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Abstract—Computation offloading is a proven successful
paradigm for enabling resource-intensive applications on mobile
devices. Moreover, in view of emerging mobile collaborative appli-
cation, the offloaded tasks can be duplicated when multiple users
are in the same proximity. This motivates us to design a collabora-
tive offloading scheme and cache the popular computation results
that are likely to be reused by other mobile users. In this paper, we
consider the scenario where multiple mobile users offload dupli-
cated computation tasks to the network edge, and share the compu-
tation results among them. Our goal is to develop the optimal fine-
grained collaborative offloading strategies with caching enhance-
ments to minimize the overall execution delay at the mobile termi-
nal side. To this end, we propose an optimal offloading with caching-
enhancement scheme (OOCS) for femto-cloud scenario and mobile
edge computing scenario, respectively. Simulation results show that
compared to six alternative solutions in literature, our single-user
OOCS can reduce execution delay up to 42.83% and 33.28% for
single-user femto-cloud and single-user mobile edge computing, re-
spectively. Our multi-user OOCS can further reduce 11.71% delay
compared to single-user OOCS through users’ cooperation.

Index Terms—Computation Offloading, Data Caching, Mobile
Collaborative Applications, Mobile Edge Computing, Coalitional
Game.
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I. INTRODUCTION

N
OWADAYS, the advances in hardware technology enable

our smartphones equipped not only with more memory,

better processor and improved network connectivity, but also

with numerous sensors. Accompanied by the emergence of near-

to-eye display technologies, such as Google Glass, a variety of

mobile collaborative applications (MCA) [2], such as mobile

audio/video conferences, collaborative editing and augmented

reality [3], are designed to support collaboration among mo-

bile users. These applications use complex algorithms for cam-

era tracking and object recognition, requiring mobile devices

(google glass, smartphones, etc.) not only with considerable en-

ergy, memory size and computational resources, but also with

resource sharing capacity.

A potential solution to address the challenges is through mo-

bile cloud computation offloading [4]. However, when consider-

ing 1 millisecond to 5 milliseconds end-to-end latency required

by 5G for a class of applications (called the “Tactile Internet”

[5]), the traditional cloud may not be suitable for code offload-

ing due to the high and variable latency to distant datacenters,

especially for delay-sensitive applications. On the other hand,

caching most popular contents at the network edge can reduce

latency and improve user’s quality of experience (QoE) [6], [7].

Thus, a promising approach to tackle this challenge is to move

cloud infrastructure (computation and storage abilities) closer

to the end users [8].

Motivated by above facts, the European project TROPIC (dis-

tributed computing, storage and radio resource allocation over

cooperative femtocells) and the European Telecommunications

Standards Institute (ETSI) proposed femto-cloud [9] and multi-

access mobile edge computing (MEC) [10], respectively. In the

proposed architectures, fixed and powerful servers are located

at the network edge to reduce communication overhead and

execution delay for mobile users.

In this paper, we will investigate collaborative computation

offloading with the data caching enhancement strategy for the

MCA execution in femto-cloud and MEC, respectively. Our

objective is to reduce the average execution delay for the mobile

users within the network. Our proposal can dramatically reduce

the MCA’s execution latency based on the following two facts:
� Multiple mobile users in the same MCA execution envi-

ronment can share computation and outcome results. In-

deed, through sharing the same components (e.g., Mapper

and Objective Recognizer as in [2]) and computation re-

sults (e.g., detected feature points of environment), the
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environment will be generated faster and more complete.

Through this kind of cooperation and sharing, mobile users

can not only save computational resources but also gain in-

formation from the input of others.
� For cache-enabled MEC (e.g., mobile cloud gaming),

caching parts of computation results that are likely to be

reused by others can further boost the computation per-

formance of the entire system [11]. This idea is motivated

by the fact that users in one small region are likely to re-

quest similar computing services. For example, visitors in

a museum tend to use Augmented Reality (AR) for better

sensational experience. Thus, it is desirable to cache mul-

tiple AR services and output data at the MEC server of this

region to provide the real-time services.

The major contributions of our paper are summarised as

follows:
� We propose a fine-grained collaborative computation of-

floading and caching strategy that optimizes the offload-

ing decisions on the mobile terminal side with caching

enhancement. The objective is to minimize the overall ex-

ecution latency for the mobile users within the network.

Most of previous works either focus on the offloading de-

cisions [4], [12]–[18] or caching placement strategy [7],

[19]. To the best of our knowledge, our work is the first of

its kind that optimizes offloading decisions, while consid-

ering data caching.
� Based on the concept of the call graph [20], we propose

in this paper the concept of the cooperative call graph

to model the offloading and caching relationship within

multiple mobile users, and then compute the delay and

energy overhead for each single user.
� We first evaluate our algorithm in a single-user scenario

for both femto-cloud and MEC networks. Moreover, to

further reduce the execution delay in the multi-user case,

we explore the concept of the coalition formation game for

the distributed caching scenario.
� We compare our approach with six benchmark policies

in literature and discuss the associated gains in terms of

required CPU cycles per byte (cpb) for applications and

content’s popularity factor.

The reminder of this paper is organized as follows.

Section II, introduces an overview of related works. In

Section III, we present the system model. Section IV introduces

the collaborative call graph and formulates the optimaztion

problems, followed by a description of our proposed algorithm

in Section V. Simulation results are presented in Section VI.

Finally, conclusions are drawn in Section VII.

II. RELATED WORK

A. Mobile Edge Computing

In the context of mobile edge computing (MEC), the key el-

ement is the edge server, which provides computing resource,

storage capability and connectivity. The server can be deployed

at high-end or low-end proximate in the small cell based edge

cloud network [21]. The high-end deployment is a current focus

of the ETSI multi-access mobile edge computing standard, as

Fig. 1. High-end MEC deployment vs. Low-end MEC deployment: (a) The
high-end server is located in the access network that is an aggregation point
of a set of small cell base stations (SCeNB i.e., Small Cell e-Node B), (b)
The low-end servers are traditional small cell base stations with cloud capacity
(SCceNB, i.e., small cell cloud-enhanced e-Node B).

shown in Fig. 1 (a). In this case, typically a high-end standard

server is located in the access network that is an aggregation

point of a set of small cell base stations (SCeNB i.e., Small

Cell e-Node B). The server is also regarded as a central coor-

dinator that is required to design a cache placement strategy.

However, in the low-end case, application servers can be de-

ployed in low-end devices which can be routers, access points,

or home-based nodes as shown in Fig. 1 (b). Femto-cloud [9],

[15]–[17] is a typical low-end deployment. The idea is to endow

small cell base stations with cloud functionalities (computation,

storage and server), thus providing mobile user equipments with

proximity access to the mobile edge cloud. The novel base sta-

tions are called small cell cloud-enhanced e-Node B (SCceNB)

that deployed with high-capacity storage units but have limited

capacity backhaul links. In this case, the popular contents are

cached in a distributed manner among the SCceNBs without a

central coordinator. With respect to the high-end deployment,

this deployment brings three advantages: 1) strong reduction of

latency with respect to centralized clouds, because small cells

are the closest points in the mobile network to the mobile users

with only one wireless hop, and therefore with minimum la-

tency, 2) storage of large amounts of local contents or software

by mobile equipments over proximity SCceNB, data can be tem-

porarily stored (local caching) in the nearby SCceNB, with very

low latency, and 3) no central coordinator is required to collect

the information of the whole network, which significantly saves

signaling overhead. In view of this, authors in [15] proposed

a framework for joint optimization of radio and computation

resource under energy consumption, computational and delay

constraints. Sardellitti et al. in [16] considered a scenario com-

posed by multiple mobile users asking for computation offload-

ing of their applications to a set of cloud servers. The objective

is to minimize the overall energy consumption, at the mobile

terminal side, while meeting the latency constraints. In addi-

tion, TROPIC considers a fine-grained (i.e. code partitioning)

offloading framework [17] which they exploits the concept of

the call graph to model the application.

However, in most of these previous works, the main focus

is on mobile devices, considering the cloud as a system with

unlimited resources. Moreover, the offloading decision is based

either on the optimization of computation/communication re-

sources (as in [15], [16]) or on the code partitioning of each
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single user (as in [17]). They do not indeed consider sharing

computation results between multiple users to avoid repeated

computation. It is worth noting that through sharing the com-

putation results (by local caching), such relationship can affect

the offloading decision for all mobile users.

B. Computation Offloading and Data Caching in MEC

In order to meet the low latency and improved QoE require-

ments of emerging applications, we need code offloading and

local caching strategies that empower mobile applications with

resourceful cloud equipments. Offloading mechanisms have

been studied extensively [13], [14], [22]–[26] and generally

fallen into two categories: coarse-grained offloading [13] and

fine-grained (typically at a method-level granularity) offloading

[14], [22]–[26]. Coarse-grained offloading also refers to the full

offloading or total offloading in which full task is migrated to

the cloud. This approach does not require estimating the com-

putation overhead prior to the execution. For example, Zhang

et al. [13] proposed a computational offloading policy to decide

whether an entire application should be offloaded to remote

cloud or executed locally to reduce energy consumption on the

mobile terminal side. However, fine-grained offloading (partial

offloading or dynamic offloading) dynamically transmits as lit-

tle code as possible and offloads only the computation-hungry

parts of the application. Zhang et al. [14] investigated the prob-

lem of collaborative task execution by strategically offloading

task to the cloud. They proposed a fine-grained offloading strat-

egy to reduce energy consumption under a latency constraint.

Despite the introduced burden on the application programmers

and additional computational overhead, the proposed approach

can reduce unnecessary transmission overhead, achieving a re-

duced latency and energy consumption. Moreover, a lot of

current works study the Device-to-Device (D2D) computation

offloading [12] or D2D caching [6], [27], [28] strategies, in or-

der to reduce latency or energy consumption for mobile users.

This means that mobile devices can be regarded as servers for

other mobile users. However, compared with some fixed servers,

mobile devices remain resource poor. Especially, due to their

mobility, it is hard for mobile devices to cache some popular

computation results in a fixed area.

Many emerging mobile applications involve intensive compu-

tation based on data analytics, thus caching parts of computation

results that are likely to be reused by others can further boost the

computation performance of the entire MEC system [11]. One

typical example is mobile cloud gaming [29]. Note that certain

game rendered videos, e.g., gaming scenes, can be reused by

other players, caching these computation results would not only

significantly reduce the computation latency of the players with

the same computation request, but also ease the computation

burden for edge servers. In the high-end MEC case, massive

data are cached in a centralized manner. Thus, the key prob-

lem is how to balance the tradeoff between massive database

and limited storage capacity of MEC servers. Whereas in the

low-end MEC case, the design principle is how to cache the mas-

sive data in the distributed low-end MEC servers. Furthermore,

it is also essential to establish a practical database popularity

distribution model that is able to statistically characterize the

usage of each database set for different MEC applications. We

will address the above concerns and design optimal offload-

ing strategies leveraging local data caching, as proposed in this

paper.

C. Computation and Data Sharing for Mobile Collaborative

Applications

For multi-user computation offloading scenario, it is hard to

share the output data when the mobile users run different appli-

cations. However, it is possible to share the output data when

i) multiple mobile users run the same components (subtasks)

of the same application, or ii) multiple mobile users run differ-

ent components of the same application. Thus, it make sense to

i) select part of mobile users to execute the common compo-

nents or ii) allocate the components to different mobile users for

parallel processing. The output data are shared among the cor-

responding mobile users. As a result, the execution energy and

delay can be reduced significantly. In this paper, we consider the

first sharing scenario, which means that all mobile users run the

same component and share part of the data. It is worth noting

that the second sharing scenario has been extensively studied in

our recent work in [30].

For certain types of MCA, multiple users in the same neigh-

borhood typically look at the same scene, track the same envi-

ronment, and need to recognize the same objects, so they can

benefit from collaboration and computation/data sharing [31].

A typical example is emerging mobile crowd sensing appli-

cations [32]–[34], where individual mobile user with sensing

and computing devices collectively share data and extract in-

formation to measure and map phenomena of common interest.

Similarly, AR applications [2], [31] have the unique property

that different users with the same objective can share part of the

computational tasks and of the input and output data. Verbelen

et al. [2] proposed a component-based offloading framework

that optimizes application-specific metrics. They split an im-

mersive application into several loosely coupled software com-

ponents. Each components with its dependency, configuration

parameters and constraints can be offloaded and shared among

multiple users. Specifically, one kind of Mapper component can

be shared between multiple mobile devices in the same physical

environment. All mobile users receive the same world model

to track the camera position and share the computation results.

Because the model is updated and refined using camera images

from multiple devices, the model will often be more accurate

than one created by just one device. Through this computa-

tion/data sharing, the cloudlet agent allows users to not only

save computational resources to avoid repeated calculation, but

also gain information from the input of others. However, they

only consider a two-user scenario with one kind of immersive

application executed in a laptop, the data rate is set to be a fixed

value. It is not enough to model the scenario where multiple

mobile users process MCAs in MEC.

To overcome these limitations, we first propose in [1] a

cooperative computation offloading strategy based on coali-

tional game formation for multi-cell and multi-user femtocloud
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networks. In this paper, we extend our previous work and pro-

pose a new computation offloading strategy with caching en-

hancements to further minimize the overall execution delay at

the mobile terminal side. Our proposal, namely Optimal Of-

floading with Caching-enhancement Scheme (OOCS) is based

on the new concept of collaborative call graph. In addition, we

consider both high-end and low-end MEC deployments in our

analysis and add new baselines for performance comparison.

III. SYSTEM MODEL

In this section, we present the model of our optimal offloading

with caching-enhancement scheme (OOCS).

A. Network Model

In our work, we consider both high-end and low-end deploy-

ments of small cell-based mobile edge cloud. In the case of

low-end deployment, we consider an LTE femto-cloud network

composed of Nl small cells with computation and memory en-

hancement (i.e. SCceNBs in LTE terminology). In the case of

high-end deployment, we consider an edge cloud network con-

sisting of Nh traditional small cell base stations (SCeNBs) and

a centralized high-end server. The number of mobile users for

both network types is M . We also consider both of the network

deployments are based on the orthogonal frequency division

multiple-access (OFDMA) in which M users within the same

SCeNB/SCceNB are separated in the frequency domain. Note

that, using such a transmission scheme for the uplink offloading

implies that the users do not interfere with one another.

Let pu and ps denote the transmit power for the UEs and small

cells (i.e., SCeNBs and SCceNBs), respectively. The maximum

achievable rate [35], [36] (in bps) over an additive white Gaus-

sian noise (AWGN) channel for user m (m ∈ M) to offload its

application to small cell n (n ∈ Nh or n ∈ Nl) can be expressed

as follows:

rul
n,m = B log2

(

1 +
pu |hul |

2

Γ(gul)dβ N0

)

(1)

where B is the bandwidth, d is the distance between UE and

SCeNB/SCceNB. In this paper, we consider the Rayleigh-fading

environment, and hul and hdl are the channel fading coefficient

for uplink and downlink, respectively. N0 denotes the noise

power and β is the path loss exponent. Note that Γ(BER) =

− 2log (5BER)
3

represents the SNR margin introduced to meet the

desired target bit error rate (BER) with a QAM constellation

[37]. gul and gdl are the target BER for uplink and downlink,

respectively.

Similarly, the maximum achievable rate (in bps) for a user m

receiving its computation results from small cell n (n ∈ Nh or

n ∈ Nl) is given by:

rdl
n,m = B log2

(

1 +
ps |hdl |

2

Γ(gdl)dβ N0

)

. (2)

B. Application Model

We assume that a mobile application can be split into mul-

tiple components [2] which in the granularity of either method

Fig. 2. Collaborative call graph with caching enhancement.

[22]–[26] or thread [13] (i.e., a fine-grained partitioning). We

then exploit the concept of the call graph [20], which is used for

modelling the relationship between components as a weighted

directed graph G = (V, E), where V denotes the set of compo-

nents, and E the data dependencies between components. Fig. 2

represents an example of two call graphs for an immersive ap-

plication [2], which shows two users (UE1 and UE2) offloading

their components to the same edge server individually. The im-

mersive application can be split into different components. From

the example illustrated in Fig. 2, there are 5 different compo-

nents: Interface, Tracker, Mapper, Recognizer, and Renderer

[2]. The Tracker component denotes the input camera frames

with delay constraints. Such a component is used to estimate the

camera position. Note that, some of these components cannot be

offloaded such as the user’s interface and renderer in Fig. 2, and

must necessarily be evaluated locally. The components in the

edge server denote the component clones for the components of

mobile users.

Here, we consider M UEs equipped with the same mobile

device, so the local energy consumption and latency are same

among the UEs when executing the same component. As stated

earlier, E denotes the set of weight for all the edges, we assume

each edge Eu,v (Eu,v ∈ E) represents the data communication

(computation result) between two components. We let φv (v ∈
V) denotes the weight of component v, which specifies the

workload (CPU cycles) for the component v. For a given input

data size Eu,v , φv can be derived from [38], [39] as φv = ω ·
Eu,v , where the ω in CPU cycles/byte (cpb) [40] indicates the

number of clock cycles a microprocessor will perform per byte

of data processed in an algorithm. The parameter depends on the

nature of the component, e.g., the complexity of the algorithm.

The estimation of this value has been studied in [41], [42] which

is thus beyond the scope of our work.

C. Caching Model

As stated earlier, a library consists of |E| computation re-

sults, denoted by E = {Eu,v , (u, v ∈ V)}, is cached at one or

multiple edge servers which can be either in high-end or low-

end deployment. Let |Eu,v | denotes the size (in bytes) of Eu,v .

The computation result’s popularity distribution conditioned on
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the event that user m makes an offloading request for its cur-

rent component v. We also assume that each edge server has a

finite-capacity storage storing part of the popular computation

results. Specifically, we denote by Qh the storage capacity of the

high-end server, and by Ql the storage capacity of the low-end

SCceNB. In this work, we consider the popularity-based caching

policy [19] that the edge servers store computation results based

on their highest popularity until the storage capacity is achieved.

Thus, offloading requests is ranked from the most popular to the

least, such that the request probability for a computation result

Eu,v is:

f(Eu,v , δ, |E|) =
1

Eδ
u,v

|E|
∑

n=1

1

nδ
(3)

where δ models the skewness of the popularity profile. For

δ = 0, the popularity profile is uniform over files, and becomes

more skewed as δ grows larger [19].

D. Execution Model

As stated earlier, we focus in this paper on both low-end and

high-end deployments for small cell-based mobile edge cloud.

For low-end deployment, each component can be executed ei-

ther on the mobile device or offloaded to a SCceNB. Whereas

for high-end deployment, each component can be executed ei-

ther on the mobile device or offloaded to the centralized server

through a nearby SCeNB. The offloading decision is based on

the workload of components V , data communication E , data rate

rdl
n,m and rul

n,m . In this context, we consider the model of local

execution, low-end execution and high-end execution, respec-

tively.

1) Local Execution: If the component v is executed on mo-

bile device, the completion time is tlocal
v = φv · f−1

m , and the

corresponding energy consumption of the mobile device is

Elocal
v = pc · t

local
v , where fm denotes the CPU rate of mobile

devices (Million Instructions Per Second, MIPS), pc represents

the computing power for mobile device, φv denotes the number

of instructions to be executed for component v.

2) Low-End Execution: If component v is offloaded to a

Virtual Machine (VM) [43] in a SCceNB, the mobile device is

idle before receiving the computation results. We denote tlow
v =

q l ·φv

fs
as the completion time of component v executed on the

SCceNB, where fs denotes the CPU rate of SCceNB (fs >

fm > 0). Due to the limited computation capacity of SCceNBs,

we assume that each SCceNB can serves at most ql mobile

users. The corresponding energy consumption of the mobile

device during the remote execution is Elow
v = pi · tlow

v , where

pi is the idle power for mobile devices.

When component v is offloaded to SCceNB and the input

data Eu,v from its previous component u is stored locally (i.e.,

stored in the mobile device), Eu,v must be sent to SCceNB

before the execution of component v. We define this procedure

as Sending Input Data (SID) for component v. Therefore,

the time for UE m sending input data from component u to

component v in low-end SCceNB n is t s lowu,v
n,m =

|Eu , v |
ru l

n , m
, and

the corresponding energy consumption for UE m during the

SID time is E s lowu,v
n,m = pu · t s lowu,v

n,m .

Conversely, if component v is executed locally, and its previ-

ous component u is executed in SCceNB, the output data Eu,v of

component u must be sent back to mobile device before the ex-

ecution of component v. We define this procedure as Receiving

Output Data (ROD) for component v. Therefore, the delay for

UE m receiving output data from component u to component

v in low-end SCceNB n is t r lowu,v
n,m =

|Eu , v |
rd l

n , m
and the corre-

sponding energy consumption for UE m during the ROD time

is E r lowu,v
n,m = pi · t r lowu,v

n,m .

3) High-end Execution: Then, we analyze the task execution

for high-end deployment. When component v is offloaded to a

VM in a centralized high-end server. We denote by thigh
v =

qh ·φv

fc
the completion time of component v executed on the

centralized high-end server, where fc denotes the CPU rate of

the high-end server (fc > fs > fm > 0) and qh the maximum

number of UEs that the server can serve. The corresponding

energy consumption for the mobile device during the remote

execution is Ehigh
v = pi · t

high
v .

Similarly, when component v is offloaded to the high-end

server whereas the input data Eu,v from its previous component

u is stored locally, the SID delay for UE m sending input data

from component u to component v in high-end deployment

is t s highu,v
m =

|Eu , v |
ru l

n , m
+ te , where te is the end-to-end delay

from SCeNBs to the high-end server. The corresponding energy

consumption for UE m during the SID time is given as follows:

E s highu,v
m = pu ·

|Eu,v |

rul
n,m

+ pi · te . (4)

Conversely, if component v is executed locally and its previ-

ous component u is executed in the server, the ROD delay for

component v of UE m receiving output data from component u

in high-end deployment is given by

t r highu,v
m = te +

|Eu,v |

rdl
n,m

, (5)

and the corresponding energy consumption for UE m during the

ROD time is E r highu,v
m = pi · t r highu,v

m .

Note that, when components u and v are processed on the

same side (i.e., both processed locally or remotely), the SID

and ROD delay as well as the energy consumption are equal

to zero in both of the deployments. This is based on the fact

that the parameters passing on the same side do not involve

wireless communication, and hence the overhead is not signif-

icant. In addition, we do not consider the transmission energy

consumption from SCeNB/SCceNB to UE. We only consider

the idle energy consumption for mobile users when its serving

SCeNB/SCceNB sending the computation results back. In this

work, the latency and energy consumption for decoding at the

server side are assumed to be negligible for the following rea-

sons: (i) compared with mobile devices, low-end and high-end

servers are usually equipped with more powerful processors,

and (ii) the servers are usually located at fixed areas with stable

power supply.
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IV. PROPOSED COLLABORATIVE CALL GRAPH

AND PROBLEM FORMULATION

In this section, we first propose a concept of collaborative

call graph to model the collaborative offloading and caching

problem within multiple mobile users, and then formulate the

optimization problems for high-end and low-end deployments,

respectively.

A. Collaborative Call Graph With Caching Enhancement

We propose a concept of the collaborative call graph for

multi-user MCA execution scenario, as shown in Fig. 2. When

a group of UEs connect to the same edge server (high-end

server or SCceNB), they can cooperate through sharing their

input data and computation results in the server. For example,

Fig. 2 shows that UE1 and UE2 offload their computation to the

edge server and share the corresponding computation results.

They can benefit from the fact that the result of component

“Recognizer” is already cached in the edge server to reduce the

execution latency. Or if there is no such result cached in the

edge server, they can collaboratively execute the component in

the edge server for one time, instead of two times separately.

B. Problem Formulation for Low-End MEC Deployment

1) Single-user Scenario: We first consider the single-user

low-end deployment case, where UE m (m ∈ M) offloads its

components to a low-end server (i.e., SCceNB) n (n ∈ Nl). In

addition, we define T l
n,m ,v as the offloading execution delay for

component v which is given by the sum of SID/ROD period

of its previous component u and its execution period. Whereas

El
n,m ,v is the corresponding energy consumption at the mobile

terminal side. In this case, the total latency T l
n,m and energy

consumption El
n,m for UE m to execute the application G =

(V, E) can be expressed by (6) and (7) as shown at the bottom

of this page, respectively, where t du,v is the time needed by

the UE m to decode the computation result (from component u

to v) transmitted back by SCceNB n, and E du,v
n,m denotes the

corresponding energy consumption to decode the computation

results transmitted back by SCceNB n.

Note that I l
n,m ,v and K l

n,v are the binary indicator variables.

Specifically, I l
n,m ,v ∈ I l

n,m is the offloading decision variable,

which is equal to one, if component v is processed remotely, or

zero, if the component is executed locally. The UE’s offloading

requests are normalized such that
∑N l

n=1 I l
n,m ,v = 1. K l

n,v ∈

Kl
n is the computation results caching variable: which is equal to

one, if UE m cannot find the computation results of component

v cached in SCceNB n, and zero, if UE m can find the results

in the corresponding SCceNB n through local caching.

Note also that a delay cost to transfer the data between UE

m and SCceNB n occurs in (6) only if the two components

u and v are processed at different locations, as illustrated in

Table I (a).

Specifically, when I l
n,m ,u = 0 and I l

n,m ,v = 1 (i.e., the SID

period of component v), UE m must send the results of compo-

nent u to the SCceNB n. In this case, T l
n,m ,v denotes the delay

cost as shown in (6), where: (i) t s lowu,v
n,m , represents the SID

delay cost for component v; and (ii) tlow
v , represents the delay

cost when SCceNB executes component v (if no results of v

cached in SCceNB).

Whereas, when I l
n,m ,u = 1 and I l

n,m ,v = 0 (i.e., the ROD

period of component v), SCceNB n must send the computation

results from component u back to UE m. In this case, T l
n,m ,v

will be equal to the sum of the following three delay costs: (i)

t r lowu,v
n,m , the ROD delay for UE m to receive the results back

firstly; (ii) t du,v the latency for UE to decode the computation

results from u; and (iii) tlocal
v the delay for the UE m to process

the component v locally.

On the other hand, if the two components u and v are

processed at the same location, e.g, on the UE side, when

I l
n,m ,u = 0 and I l

n,m ,v = 0, T l
n,m ,v corresponds to the local ex-

ecution delay tlocal
v ; or on the SCceNB side, when I l

n,m ,u = 1

T l
n,m =

∑

v∈V

∑

Eu , v ∈E

T l
n,m ,v =

∑

v∈V

(1 − I l
n,m ,v ) · t

local
v

︸ ︷︷ ︸

local execution delay

+
∑

Eu , v ∈E

[

uplink transmission delay and SCceNB execution delay
︷ ︸︸ ︷

(t s lowu,v
n,m + tlow

v · K l
n,m ,v ) · I l

n,m ,v

︸ ︷︷ ︸

offloading overhead

+

downlink transmission delay and decoding delay
︷ ︸︸ ︷

(t r lowu,v
n,m + t du,v ) · I l

n,m ,u −(t s lowu,v
n,m + t r lowu,v

n,m + t du,v ) · I l
n,m ,v · I l

n,m ,u ]
︸ ︷︷ ︸

offloading overhead

, (6)

El
n,m =

∑

v∈V

∑

Eu , v ∈E

El
n,m ,v =

∑

v∈V

(1 − I l
n,m ,v ) · E

local
v

︸ ︷︷ ︸

local energy consumption

+
∑

Eu , v ∈E

[

uplink transmission and idling energy consumption
︷ ︸︸ ︷

(E s lowu,v
n,m + Elow

v · K l
n,m ,v ) · I l

n,m ,v

︸ ︷︷ ︸

offloading overhead

+

idling and local decoding energy consumption
︷ ︸︸ ︷

(E r lowu,v
n,m + E du,v

n,m ) · I l
n,m ,u −(E s lowu,v

n,m + E r lowu,v
n,m + E du,v

n,m ) · I l
n,m ,v · I l

n,m ,u ]
︸ ︷︷ ︸

offloading overhead

, (7)
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TABLE I
ALL THE POSSIBLE VALUES FOR T l

n ,m ,v AND E l
n ,m ,v IN (6) AND (7), RESPECTIVELLY

and I l
n,m ,v = 1, T l

n,m ,v corresponds to the remote execution

delay tlow
v (if no results of v are cached in SCceNB).

Similarly, according to different values of I l
n,m ,u and I l

n,m ,v ,

the total energy cost for component v in (7) is shown in

Table I (b).

Note that the objective of data caching is to save CPU cycles

for repeated computation, and thus the best data caching policy

is to cache more popular computation results with higher ω

(cpu cycles per byte). The optimal data caching policies K l,∗
n

(n = 1, 2, ..., Nl ) for the low-end (distributed caching) scenario

is given as follows:

K l,∗
n = argmin

K l
n , v ∈K

l
n

K l
n,v · |Ev ,w | · ω(v),

s.t.
∑

v ,w∈V

K l
n,v · |Ev ,w | ≤ Ql ,

K l
n,v ∈ {0, 1},

n = 1, 2, ..., Nl . (8)

In order to minimize the average delay for UEs, we formu-

late the problem as an optimal offloading strategy under given

caching lists of the SCceNBs, which is a simple 0-1 program-

ming problem that aims at selecting the optimal number of

components to be offloaded at SCceNB n for UE m. This can

be formulated as follows:

When UE m makes an offloading decision to SCceNB n for

its current application G, we define the optimal offloading de-

cision I low∗
n,m = {I l

n,m ,v , v ∈ V} (I low∗
n,m ∈ I low∗

m ) un-

der caching list K l
n,v as Optimization Problem 1:

I low∗
n,m (K l,∗

n ,G) = argmin
I l

n , m , v

T l
n,m (9)

s.t. T l
n,m (I low∗

n,m ) ≤
∑

v∈V

tlocal
v , (10)

El
n,m (I low∗

n,m ) ≤
∑

v∈V

Elocal
v , (11)

N l∑

n=1

I l
n,m ,v = 1, m = 1, 2, ..., M, v ∈ V, (12)

where I low∗
m represents the set of the optimal offloading deci-

sions between the mth UE and all the available nearby SCceNBs

in the network (i.e., the ones that meet the constraints). Note that

constraint (10) indicates that the time it takes to execute the ap-

plication through offloading action I low∗
n,m must less than the

local execution delay, while constraint (11) ensures that the total

energy consumption for a feasible offloading action I low∗
n,m

is less than the total energy consumption of local execution.

2) Multi-user scenario: Then, we focus on the reduction of

average latency for MCA collaborative execution within multi-

ple users. Note that in the multi-user multi-small cell scenario,

different SCceNBs have different data caching contents. There-

fore, the caching policies K l,∗
n are different if one user attach

to different SCceNBs, which can change their offloading deci-

sions. On the other hand, users’ offloading request can affect

the local caching content of its serving SCceNB, and thus affect

the offloading decision of other users who attach to the same

SCceNB. Therefore, when UEs make offloading decisions in a

collaborative manner, and we can minimize the average delay

for the UEs as Optimization Problem 2:

min
1

M
·

M∑

m=1

T l
n,m

(
I low∗

n,m , K l,∗
n

)
(13)

s.t. m ∈ M, (14)

n ∈ Nl , (15)

I low∗
n,m ∈ I low∗

m , (16)

T l
n,m (I low∗

n,m ) ≤
∑

v∈V

tlocal
v , (17)

El
n,m (I low∗

n,m ) ≤
∑

v∈V

Elocal
v , (18)

N l∑

n=1

I l
n,m ,v = 1, m = 1, 2, ..., M, v ∈ V, (19)

where (17) and (18) are the delay constraint and energy con-

straint for the optimal offloading decision, respectively. Equa-

tion (19) denotes each mobile user offloads its component to a

single SCceNB.

C. Problem Formulation for High-End MEC Deployment

1) Single-user Scenario: Then, we consider the single-user

high-end deployment case, where UE m (m ∈ M) offloads its

components to an aggregation point (i.e., the centralized high-

end server) through its nearby SCeNB n (n ∈ Nh ). Similar with

the low-end case, the total latency T h
n,m and energy consump-

tion Eh
n,m for UE m to execute the application can be expressed

by (20) and (21) as shown at the bottom of the next page, re-

spectively. Here T h
n,m,v (given by Table II (a)) is the execution

delay of component v in high-end case, and Eh
n,m,v (illustrated

in Table II (b)) is the corresponding energy consumption at the
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TABLE II
ALL THE POSSIBLE VALUES FOR T h

n ,m ,v AND Eh
n ,m ,v IN (20) AND (21), RESPECTIVELLY

mobile terminal side. Ih
n,m,v and Kh

v are the indicator variables.

Specifically, Ih
n,m,v ∈ Ih

n,m is the offloading decision variable,

which is equal to one, if component v is processed remotely, or

zero, if it is executed locally. Whereas Kh
v ∈ Kh is the compu-

tation results caching variable: which is equal to one, if the UE

m can not find the computation results of component v shared

in the high-end server (through local caching), and zero, if UE

m can find the results in the server. The optimal data caching

policies Kh,∗ for the high-end (centralized caching) scenario is

given as follows:

Kh,∗ = argmin
K h

v ∈Kh

Kh
v · |Ev ,w | · ω(v),

s.t.
∑

v ,w∈V

Kh
v · |Ev ,w | ≤ Qh ,

Kh
v ∈ {0, 1}. (22)

Different from the low-end case, each user in the high-end de-

ployment can be served by one or multiple SCeNBs, depending

on the employed transmission scheme (such as CoMP [44]). The

optimal offloading decision problem for high-end deployment

is thus given by Optimization Problem 3:

I high∗
n,m (Kh,∗,G) = argmin

I h
n , m , v

T h
n,m (23)

s.t. T h
n,m (I high∗

n,m ) ≤
∑

v∈V

tlocal
v , (24)

Eh
n,m (I high∗

n,m ) ≤
∑

v∈V

Elocal
v , (25)

Nh∑

n=1

Ih
n,m,v ≥ 1, m = 1, 2, ..., M, v ∈ V, (26)

where I high∗
n,m denotes the optimal offloading decision be-

tween UE m and SCeNB n that can minimize the total delay

for processing the application G. (24) and (25) are the delay

and energy consumption constraints for the optimal offloading

decision, respectively.

2) Multi-user scenario: Note that in the high-end deploy-

ment, all the mobile users offload the components to the high-

end server, which means that the users make offloading de-

cisions according to the same caching factor Kh
m,v in a non-

cooperative manner. Each user can thus select its nearest SCeNB

(i.e., the SceNB with highest rdl
n,m and rul

n,m ) as its serving small

cell. We can reduce the average delay through minimizing each

single user’s execution latency as formulated in Optimization

Problem 3.

V. ALGORITHM DESIGN

In this section, we present our proposed optimal offloading

with caching-enhancement scheme (OOCS). We give the details

T h
n,m =

∑

v∈V

∑

Eu , v ∈E

T h
n,m,v =

∑

v∈V

(1 − Ih
n,m,v ) · t

local
v

︸ ︷︷ ︸

local execution delay

+
∑

Eu , v ∈E

[

uplink transmission delay and server execution delay
︷ ︸︸ ︷

(t s highu,v
n,m + thigh

v · Kh
m,v ) · Ih

n,m,v

︸ ︷︷ ︸

offloading overhead

+

downlink transmission delay and local decoding delay
︷ ︸︸ ︷

(t r highu,v
n,m + t du,v ) · Ih

n,m,u − (t s highu,v
n,m + t r highu,v

n,m + t du,v ) · Ih
n,m,v · Ih

n,m,u ]
︸ ︷︷ ︸

offloading overhead

, (20)

Eh
n,m =

∑

v∈V

∑

Eu , v ∈E

Eh
n,m,v =

∑

v∈V

(1 − Ih
n,m,v ) · E

local
v

︸ ︷︷ ︸

local energy consumption

+
∑

Eu , v ∈E

[

uplink transmission and idling energy consumption
︷ ︸︸ ︷

(E s highu,v
n,m + Ehigh

v · Kh
m,v ) · I

h
n,m,v

︸ ︷︷ ︸

offloading overhead

+

idling and decoding energy consumption
︷ ︸︸ ︷

(E r highu,v
n,m + E du,v

n,m ) · Ih
n,m,u −(E s highu,v

n,m + E r highu,v
n,m + E du,v

n,m ) · Ih
n,m,v · Ih

n,m,u ]
︸ ︷︷ ︸

offloading overhead

, (21)
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Fig. 3. The flowchart of Algorithm 1.

how the optimal offloading decisions for all users in the network

are made by computing first a list of the optimal number of

components to be offloaded to nearby small cells for each user

(using Optimization Problems 1 and 3, respectively). Then we

define the optimal partitions of users (or coalitions) for low-end

deployment. In order to identify which SCceNB can serve the

attached users and execute the offloading decisions, we explore

the concept of coalition formation game [45], [46] to solve

Optimization Problem 2.

A. Game Formulation

Indeed, in the low-end deployment case, the attachment of

mobile users to a particular SCceNB can be seen as a coali-

tion formation game in partition form with transferable utility.

Specifically, let M UEs be players, and π be the set of existing

users in the network. We assume that UEs in each coalition con-

nect to a single SCceNB and form a coalition. Let Sn denote

the set of UEs that are served by SCceNB n (n ∈ Nl), and S0

denote the set of UEs that execute the application locally, i.e.

without offloading.

The payoff of UE m in the coalition Sn (in terms of execution

latency) can be expressed as follows:

Vm (Sn , π) =

{

T l
n,m , n �= 0,

∑

v∈V tlocal
v , n = 0.

(27)

We define VSn
(π), as the sum of the payoff of all players

within the coalition, i.e. total execution delay of all UEs in the

coalition Sn , and is given by:

VSn
(π) =

∑

m⊆Sn

Vm (Sn , π). (28)

Based on this, the optimal network partition (coalition

formation) for multi-user low-end deployment is given by

Algorithm 1. The corresponding flowchart is shown in Fig. 3.

Note that the UEs merge through SCceNB keeping the top ql

Algorithm 1: Optimal Network Partition for Multi-user

Low-end Deployment.

Initial network:

initial network partition for the UEs: {{∅}, {1}, {2}, ...,{M}}.

Step 1: Component Offloading Decision

UEs work in a Non-cooperative manner

Input of Step 1: Parameters M , Nl , K l
m ,n,v , Ql , tlocal

v ,

G, t s lown,m , tlow
v , t r lowu,v

n,m , t du,v .

1) Each UE builds a top preferred SCceNB list

I low∗
n,m according to Optimization Problem 1.

2) Each UE selects its best preferred SCceNB as its

serving SCceNB and submit its offloading requests.

3) For the UEs whose list is empty, they join S0.

Output of Step 1: I low∗
n,m .

Step 2: Coalition Formation

UEs work in a cooperative manner

Input of Step 2: Parameters I low∗
n,m , ql .

4) Each SCceNB receives the requests. Due to the

limited computation capacity of SCceNBs, each SCceNB

keeps the top ql UEs that can minimize (28), and reject the

rest.

5) The rejected UEs will re-apply to their next best

SCceNB of their list I low∗
n,m , and each SCceNB updates

its serving UEs list.

6) Repeat 5), until convergence to a final Nash-stable

partition π∗. For the UEs who cannot be allocated to a

SCceNB, they execute the application locally and join S0.

Output of Step 2: π∗

UEs that can minimize (28). The rejected users will re-send

their location and component information to the next SCceNB

of their top preferred lists. Each SCceNB updates its list of

serving users, and then repeats the previous process of coalition

formation until all UEs are allocated to their nearby SCceNB.

Note that user m has an incentive to move from its current coali-

tion Sa to another coalition Sb in π∗ if the following split rule

in (29) is satisfied.

v(Sa\{m}) + v(Sb

⋃

{m}) < v(Sa) + v(Sb), (29)

where v(Sa) denotes the total payoff generated by a coalition

Sa .

It is worth noting that UEs who can not be allocated to

a SCceNB will execute their application locally and join the

coalition S0. The final network partitions will be thus given as

π∗ = {S0, S1, ..., SN l
}.

Proposition V.1: Starting by any initial partition πini from

step 4) in Algorithm 1, the coalition formation for transfers is

guaranteed to converge to a final stable partition π∗.

Proof: See Appendix A. �

B. Algorithm Description

To sum up, our algorithm consists of three main phases:

(i) Initial phase, selection of possible offloaded components,

along with the best preferred SCeNB for each single UE in
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high-end deployment case, or a list of top preferred SCceNBs

for each single UE in the low-end deployment case. In the lat-

ter case, the optimal network partition shown in Algorithm 1 is

executed, (ii) Cache placement phase, where we determine the

cache results at each edge server. Specifically, in the high-end

deployment case, the central high-end server make caching de-

cision through collecting the offloading requests of all the UEs

around the network. Whereas in the low-end deployment case,

each SCceNB caches the results according to its nearby UEs’

offloading requests in a distributed manner, and (iii) Delivery

phase, which allows the edge servers to deliver the requested

results to the UEs over wireless channels. In what follows, we

describe these three phases.

First of all, each UE observes the current network states to

identify the accessible nearby small cells over a control channel,

and computes the optimal number of components to be offloaded

at each identified nearby small cell by resolving Optimization

Problem 1 (low-end) or Optimization Problem 3 (high-end).

A top preferred SCeNB (high-end case) or a list of top preferred

SCceNBs (low-end case) will be thus created for every user

according to the server’s previous caching content K l,∗
n,m,v or

Kh,∗
m,v . The list is sorted in ascending order according to the

total latency.

In the high-end case, each user attaches to their best pre-

ferred SCeNB and submit its location and offloading requests

to the high-end server. The server makes current optimal cache

placement decision Kh,∗
m,v (as shown in (22)) after the execu-

tion, according to its previous caching content and the current

offloading requests. Whereas in the low-end case, each user first

selects its best preferred SCceNB (the one from its list with

minimum delay) as its serving SCceNB and upload the required

information to the SCceNB. This information relates to both the

offloading data as well as the mobile device and network charac-

teristics. The information related to offloading data include the:

i) application type, ii) current components that the user is exe-

cuting, iii) buffer size (i.e., input data size for offloading) and iv)

workload (CPU cycles) for the current components. Whereas,

the mobile device and network related information contain the

mobile transmission rate and processing power as well as the

channel quality that they experience with respect to the SCceNB.

Then, the optimal network partition is derived using Algorithm

1. After each user attaching to the optimal small cell, the servers

deliver the requested results to the UEs over wireless channels.

At last, each SCceNB makes the optimal cache placement de-

cision K l,∗
n (as shown in (8)) according to its serving users’

offloading requests and previous caching content.

C. Complexity Analysis

The optimal caching placement problems formulated in (8)

and (22) are the simple 0-1 Knapsack problems [47]. The prob-

lem is NP-hard [48], but the suboptimal solutions can be ob-

tained in pseudo-polynomial time by dynamic programming

approach [49]. Thus, the complexities of our suboptimal caching

placement algorithms are O(|Ev ,w |Ql) for the low-end case and

O(|Ev ,w |Qh) for the high-end case. Note that both problems are

solved at the server side after the execution of MCAs. Thus,

TABLE III
NETWORK PARAMETERS

the overheads (delay) for solving both optimization problems

have no impact on the execution latency in (6) and (20). In

addition, Optimization Problem 1 and Optimization Problem 3

are 0-1 programming problems that can be solved through the

branch and bound algorithm. Their corresponding complexities

are both O(2(|V|) in the worst case, but can be reduced through

pruning schemes, such as alpha-beta pruning [50]. Optimiza-

tion Problem 2, on the other hand, can be viewed as a college

admission game [51]. The complexity for the solution is O(Nl)
in the worst case.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposal for

both low-end and high-end deployments under single-user and

multi-user scenarios. We assume that the geographical distri-

butions of both the small cells and UEs follow an independent

Homogeneous Poisson Point Process (HPPP) [52], which is

suitable for describing the distribution of small devices. The

geographical distributions of both small cells and UEs are thus

given by:

P (n, r) =
[λL(r)]n

n!
e−λL(r) (30)

where L(r) = r2 denote the area of the network of radius r. λ

is the mean density (intensity) of points. We define λu , λ
l
s and

λ
h
s as the density of UEs, SCceNBs and SCeNBs, respectively.

For the computing components, we assume that each applica-

tion consists five random components as shown in Fig. 2, both

data dependencies Eu,v and required number of CPU cycles

per byte (cpb) for components ω follow the uniform distribution

with Eu,v ∈ [100, 500] KB and ω ∈ [4000, 12000] cpb as in [38].

All random variables are independent for different components.

The size of computation results library |Eu,v | = 1000000.

We compare the benefits of our optimal offloading with

caching-enhancement scheme (OOCS) with respect to six

benchmark policies, namely:
� No Offloading Scheme (NOS):

Local execution, which means that applications are exe-

cuted on smartphones, by letting offloading decision vari-

ables I l
n,m and Ih

n,m equal to 0 in (6) and (20), respectively.
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Fig. 4. High-end performance vs. application execution times, ω = 5900 cpb, δ = 1.

� Optimal Offloading Without Caching Scheme (OOS):

Traditional offloading strategies [15]–[17] without caching

enhancement, i.e., let caching decision variables Kl
n,m and

Kh equal to 0 in (6) and (20), respectively.
� Total Offloading Without Caching Scheme (TOS):

Coarse offloading strategies [13], [22] without caching en-

hancement, which means that offload all the components to

the server side, i.e., let offloading decision variables I l
n,m

and Ih
n,m equal to 1 in (6) and (20), respectively.

� Total Offloading and Caching Scheme (TOCS):

Coarse offloading with caching enhancement.
� D2D Offloading Without Caching Scheme (DOS):

D2D offloading strategies [12] without caching enhance-

ment, which means resource-poor devices can utilize other

users’ vacant computing resources.
� D2D Offloading and Caching Scheme (DOCS):

D2D offloading strategies with D2D caching [6], [27], [28]

enhancement.

Note that in the D2D offloading scenario, we assume that the

offloadee mobile devices [12] (servers) are equipped with more

powerful processors than the offloader mobile devices (clients),

the cpu rate of offloadee devices fms = 1.5 × 109 cpu cycles per

second. Each offloadee device allocates 0.5 Gbits of its memory

to D2D caching. The parameters used in our simulations are

reported in Table III.

A. Performance Evaluation of OOCS in Single-User Scenario

We first illustrate the performance of our proposed OOCS

scheme for the single-user scenario. This is done by minimizing

the execution delay for a single user through Optimization

Problem 1 and Optimization Problem 3.

To do so, we generate 45000 independent applications and

run the applications continuously. Let the required number of

cpu cycles per byte for the components ω = 5900 cpb, which

correspends to the workload of processing the English main

page of Wikipedia [39]. Assume that offloading requests are

modeled as the Zipf distribution and the popularity factor δ = 1

(shown in (3)). The simulation results are averaged over 2000

Monte-Carlo topology realizations.

1) High-end deployment scenario: Fig. 4(a), 4(b), 4(c) show

the curves of average offloading probability, average caching

hit probability and average application execution delay versus

Fig. 5. High-end performance vs. ω (the required number of cpu cycles per
byte for the components), δ = 1.

Fig. 6. High-end performance vs. popularity factor δ, ω = 5900 cpb.

application execution times, respectively. Several observations

can be made. First of all, for all the non-caching schemes (TOS,

NOS, DOS, OOS), execution times have no influence on the

average offloading probability, average caching hit probability

and the average execution delay. The reason is that without

caching enhancements, the users make offloading decision inde-

pendently at the beginning of each execution time. Secondly, for

the schemes allowing caching enhancement (OOCS, DOCS),

the average offloading probability and average caching hit

probability increase considerable with the execution time. We

observe a peak after the servers’ storage capacities are achieved.

Specifically, the storage capacity of high-end server is achieved

after about 35000 times of execution and storage capacity of

offloadee is achieved after about 5000 times of execution. This

suggests that as the execution time grows, more popular compu-

tation results are cached in the server. Thus, the user prones to
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Fig. 7. Low-end performance vs. application execution times, ω = 5900 cpb, δ = 1.

Fig. 8. Low-end performance vs. ω (required number of cpu cycles per byte
for the components), δ = 1.

offload the components to the server to reduce the execution de-

lay. Last but not least, it can be observed from Fig. 4 (c) that after

the high-end server’s storage capacity is achieved, our high-end

OOCS algorithm can reduces 28.04%, 33.28%, 32.31%,

15.42%, 29.19% and 11.89% execution delay compared with

OOS, NOS, TOS, TOCS, DOS and DOCS, respectively.

Figs. 5 and 6 plot the high-end performance versus ω (required

cpb for the components) and the popularity factor δ, respectively.

It can be seen from the figures that ω has tremendous influence

on the average offloading probability (as shown in Fig. 5 (a)),

whereas δ plays a key role in the average caching hit probability

(as shown in Fig. 6 (a)). It is evident that the local execution

overhead increases as ω grows. Thus, the mobile user prefers to

offload the components rather than local execution. Moreover,

higher ω and δ can bring larger reduction of execution delay (as

shown in Figs. 5 (b) and 6 (b)), and our OOCS algorithm still

performs better than the other schemes in the delay reduction.

2) Low-end deployment scenario: Similar results are given

in Figs. 7, 8 and 9 for low-end deployment scenario. Specifically,

Fig. 7 reports the low-end performance versus the application

execution times. Note that the storage capacity of SCceNB is

achieved after about 20000 times of execution. Figs. 8 and 9 plot

the low-end performance versus ω and δ, respectively. From the

figures, we can see clearly that ω and δ still play key roles

in the average offloading probability and average caching hit

probability, respectively. Note that the average offloading prob-

ability of OOCS scheme increases considerable from 28% to

97%, when ω grows from 4000 to 9000, as shown in Fig. 8

(a). When ω > 9000, the average offloading probability of our

Fig. 9. Low-end performance vs. popularity factor δ, ω = 5900 cpb.

OOCS will be more than 99%. This suggests that the perfor-

mance of our OOCS is similar with the performance of total

offloading schemes (TOS and TOCS) when ω > 9000. The situ-

ation is illustrated by Fig. 8 (b). On the other hand, when δ grows

from 0 to 0.5, there was hardly any change in the value of aver-

age caching hit probability. This suggests that when δ < 0.5, the

schemes with caching enhancements (TOCS, OOCS, DOCS)

performs similarly with respect to their non-caching schemes

(TOS, OOS, DOS). The trend is given by Fig. 9 (b). In addition,

it can be observed from Fig. 7 (c) that after SCceNB’s storage

capacity achieved, our low-end OOCS algorithm can reduce

36.49%, 42.83%, 41.51%, 12.25%, 39.33% and 24.50% exe-

cution delay compared to OOS, NOS, TOS, TOCS, DOS and

DOCS, respectively.

3) High-end/Low-end performance comparison: As stated

earlier, the high-end and low-end scenarios perform quasi sim-

ilarly. However, there are still several differences between the

two scenarios in the following aspects: (i) The high-end deploy-

ment performs better in the average offloading probability and

average caching hit probability, whereas the low-end deploy-

ment performs better in the average delay reduction. The reason

is that the high-end server is equipped with more powerful pro-

cessors and larger storage sizes (i.e. larger caching list) than the

SCceNB, and thus mobile users have more incentive to offload

the components to the high-end server. On the other hand, the

high-end deployment performs worse in delay reduction due to

the large end-to-end delay from SCeNBs to the high-end server.

(ii) The performance thresholds between schemes are different

in the two deployments. For example, as shown in Figs. 5 (a) and
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Fig. 10. Low-end (Femto-cloud) performance of multi-user scenario.

8 (a), the CPB thresholds between OOCS and TOCS are 7500

and 9000 for high-end and low-end deployments, respectively.

In addition, the popularity factors thresholds between OOCS

and OOS are 0.4 and 0.5 for high-end and low-end deploy-

ments, respectively (as shown in Figs. 6 (a) and 9 (a)).

B. Performance Evaluation of OOCS in Multi-User Scenario

We then illustrate the performance of our OOCS scheme for

the multi-user scenario. This is done by minimizing the average

execution delay for multiple users through Optimization Prob-

lem 3. Fig. 10 show the multi-user delay performance versus ω, δ

and UE density λu , respectively. Note that our multi-user OOCS

performs better in delay reduction when ω grows as shown in

Fig. 10 (a). The reason is that the offloading probability increases

with ω since more users can reduce their delay through joining

our coalition game performed in OOCS. Similarly, as δ grows,

more users can find their required results cached in their serving

SCceNB, and thus reducing their execution delay, as shown in

Fig. 10 (b). Finally, Fig. 10 (c) shows that our multi-user OOCS

performs better as UE density grows from 10−3 to 8 × 10−3. A

peak is observed when λu = 5 × 10−3, which corresponds to

11.71% and 40.61% delay reduction, compared to single-user

OOCS and NOS, respectively. When λu > 8 × 10−3, single-

user OOCS performs better. The reason is that, when λu grows

larger (>5 × 10−3), the SCceNBs cannot afford such many UEs

(we assume that each SCceNB can handle 6 UEs in our simula-

tions), and thus a large number of UEs will be rejected and run

the application locally. As a result, the average delay increases

and will be close to the local execution delay.

VII. CONCLUSION

In this paper, we have studied the computation offloading

problem with caching enhancement for mobile edge cloud

networks. We propose an optimal offloading with caching-

enhancement scheme (OOCS) to minimize the execution delay

for mobile users in two kinds of edge cloud scenarios. First, we

have proposed a concept of cooperative call graph to formulate

the offloading and caching relationships within multiple compo-

nents. Then, in order to minimize the overall delay for multi-user

femto-cloud networks, we have formulated the problem of users’

allocation as a coalition formation game. We have proved the

existence of convergence. Compared to six alternative solutions

in literature, our proposed approach achieves the best perfor-

mance. Specifically, our high-end OOCS algorithm can reduces

28.04%, 33.28%, 32.31%, 15.42%, 29.19% and 11.89% execu-

tion delay compared with OOS, NOS, TOS, TOCS, DOS and

DOCS, respectively. Whereas our low-end OOCS algorithm can

reduce 36.49%, 42.83%, 41.51%, 12.25%, 39.33% and 24.50%

execution delay compared to OOS, NOS, TOS, TOCS, DOS

and DOCS, respectively. Moreover, when consider the mul-

tiuser scenario, our multiuser OOCS can reduce 11.71% delay

comparing with the single-user OOCS.

APPENDIX A

PROOF OF THE PROPOSITION V.1

Proof: For a partition Πini from step 4) in Algorithm 1, the

coalition formation process can be seen as a sequence of transfer

operations that transform the network’s partition,

Πl = Πini → Π1 → Π2 → ..., (31)

where Πl = {S0, S1..., SN l
} is a partition which composed of

at most Nl + 1 coalitions (Nl coalitions forms at Nl given SC-

ceNBs and one local execution coalition S0) that is formed after

l transfers. User m has an incentive to move from its current

coalition Sa to another coalition Sb in π∗ if

v(Sa\{m}) + v(Sb

⋃

{m}) < v(Sa) + v(Sb). (32)

As a transfer between two SCceNBs a and b in a partition

in a partition Πl , does not affect the total utility generated by

the other coalitions in Πl \ {Sa , Sb} (since UEs use orthogonal

channels, we do not consider intra-cell interference in this work),

every transfer Πl → Πk forms an order such that

Πl → Πk ⇔
∑

Sm ∈Πk

v(Sm ) <
∑

Sm ∈Π l

v(Sp) (33)

which is transitive and irreflexive. Therefore, for any two parti-

tions, we have Πl �= Πk , l �= k. As the number of partitions of

a set is finite and equal to the Bell number, the sequence in (31)

is guaranteed to converge to a final partition π∗.

�
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