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Abstract—Channel interpolation is an essential technique for provid-
ing high-accuracy estimation of the channel state information for wireless
systems design where the frequency-space structural correlations of multi-
antenna channel are typically hidden in matrix or tensor forms. In this cor-
respondence paper, a modified extreme learning machine (ELM) that can
process tensorial data, or ELM model with tensorial inputs (TELM), is pro-
posed to handle the channel interpolation task. The TELM inherits many
good properties from ELMs. Based on the TELM, the Tucker decomposed
extreme learning machine is proposed for further improving the perfor-
mance. Furthermore, we establish a theoretical argument to measure the
interpolation capability of the proposed learning machines. Experimental
results verify that our proposed learning machines can achieve comparable
mean squared error (MSE) performance against the traditional ELMs but
with 15% shorter running time, and outperform the other methods for a
20% margin measured in MSE for channel interpolation.

Index Terms—Channel interpolation, extreme learning machine, tensor
decomposition.

I. INTRODUCTION

High-quality channel estimation is crucial for many wireless
applications, which is resource demanding in both time and frequency,
where channel interpolation [1] and prediction [2] techniques are
widely adopted to improve the estimation accuracy of channel state
information (CSI). Meanwhile, using machine learning methods to
tackle non-traditional problems in communications has become a new
technology trend [3], [4]. Recently, as an innovative and efficient
branch of the model-free machine learning methods, extreme learning
machine (ELM) has gathered much interest from researchers in
diversified areas. Owing to the unique properties such as fast training,
solution uniqueness, and good generalization ability, ELM is promis-
ing to handle the channel interpolation tasks. However, the standard
ELM was originally proposed to process vectorized data [5], which
is not directly applicable to address the channel interpolation problem
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of multiple-input multiple-output (MIMO) channels. Specifically,
MIMO channels exhibit frequency-space correlations, which are often
recorded in the form of matrix or tensor, for which direct vectorization
will lead to information loss. There have been attempts that tackles
the channel interpolation problem with a tensor structure as in [6], a
tensor filter is adopted for a 2D interpolation task. In [7], the MMSE
method has been extended for similar task using tensor technique. To
better resolve the high dimensional channel interpolation problem, a
novel tensor based ELM, which is capable of handling tensorial inputs
and learning through the CSI in MIMO channels, is needed.

In general, there have been great efforts in adapting ELM to tensorial
inputs by applying certain matrix/tensor decomposition techniques [8],
which are usually empirical. In this paper, we propose a novel ELM
model with tensorial inputs (TELM) to extend the traditional ELM mod-
els for tensorial contexts while retaining the valuable ELM features.
Moreover, we further propose a Tucker decomposed extreme learning
machine (TDELM) based on the Tucker decomposition method [12] to
reduce the computational complexity and establish a theoretical argu-
ment for its interpolation capability accordingly. Experimental results
verify that our proposed methods can achieve comparable performance
against the traditional ELMs but with reduced complexity, and outper-
form the other methods.

The remainder of this paper is organized as follows. Section II
reviews the background of single-layer feedforward neural networks
(SLENSs), traditional ELM, tensor operations and Tucker decomposi-
tion. Section I1I presents the proposed TELM and TDELM models and
discusses how they will be applied to channel interpolation, Section IV
investigates the properties of the considered models, and Section V
demonstrates the experimental results. Finally, Section VI concludes
the paper.

II. PRELIMINARIES

A. Single-layer Feedforward Networks With Vector Inputs

Consider a dataset with N data samples (x;,¢;)forz =1,2,..., N,
where x; € RM is the feature vector of the i-th sample and #; is its
label. Assume that an SLFN [5] contains M input neurons and L hid-
den neurons. The prediction o; of the label #; can be formulated as
0; = fozl Bio(WTx; +b;), where W = (W, Wy,..., wg) is the
weight matrix, whose (z, 7)-th entry w; ; is the weight between the
i-th input neuron and the j-th hidden neuron; b = (by, by, ..., by)T
is the bias vector from the input layer to the j-th hidden neuron;
B = (B, B, ...,BL)T is the weight vector between the hidden layer
and the output neuron; and o is the sigmoid activation function, de-
fined as o(z) £ 1/(1 + e~=). In this setting, the bias between the hid-
den layer and the output layer is omitted. We then aim to solve the
following optimization problem

N
Jmin f(W,b,8) =|IT—O|3 =} (t: —0:)’,

20y

8Y)

i=l1

where T = (¢,%3,...,tx)7 and O = (01,0,,...,0n)T are the la-
bel vector and its prediction vector, respectively. A typical algorithm
finds the optimal values of W, b and 3 by propagating the errors back-
wards utilizing gradient or sub-gradient descent methods. However, the
algorithm can be very sensitive to initialization and might be stuck at
a local minimum due to the fact that the objective function is often
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non-convex. In addition, the algorithm can be time-costing, which re-
stricts its usage in practical applications.

B. Traditional Extreme Learning Machines With Vector Inputs

Traditional ELMs are originally designed to train SLFNs [5], which
improve the training speed remarkably by randomly assigning w and
b, transferring the aforementioned optimization into least square prob-
lems. More specifically, let H be an N x L matrix, whose (z, 7)-th
entry is o(wW7'x; + b;). Instead of minimizing the objective function
with respect to W, b, and 3, each entry of W and b is drawn from a
continuous random distribution. After the matrix H is calculated, the
solution to ming ||[H3 — T|3 is given by 3 = HIT according to the
Gauss-Markov theorem [10], where HT is the Moore-Penrose pseu-
doinverse of H.

C. Tensor Operations and Tucker Decomposition

In this paper, we treat tensors as multi-dimensional arrays. Specifi-
cally, atensor X € RT*f2x*Ik of order K stores I} x I» x --- x I
elements. The inner product of two tensors, e.g.. X, Y € RO =xlxxli
is defined as (X, Y) = (vec(X), vec(Y)). The vectorization vec(X)
of a tensor X is obtained by stacking the elements of X into an
(]_[ff: 1 I.)-dimensional column vector in a fixed order [11], e.g., in
a lexicographical order or reverse lexicographical order. Tensors can
also be unfolded into matrices. Given a tensor X € RT1*f2x-*IK and
an index k, the k-mode matricization X ;) of X is a matrix with
[, I; columns and I; rows obtained by unfolding X along the
k-th coordinate[11]. For 1 < k < K, the k-mode rank of tensor X,
denoted by rank; (X), is defined as the rank of X ;. which satisfies
rank (X) < Ix[11].

The Tucker decomposition is a branch of the higher-order singular
value decomposition [12]. Consider X € R71*2**IK and a vector
(Dy, D, ...,Dg).If Dy > rankg(X) forall k € {1,2, ..., k}, there
exist a core tensor X' € RP1*P2**Pk and K factor matrices, i.e.,
B(1), B(2), ..., B(K) with each B(k) € R’**Pk_ to be column-
wise orthogonal:

Dy Dy Dy
Xili?"'iK = Z Z Z X:‘—’ldz"-dx

di=ldy=1 dg=I

K
HB(J'),-J..d,],

i=1

which could be written compactly as X = [X'; B(1),...,B(K)].
If Dy = Ik, there exists a core tensor X' € RP1<Pr<*Dk gpd
K factor matrices {B(k)}X_, with B(k) € RI*Px for 1 <k <
K —1and B(K) =1 (an Ix x Ix identity matrix) such that X =
[X:B(1),...,B(K — 1),I]. If D}, < rank;(X) for some k, such a
core tensor and factor matrices do not exist. As an alternative, we can
use an approximation of X by the truncated Tucker decomposition [11].

‘We next introduce an important property of the Tucker decomposi-
tion mentioned in [13].

Lemma 1 (Duality Lemma): Given a tensor pair W &
ROxlsxI apnd X € RTixf2x-=xIk  and their correspond-
ing tucker decomposed core tensor W' and X', where

W =[W’;B(1),....B(K)] and X =[X';B(1),...
we have (W', X') = (W, X).

Lemma 1 tells us that the inner product can be done on the tucker
decomposed core pair instead of on the original pair without loss in
accuracy. If the original tensor admits a low-rank structure, the com-
putational cost could be drastically reduced by calculating the inner
product of the core tensors.

»B(K)],
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Algorithm 1: TELM.
Input: Data samples (X;,¢;),2=1,2,...
Output: Weight vector 3.
1 Draw each entry of the weight tensor ' and the bias vector b
from a continuous random distribution.
2 Calculate matrix H from {X; }* - W, and b by (2).
3 Calculate parameter vector 3 by 3 = HIT.
4 Return 3.

,N.

III. FRAMEWORKS
A. Channel Interpolation

To conduct high-efficiency data transmission in a typical Multi-input
Multi-output Orthogonal Frequency Division Multiplexing (MIMO-
OFDM) setting, CSI for each sub-carrier is required. One way of ac-
quiring CSI is inserting a pilot signal to each sub-carrier, and then cal-
culating the CSI at receiver. To further reduce the overhead of probing,
the following interpolation scheme is adopted. Let S; denote the :-th
sub-carrier’s CSI; pilots are inserted into sub-carriers with odd indices.
The CSI of sub-carriers with even indices are then inferred as

8;= f(Si—w+1-s- ..

where w is the window length and f is the interpolation function. In our
work, we adopt the modified ELM as f and the detail will be explained
in the next section. Notice that different window design can be adopted
to achieve the balance between carrier usage and accuracy.

3 S‘i—3s S‘i—l'.' S!',—f—l ’ S‘i-i—3s ey Si—f—w—l)s

B. Extreme Learning Machines With Tensorial Inputs

Consider a dataset with V data samples (X ;,¢;) fori =1,2,..., N,
where X; € Rli*lx*Ik js a tensor of order K, and ¢; is its
label. For an SLEN with I} x I x --- x I input neurons and
L hidden neurons, its prediction o; of label #; could be calcu-
lated as o; Z;’:, Bio({vec(W;),vec(X;)) + b;), where W =
(W, Wy, ..., W) with W as the weight tensor of the j-th hidden
neuron; b, 3, T, O, and o are defined as in Section II. The goal is still
to minimize f(W, b, 8) = ||T — O|3 = 3°N, (; — 0;)2. Consistent
with the traditional ELM, we draw each entry of the weight tensor W
and the bias vector b from a continuous random distribution and solve
the problem ming ||[H3 — T||3, where

o((W,X) +b) o((Wpg,X,) +bg)

H= 2)

o((W,Xy)+b) o({(Wr,Xy)+br)

The problem has a unique least square solution 8 =HIT, with Hf
is the Moore-Penrose pseudoinverse of H as defined above. Detailed
procedures are summarized in Algorithm 1. It is noteworthy to point out
that the TELM handles the tensorial inputs with the same computational
cost as the traditional ELM with vectorized inputs.

C. Tucker Decomposed Extreme Learning Machines

To improve the learning efficiency of TELM, we further propose the
Tucker decomposed extreme learning machine (TDELM) based on the
Tucker decomposition method. Generally, computing H in (2) requires
NL ]_[f(: « 11 multiplication operations, which is computationally de-
manding when dealing with a large dataset. However, by employing the
Tucker decomposition, the computational cost of computing H could
be largely reduced when working with the datasets with a low k-mode
rank.
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Algorithm 2: TDELM.
Input: Data samples (X;,#;),i=1,2,...,N.
Output: Weight vector 3.
1 Concatenate X,,..., X into a tensor X of order (K + 1).
2 Find the k-mode rank n; of X for 1 < k < K.
3 Conduct a Tucker decomposition such that
X = [X;B(1),...,B(K),I], X’ ¢ RrxnkxN
B(k) e RTe*™ for | <k < K,andI € RV*V,
4 Draw each entry of weight matrix VW' and bias vector b’ from
a continuous random distribution.
5 Calculate matrix H from X', W', and b’ by (3).
Calculate parameter vector 3 by 3=HIT.
7 Return 3.

(=,

Consider a dataset with N samples (X;,¢;) for: =1,2,...,N. We
first concatenate X, X,, ..., Xy into a tensor X & RIt<fex-xIg=xN
of order (K + 1), then find the k-mode rank n, of X for 1 < k < K,
and next apply Tucker decomposition to X such that the core ten-
sor X' is of size ny x ny x ... x ng x N and the (K + 1)-th fac-
tor matrix B(K + 1) is an identity matrix. Afterwards, we extract
X' along the (K + 1)-th axis into IV subtensors X', X}, ..., X/y.
We next consider an SLEN with ny x n; X --- X ng input neurons
and L hidden neurons. Let W' = (W{, W}, ..., W) be the total
weight tensor with W; as the weight tensor of the j-th hidden neuron,
b’ = (b}, b5, ...,b;)T be the bias scalar from the input layer to the
j-th hidden neuron, and 3’ = (8}, 8}, ..., 8;.)T be the weight vector
between the hidden layer and the output neuron. Each entry of W' or
b’ is randomly drawn from a continuous random distribution, and H is
then calculated as

o((

LX) +bi) o({(W71, X)) +b)

(3)

o((W1, Xy) + b1) o((Wh, XN} +br)
Finally, we solve the optimization problem ming ||[H3 — T||3, with

the least square square solution 3 = HIT. The above procedures are
summarized in Algorithm 2.

IV. ProOPERTIES OF TELM/TDELM

In this section, we establish the interpolation theorems for the TELM
and TDELM. Specifically, given a dataset with NV distinct data samples
(X;,t:),:=1,2,..., N,aTELM or TDELM with N hidden neurons
and sigmoid activation functions has the properties as follows.

Theorem 1 (Interpolation Capability of TELMs): Assume that
each entry of the weight tensor JV and bias vector b is randomly cho-
sen from an interval according to a continuous probability distribution.
Then with probability one, H in (2) is invertible and ||[H3 — T||; = 0.

Theorem 2 (Interpolation Capability of TDELMs): Assume that
each entry of the weight tensor W' and bias vector b’ is randomly cho-
sen from an interval according to a continuous probability distribution.
Then with probability one, H in (3) is invertible and ||[H3 — T||; = 0.

Theorem 1 can be treated as a special case of Theorem 2 by setting
X'=X and B(k) =1 for 1 < k < K, the proof of Theorem 2 is
provided as follows.

Proof: Define p;(y) = [p3.1(y),---,ps.n(y)]", where p;i(y) =
a((W, X)) +y) for | <7< N.Note that p, (b;) is the j-th column
of H in (3). Let 43, = (W', X} ) for 1 < k < N. Each entry of w;’
is drawn from a continuous distribution over an interval and X’;s are
distinct from each other; thus (W', X} ) # (W, X}) for k # | with
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probability one. Therefore, 1, 1, . .
with probability one.

Now assume that p,(y) belongs to a subspace of dimension less
than N. Then there will be a vector v = (71,7, ..., v~ )7 that is or-
thogonal to this subspace. Therefore, (-, p;(y)) =0 for all g, ie.,
Yoisi 7o (y + ) = 0. We will then have S(j) 2 YL, yio? (y +
;) =0 for j=1,2,...,N due to the fact that for 1 < j < N —
1, taking the derivative of S(j) =0 on both sides over y yields
370 (y+ vl —o(y+ )] =0, and hence S(j+1) =
S(F) — iy 7o’ (y + %[l — oy + ¥:)] = 0.Let Gbean N x N
matrix whose (z, j)-thentry is o*(y + ;) for 1 < 4,7 < N.Then G -
(71,725 ---»¥8)T = (8(1), 8(2),...,8(N))T = 0, and hence G is
a singular matrix.

On the other hand,

det(G) = o(y +¢1)o(y +v2) - oy + ¢¥n) - det(G)

., ¥ are distinct from each other

N
=[lew+vx)- I lel+v)—oly+u)]#0,

k=l I<i<j<N

where G’ is an N x N matrix whose (%, j)-th entry is o' (y + ;)
for 1 <4,7 < N, the second equality follows from the Vandermonde
determinant [14], and the last inequality follows from the fact that
o(y + 1;)’s are distinct from each other. Then a contradiction appears.
Thus p,(y) belongs to a subspace of dimension NV, and matrix H is
thus of full rank with probability one. |

V. SIMULATION RESULTS

In this section, an experiment is conducted over a real-world wireless
MIMO channel response dataset to compare the performance of train-
ing time and accuracy among multiple methods including the purposed
TDELM. We will show that: 1) TDELM achieves comparable predic-
tion accuracy against other methods and 2) TDELM requires lower
computational cost and shorter training time than ELM and SLEN over
decomposed data.

The dataset was generated via conducting experiments in a lecture
hall. Specifically, a 64-element virtual uniform linear array (ULA) is
used as the transmitter (Tx) antenna array, and the receiver (Rx) with
a single antenna is deployed at three different locations within the au-
ditorium of the hall. The carrier frequency is set to be 4 GHz, and
the measurement bandwidth is 200 MHz that is uniformly sampled at
513 frequency points. Sixteen continuous snapshots are obtained for
each sub-channel. The obtained results are stored in a tensor of size
64 x 3 x 8208, and each entry represents the response from one Tx
array element to one Rx array element at a given frequency point. More
detailed descriptions about the dataset could be found in [15].

The channel responses are normalized with zero-mean and unit
standard derivation. The window size W is set to be 4. The
feature tensor X e R&*3#x8208 jg created by a sliding window
method, and the (7, k, w,[)-th element of X is given by X, w1 =
Hp(w-ws1420-1))- The sliding window method will capture the lo-
cal correlation in the neighborhood of adjacent points and the tensor
decomposition is conducted on tensor X.

The dataset is divided evenly into two subsets, one as the training
set and the other as the test set, both containing 4,104 samples. Two
neural networks, an ELM and a TDELM, are constructed with the same
hidden-layer neurons for comparison fairness. The Tucker decomposi-
tion was implemented by modifying the Tensor Toolbox library [16].
Grid search is conducted for the hyperparameters: the net size and
the decomposition size. The results of mean squared error (MSE) and
running time are recorded. To mitigate the fluctuation caused by the
randomness, the SelectBest method [17] is adopted and training is re-
peated 100 times to find the best parameter set. Least mean square
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TABLE1
MSE AND TIME CONSUMPTION (TC)

TDELM | ELM | TD+NN
MSE | 0.0280 | 0.0286 | 0.0645
TC (s) | 1.3786 | 1.5896 [ 397.28
NN Mean | LMSE
MSE | 0.0363 | 0.0769 | 0.0377
TC (s) | 689.94 | 0.0334 | 0.0805

Prediction results of learning machines.

0.12 T T T T T e
| ~=TDELM|

01 e

MSE

100
Channel Label

Fig. 2. Prediction results of learning machines.

filtering (LMSE), where the weighted combination of the data over a
window is used as the prediction and each sub channel has its own
weight parameter, and input averaging (Mean), where the mean of data
over a window is used as the prediction, are also used as the basic
comparison schemes.

The choices of hyperparameters are as follows. The node size in the
hidden layer is 1,080, and the decomposition shrinks each tensor from
{64,3,4} to {64, 2, 2}, which leads to 66% less multiplications needed
per inner production operation. The Tucker decomposition acquired
by the Alternative Least Square algorithm[16] costs about 6 seconds
for this dataset. The decomposition time does not scale with repeated
training thus it is excluded from Table I. The performance in terms
of MSE and time consumption (TC) are summarized in Table I and a
snapshot of the interpolation results has been shown in Figs. 1 and 2.

From Table I and Fig. 2, it is shown that overall, TDELM achieved
consistent gains in terms of MSE compared to all other methods, while
also being the fastest on the decomposed dataset, compared with the
TD+NN method. To showcase the gain better, one instance of the curve
is shown in Fig. 1, where the blue lines denote the true values and
yellow markers denote the interpolated values, respectively. When the
prediction error for a particular point exceeds 0.3, which is roughly 10%
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of the maximal amplitude, the corresponding marker is filled as solid,
which indicates a significant error. We can see there are much more sig-
nificant errors among methods other than TDELM, which corresponds
to smaller MSE shown in Fig. 2. Another interesting observation is,
although TDELM has better accuracy than ELM, the TD+NN combi-
nation performs the worst. This implies that the gain might not only
comes from applying tensor decomposition on the input data, but also
from using the corresponding learning machine designed with such
decomposition in mind.

VI. CONCLUSION

In this paper, we proposed an extreme learning machine with tenso-
rial inputs (TELM) and a Tucker decomposed extreme learning machine
(TDELM) to handle the channel interpolation task in MIMO system.
Moreover, we established a theoretical argument for the interpolation
capability of TDELM. The experimental results verified that our pro-
posed TDELM can achieve comparable performance against the tra-
ditional ELM but with reduced complexity, and outperform the other
methods considerably in terms of the channel interpolation accuracy.
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