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Computation Offloading With Data Caching
Enhancement for Mobile Edge Computing

Shuai Yu
Li Wang

Abstract—Computation offloading is a proven successful
paradigm for enabling resource-intensive applications on mobile
devices. Moreover, in view of emerging mobile collaborative appli-
cation, the offloaded tasks can be duplicated when multiple users
are in the same proximity. This motivates us to design a collabora-
tive offloading scheme and cache the popular computation results
that are likely to be reused by other mobile users. In this paper, we
consider the scenario where multiple mobile users offload dupli-
cated computation tasks to the network edge, and share the compu-
tation results among them. Our goal is to develop the optimal fine-
grained collaborative offloading strategies with caching enhance-
ments to minimize the overall execution delay at the mobile termi-
nal side. To this end, we propose an optimal offloading with caching-
enhancement scheme (OOCS) for femto-cloud scenario and mobile
edge computing scenario, respectively. Simulation results show that
compared to six alternative solutions in literature, our single-user
OOCS can reduce execution delay up to 42.83% and 33.28% for
single-user femto-cloud and single-user mobile edge computing, re-
spectively. Our multi-user OOCS can further reduce 11.71% delay
compared to single-user OOCS through users’ cooperation.

Index Terms—Computation Offloading, Data Caching, Mobile
Collaborative Applications, Mobile Edge Computing, Coalitional
Game.
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I. INTRODUCTION

OWADAYS, the advances in hardware technology enable
N our smartphones equipped not only with more memory,
better processor and improved network connectivity, but also
with numerous sensors. Accompanied by the emergence of near-
to-eye display technologies, such as Google Glass, a variety of
mobile collaborative applications (MCA) [2], such as mobile
audio/video conferences, collaborative editing and augmented
reality [3], are designed to support collaboration among mo-
bile users. These applications use complex algorithms for cam-
era tracking and object recognition, requiring mobile devices
(google glass, smartphones, etc.) not only with considerable en-
ergy, memory size and computational resources, but also with
resource sharing capacity.

A potential solution to address the challenges is through mo-
bile cloud computation offloading [4]. However, when consider-
ing 1 millisecond to 5 milliseconds end-to-end latency required
by 5G for a class of applications (called the “Tactile Internet”
[5]), the traditional cloud may not be suitable for code offload-
ing due to the high and variable latency to distant datacenters,
especially for delay-sensitive applications. On the other hand,
caching most popular contents at the network edge can reduce
latency and improve user’s quality of experience (QoE) [6], [7].
Thus, a promising approach to tackle this challenge is to move
cloud infrastructure (computation and storage abilities) closer
to the end users [8].

Motivated by above facts, the European project TROPIC (dis-
tributed computing, storage and radio resource allocation over
cooperative femtocells) and the European Telecommunications
Standards Institute (ETSI) proposed femto-cloud [9] and multi-
access mobile edge computing (MEC) [10], respectively. In the
proposed architectures, fixed and powerful servers are located
at the network edge to reduce communication overhead and
execution delay for mobile users.

In this paper, we will investigate collaborative computation
offloading with the data caching enhancement strategy for the
MCA execution in femto-cloud and MEC, respectively. Our
objective is to reduce the average execution delay for the mobile
users within the network. Our proposal can dramatically reduce
the MCA’s execution latency based on the following two facts:

® Multiple mobile users in the same MCA execution envi-

ronment can share computation and outcome results. In-
deed, through sharing the same components (e.g., Mapper
and Objective Recognizer as in [2]) and computation re-
sults (e.g., detected feature points of environment), the
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environment will be generated faster and more complete.
Through this kind of cooperation and sharing, mobile users
can not only save computational resources but also gain in-
formation from the input of others.

e For cache-enabled MEC (e.g., mobile cloud gaming),
caching parts of computation results that are likely to be
reused by others can further boost the computation per-
formance of the entire system [11]. This idea is motivated
by the fact that users in one small region are likely to re-
quest similar computing services. For example, visitors in
a museum tend to use Augmented Reality (AR) for better
sensational experience. Thus, it is desirable to cache mul-
tiple AR services and output data at the MEC server of this
region to provide the real-time services.

The major contributions of our paper are summarised as

follows:

® We propose a fine-grained collaborative computation of-
floading and caching strategy that optimizes the offload-
ing decisions on the mobile terminal side with caching
enhancement. The objective is to minimize the overall ex-
ecution latency for the mobile users within the network.
Most of previous works either focus on the offloading de-
cisions [4], [12]-[18] or caching placement strategy [7],
[19]. To the best of our knowledge, our work is the first of
its kind that optimizes offloading decisions, while consid-
ering data caching.

e Based on the concept of the call graph [20], we propose
in this paper the concept of the cooperative call graph
to model the offloading and caching relationship within
multiple mobile users, and then compute the delay and
energy overhead for each single user.

e We first evaluate our algorithm in a single-user scenario
for both femto-cloud and MEC networks. Moreover, to
further reduce the execution delay in the multi-user case,
we explore the concept of the coalition formation game for
the distributed caching scenario.

® We compare our approach with six benchmark policies
in literature and discuss the associated gains in terms of
required CPU cycles per byte (cpb) for applications and
content’s popularity factor.

The reminder of this paper is organized as follows.
Section II, introduces an overview of related works. In
Section III, we present the system model. Section IV introduces
the collaborative call graph and formulates the optimaztion
problems, followed by a description of our proposed algorithm
in Section V. Simulation results are presented in Section VI.
Finally, conclusions are drawn in Section VII.

II. RELATED WORK
A. Mobile Edge Computing

In the context of mobile edge computing (MEC), the key el-
ement is the edge server, which provides computing resource,
storage capability and connectivity. The server can be deployed
at high-end or low-end proximate in the small cell based edge
cloud network [21]. The high-end deployment is a current focus
of the ETSI multi-access mobile edge computing standard, as
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Fig. 1. High-end MEC deployment vs. Low-end MEC deployment: (a) The
high-end server is located in the access network that is an aggregation point
of a set of small cell base stations (SCeNB i.c., Small Cell e-Node B), (b)
The low-end servers are traditional small cell base stations with cloud capacity
(SCceNB, i.e., small cell cloud-enhanced e-Node B).

shown in Fig. 1 (a). In this case, typically a high-end standard
server is located in the access network that is an aggregation
point of a set of small cell base stations (SCeNB i.e., Small
Cell e-Node B). The server is also regarded as a central coor-
dinator that is required to design a cache placement strategy.
However, in the low-end case, application servers can be de-
ployed in low-end devices which can be routers, access points,
or home-based nodes as shown in Fig. 1 (b). Femto-cloud [9],
[15]-[17] is a typical low-end deployment. The idea is to endow
small cell base stations with cloud functionalities (computation,
storage and server), thus providing mobile user equipments with
proximity access to the mobile edge cloud. The novel base sta-
tions are called small cell cloud-enhanced e-Node B (SCceNB)
that deployed with high-capacity storage units but have limited
capacity backhaul links. In this case, the popular contents are
cached in a distributed manner among the SCceNBs without a
central coordinator. With respect to the high-end deployment,
this deployment brings three advantages: 1) strong reduction of
latency with respect to centralized clouds, because small cells
are the closest points in the mobile network to the mobile users
with only one wireless hop, and therefore with minimum la-
tency, 2) storage of large amounts of local contents or software
by mobile equipments over proximity SCceNB, data can be tem-
porarily stored (local caching) in the nearby SCceNB, with very
low latency, and 3) no central coordinator is required to collect
the information of the whole network, which significantly saves
signaling overhead. In view of this, authors in [15] proposed
a framework for joint optimization of radio and computation
resource under energy consumption, computational and delay
constraints. Sardellitti et al. in [16] considered a scenario com-
posed by multiple mobile users asking for computation offload-
ing of their applications to a set of cloud servers. The objective
is to minimize the overall energy consumption, at the mobile
terminal side, while meeting the latency constraints. In addi-
tion, TROPIC considers a fine-grained (i.e. code partitioning)
offloading framework [17] which they exploits the concept of
the call graph to model the application.

However, in most of these previous works, the main focus
is on mobile devices, considering the cloud as a system with
unlimited resources. Moreover, the offloading decision is based
either on the optimization of computation/communication re-
sources (as in [15], [16]) or on the code partitioning of each
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single user (as in [17]). They do not indeed consider sharing
computation results between multiple users to avoid repeated
computation. It is worth noting that through sharing the com-
putation results (by local caching), such relationship can affect
the offloading decision for all mobile users.

B. Computation Offloading and Data Caching in MEC

In order to meet the low latency and improved QoE require-
ments of emerging applications, we need code offloading and
local caching strategies that empower mobile applications with
resourceful cloud equipments. Offloading mechanisms have
been studied extensively [13], [14], [22]-[26] and generally
fallen into two categories: coarse-grained offloading [13] and
fine-grained (typically at a method-level granularity) offloading
[14], [22]-[26]. Coarse-grained offloading also refers to the full
offloading or total offloading in which full task is migrated to
the cloud. This approach does not require estimating the com-
putation overhead prior to the execution. For example, Zhang
et al. [13] proposed a computational offloading policy to decide
whether an entire application should be offloaded to remote
cloud or executed locally to reduce energy consumption on the
mobile terminal side. However, fine-grained offloading (partial
offloading or dynamic offloading) dynamically transmits as lit-
tle code as possible and offloads only the computation-hungry
parts of the application. Zhang et al. [14] investigated the prob-
lem of collaborative task execution by strategically offloading
task to the cloud. They proposed a fine-grained offloading strat-
egy to reduce energy consumption under a latency constraint.
Despite the introduced burden on the application programmers
and additional computational overhead, the proposed approach
can reduce unnecessary transmission overhead, achieving a re-
duced latency and energy consumption. Moreover, a lot of
current works study the Device-to-Device (D2D) computation
offloading [12] or D2D caching [6], [27], [28] strategies, in or-
der to reduce latency or energy consumption for mobile users.
This means that mobile devices can be regarded as servers for
other mobile users. However, compared with some fixed servers,
mobile devices remain resource poor. Especially, due to their
mobility, it is hard for mobile devices to cache some popular
computation results in a fixed area.

Many emerging mobile applications involve intensive compu-
tation based on data analytics, thus caching parts of computation
results that are likely to be reused by others can further boost the
computation performance of the entire MEC system [11]. One
typical example is mobile cloud gaming [29]. Note that certain
game rendered videos, e.g., gaming scenes, can be reused by
other players, caching these computation results would not only
significantly reduce the computation latency of the players with
the same computation request, but also ease the computation
burden for edge servers. In the high-end MEC case, massive
data are cached in a centralized manner. Thus, the key prob-
lem is how to balance the tradeoff between massive database
and limited storage capacity of MEC servers. Whereas in the
low-end MEC case, the design principle is how to cache the mas-
sive data in the distributed low-end MEC servers. Furthermore,
it is also essential to establish a practical database popularity
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distribution model that is able to statistically characterize the
usage of each database set for different MEC applications. We
will address the above concerns and design optimal offload-
ing strategies leveraging local data caching, as proposed in this

paper.

C. Computation and Data Sharing for Mobile Collaborative
Applications

For multi-user computation offloading scenario, it is hard to
share the output data when the mobile users run different appli-
cations. However, it is possible to share the output data when
i) multiple mobile users run the same components (subtasks)
of the same application, or ii) multiple mobile users run differ-
ent components of the same application. Thus, it make sense to
1) select part of mobile users to execute the common compo-
nents or ii) allocate the components to different mobile users for
parallel processing. The output data are shared among the cor-
responding mobile users. As a result, the execution energy and
delay can be reduced significantly. In this paper, we consider the
first sharing scenario, which means that all mobile users run the
same component and share part of the data. It is worth noting
that the second sharing scenario has been extensively studied in
our recent work in [30].

For certain types of MCA, multiple users in the same neigh-
borhood typically look at the same scene, track the same envi-
ronment, and need to recognize the same objects, so they can
benefit from collaboration and computation/data sharing [31].
A typical example is emerging mobile crowd sensing appli-
cations [32]-[34], where individual mobile user with sensing
and computing devices collectively share data and extract in-
formation to measure and map phenomena of common interest.
Similarly, AR applications [2], [31] have the unique property
that different users with the same objective can share part of the
computational tasks and of the input and output data. Verbelen
et al. [2] proposed a component-based offloading framework
that optimizes application-specific metrics. They split an im-
mersive application into several loosely coupled software com-
ponents. Each components with its dependency, configuration
parameters and constraints can be offloaded and shared among
multiple users. Specifically, one kind of Mapper component can
be shared between multiple mobile devices in the same physical
environment. All mobile users receive the same world model
to track the camera position and share the computation results.
Because the model is updated and refined using camera images
from multiple devices, the model will often be more accurate
than one created by just one device. Through this computa-
tion/data sharing, the cloudlet agent allows users to not only
save computational resources to avoid repeated calculation, but
also gain information from the input of others. However, they
only consider a two-user scenario with one kind of immersive
application executed in a laptop, the data rate is set to be a fixed
value. It is not enough to model the scenario where multiple
mobile users process MCAs in MEC.

To overcome these limitations, we first propose in [1] a
cooperative computation offloading strategy based on coali-
tional game formation for multi-cell and multi-user femtocloud
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networks. In this paper, we extend our previous work and pro-
pose a new computation offloading strategy with caching en-
hancements to further minimize the overall execution delay at
the mobile terminal side. Our proposal, namely Optimal Of-
floading with Caching-enhancement Scheme (OOCS) is based
on the new concept of collaborative call graph. In addition, we
consider both high-end and low-end MEC deployments in our
analysis and add new baselines for performance comparison.

III. SYSTEM MODEL

In this section, we present the model of our optimal offloading
with caching-enhancement scheme (OOCS).

A. Network Model

In our work, we consider both high-end and low-end deploy-
ments of small cell-based mobile edge cloud. In the case of
low-end deployment, we consider an LTE femto-cloud network
composed of [V; small cells with computation and memory en-
hancement (i.e. SCceNBs in LTE terminology). In the case of
high-end deployment, we consider an edge cloud network con-
sisting of N, traditional small cell base stations (SCeNBs) and
a centralized high-end server. The number of mobile users for
both network types is M. We also consider both of the network
deployments are based on the orthogonal frequency division
multiple-access (OFDMA) in which M users within the same
SCeNB/SCceNB are separated in the frequency domain. Note
that, using such a transmission scheme for the uplink offloading
implies that the users do not interfere with one another.

Let p,, and ps denote the transmit power for the UEs and small
cells (i.e., SCeNBs and SCceNBs), respectively. The maximum
achievable rate [35], [36] (in bps) over an additive white Gaus-
sian noise (AWGN) channel for user m (m € M) to offload its
application to small cell n (n € N}, orn € N;) can be expressed

as follows:
pu|hul‘2 ) 1
PRy A ey
I'(gu1)d” No

where B is the bandwidth, d is the distance between UE and
SCeNB/SCceNB. In this paper, we consider the Rayleigh-fading
environment, and h,; and hg; are the channel fading coefficient
for uplink and downlink, respectively. Ny denotes the noise

power and (3 is the path loss exponent. Note that I'(BER) =
~ 2log(5BER)
3

T:::{m =B logZ (1 +

represents the SNR margin introduced to meet the
desired target bit error rate (BER) with a QAM constellation
[37]. gy and g4; are the target BER for uplink and downlink,
respectively.

Similarly, the maximum achievable rate (in bps) for a user m
receiving its computation results from small cell n (n € N}, or
n € N)) is given by:

2)

o | ha|?
T’;fl,m:BIOg2<l+ Ps|hai )

F(gdl )d‘ﬁ No
B. Application Model

We assume that a mobile application can be split into mul-
tiple components [2] which in the granularity of either method
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[22]-[26] or thread [13] (i.e., a fine-grained partitioning). We
then exploit the concept of the call graph [20], which is used for
modelling the relationship between components as a weighted
directed graph G = (V, &), where V denotes the set of compo-
nents, and £ the data dependencies between components. Fig. 2
represents an example of two call graphs for an immersive ap-
plication [2], which shows two users (UE1 and UE2) offloading
their components to the same edge server individually. The im-
mersive application can be split into different components. From
the example illustrated in Fig. 2, there are 5 different compo-
nents: Interface, Tracker, Mapper, Recognizer, and Renderer
[2]. The Tracker component denotes the input camera frames
with delay constraints. Such a component is used to estimate the
camera position. Note that, some of these components cannot be
offloaded such as the user’s interface and renderer in Fig. 2, and
must necessarily be evaluated locally. The components in the
edge server denote the component clones for the components of
mobile users.

Here, we consider M UEs equipped with the same mobile
device, so the local energy consumption and latency are same
among the UEs when executing the same component. As stated
earlier, £ denotes the set of weight for all the edges, we assume
each edge &, , (&, € €) represents the data communication
(computation result) between two components. We let ¢, (v €
V) denotes the weight of component v, which specifies the
workload (CPU cycles) for the component v. For a given input
data size &, ,, ¢, can be derived from [38], [39] as ¢, = w -
&y v, where the w in CPU cycles/byte (cpb) [40] indicates the
number of clock cycles a microprocessor will perform per byte
of data processed in an algorithm. The parameter depends on the
nature of the component, e.g., the complexity of the algorithm.
The estimation of this value has been studied in [41], [42] which
is thus beyond the scope of our work.

C. Caching Model

As stated earlier, a library consists of |£| computation re-
sults, denoted by & = {&, ., (u,v € V)}, is cached at one or
multiple edge servers which can be either in high-end or low-
end deployment. Let |E, , | denotes the size (in bytes) of &, .
The computation result’s popularity distribution conditioned on
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the event that user m makes an offloading request for its cur-
rent component v. We also assume that each edge server has a
finite-capacity storage storing part of the popular computation
results. Specifically, we denote by @}, the storage capacity of the
high-end server, and by @); the storage capacity of the low-end
SCceNB. In this work, we consider the popularity-based caching
policy [19] that the edge servers store computation results based
on their highest popularity until the storage capacity is achieved.
Thus, offloading requests is ranked from the most popular to the
least, such that the request probability for a computation result
Eyp is:

I€]

1 1
> 3)

u,v n=1

f(€uw,0,E]) =

where 0 models the skewness of the popularity profile. For
& = 0, the popularity profile is uniform over files, and becomes
more skewed as § grows larger [19].

D. Execution Model

As stated earlier, we focus in this paper on both low-end and
high-end deployments for small cell-based mobile edge cloud.
For low-end deployment, each component can be executed ei-
ther on the mobile device or offloaded to a SCceNB. Whereas
for high-end deployment, each component can be executed ei-
ther on the mobile device or offloaded to the centralized server
through a nearby SCeNB. The offloading decision is based on
the workload of components V, data communication £, data rate

rdland 74! | In this context, we consider the model of local
execution, low-end execution and high-end execution, respec-
tively.

1) Local Execution: If the component v is executed on mo-
bile device, the completion time is t/2°*! = ¢, - f.!, and the
corresponding energy consumption of the mobile device is
Elocal = g, - tlocal "where f,, denotes the CPU rate of mobile
devices (Million Instructions Per Second, MIPS), p. represents
the computing power for mobile device, ¢, denotes the number
of instructions to be executed for component v.

2) Low-End Execution: If component v is offloaded to a
Virtual Machine (VM) [43] in a SCceNB, the mobile device is
idle before receiving the computation results. We denote #/°* =
% as the completion time of component v executed on the
SCceNB, where f; denotes the CPU rate of SCceNB (f, >
fm > 0). Due to the limited computation capacity of SCceNBs,
we assume that each SCceNB can serves at most ¢; mobile
users. The corresponding energy consumption of the mobile
device during the remote execution is E!°" = p; - tL° where
p; is the idle power for mobile devices.

When component v is offloaded to SCceNB and the input
data &, , from its previous component u is stored locally (i.e.,
stored in the mobile device), &, , must be sent to SCceNB
before the execution of component v. We define this procedure
as Sending Input Data (SID) for component v. Therefore,

the time for UE m sending input data from component u to
_ ]

component v in low-end SCceNB n is t_s_low,,";, = =4+, and
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the corresponding energy consumption for UE m during the
SID time is E_s_lowy;";, = py - t-s-lowy 7, .

Conversely, if component v is executed locally, and its previ-
ous component u is executed in SCceNB, the output data &, ,, of
component u must be sent back to mobile device before the ex-
ecution of component v. We define this procedure as Receiving
Output Data (ROD) for component v. Therefore, the delay for
UE m receiving output data from component u to component

u,v |€u v ‘

v in low-end SCceNB n is t_r_low™ ! =

Wi and the corre-

u m

sponding energy consumption for UE m during the ROD time
is E_r_low,,, = p; - trlow; .

3) High-end Execution: Then, we analyze the task execution
for high-end deployment. When component v is offloaded to a
VM in a centralized high-end server. We denote by t/9" =
2 ‘D the completion time of component v executed on the
centralized high-end server, where f. denotes the CPU rate of
the high-end server (f. > f; > f,, > 0) and ¢, the maximum
number of UEs that the server can serve. The corresponding
energy consumption for the mobile device during the remote
execution is EM9" = p, . thigh,

Similarly, when component v is offloaded to the high-end
server whereas the input data £, , from its previous component
w is stored locally, the SID delay for UE m sending input data
from component u to component v in high-end deployment
is t_s_high®" = Ej‘ly’”‘
from SCeNBs to the high-end server. The corresponding energy
consumption for UE m during the SID time is given as follows:

+ t., where t. is the end-to-end delay

I&, ol

nm

E_s_high" =p, - +Dpi - te. “)

Conversely, if component v is executed locally and its previ-
ous component w is executed in the server, the ROD delay for
component v of UE m receiving output data from component u
in high-end deployment is given by

[0
te + ’I"dl b (5)

n,m

tor_high," =

and the corresponding energy consumption for UE m during the
ROD time is E_r_high* = p; - t_r_high}.*.

Note that, when components v and v are processed on the
same side (i.e., both processed locally or remotely), the SID
and ROD delay as well as the energy consumption are equal
to zero in both of the deployments. This is based on the fact
that the parameters passing on the same side do not involve
wireless communication, and hence the overhead is not signif-
icant. In addition, we do not consider the transmission energy
consumption from SCeNB/SCceNB to UE. We only consider
the idle energy consumption for mobile users when its serving
SCeNB/SCceNB sending the computation results back. In this
work, the latency and energy consumption for decoding at the
server side are assumed to be negligible for the following rea-
sons: (i) compared with mobile devices, low-end and high-end
servers are usually equipped with more powerful processors,
and (ii) the servers are usually located at fixed areas with stable
power supply.
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IV. PROPOSED COLLABORATIVE CALL GRAPH
AND PROBLEM FORMULATION

In this section, we first propose a concept of collaborative
call graph to model the collaborative offloading and caching
problem within multiple mobile users, and then formulate the
optimization problems for high-end and low-end deployments,
respectively.

A. Collaborative Call Graph With Caching Enhancement

We propose a concept of the collaborative call graph for
multi-user MCA execution scenario, as shown in Fig. 2. When
a group of UEs connect to the same edge server (high-end
server or SCceNB), they can cooperate through sharing their
input data and computation results in the server. For example,
Fig. 2 shows that UE1 and UE2 offload their computation to the
edge server and share the corresponding computation results.
They can benefit from the fact that the result of component
“Recognizer” is already cached in the edge server to reduce the
execution latency. Or if there is no such result cached in the
edge server, they can collaboratively execute the component in
the edge server for one time, instead of two times separately.

B. Problem Formulation for Low-End MEC Deployment

1) Single-user Scenario: We first consider the single-user
low-end deployment case, where UE m (m € M) offloads its
components to a low-end server (i.e., SCceNB) n (n € N)). In
addition, we define T |, . as the offloading execution delay for
component v which is given by the sum of SID/ROD period
of its previous component u and its execution period. Whereas
Efl_m_l, is the corresponding energy consumption at the mobile
terminal side. In this case, the total latency Tf,m and energy
consumption E!  for UE m to execute the application G =

n,m
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the UE m to decode the computation result (from component u
to v) transmitted back by SCceNB n, and E_d"'7 denotes the
corresponding energy consumption to decode the computation
results transmitted back by SCceNB n.

Note that [, ,an o, and K L ., are the binary indicator variables.
Specifically, I}, ,, , € Z! ,, is the offloading decision variable,
which is equal to one, if component v is processed remotely, or
zero, if the component is executed locally. The UE’s offloading
requests are normalized such that Zf:]’: | If;,,nm = 1. K,lw €
Kl is the computation results caching variable: which is equal to
one, if UE m cannot find the computation results of component
v cached in SCceNB n, and zero, if UE m can find the results
in the corresponding SCceNB n through local caching.

Note also that a delay cost to transfer the data between UE
m and SCceNB n occurs in (6) only if the two components
u and v are processed at different locations, as illustrated in
Table I (a).

Specifically, when I}, ,, , =0and I} ,, , =1 (ie., the SID
period of component v), UE /m must send the results of compo-
nent u to the SCceNB n. In this case, T}, ,, , denotes the delay
cost as shown in (6), where: (i) {_s_low}! ;'fn’,' represents the SID
delay cost for component v; and (i) t/°”, represents the delay
cost when SCceNB executes component v (if no results of v
cached in SCceNB).

Whereas, when I’rll,m,'u. =1 and If,wm’,l, =0 (i.e., the ROD
period of component v), SCceNB n must send the computation
results from component « back to UE m. In this case, T'rlz,m,v
will be equal to the sum of the following three delay costs: (i)
t.r_low,;, , the ROD delay for UE m to receive the results back
firstly; (i) t_d,, , the latency for UE to decode the computation
results from wu; and (iii) #/°°?! the delay for the UE m to process
the component v locally.

On the other hand, if the two components u and v are

processed at the same location, e.g, on the UE side, when

(V, €) can be expressed by (6) and (7) as shown at the bottom I,Ihm‘“, = 0and I,ZL,,M =0, T,Qm ., corresponds to the local ex-
of this page, respectively, where ¢_d,, , is the time needed by ecution delay #/°““’; or on the SCceNB side, when I! | =1
uplink transmission delay and SCceNB execution delay
Tl o TZ o (1 o Il ) . 7Joca,l + [(t l u,v + tlmn . KZ ) . Il
n,m n,m,v n,m,v v -S-tow, ", v n,m,v n,m,v
veV &, , €€ vey Eu,v€E
local execution delay offloading overhead
downlink transmission delay and decoding delay
u,v 1 u,v u,v 1 1
+ (t-r-lownmz, + t-du«'“) : I'nu,m.u —(t_S-lO’LU,”,m + t-r-lown,m + t-d'lhl’) : I’mm.’u : I’rb,lmu]’ (6)
offloading overhead
uplink transmission and idling energy consumption
1 o 1 o 1 local u,v low 1 1
En,m - E § En.m.@ - E (1 - In,m.v) ’ E13 + E [(E-s-lown,m + Er : Kn.m,v) : In,m,v
veV E, , EE veY Eu v EE
local energy consumption offloading overhead
idling and local decoding energy consumption
U, u,v 1 u,v u,v u,v l 1
+ (E-r-lown;rrl + E-dn,m) : In.m,u _(E-s-lown,m + E-r-lown,m + E-dn,m) ’ In,m,v : Ir],,m,?z]? (7

offloading overhead
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TABLE I
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ALL THE POSSIBLE VALUES FOR T} o
7 1 — T —
Tn,mv Inmvfo I’rL,m,'u*1
w,U
Il =0 tlocal t—s—low”l,m + ti}ow .
n,m,u v Kl
n,m,v
W, U
I -1 t_r_lown m + tlow | Kl
n,m,u t dyv + ti}ocal v n,m,v

(a) Low-end T,ll,m’v for different If%m’u and I,llﬁmw in (6)

and I'

n,m,v
low

delay ¢,

=1, T!

w.m.,v corresponds to the remote execution
(if no results of v are cached in SCceNB).
Similarly, according to different values of I}, ,, , and I .
the total energy cost for component v in (7) is shown in
Table I (b).

Note that the objective of data caching is to save CPU cycles
for repeated computation, and thus the best data caching policy
is to cache more popular computation results with higher w
(cpu cycles per byte). The optimal data caching policies K*
(n=1,2,...,N;) for the low-end (distributed caching) scenario

is given as follows:

KTI;* = argmin KTIM, N w| - w(v),
Kl ek,
s.t. Z Kiﬁy : |g’v,w| S Ql7
v,weY
K, , €{0,1},
n=12,..N,. ®)

In order to minimize the average delay for UEs, we formu-
late the problem as an optimal offloading strategy under given
caching lists of the SCceNBs, which is a simple 0-1 program-
ming problem that aims at selecting the optimal number of
components to be offloaded at SCceNB 7 for UE m. This can
be formulated as follows:

When UE m makes an offloading decision to SCceNB n for
its current application G, we define the optimal offloading de-
cision I_low;, ,, = {I}, ,, ,,v € V} (Ilow;, ,, € T low;,) un-

der caching list K, , as Optimization Problem 1:

Ilow) ,, (K.*,G) = argmin T}, ,, ©9)
I o
st. Ty, (Tdow;, ) < Y toe, (10)
vey
By, (Idow}, ,,) <Y B, (11
vey
N,
NI .=1 m=12,..M veV, (12)

n=1

where 7_low;, represents the set of the optimal offloading deci-
sions between the m!”" UE and all the available nearby SCceNBs
in the network (i.e., the ones that meet the constraints). Note that
constraint (10) indicates that the time it takes to execute the ap-
plication through offloading action /_low;, , must less than the

n,m

local execution delay, while constraint (11) ensures that the total

AND E “m v IN(6) AND (7), RESPECTIVELLY

Eizm,v I'fzmv:() Ii,mvzl
B =0 ploea Tosafowm *
v n,m,v
Iiz o = 1 E-Z_lljowxz:)? +l Elou) -Kl
,m, E_dn:m + Eloca v n,m,v

(b) Low-end E‘fhm’v for different I,ll,m’u and Ifz,m,v in (7)
energy consumption for a feasible offloading action /_lowy, ,,
is less than the total energy consumption of local execution.

2) Multi-user scenario: Then, we focus on the reduction of
average latency for MCA collaborative execution within multi-
ple users. Note that in the multi-user multi-small cell scenario,
different SCceNBs have different data caching contents. There-
fore, the caching policies K * are different if one user attach
to different SCceNBs, which can change their offloading deci-
sions. On the other hand, users’ offloading request can affect
the local caching content of its serving SCceNB, and thus affect
the offloading decision of other users who attach to the same
SCceNB. Therefore, when UEs make offloading decisions in a
collaborative manner, and we can minimize the average delay
for the UEs as Optimization Problem 2:

min % : i T . (Idow? ., K*) (13)
m=1
st.me M, (14)
neMN, (15)
I lowy, ,,, € I lowy,, (16)
T, (Ilow;, ) < >t (17)
vey
B, ,,(Ilow; ) <> B, (18)

veY
N,
NI, ,=1, m=12,..M veV, (19)
=1

where (17) and (18) are the delay constraint and energy con-
straint for the optimal offloading decision, respectively. Equa-
tion (19) denotes each mobile user offloads its component to a
single SCceNB.

C. Problem Formulation for High-End MEC Deployment

1) Single-user Scenario: Then, we consider the single-user
high-end deployment case, where UE m (m € M) offloads its
components to an aggregation point (i.e., the centralized high-
end server) through its nearby SCeNB n (n € A},). Similar with
the low-end case, the total latency Tf;w and energy consump-
tion B! for UE m to execute the application can be expressed
by (20) and (21) as shown at the bottom of the next page, re-
spectively. Here T,?_mw. (given by Table II (a)) is the execution
delay of component v in high-end case, and E,}]fﬁm‘v (illustrated
in Table II (b)) is the corresponding energy consumption at the
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TABLE II
ALL THE POSSIBLE VALUES FOR T/ v AND E (. » IN(20) AND (21), RESPECTIVELLY
Tr’zlm,v IZLL m,v =0 Ir}zbmvu:vl E’va Ig,m,v =0 I’I}LL m,v u:'ul
t_s_highy’ E_s_highy’
Ih =0 tlocal Wioh n,m Ih =0 Elocal Hiah ,m
n,m,u v . tvlg K"}; v n,m,u v . Evlg 'Kr}‘rl':,v
t_r_highp m + i E_r_highy m + i
h — g high h — ghn, high
Tima =1 |7, local ' K, Iimu=1 | g giv ) Floca By Ko
(a) High-end T,ﬁm’v for different Iﬁ,m,u and I;"m’v in (20) (b) High-end E,’;m’v for different Ig’m’u and Iﬁ,m’vin 21
. . . ]I’ ]I’ . . . . .
mobile terminal side. 7 ,, , and K, are the indicator variables. st. T, (I_hig ) < Z glocal (24)
Specifically, I ffﬂnw € I, is the offloading decision variable, ey
which is equal to one, if component v is processed remotely, or , o loeal
zero, if it is executed locally. Whereas K" € K" is the compu- E, o (I-highs, ) < Z B (25
tation results caching variable: which is equal to one, if the UE vey
m can not find the computation results of component v shared Ni
in the high-end server (through local caching), and zero, if UE Z I,}fym_’l‘ >1, m=1,2,...M, ve, (26)
m can find the results in the server. The optimal data caching n=1

policies K”* for the high-end (centralized caching) scenario is
given as follows:

K" = argmin K" - |&, | - w(v),
KIekh

S.t. Z th : |51UJ‘ < Qh7

v,weY

K € {0,1}. (22)

Different from the low-end case, each user in the high-end de-
ployment can be served by one or multiple SCeNBs, depending
on the employed transmission scheme (such as CoMP [44]). The
optimal offloading decision problem for high-end deployment
is thus given by Optimization Problem 3:

1_high;

n,m

(K"*,G) = argmin T

n,m
Ih

n,m,v

(23)

where I_high}, , denotes the optimal offloading decision be-
tween UE m and SCeNB 7 that can minimize the total delay
for processing the application G. (24) and (25) are the delay
and energy consumption constraints for the optimal offloading
decision, respectively.

2) Multi-user scenario: Note that in the high-end deploy-
ment, all the mobile users offload the components to the high-
end server, which means that the users make offloading de-
cisions according to the same caching factor K/ , in a non-
cooperative manner. Each user can thus select its nearest SCeNB
(i.e., the SceNB with highest 7!, and r"! ) as its serving small
cell. We can reduce the average delay through minimizing each
single user’s execution latency as formulated in Optimization

Problem 3.

V. ALGORITHM DESIGN

In this section, we present our proposed optimal offloading
with caching-enhancement scheme (OOCS). We give the details

ﬂ?,'rrz - Z Z Trlzl,rw,v - Z(l - I’r]z.m,u) 'tlirnml + Z [(t-s-]“ghzlz,zrvn

uplink transmission delay and server execution delay

—|—ti7,7gh . Kh ) . Ih

m,v n,m,v

veEV E, , €E veEY Euw€E

local execution delay offloading overhead
downlink transmission delay and local decoding delay
+ (t-r-hzgh:lzvllyn + t-d'hlr‘) : II].LLJII ,U - (t-s-}”ghzlm + t-r-hlghzﬂl;z + t-dltﬁl/‘) : I/]Z,m,’u : Illzlmx,,u]’ (20)
offloading overhead
uplink transmission and idling energy consumption

Eg‘m = Z Z Erill.m,ﬂ = Z(l - Irli,m.r) : Ef,vucal + Z [(E-S-thhZ:n + E'zir”gh : K7I)L7,,'u) ! Ir};,m.v

veV E, , €E veY Eu v EE

local energy consumption offloading overhead
idling and decoding energy consumption
+ (E-T_h’Lgh%;;l + E-d::7:77) : Ir];,m,u _(E-S-hlgh%;n + E-T-thh;LL:n + E-d%7:77) : I7}ll,mz : I:LL,m,u]v 2D

offloading overhead
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Fig. 3.

The flowchart of Algorithm 1.

how the optimal offloading decisions for all users in the network
are made by computing first a list of the optimal number of
components to be offloaded to nearby small cells for each user
(using Optimization Problems 1 and 3, respectively). Then we
define the optimal partitions of users (or coalitions) for low-end
deployment. In order to identify which SCceNB can serve the
attached users and execute the offloading decisions, we explore
the concept of coalition formation game [45], [46] to solve
Optimization Problem 2.

A. Game Formulation

Indeed, in the low-end deployment case, the attachment of
mobile users to a particular SCceNB can be seen as a coali-
tion formation game in partition form with transferable utility.
Specifically, let M UEs be players, and 7 be the set of existing
users in the network. We assume that UEs in each coalition con-
nect to a single SCceNB and form a coalition. Let S,, denote
the set of UEs that are served by SCceNB n (n € V), and Sy
denote the set of UEs that execute the application locally, i.e.
without offloading.

The payoff of UE m in the coalition S,, (in terms of execution
latency) can be expressed as follows:

TV]'J,AIII7 n # 07
ey 057, 7=,
We define Vg, (), as the sum of the payoff of all players

within the coalition, i.e. total execution delay of all UEs in the
coalition .S,,, and is given by:

Vs'u (7() = Z Vin (Sn s 77)-

mcCS,

Vm (Sn ’ ﬂ—) - { (27)

(28)

Based on this, the optimal network partition (coalition
formation) for multi-user low-end deployment is given by
Algorithm 1. The corresponding flowchart is shown in Fig. 3.
Note that the UEs merge through SCceNB keeping the top ¢
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Algorithm 1: Optimal Network Partition for Multi-user
Low-end Deployment.

Initial network:
initial network partition for the UEs: {0}, {1}, {2}, ...,{M}}.
Step 1: Component Offloading Decision
UEs work in a Non-cooperative manner

Input of Step 1: Parameters M, N, K., . ., Q;, tloce!,
g, t_s_low, ,, tff’“', trlowly  tody .

1) Each UE builds a top preferred SCceNB list
I low;, ,, according to Optimization Problem 1.

2) Each UE selects its best preferred SCceNB as its
serving SCceNB and submit its offloading requests.

3) For the UEs whose list is empty, they join Sp.

Output of Step 1: I_low;, ,,.
Step 2: Coalition Formation
UEs work in a cooperative manner

Input of Step 2: Parameters I _low ., q.

4) Each SCceNB receives the requests. Due to the
limited computation capacity of SCceNBs, each SCceNB
keeps the top ¢; UEs that can minimize (28), and reject the
rest.

5) The rejected UEs will re-apply to their next best
SCceNB of their list /_low}, ,, , and each SCceNB updates
its serving UEs list.

6) Repeat 5), until convergence to a final Nash-stable
partition 7*. For the UEs who cannot be allocated to a
SCceNB, they execute the application locally and join Sp.

Output of Step 2: 7*

UEs that can minimize (28). The rejected users will re-send
their location and component information to the next SCceNB
of their top preferred lists. Each SCceNB updates its list of
serving users, and then repeats the previous process of coalition
formation until all UEs are allocated to their nearby SCceNB.
Note that user m has an incentive to move from its current coali-
tion S, to another coalition .S, in 7* if the following split rule
in (29) is satisfied.

v(S \{m}) +v(S, U{m}) < v(S,) +v(Sh),

where v(S, ) denotes the total payoff generated by a coalition
Sa.

It is worth noting that UEs who can not be allocated to
a SCceNB will execute their application locally and join the
coalition Sy. The final network partitions will be thus given as
= {S(), S] g ey S)e\'/ }

Proposition V.1: Starting by any initial partition 7;,; from
step 4) in Algorithm 1, the coalition formation for transfers is
guaranteed to converge to a final stable partition 7*.

Proof: See Appendix A. ]

(29)

B. Algorithm Description

To sum up, our algorithm consists of three main phases:
(1) Initial phase, selection of possible offloaded components,
along with the best preferred SCeNB for each single UE in
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high-end deployment case, or a list of top preferred SCceNBs
for each single UE in the low-end deployment case. In the lat-
ter case, the optimal network partition shown in Algorithm 1 is
executed, (ii) Cache placement phase, where we determine the
cache results at each edge server. Specifically, in the high-end
deployment case, the central high-end server make caching de-
cision through collecting the offloading requests of all the UEs
around the network. Whereas in the low-end deployment case,
each SCceNB caches the results according to its nearby UEs’
offloading requests in a distributed manner, and (iii) Delivery
phase, which allows the edge servers to deliver the requested
results to the UEs over wireless channels. In what follows, we
describe these three phases.

First of all, each UE observes the current network states to
identify the accessible nearby small cells over a control channel,
and computes the optimal number of components to be offloaded
at each identified nearby small cell by resolving Optimization
Problem 1 (low-end) or Optimization Problem 3 (high-end).
A top preferred SCeNB (high-end case) or a list of top preferred
SCceNBs (low-end case) will be thus created for every user
according to the server’s previous caching content K,l;j,w or
K!* . The list is sorted in ascending order according to the
total latency.

In the high-end case, each user attaches to their best pre-
ferred SCeNB and submit its location and offloading requests
to the high-end server. The server makes current optimal cache
placement decision K/,* (as shown in (22)) after the execu-
tion, according to its previous caching content and the current
offloading requests. Whereas in the low-end case, each user first
selects its best preferred SCceNB (the one from its list with
minimum delay) as its serving SCceNB and upload the required
information to the SCceNB. This information relates to both the
offloading data as well as the mobile device and network charac-
teristics. The information related to offloading data include the:
1) application type, ii) current components that the user is exe-
cuting, iii) buffer size (i.e., input data size for offloading) and iv)
workload (CPU cycles) for the current components. Whereas,
the mobile device and network related information contain the
mobile transmission rate and processing power as well as the
channel quality that they experience with respect to the SCceNB.
Then, the optimal network partition is derived using Algorithm
1. After each user attaching to the optimal small cell, the servers
deliver the requested results to the UEs over wireless channels.
At last, each SCceNB makes the optimal cache placement de-
cision Kflj* (as shown in (8)) according to its serving users’
offloading requests and previous caching content.

C. Complexity Analysis

The optimal caching placement problems formulated in (8)
and (22) are the simple 0-1 Knapsack problems [47]. The prob-
lem is NP-hard [48], but the suboptimal solutions can be ob-
tained in pseudo-polynomial time by dynamic programming
approach [49]. Thus, the complexities of our suboptimal caching
placement algorithms are O(|€, ., |@;) for the low-end case and
O(|€y . |Qp ) for the high-end case. Note that both problems are
solved at the server side after the execution of MCAs. Thus,
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TABLE III
NETWORK PARAMETERS
Parameter Value Parameter Value
AL AR 10-3 Au 5x 1073

Gul 1073 gdi 103
T 100 m tq 02s
Pu 0.01 W Ps 0.1 W
Pe 09 W i 0.3 W
fm 109 cyclse/s fs 1019 cyclse/s
fe 1011 cyclse/s te 0.02 s
Qn 4 Gbits Q 2 Gbits
qn 50 q 6
No 5x 10~° ) )

the overheads (delay) for solving both optimization problems
have no impact on the execution latency in (6) and (20). In
addition, Optimization Problem 1 and Optimization Problem 3
are 0-1 programming problems that can be solved through the
branch and bound algorithm. Their corresponding complexities
are both O(2(1) in the worst case, but can be reduced through
pruning schemes, such as alpha-beta pruning [50]. Optimiza-
tion Problem 2, on the other hand, can be viewed as a college
admission game [51]. The complexity for the solution is O(N;)
in the worst case.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposal for
both low-end and high-end deployments under single-user and
multi-user scenarios. We assume that the geographical distri-
butions of both the small cells and UEs follow an independent
Homogeneous Poisson Point Process (HPPP) [52], which is
suitable for describing the distribution of small devices. The
geographical distributions of both small cells and UEs are thus
given by:

(30)

where L(r) = r? denote the area of the network of radius r. A
is the mean density (intensity) of points. We define A, A\ and
A" as the density of UEs, SCceNBs and SCeNBs, respectively.

For the computing components, we assume that each applica-
tion consists five random components as shown in Fig. 2, both
data dependencies &, , and required number of CPU cycles
per byte (cpb) for components w follow the uniform distribution
with &, , € [100,500] KB andw € [4000, 12000] cpb as in [38].
All random variables are independent for different components.
The size of computation results library |, ,| = 1000000.

We compare the benefits of our optimal offloading with
caching-enhancement scheme (OOCS) with respect to six
benchmark policies, namely:

® No Offloading Scheme (NOS):

Local execution, which means that applications are exe-
cuted on smartphones, by letting offloading decision vari-
ables 7}, ,, and Z}! ,, equal to 0in (6) and (20), respectively.



11108

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

1.0 NN ) 07 95 T T T T T T T T
e . oo JIHE NS
53— : i >0 NI A T T N B N I A
gos ; i 3 3 ? _85 TR
I -5 : = e 2 ' ! i
8 o B 5 ¢ 8°° N 4 S o0 DY Dy
500 04 8 1
g T 044 =75 | y
&= © A H
3 f_:: 2.0 QL 77777 )
By o o 56 3" 5., Bk rocs S
o 2 ] f
$ TOSTOGS o2 FE-oocs 8 °° 1 5-Tos g
02 Zo0s” 5 X-TOCS <60 DOCS —H—+f
<« DOCS Z o4 ~©~DOCS DOS
-DOS : [->¢= No Caching Schemes 5.5 4=H-00CS|
NOS i ] i i [-0—00s8
00 ¥ ; 004 i i i i 50 i 7
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Times Times Times

(a) Average offloading probability vs.

execution times execution times

Fig. 4.

® Optimal Offloading Without Caching Scheme (OOS):
Traditional offloading strategies [ 15]-[17] without caching
enhancement, i.e., let caching decision variables K, ,, and
Kh equal to 0 in (6) and (20), respectively.

Total Offloading Without Caching Scheme (TOS):

Coarse offloading strategies [13], [22] without caching en-
hancement, which means that offload all the components to
the server side, i.e., let offloading decision variables 7}, ,,
and I, equal to 1 in (6) and (20), respectively.

Total Offloading and Caching Scheme (TOCS):

Coarse offloading with caching enhancement.

D2D Offloading Without Caching Scheme (DOS):

D2D offloading strategies [12] without caching enhance-
ment, which means resource-poor devices can utilize other
users’ vacant computing resources.

D2D Offloading and Caching Scheme (DOCS):

D2D offloading strategies with D2D caching [6], [27], [28]
enhancement.

Note that in the D2D offloading scenario, we assume that the
offloadee mobile devices [12] (servers) are equipped with more
powerful processors than the offloader mobile devices (clients),
the cpu rate of offloadee devices f,,, = 1.5 x 10° cpucycles per
second. Each offloadee device allocates 0.5 Gbits of its memory
to D2D caching. The parameters used in our simulations are
reported in Table III.

A. Performance Evaluation of OOCS in Single-User Scenario

We first illustrate the performance of our proposed OOCS
scheme for the single-user scenario. This is done by minimizing
the execution delay for a single user through Optimization
Problem 1 and Optimization Problem 3.

To do so, we generate 45000 independent applications and
run the applications continuously. Let the required number of
cpu cycles per byte for the components w = 5900 cpb, which
correspends to the workload of processing the English main
page of Wikipedia [39]. Assume that offloading requests are
modeled as the Zipf distribution and the popularity factor § = 1
(shown in (3)). The simulation results are averaged over 2000
Monte-Carlo topology realizations.

1) High-end deployment scenario: Fig.4(a), 4(b), 4(c) show
the curves of average offloading probability, average caching
hit probability and average application execution delay versus

(b) Average caching hit probability vs.

(c) Average application execution delay
vs. execution times

High-end performance vs. application execution times, w = 5900 cpb, 6 = 1.
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application execution times, respectively. Several observations
can be made. First of all, for all the non-caching schemes (TOS,
NOS, DOS, 0O0S), execution times have no influence on the
average offloading probability, average caching hit probability
and the average execution delay. The reason is that without
caching enhancements, the users make offloading decision inde-
pendently at the beginning of each execution time. Secondly, for
the schemes allowing caching enhancement (OOCS, DOCS),
the average offloading probability and average caching hit
probability increase considerable with the execution time. We
observe a peak after the servers’ storage capacities are achieved.
Specifically, the storage capacity of high-end server is achieved
after about 35000 times of execution and storage capacity of
offloadee is achieved after about 5000 times of execution. This
suggests that as the execution time grows, more popular compu-
tation results are cached in the server. Thus, the user prones to
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offload the components to the server to reduce the execution de-
lay. Last but not least, it can be observed from Fig. 4 (c) that after
the high-end server’s storage capacity is achieved, our high-end
OOCS algorithm can reduces 28.04%, 33.28%, 32.31%,
15.42%, 29.19% and 11.89% execution delay compared with
0O0S, NOS, TOS, TOCS, DOS and DOCS, respectively.

Figs. 5 and 6 plot the high-end performance versus w (required
cpb for the components) and the popularity factor d, respectively.
It can be seen from the figures that w has tremendous influence
on the average offloading probability (as shown in Fig. 5 (a)),
whereas ¢ plays a key role in the average caching hit probability
(as shown in Fig. 6 (a)). It is evident that the local execution
overhead increases as w grows. Thus, the mobile user prefers to
offload the components rather than local execution. Moreover,
higher w and § can bring larger reduction of execution delay (as
shown in Figs. 5 (b) and 6 (b)), and our OOCS algorithm still
performs better than the other schemes in the delay reduction.

2) Low-end deployment scenario: Similar results are given
inFigs. 7, 8 and 9 for low-end deployment scenario. Specifically,
Fig. 7 reports the low-end performance versus the application
execution times. Note that the storage capacity of SCceNB is
achieved after about 20000 times of execution. Figs. 8 and 9 plot
the low-end performance versus w and 4, respectively. From the
figures, we can see clearly that w and ¢ still play key roles
in the average offloading probability and average caching hit
probability, respectively. Note that the average offloading prob-
ability of OOCS scheme increases considerable from 28% to
97%, when w grows from 4000 to 9000, as shown in Fig. 8
(a). When w > 9000, the average offloading probability of our
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00 02 04 0.0

(a) Average caching hit proba-
bility vs. §
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Fig. 9. Low-end performance vs. popularity factor §, w = 5900 cpb.

OOCS will be more than 99%. This suggests that the perfor-
mance of our OOCS is similar with the performance of total
offloading schemes (TOS and TOCS) when w > 9000. The situ-
ation is illustrated by Fig. 8 (b). On the other hand, when 6 grows
from 0 to 0.5, there was hardly any change in the value of aver-
age caching hit probability. This suggests that when § < 0.5, the
schemes with caching enhancements (TOCS, OOCS, DOCS)
performs similarly with respect to their non-caching schemes
(TOS, OOS, DOS). The trend is given by Fig. 9 (b). In addition,
it can be observed from Fig. 7 (c) that after SCceNB’s storage
capacity achieved, our low-end OOCS algorithm can reduce
36.49%, 42.83%, 41.51%, 12.25%, 39.33% and 24.50% exe-
cution delay compared to OOS, NOS, TOS, TOCS, DOS and
DOCS, respectively.

3) High-end/Low-end performance comparison: As stated
earlier, the high-end and low-end scenarios perform quasi sim-
ilarly. However, there are still several differences between the
two scenarios in the following aspects: (i) The high-end deploy-
ment performs better in the average offloading probability and
average caching hit probability, whereas the low-end deploy-
ment performs better in the average delay reduction. The reason
is that the high-end server is equipped with more powerful pro-
cessors and larger storage sizes (i.e. larger caching list) than the
SCceNB, and thus mobile users have more incentive to offload
the components to the high-end server. On the other hand, the
high-end deployment performs worse in delay reduction due to
the large end-to-end delay from SCeNBs to the high-end server.
(ii) The performance thresholds between schemes are different
in the two deployments. For example, as shown in Figs. 5 (a) and
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Fig. 10. Low-end (Femto-cloud) performance of multi-user scenario.

8 (a), the CPB thresholds between OOCS and TOCS are 7500
and 9000 for high-end and low-end deployments, respectively.
In addition, the popularity factors thresholds between OOCS
and OOS are 0.4 and 0.5 for high-end and low-end deploy-
ments, respectively (as shown in Figs. 6 (a) and 9 (a)).

B. Performance Evaluation of OOCS in Multi-User Scenario

We then illustrate the performance of our OOCS scheme for
the multi-user scenario. This is done by minimizing the average
execution delay for multiple users through Optimization Prob-
lem 3. Fig. 10 show the multi-user delay performance versus w, §
and UE density 1, , respectively. Note that our multi-user OOCS
performs better in delay reduction when w grows as shown in
Fig. 10 (a). The reason is that the offloading probability increases
with w since more users can reduce their delay through joining
our coalition game performed in OOCS. Similarly, as ¢ grows,
more users can find their required results cached in their serving
SCceNB, and thus reducing their execution delay, as shown in
Fig. 10 (b). Finally, Fig. 10 (c) shows that our multi-user OOCS
performs better as UE density grows from 1073 to 8 x 1073, A
peak is observed when A, =5 x 1073, which corresponds to
11.71% and 40.61% delay reduction, compared to single-user
OOCS and NOS, respectively. When 4, > 8 x 1073, single-
user OOCS performs better. The reason is that, when 1, grows
larger (>5 x 1073), the SCceNBs cannot afford such many UEs
(we assume that each SCceNB can handle 6 UEs in our simula-
tions), and thus a large number of UEs will be rejected and run
the application locally. As a result, the average delay increases
and will be close to the local execution delay.

VII. CONCLUSION

In this paper, we have studied the computation offloading
problem with caching enhancement for mobile edge cloud
networks. We propose an optimal offloading with caching-
enhancement scheme (OOCS) to minimize the execution delay
for mobile users in two kinds of edge cloud scenarios. First, we
have proposed a concept of cooperative call graph to formulate
the offloading and caching relationships within multiple compo-
nents. Then, in order to minimize the overall delay for multi-user
femto-cloud networks, we have formulated the problem of users’
allocation as a coalition formation game. We have proved the
existence of convergence. Compared to six alternative solutions

Popularity Factor &
(b) Average application execution delay

T T T T T T
0.8 1.0 1.2 14 1 2 3 4 5 6 7 8 9 10
UE Density

(c) Average application execution delay
vs. UE density \,, (1073)

in literature, our proposed approach achieves the best perfor-
mance. Specifically, our high-end OOCS algorithm can reduces
28.04%, 33.28%, 32.31%, 15.42%, 29.19% and 11.89% execu-
tion delay compared with OOS, NOS, TOS, TOCS, DOS and
DOCS, respectively. Whereas our low-end OOCS algorithm can
reduce 36.49%, 42.83%, 41.51%, 12.25%, 39.33% and 24.50%
execution delay compared to OOS, NOS, TOS, TOCS, DOS
and DOCS, respectively. Moreover, when consider the mul-
tiuser scenario, our multiuser OOCS can reduce 11.71% delay
comparing with the single-user OOCS.

APPENDIX A
PROOF OF THE PROPOSITION V.1

Proof: For a partition 11;,,; from step 4) in Algorithm 1, the
coalition formation process can be seen as a sequence of transfer
operations that transform the network’s partition,

. €29

where IT; = {So, S)..., Sn, } is a partition which composed of
at most /V; + 1 coalitions (/V; coalitions forms at N; given SC-
ceNBs and one local execution coalition Sy) that is formed after
[ transfers. User m has an incentive to move from its current
coalition S, to another coalition S}, in 7* if

o(Sa\{m}) +o(Sy | H{m}) < v(S.) +0(S)-

As a transfer between two SCceNBs a and b in a partition
in a partition II;, does not affect the total utility generated by
the other coalitions in IT; \ {S,, Sy} (since UEs use orthogonal
channels, we do not consider intra-cell interference in this work),
every transfer II; — II; forms an order such that

1, - 1, & Z U(Sm) < Z U(Sp)

S €l S €11}

Hl = H“”' — H] — H2 — ...

(32)

(33)

which is transitive and irreflexive. Therefore, for any two parti-
tions, we have II; # Ilj, [ # k. As the number of partitions of
a set is finite and equal to the Bell number, the sequence in (31)
is guaranteed to converge to a final partition 7*.

|
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