the following ansatz for solutions,

P (x,t) = pl(z,t) + epi(,t)
c* (CL‘, t) = Cg’in(.%', T) + Cg,out (337 t) + EC; (337 t) ’
where ¢;, (x, 7) represents the solution inside the transition layer and thus depends

on 7. Plugging this ansatz into the equations (1.1), (1.2) and collecting the systems
due to their orders, we have, to the leading order:

(1.12) Pl =Apl +V - (ng (Cg,in + Cg,out)) )
(1.13) 3r02,in = Acg,inv

(1.14) 0=Ac i+ 2.

The initial conditions are given by

(1.15) p2(2,0) = f(z), €2;u(2,0) + 2 o (2,0) = g().

Clearly, equations (1.14)—(1.15) imply that
Cout(®,0) = (=A) " (@), in(2,0) = g(z) = (=A)7 f(2).

Therefore, if initially we have f(x) = —Ag(z), there is no initial layer in the solution
c®. The next-order expansions solve the system

(116)  Oypt = Apt =V - (pIV (5 + o)) = V- (p2Vel) —eV - (piVel),
(1.17)  edcl = Act + pt — 9,2

g,out?
with initial conditions

pL(x,0) =0, cl(z,0)=0.
Thus if we can show the boundedness of p! and ¢!, the validity of the ansatz we
proposed will be justified. Further, certain estimates of cg’in are needed to show
that as ¢ — 0, the correction terms vanish and the leading order system converges
to the parabolic-elliptic system

(1.18) dhp = Dp— V- (pVe),
(1.19) 0= Ac+p,
(1.20) p(2,0) = ().

We remark that, the above asymptotic analysis is unclear from a rigorous stand-
point, which is beyond the scope of this paper as we focus on designing numerical
schemes. Nevertheless, we shall explore numerically the asymptotic behavior of the
solutions to give an intuitive justification of the above formal derivation.
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2. NUMERICAL SCHEMES FOR THE CRITICAL CASE m = 1

In this section, we aim to propose numerical schemes for the Keller-Segel sys-
tem (1.1), (1.2), which preserves the parabolic-elliptic limit in the discrete level as
e — 0. We show that, under the small data assumption, our scheme (both first and
second order) are stable. The spatial discretization is carried out based on a sym-
metrization of the operators, with which we are able to prove its properties of mass
conservation and positivity preservation. The extension to the radially symmetric
cases is discussed at the end of this section.

2.1. A first order semi-discrete scheme and the small data condition.
We first focus on the time discretization and present a semi-discrete scheme for the
Keller-Segel equations. Denote At the time step, then t” = nAt for n € Nand f"(x)
represents the numerical approximation to f(z,t"). Without loss of generality, we
assume homogeneous Dirichlet boundary condition on a bounded Lipschitz domain
Q) C R? so that no boundary contribution shows up when applying integration by
parts. In this paper, unless specified, all the norms || - || denote the L? norm on the
domain ). In theory, other boundary condition can be similarly analyzed and we
shall omit them here.

For stability concern, we want to use implicit method as far as we can, but due
to the nonlinearity of the system, this would require a Newton solver that may
converge slowly. Here we propose the following semi-discrete scheme:

pn+1 _ pn
(2.1) e = A -V (Ve
CnJrl _ Cn
(22) ET = Acn+1 + pn

to handle the above-mentioned two difficulties. As written, (2.2) is just a linear
equation for ¢®*!, and thus can be solved cheaply by inverting a symmetric matrix
via conjugate gradient or directly using pseudo-spectral method. We will elaborate
on it in the next sections. Once ¢"*1! is obtained, (2.1) reduces to a linear equation
for p which can also be solved with ease if discretized appropriately. Also, we
observe that, if we formally take the ¢ — 0 limit with At fixed, the numerical scheme
converges to a semi-discrete method for the limiting parabolic-elliptic model.
To show the stability of this scheme, we have the following theorem.

Theorem 2.1. Given a final time T, then for nAt < T, assume the numerical
solution obtained by the semi-discrete numerical method (2.1) and (2.2) for the
Keller-Segel equations satisfies the following technical condition:

(2.3) At||Vp"|| <1, Vn>0.
Then, the method is stable if the small data condition
(2.4) 1P°(* + e VE|? < 27T

is satisfied.

Proof. Multiply equation (2.1) by p"*1At and integrate with respect to x, we get

(2.5)
Sl Pl =g =S o P+ AV = =52 () A |
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1170 JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

where the last term on the left is obtained using integration by parts. Applying
Young’s inequality, the right-hand side of this equation has the following estimate:

At n+1)2 n+1 At n+1\2(2 At n+1)2
< — + — .
5 <(P ) , Ac >_ 1 (™7l 4 [Ac I

Next, we multiply equation (2.2) by —Ac
integration by parts, we obtain
(2.6)

5 € €

VP4 SV = Ve |2 = S| Ve [P+ At Ac™ | = At (p", Ac™*T),

"+1 and integrate against . Again with

and Young’s inequality implies
n oA om At At
—at (A ) < SR + S,
A combination of equations (2.5) and (2.6) then leads to
1 At
27) 5l + SVt + AV + A

1 i s 6 n n
+§||P —p H2+§HVC L —ver|?

1 n €o n At
< SO+ A" + SIVe I + SR

To estimate the nonlinear term [|(p"*1)2||?
the Ladyzhenskaya inequality and get
1™ )21 < 20l PPV e 2.

Hence we arrive at the following estimate:

in the two-dimensional case, we apply

28) gl SITe 4 A (1 G ) [

+ LIACHR 4 S om = o P 4 S Vet - ven?

< S+ A" + Ve
Thus, if
(2.9) 1Sl > 0
is satisfied, then we conclude that
(2.10) PP + el Ve ™2 < (14 At + | Ve 2.
The by Gronwall’s inequality, if nAt < T, we have
™1 + el Ve 2 < e (11p°)1* + el Vel ?) -

We propose that, the presumed condition (2.9) and the stability estimate require
the following small data condition:

(2.11) " (1”17 + el Ve||?) < 2.

Actually, this can be shown by induction. Suppose that, we have shown

1
(2.12) Slo 2+ SIver|? < enaeT
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POSITIVITY-PRESERVING AND ASYMPTOTIC PRESERVING METHOD 171
for (n + 1)At < T, then clearly,
1 €
S+ A"+ Ve < AT <

If we denote b" T = At||[Vp" |2, then (2.8) implies

1 1
§||pn+1H2 + bn+1 (1 _ §||pn+1||2) < 1.

Since b"*! < 1 due to the technical condition (2.3), we conclude that

1
Sl <1,

and by (2.12), (2.8) implies

1
5”pn-i-lHQ + %”vcn+1”2 < e(n-i—l)At—T.

This completes the proof. O

We end this part with a comment on the asymptotic preserving properties. As
€ — 0, the scheme for the parabolic-parabolic system not only converges to the one
for the parabolic-elliptic system, but also keeps the stability constraint satisfied
for fixed At, as seen from (2.11). This formally justifies that the semi-discrete
numerical method (2.1) and (2.2) is asymptotically preserving.

2.2. A conservative and positivity preserving fully discrete scheme. In
this section, we explore in detail the spatial discretizations of Keller-Segel equa-
tions. Note that, naive discretizations of equation (2.1) can easily destroy the
positivity of the solution and trigger instability. Our main idea is to make use
of the symmetric formulation of (1.9) and adopt a discretization in [17, 18] that
guarantees the positivity.

More specifically, let M"+1 = ¢

Sy A Gy o s
(2.13) =V (M V() )

<" and rewrite (2.1) as

where the right-hand side is in the form of the Fokker-Planck operator and can be
n+1
discretized symmetrically [17,18]. In particular, we denote h"t! = \/’;V:TH, and

reformulate (2.13) into

At ptl pn
n+1l _ . n+1 —
(2.14) h —Wv (M v \/M”H) T

Such a scheme has been shown to preserve positivity. Indeed, since the left-hand
side is a positive definite operator on "1, and the right-hand side is positive, as
long as the spatial discretization preserves the positive definiteness, we can ensure
the positivity of A" *1.

A fully discrete scheme is in order. Let the computational domain be [a, b] X [¢, d],
and we consider uniform spatial mesh with mesh size Az and Ay. Thus the mesh
grid points are (z;,y;) = (a + iAz,c + jAy). We apply the following five-point
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1172 JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

method for spatial decretization to equation (2.14) and (2.2), and get

€ n+1 nt+l _
(2.15) N - Dy; At cij T P>
p4 .
(2.16) R — ALSH = —L—
’ ’ /1 n+1
Mi,j
Here,
1
n+1l __ n+1 n+1 n+1 n+1 n+1 n+1
Dyt = oz (60 =26+ efiiy) + o (60 = 2457 + 6h)
n+1 n+1
SnJrl n+1 hH—LJ _ h j
Lj n+1 H_l’J n+1 n+1
MJ \/Mz+1,J \/M
n+1 n+1
n+1Mn+1 h‘ j hz 1,5
1,5
n+1 = n+1 n+1
,/M” \/M \/Ml N
n+1 n+1
ML hijs1 _ hi
7J+1
n+1 n+1
\/ 7] \/M J+1 \/Miu’
n+1 n+1
/ n+1Mn+1 hi _ hu 1
1,J 1,j—1
n+1 n+1
¢ NN T

When Az = Ay, we can simplify the above expression to

n+1 n+1 n+1 n+1 n+1 n+1
%7 AQ(z 1]+C’L+1]+Cl] 1+Cz]+1_4ci,j)’

7,5—1

Z Mn+1 )
di=*1,do==+1 i+d1,j+d2 hn+1
4,J :

1
n+1 __ n+1 n+1 n+1 n+1
Sij - AI (hz 1j+hz+lj+h +hzj+1

n+1
0,J

In the end, ijl is easily obtained via

n+1 n+1 n+1
Pij = hij \/Mw. :

Multiply (2.16) by /M ' and sum over (i, j), we get

D_plyt = Ay oy MEST = me
i i
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Notice that

n+1 gn+1
Z M55

i,J

1 n+1pn+1 n+1 n+1 n+1 n+1pn+1
= Z A2 ( M5 hislh g — \/Mz'+1,j + \/Mz‘—l,j hij ™+ Mg hiZy
,]

1
+1pn+1 +1 +1 +1 +1pn+1
+Z—Ay2 ( M5 hii = <\/M£Lj+1 + \/ij1> hig ™+ Mi; thl)
%,]

:07

which implies the conservation of mass in the discrete level, i.e.,
n+l _ n
E:Pm‘ = E :Pm‘-
,J ,J

For positivity, we have the following result.

Theorem 2.2. Suppose initially we have pﬁj > 0 for k = 0, then the five-point
scheme (2.15) and (2.16) guarantees

pij =0,  for n>1

The proof is standard and is similar to some existing results, the readers may
consult [17] for details.

To conclude the discussions on the first order scheme, we would like to give the
following remarks:

(1) Given that cﬁ ; = 0for k= 0,1 and appropriate boundary conditions for
c®, we can show the positivity of ¢’; Vn € N*, Vi, j.

(2) Other spatial discretization may apply to this semi-discrete system. Es-
pecially, the ¢® equation can easily be solved by pseudo-spectral method.
It is worth emphasizing that the positivity of p;’; is independent of the
positivity of ¢}';. Hence, one has more freedom to solve the ¢ equation.

(3) This scheme can be easily extended to multi-species models, as will be
shown in Section 4.

2.3. A second-order scheme. The scheme presented above can be directly ex-
tended to second order. As the spatial discretization built upon the center difference
is already second-order accurate, we just focus on the second-order time discretiza-
tion, which can be accomplished using the backward difference formula (BDF).
Specifically, the semi-discrete scheme reads

1 1
(217) A_t <gpn+1 _ 2pn + 5pnl> _ Aanrl N v (anrlvanrl)7
(2.18) E (Bt g Lonm1) Zan+t fgpn e
' At \ 2 2 e

Again, as in the first-order scheme, no nonlinear solver is needed; one can solve for
"1 from (2.18) and then p"*! from (2.17).
A similar stability result is available.
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Theorem 2.3. Given a final time T, then for nAt < T, assume the numerical
solution obtained by the second-order semi-discrete numerical method (2.17) and
(2.18) for the Keller-Segel equations satisfies the following technical condition:
(2.19) At||Vp"|| <1, Vn>0.

Then, the method is stable if the small data condition

6_20T

1 € 1 € 1
(2:20) 0P+ SNV + 11200 = 01 + S 2Vt = Ve |2+ At <

is satisfied.

Proof. Multiply equation (2.17) by p"T!At and integrate with respect to z, by
integration by parts, we get

(2.21)

1 1 1 1 _ 1 _
P E = P+ 7120 = g2 = 1207 = 2 o =207 4

4
At
AUV = =S5 () A,
By Young’s inequality, the right-hand side can be estimated as
1 At
< =

-5 <(p"+1)2 ,Acn+1> <5

Again, by the Ladyzhenskaya inequality, we get
1™ 2112 < 2l pm P v e 12,

1™ )21 + = Acm 2.

we multiply equation (2.18) by —Ac"*! and integrate with respect to #. With
integration by parts, we obtain that

(2:22) Z|[Ve = Z|Ver | + Z|2ven ! - Ver|? — Z2ven — ver !
€ '3 n n— n '3 n— n
+ Z”VO T2V + TP+ AL AP = = A (2p" — p" T AT,
and Young’s inequality implies
—AL(2p" = p" T AT < (120" = p" P+ AT
n|2 n—12 At n+12
< AN+ A" T+ AT

Here we used the fact that |la + b||? < 2||al|? + 2||b]|*. Adding equation (2.21) and
(2.22), we get
1 1 € € 1
- n+12 _ = n|2 _vn+12__vn2 _2n+1_n2
2 = 2P+ IV - Ve 4 2 - o)

= 120" = o+ S vt - e - S aver — ven 2

1 n n n— € n n n—
+ 7" = 20" 4 p" P 4 VT = 2V + P,

8¢ (1= G IV A < a8t + el
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Assume that p° and c® are given by initial conditions, and p' and ¢! are computed
by a first-order numerical scheme. For N € N*, N > 2, with NAt < T, we sum up
the above equations forn =1,..., N — 1, and get

Longe _Ly12, € Nj2 € 12, LiowN Notg2 Lo 02

— - - -V - ||V —[2p" — — =||2p" —

oI = 16 + SIVEV I = SIVEIR + 120" — N = 720~ )

€ € iy |
+ S29eN = VN TR = Savet - Ve 4 3T 1l - 2t 4 2
n=1

N-1 N-1

€ +1 —12 1 +142 +112
# 3 JIve —ave ket 3 o (1= gl ) 19
N-1 At N-2
+ A2 < 4At[pN Y2+ Y 5AL "7 + At]100)2.
HZ:; 2l |7 < 4At)p™ | ; 1™l (Tl
Therefore, if
1
(2.23) 1—§||pn+1||2>0 forn=1,...,N—1
holds, then we can conclude that
1 c N-2
LyoNy2 | & N2 < g4AH| N 112 Atllom12
e 17+ ZlIVeT||” < datp™ +n§=:15 p"[I” + Co
N—-1
< 37 5AMp")2 + Co
n=1
N—-1 1 c
< 20At —Ip"12 + = IV )? ) + C
<2080 3 (1P + IV + o

where
Loyy2, € 12, Lo o2, & 1 012 02
Co = 71012 + SITE + 712" = o) + 29t — Vel + Adf 0]
By induction, we have
1 €
lepN\l2 + Z||ch||2 < (14 20A8)N2(20Atay + Cp),
where )
_ 2, € 1912
a = g1 + SVl
Obviously, a; < Cy, and thus we have
(20Ata; 4 Co) < Co(1 + 20At),
which implies
1 €
2oV + S9N < 7C,

Subsequently, the following condition is sufficient to guarantee the small data
estimate (2.23):

1

20T 0y < 5+
Similar to the first-order case, this condition implies the stability estimate, which
can be shown by induction. (Il
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We would remark that, the small data conditions (2.4) and (2.20) are not neces-
sary conditions, and are made primarily due to technical issues. In our numerical
simulations, we observe that unless the exact solutions to the Keller-Segel equations
blow up, the numerical methods do not exhibit unstable behavior.

2.4. Radially symmetric cases. This section is devoted to the radially symmet-
ric case. Recall the first-order semi-discrete scheme

PnH -p" n+1 n+ly .n+1
n+1l _ .n
(2.25) 5% = A"t 4 pn

If we confine ourselves to the radially symmetric case, we can write p(z) = p(r)
and c(z) = ¢(r), and simplify the above semi-discrete scheme to

n+1 n
u — 12 3 n+l) 12 7L+12 n-+1
(2.26) 7 =% (rarp il KU ,
cn+1 —cn 10 o i N
0 0
2.2 9 om0y =0, ZLenti(o) = 0.
23) Ly =0, Leo)=0

Then our task is to propose a numerical scheme to this system that is both conser-
vative and positivity preserving.

If the computation domain is an anulus a < r < b, where 0 < a < b, it may be
convenient to introduce an auxiliary variable s = log r or, equivalently, » = e®, and
we have

n+1 n 2
A A 0 19 a1
2.99 2sF P _ - . ntl _ 7 n+l_~ n+
(2:29) ¢ At as2” ds (p Bs° ’
n+1 _ .n 82
(2.30) ee S0 = Tty 2 pm

At 0s?
Clearly, we can rewrite (2.29) in the following conservative form:

625 pn+1 _ pn 2 <ec"+1 2 pn+1 )

N ds ec"

At 0s

This system shares the same structure with the one in the cartesian coordinates,
and one can design a positivity preserving scheme in the same spirit. However,
when r — 0, s = —o0o. Therefore, in order the save the information in the vicinity
of r = 0, extra effort is needed when truncating the computational domain in s.

We consider an alternative approach. The key ingredient is the following refor-
mulation of equation (2.26)
pn+1 _ pn 19 ot o pn+1
£ F _ -2 (e ~r

At ror ( Or ec" ™! ) ’

Here the computational domain is chosen r € [0, L], and the mesh size is Ar =
NLT, where N, € N is the number of grid points. r; = —%Ar + jAr, for j =
0,1,...,N,. Please note here, ry = —%Ar is introduced to handle the following
boundary condition at » = 0. We denote the numerical approximation of f”(r;) by

/- The boundary condition at r = 0 is
(pn)/(o) =0, (Cn)/(o) =0,

(2.31)
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and thus we have
po = PL, o =cf
For simplicity, we still use M = e. Then equations (2.31) and (2.27) are further
discretized into

n+-1 7 n+1 n+1
p] —Pj _ 11 n+1 7 rn+1 p]+1 p]
(2.32) S E T—j\/erM M7, N A
n+1 n+1
_ Li\/r.r. At ([ Pi o Pica
Ar2 T Jrj—1444 j—1 M;"H M;lel s
gt 11
J J n+1 n+1
(2.33) ET - pgm( j+1 T 6 )
1 1

A2 T TiTi-1 ( A n+1) +p]

As always, at every time step, we first solve the equation (2.33) for c;-“H and then
equation (2.32) for p"Jrl

Multiply (2.32) by r; and sum over j, we can similarly show that
S =
J

which preserves the discrete mass in the polar coordinates. Moreover, similar to
the case in Cartesian coordinates, we can show that the fully discrete scheme (2.32)
and (2.33) preserves positivity of p"'“. Indeed, suppose p} > 0, we can recast
equation (2.32) as

p;L'H = AtR;L'H + 07,

where

n+1 n+1
R+ — 1 l\/r‘r'_HM"""lM""_l Pi+1 Py
J Arzp; Vo7 g+ Mj"fll M”‘H

+1 +1

L1 V4~r M pi i
Jti— 1 1 :

T AR ViR Vi

n+1 pn+1
If we assume that ~ nﬂ achieves its mininum when j = j’ with n+1 < 0, the from

the above formulatlon R;.’,H > 0 which and thus p;s > 0, leading to a contradiction.
Therefore, the positivity is preserved.
3. SUBCRITICAL CASE m > 1

3.1. Dynamical and steady state. In this section, we study the 2D Keller-Segel
model in the subcritical regime m > 1:

(3.1) Ohp” = A(p")" =V - (p°V),
(3.2) e0ic® = Ac® + p°,
(3-3) p*(2,0) = f(z), (2,0) =g(z).

We first review some properties of this system.
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Rewrite equation (3.1) as
(3.4) Op® =V - (p°Vp),

where p is the chemical potential
p= { mril(pe)m—l _087 m# 17

(3.5)
logp® —c®, m=1.

Then the (nonnegative) steady states to this system, which are denoted by p% and
g, satisfy the following system in the sense of distribution:

(3.6) A(pS)™ =V - (pVE5) = 0,
(3.7) AcE +pS =0.

To explore the radial symmetry of the steady solution, we define
(3.8) Q= {z e R?*pi(z) >0}

and assume it is connected for simplicity. By [1], we know that, when m # 1,
p5 € C(Q) satisfies

m m— _
m(pi) l_cizcv z €,
(3.9) pS=0,2eR*\Q, pS>0,2€Q,
— Ac = p5.
If we denote ¢ = =1 (cS + ¢), then (3.9) implies
m—1 1
—Ap=—-9¢" 2€Q, k=—-r0,
(3.10) e I m—1

$=0,2cd, ¢>0 zecq.

The nonnegative radial classical solution of (3.10) can be written in the form ¢(z) =
#(r), thus, for all a > 0, if we define L = {r;¢(r) > 0}, ¢(r) € C?([0, L]) satisfies
the following initial value problem:

2 1 1
brrt —p = =gk, T >0, k=,

r m m—1
#'(0)=0, ¢(0)=a>0.
Here, ¢(r)* is meaningful before it reaches zero.

When m = 1, the steady solution p¢ € C(£2) satisfies
logps —ci=¢, x€q,

(3.11)

(3.12) pS=0,zcR*\Q, pf>0,2cQ,
— Ac§ = p5.

If we denote ¢ = log p<, then, (3.12) implies

(3.13) —Ap=¢?, zecR

The nonnegative radial classical solution of (3.13) can be written in the form ¢(z) =
@(r), thus, for all a > 0, if we define L = {r;¢(r) > 0}, ¢(r) € C?([0, L]) satisfies
the following initial value problem

¢rr + gd)r = —€¢, T > 07
¢'(0) =0, ¢(0)=a>0.

(3.14)
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3.2. Numerical scheme. Similar to the critical case, we first propose the following
semi-discrete method for the (2D) Keller-Segel model with exponent m,
pn+1 n

—pP n+1\m n+1 n+1
- = A — .
N (P =V (e,

(3.16) ey = Ac" T 4 pm.

Here a Newton’s solver is inevitable due to the nonlinearity on the right-hand
side and, because of this, the stability analysis can be very complicated. We skip
the analysis on this scheme here and instead show substantial numerical evidence
to verify the properties of this method to the model especially in the subcritical
cases.

Another issue of this scheme concerns the positivity. We observe numerically
that when m > 1, this scheme is not necessarily positivity preserving, especially
when the solution is compacted supported, or when the diffusion exponent m is
large.

To propose a positivity scheme, recall that equation (3.1) can be reformulated

(3.15)

as
(3.17)
m _ m e
Op° =V~ [PE exp (CE - )" 1) Vexp (—cE + () 1)] :

Let M = exp (cs - %(ps)m’l), then we have equivalently
(3.18) o =V | MV~ | = v | gy L

. "=V - |p =V |P AT |
Therefore, we propose the following semi-discrete, semi-implicit scheme

pn+1 _ pn " pn+1
3.19 — =V M"
(3.19) Y V-lp Vpn R
cn+1 —c" 1

(3.20) Ay T Act 4 pn

In the radial symmetric case, we write p°(z) = p°(r) and ¢*(z) = ¢°(r), and the
system (3.1) and (3.2) is rewritten as

. 10 0, cum 10 L0 .
(3.21) Kt = o (75@ ) ) ~ar <”’ o > :
. 10 0 . R
(3.22) €0yt = o (’I‘EC ) +p°,
0 0
.2 - € = —_— € = .
(3.23) 57 (0,t) =0, 3¢ (0,t)=0
Again, we denote M = exp (ca - %(pa)m_l) and equation (3.21) is reformu-
lated to
L 1o/ 01N 18 ( . D pf
(3:24) " = ror (rp MEM) Cror (rp M@r pEM) '
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Then the corresponding semi-discrete, semi-implicit scheme reads:

pn-',-l _pn 10 n ) pn+1
2 L e M=
(3:25) At ror \" or pnMn )’
Cn+1 _ Cn
(3.26) Ay T Ac T 4 pm.

Similar to this previous cases, we can show that five-point scheme for the semi-
discrete system (3.19), (3.20) and the centered difference approximation for the
semi-discrete system (3.25), (3.26) are both conservative and positivity preserving.
As the proofs are similar to that of the previous cases, we shall omit them here.

4. NUMERICAL EXAMPLES

In this section, we present several numerical examples in dimension two. Here
periodic boundary condition is used among all examples. The first three examples
concern m = 1 whereas the last one focuses on m > 1.

4.1. Convergence. First we check the accuracy of the first- and second-order
schemes in cartesian coordinates. Here the initial data takes the form

(41) p(m’, 0) = 46—(w2+y2)7 C(J,', 0) = 6_(x2+y2)/27 T € [_57 5] y e [_57 5]7

and output time is ty.x = 5. The meshes are chosen as Ax = 1,0.5,0.25,0.125,
respectively, and At = Ax. The relative error is computed as

(4 2) eITOr Ay = ||pAw(xatmax) p2Az(x7tmax)||zl
: r —
l|pazle

)

and collected in Figure 1. Here a uniform convergence for both first- and second-
order schemes are observed for a wide range of €.

error
error

e=1e-2

—*g=1e-4

AX AX

FIGURE 1. Uniform convergence of our schemes: error (4.2) versus
mesh size Az = Ay for different ¢ = 107%, 1072 and 1. The
red dashed line is a reference with a fixed slope. Left: first-order
scheme (2.15) (2.16). Right: second-order scheme (2.17) (2.18).
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4.2. Asymptotic behavior. Next, we demonstrate the asymptotic behavior of
both p and c¢. Both asymptotic in small € limit and long time limit will be consid-
ered.

4.2.1. Quasi-static asymptotic behavior. Denote p® and ¢ the solution to (2.15)
and (2.16), and p° and " the solutions with € = 0, and we compute the ¢! error in
time:

(4.3) p* (@, y,t) = 0%,y Oller = D 10775 = (0°)F 51 Ay,
i.j

(4.4) e (2, y,t) = L@y Ol = D 1) = ()| AzAy.
i.j

The initial data is chosen to be
(4.5) p(x,0) = 4()06*100(90"41/2)7 e(z,0) = o= 50(@%+y%)

such that p(z,0) # (1 — A)~1f(z,0). The results are gathered in Figure 2 for
different choices of €. Here the computational domain is (z,y) € [—1,1] x [-1,1]
the meshes are Ax = Ay = 0.05, and we use both big time step At = 0.05 and
small time step At = 5e — 4. It is shown that in ¢, the error undergoes a drastic
change at the beginning until it reaches a state after which the errors decrease at
the order of . This initial period time is independent of our choice of time step,
which implies that it is a period of initial layer. After such layer, the error decreases
as ¢ decreases, and they change at the same order, as suggested in Section 2. On the
contrary, the error in p varies at the same order of ¢ starting from the beginning,
which implies the nonexistence of initial layer. This transition can be observed even
with a coarse time step, as shown in Figure 2. To get a closer look at the dynamics
in this layer regime, we have a zoom-in plot in the lower left corner are computed
using small At < 1073, less than the smallest ¢ we choose here. Then a similar
transition discussed above is observed, further confirm the asymptotic behavior of
the solutions.

N

errorin C 1! error in P

'--5:1

0.01 0.02

0.5 1 .
time

FIGURE 2. Left: ¢! error in ¢ (4.4). Right: ¢! error in p (4.3). Here
Ax = Ay = 0.05, At = 0.05 for the big picture and At = 5e — 4 in
the pictures on the lower left corner.
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4.2.2. Long time behavior. Here we briefly compute the free energy at each time.
The initial condition is taken the same as in (4.5), and the computational domain,
mesh size and time step are kept all the same as in section 4.2.1. When ¢ = 1, the
free energy is defined in (1.4), and (1.5) when e = 0. In Figure 3, we plot both
cases and observe the decay of energy in time, a property highlighted in [6].

60 50
40 ] 40
30

20
20

0
10
-20 g 0
-40 -10

0 1 2 3 4 5 0 0.5 1 15 2
time time

FIGURE 3. Plot of free energy versus time. Left: ¢ = 1 with free
energy defined in (1.4). Right: ¢ = 0 with energy (1.5). Here
Az = Ay = At = 0.05.

4.3. Blow up. In this subsection, we focus on the cases when p blows up, and show
that our schemes, both in cartesian and polar coordinates, are positivity preserving
regardless of the choice of At. For the radial symmetric case, consider the following
initial data for p(r,0):

(4.6) p(r,0) = 600e~5"" € [0,2],

and we choose ¢(r,0) such that it solves

(4.7) %% <r%0(r, 0)> —¢(r,0) + p(r,0) = 0.

When ¢ = 0, we plot the profile of p at different times in Figure 4 on the left, and on

the right, we show the maximum of p with time. Different mesh sizes are used, for

the upper figures Ar = 0.025 and lower figures Ar = 0.00625, and At = Ar/5. Tt

is interesting to point out that, the maximum amplitude of p increases by a factor

of 16 as Ar decreases by 1/4, indicating a blow up of p in O (ﬁ) fashion.
Similarly, in cartesian coordinates, we consider the following initial data

(4.8)

p(z,y,0) = 600e 0+ (x 4y € [—4,4]x[-4,4], c(z,y,0) = 300e 30" +v),

In Figure 5 on the left, we plot a slice of solution at y = 0 for different times, where
a trend to blow up is observed. On the right, we plot the maximum magnitude of
p, which is very similar to the one obtained in the radial symmetric case. Also,
we observe that this magnitude increases at the order of O ( AQQ). Similar type of

blow up is observed in [21].
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4 x10% 4210
——1t=0
——1=0.01
t=0.04]
3 —-1=0.07] 3
——1=0.09|
t=0.11 =
Q2 ‘gz
€
1 1
0 mtanons 0
03 -02 01 0 01 02 0 005 01 015 02 025
r time
5 5
6><‘10 6><10
——1=0
——=0.0025|
5 t=0.01 5
——1=0.02
4r ——t=0.04 4
t=0.06 =
a3 53
€
2 2
1 1
0 locosoccscicoosottt®tosssssncscss 0
0.1 -0.05 0 0.05 0.1 0 005 01 015 02 025
r time

FiGUurE 4. Computation of the model in radial symmetric case
with € = 0. Left: the plot of p at different times. Right: max(p)
versus time. Top: Ar = 0.025. Bottom: Ar = 0.00625. At =
Ar/5.

4.4. Subcritical case m > 1. This section is devoted to the subcritical case:
m > 1. Our focus will be the limit behavior when m — oco. First we consider the
‘square’ initial data in polar coordinates

2
— po, 1< 0.1, _ 1
(19) o0 ={ B e, €(0) = 5o(r0)

displayed in a black curve in Figure 6, where pg is a constant. The output time
is 50, long enough to produce a solution in steady state. On the left pp = 1, and
one sees that as m increases, the steady state solution transits from a smooth, fat
bump to a tall sharp square that happens to be the same as the initial profile. This
indicates that the steady state, as m — oo, tends to converge to the characteristic
function with the length of the region determined by the total mass. We then
choose py = 0.5, and similar trends is observed on the right of Figure 6, which
confirms the recent result that the steady state in the infinity limit of m tends to
the characteristic function; see [12].

To further check the shape of the steady state, we compute the problem in the
cartesian grid. First we choose the initial data to be a double annulus, which is
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—t=0
—1=0.02
1000 t=0.05
—t=0.1 850
— —1=0.15
? t=0.2 800
> 500
é 3750
< 3
£
0 | 700
0.2 . 650
0.1 0
800005 01 015 02 025
time 0 -5 X - " time
—t=0
—1=0.0125
15000 t=0.0375| 14000
—1=0.0625
. —1=0.0875| 12000
o 10000 t=0.125
4 —1=0.1625/ 10000
= 5000 —1=02 = 8000
Nawg x
< g 8 6000
0 L~ 4000
0.2 /
5 2000
0.1 0 0
. 0 0.05 0.1 0.15 02
time 0 -5 X time
FiGgure 5. Computation of the model in cartesian coordinates.
e = 0. Left: the plot of a slice of p at y = 0 at different times.
Right: max(p) versus time. Top: Az = Ay = 0.2. Bottom:
Az = Ay = 0.05. At = Az/20.
t=50,e=0 t=50,e=0
1 T T W T T 1 T T m T T I
— initial —initia
——m=4 ——m=4
0.8t m=16 |1 0.8} m=16 |1
——m=64 ——m=64
—=—m=256 —=—m=256
061 106¢ 1
0.4} {04t
—
0.2} f/ \ {02} Aﬂ%
0 . 0 .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
r r

FIGURE 6. Computation of the radial symmetric case (3.21),
(3.22). € = 0, output time is ¢ = 50, and the plot of p for dif-
ferent m = 4, 16, 64, and 256. The black solid curves are the
initial profile of p. Left: pg = 1. Right: pg = 0.5. Here Ar = 0.05,
At = 1.25¢ — 4.
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radially symmetric, as shown in the upper left of Figure 7:

1, 05<z?4+y><lorlb<a?+y?®<2,
p($7y70)={ Y Y

(4.10) 0, elsewhere,

1
C(.I, y»O) = ip(xa ZJ:O)

The next two figures display the profile of p at later times, both in the top view
and in 3D view. From these three figures, one sees that the shape of p, starting
out with a double annulus, tends towards a thicker single annulus closer to the
origin, and then towards a circle around the origin, which is just a 2D analog of
the radial symmetric case in the previous test. The last picture in Figure 7 plots
one cross-section of p at £ = 0, and the dynamics is the same as we expected.

4
2 g
0
-2
-4
4
1 : S .
I R
il S t=4
2 0.8 it Ty
0 0.6 | -
0.4 .‘
-2 02 A |
; 5 I
4 0 04 2 0 2 4
- -5 -5 x=0y

FIGURE 7. Time evolution of model (3.15) (3.16) with initial data
(4.10). € = 0, m = 64. Out put times are: t = 0 (upper left),
t = 4 (upper right), t = 10 (lower left). Lower right: plot of one
cross-section of p at x = 0.

In the end, we consider a case with nonradially symmetric initial data
] 1, -1<2<-01,01<y<lor0<x<1,-1<y <0,
(4.11) p(2,y,0) = { 0, elsewhere,

(4.12) ¢(z,y,0) = %p(m,y,O).

The dynamics is displayed in Figure 8.
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4

-2

1]
<’.W4M

N\~

5 5 -5

0

0 5

F1GURE 8. Time evolution of model (3.15) (3.16) with initial data
(4.11) (4.12). Here ¢ = 0, m = 64. Output times are: ¢t = 0 (upper
left), ¢ = 2 (upper right), t = 4 (lower left) and t = 10 (lower
right).

4.5. Two species. In this section, we test our scheme on a two-species model [20]:

Oip1 +x1V - (p1Ve) = mAp,
(413) atpg + sz . (ngc) = /,LQAPQ,
ecy = DAc+ ayp + asps — Be.

Here p; and po denote the cell densities of the first and second species. ¢ is the
concentration of the chemoattractant. pu;, x;, a; ¢ = 1, 2, 8, and D are positive
constants characterizing the cell diffusion, chemotactic sensitivities, production and
consumption rates, and chemoattractant diffusion coefficient, respectively. A differ-
ent combination of 1, x2 and the total mass of p; and ps would generate solutions
with completely different behavior. Here we test our schemes in two specific com-
binations [20], and other choices can be easily adapted and we omit the result here
for simplicity. For both examples, we let uo = v1 = v =a; = as = D =1, and
choose the computational domain to be [—3, 3] x [—3, 3].

Example 1. First we choose x1 =1, x2 = 10, y; = 1, and initial condition is
(4.14) p1(,9,0) = pa(z,y,0) = 50100+,

In this case, we should have global existence in both p; and ps. In Figure 9, we
plot p1, p2 and ¢ at ¢ = 0.05, and none of them displays any intensity of blowing
up, yet po has a sharper profile than p; since it has a large chemotactic sensitivity.
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FIGURE 9. Two species: Example 1. p1, p2 and ¢ at time ¢ = 0.05,
computed on 100 x 100 uniform mesh. At = Az/10.

N

2000
1500
1000
500

o N B~ O

FIGURE 10. Two species: Example 2. p; and ps at time ¢ = 0.05,
computed on 100 x 100 uniform mesh (upper) and 200 x 200 mesh
(lower). At = Az/10.

Example 2. Next we consider xy; = 1, x2 = 20, g3 = 1, and use the same
initial condition as in (4.14). Here the problem falls into a subtle regime in which,
according to [14], should blow up p; and ps at different rate. Here we examine the
profile of p; and py at time ¢t = 0.05 with two different mesh sizes, and it is seem
from Figure 10 that both densities blow up at the order of O (ﬁ), but ps blow
up faster than p;.
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