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Abstract— Caching popular files in the storage of edge
networks, namely edge caching, is a promising approach for
service providers (SPs) to reduce redundant backhaul trans-
mission to edge nodes (ENs). It is still an open problem to
design an efficient incentive mechanism for edge caching in
5G networks with a large number of ENs and mobile users. In this
paper, an edge network with one SP, a large number of ENs
and mobile users with time-dependent requests is investigated.
A convergent and scalable Stackelberg game for edge caching
is designed. Specifically, the game is decomposed into two types
of sub-games, a storage allocation game (SAG) and a number
of user allocation games (UAGs). A Stackelberg game-based
alternating direction method of multipliers (Stackelberg game-
based ADMM) is proposed to solve either the SAG or each UAG
in a distributed manner. Based on both analytical and simula-
tion results, the convergence speed, the optimum of the entire
game, and the amount of information exchange are linearly (or
sublinearly) related to the network size, which indicates that
this framework can potentially cope with large-scale caching
problems. The proposed approach also requires less backhaul
resource than the existed approaches.

Index Terms— Stackelberg game, alternating direction of mul-
tipliers (ADMM), proactive caching, large-scale networks.

I. INTRODUCTION

W ITH recent advances in wireless communication net-

works, an increasing number of users have been

attracted to heterogenous multimedia services through mobile

devices. Global mobile data traffic reached 7.2 exabytes

(7.2×1018 bytes) per month in 2016, of which more than 50%
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corresponds to mobile multimedia streaming [1], [2]. As a

result, limited transmission resources in wireless communica-

tion networks cannot support excessive requests for multime-

dia streaming, especially in the backhaul links among the core

networks, i.e., the service providers (SPs) in the Internet, and

the edge nodes (ENs), i.e., base stations (BSs), small-cell base

stations (SBSs), and WiFi access points (APs).

Fortunately, a significant number of multimedia requests

are repetitive among users. The popularity of files usually

satisfies Zipf’s law [3], under which various users concentrate

on a few types of similar files. Thus, the redundancy of file

transmission in the backhaul can be greatly reduced when the

SPs can generate and cache popular files in edge networks

before the files are requested by end users [4]. This brings

the files closer to the users. Specifically, during times of light

traffic, the SPs can proactively transmit popular files to storage

devices at the edge, and those files are delivered from the edge

networks to mobile users directly when they are requested.

With proper proactive caching strategies, the heavy traffic load

can be relieved during times of peak traffic and latency can

be reduced as well.

A. Related Work in Edge Caching

A number of techniques have been proposed and applied to

edge caching and many ENs in 5G networks have already

deployed storage capability [5]–[14]. The work in [6] has

proposed the concept of “Femto Caching” and designed a

greedy algorithm to achieve a sub-optimal delay reduction

through file selection and user access control. In [7] and [8],

novel caching approaches exploit physical layer models in the

wireless links between the ENs and the users. In addition,

device-to-device communications have been further considered

in [9] and [10], where the users can obtain their desired files

from neighboring users in addition to the ENs. A number of

recent works, for example [11], have taken dynamic changes

into account. In [12]–[14], edge caching is investigated in

the context of stochastic networks via stochastic geometry,

where the distributions of the ENs and the users are modeled

as Poisson point processes (PPPs). The fluctuations in users’

demands have been used in [15] to develop an online caching

scheme to update the users’ time dependent demands.

In edge caching, the SPs and ENs usually have their

own individual benefits when applying caching strategies, and

their benefits may conflict with each other, which makes

centralized caching approaches difficult to deploy. Caching

more files in the storage devices of the ENs can help the
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SPs save more backhaul resources and serve more users

directly. But this may jeopardize the benefits to the ENs

due to the cost of occupying limited caching storage. Thus,

it is necessary to design incentive mechanisms whereby

the SPs pay for the ENs’ storage and backhaul resources.

Thus, game theory plays an important role [16]–[20].

Matching-based approaches on file-EN pairing have been

developed in [16], where a multiple object auction has been

proposed. In [17], a Stackelberg game is considered in which

the SPs are the leaders that provide payments to the ENs,

the followers, which adjust their storage resources accordingly.

A reverse Stackelberg game has been considered in [18], in

which the SPs, modeled as the followers, decide the prices

based on the storage resources provided by the ENs. In [19],

a contract game approach has been used to deal with different

types of SPs. The ENs provide various contracts to the SPs

based on the popularity of their generated files. In [20],

the caching problem has been modeled as a potential game

considering the storage and backhaul constraints in each EN.

The Nash equilibrium (NE) among various ENs on file caching

is achieved with an iterative potential function update in a

decentralized way, in which only local information exchange

is needed among the ENs.

B. Contributions

The above game theoretic works address the incentive mech-

anism design problem in edge caching. However, the com-

plexity and scalability of edge caching need to be further

considered in future wireless communication networks that

will have tremendous numbers of ENs, users, and service

demands and involve a huge amount of data. Here, complexity

describes the number of iteration steps of an algorithm and the

amount of information exchanged among players in the game,

while the scalability reflects how the algorithm performs as

the network grows.

In this paper, we develop a framework for convergent

and scalable incentive mechanism design in edge caching.

Specifically, a network with one SP, multiple ENs, and mul-

tiple users with time-dependent requests is considered. The

problem is formulated as a Stackelberg game, in which the

SP (modeled as the leader) decides the prices for the storage

and backhaul resources of the ENs (modeled as the followers).

Since the entire game is a non-convex mixed-integer problem,

which is even hard to solve in a centralized way, the prob-

lem is decomposed into two types of sub-games, a storage

allocation game (SAG) and a number of user allocation

games (UAGs). All of the sub-games are convex. We apply

a Stackelberg game-based alternating direction method of

multipliers (ADMM) to solve both the SAG and the UAGs

in a distributed manner [21]–[23]. The main contributions of

this work are listed as follows.

1) We prove that the convergence speed of the Stackelberg

game-based ADMM is linearly related to the network

size, measured by the number of ENs, the number of

users, and the time frame within which users change their

file demands.

2) Through analytical and simulation results, we show that

the Stackelberg game-based ADMM can approximate the

Fig. 1. System model.

Stackelberg equilibrium, which requires fewer backhaul

resources than centralized popularity-based caching and

random caching approaches.

3) Based on both analytical and simulation results, we show

that the total number of scalars exchanged between the

SP and the ENs increases linearly relative to the network

size. Therefore, the framework can potentially address

large-scale caching problems.

The rest of this paper is organized as follows. In Section II,

we introduce the system model and formulate the prob-

lem. The Stackelberg game-based ADMM is presented in

Section III. In Section IV, the properties of the Stackelberg

game-based ADMM are analyzed. Simulation results are

provided in Section V. In Section VI, we draw our main

conclusions.

II. SYSTEM MODEL

Consider an edge network as shown in Fig. 1, with one SP,

K ENs with storage capability, and N users. The numbers

of ENs and users can be very large in the future wireless

networks. The SP generates a library of multimedia files,

denoted by F = {1, 2, . . . , f, . . . , F}. Each user n requires

a set of files in the library from the SP. In traditional wireless

networks without caching, when user n requires a file, f , from

the SP, the SP first sends file f from the core network via a

backhaul link to EN k that servers user n [3]. Then, EN k
transmits file f to user n.

When the SP can anticipate the file demands of the users

using, say, a learning mechanism [4], the SP proactively caches

some popular files in the ENs so that these files can be directly

transmitted to the users without going through a backhaul link

when required. The above process is called proactive caching

and can provide faster multimedia services and relieve the

transmission burden on the backhaul links.

In the rest of this section, we present models of the

distribution and coverage of the ENs in detail, the file demands

from various users, the traffic model, and the time span.

Then, we formulate and simplify the optimization problem

of interest.

A. Distribution and Coverage of ENs

As in Fig. 2, we assume that the ENs are deployed in

a two-dimensional L×W rectangular area following a homo-

geneous PPP [24]. That is to say, the location of each EN is

drawn from an independent and uniform distribution in this
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Fig. 2. Squares generating file demands.

rectangular area. Similarly, the locations of the users satisfy

another independent PPP, that is, each user is independently

and uniformly located in this area. Each EN k can transmit

files to the users inside a circle area with a radius of d0, which

is also called the coverage of EN k. We set Ik,n = 1 if user n
is inside EN k’s coverage, otherwise Ik,n = 0. Define the

converge matrix as ξ ∈ R
K×N , where ξk,n = 1 if user n is

served by EN k, otherwise ξk,n = 0. In this paper, we assume

that each user can connect to exactly one EN. Hence, for each

user n, the following constraint is naturally satisfied:

K
∑

k=1

Ik,nξk,n = 1. (1)

B. File Demand and Caching Capacity

As in Fig. 2, the large-scale network is divided into Q
squares. In practice, the whole area may be divided into

irregular sub-areas rather than the simple squares. In this paper,

we use Q squares to simply simulate the change of demand

probabilities, depending on real historical data.

Inside each square q, the demand probability for file f
by user n, denoted by pf,n, follows a Zipf (power-law)

distribution [4],

pf,n = min

{

ρ ·
Λ−κ

q,f
∑F

i=1 (i)−κ
, 1

}

, (2)

where κ > 0 is the skewness parameter and can be anticipated

by the SP, ρ describes the users’ demand degree, where a

larger ρ indicates that each user wants more files,1 and Λq

is a permutation of the vector {1, 2, . . . , F} for area q with

Λq,f being the f th element of Λq . Λq indicates that in

different areas, the demand probabilities for different files can

be different.

Denote by sf the size of file f , which follows a uniform

distribution between sL and sH . Denote by SC
k the storage

1The range of the parameter ρ can be selected between 0 and
�F

i=1(i)−κ

F−κ .

When ρ = 0, the demand probability of user n for file f , pf,n = 0.

This indicates no file is required from any user. When ρ =
�F

i=1(i)−κ

F−κ ,

for any user n and file f , the demand probability equals 1, which indicates

that each user requires all files. When ρ > 0 and ρ <
�F

i=1(i)−κ

F−κ
, for

each user, the demand probability for different files can be different and vary
between 0 and 1.

capacity of EN k. We use the file matrix η ∈ R
K×F to

represent the set of files stored by the ENs, where ηk,f = 1
if file f is cached in EN k, otherwise ηk,f = 0. Therefore,

the overall file size cached in EN k will be Sk =
∑F

f=1 ηk,f ·sf

and must satisfy a capacity constraint,

Sk =

F
∑

f=1

ηk,f · sf ≤ SC
k . (3)

C. Traffic Model

If file f requested by user n is cached in EN k, it can

be transmitted from EN k directly. If it is not cached, EN k
needs to set up a backhaul connection to the core network,

i.e., the SP, which will allocate bandwidth bk,n,f to user n at

EN k to transmit file f . It is natural to assume that each user n
has a minimum bandwidth b0 to satisfy a minimum backhaul

download speed, that is,

bk,n,f ≥ b0. (4)

In this paper, we consider only the backhaul resources

and not the spectrum and power resources in the traf-

fic model. The scheduling of other resources is considered

in [4], [7], and [8].

D. Time Span

Consider an one-day time span for the caching scenario.

At off-peak times, e.g., late at night, when only a few

users have file demands, the SP optimizes the storage allo-

cation, that is, decides which files are cached at each EN.

During peak times, i.e., in the daytime and evening, the

SP optimizes which users access which ENs, i.e., user alloca-

tion, to consume the minimum total backhaul resources. The

operation of caching from the SP to the ENs is operated at one-

day intervals. In contrast, the user allocation is processed over

a shorter time interval. Correspondingly, we assume that the

locations and the file demands of users between two nearest

user allocation processes are not changed. Thus, the SP’s

objective is to minimize the total backhaul resources for all

users’ demands throughout one day, denoted by U , through

optimizing storage allocation and user allocation, given as

min
η,ξ

U =

T
∑

t=1

K
∑

k=1

F
∑

f=1

B
(t)
k

=
T

∑

t=1

K
∑

k=1

F
∑

f=1

b0(1 − ηk,f )

(

N
∑

n=1

ξ
(t)
k,nC

(t)
n,f

)

, (5)

where B
(t)
k is the total backhaul bandwidth for EN k,

C
(t)
n,f is an indicator for user n to request file f at time t,

with C
(t)
n,f = 1 if requested and C

(t)
n,f = 0 otherwise, and

T denotes the total number of times to perform the user

allocation during one day. T = 24 indicates that the users

change their file requests and locations hourly. A
(t) denotes

the value of variable A at time t. Changes in users’ locations

and requests can be modeled as below.

At a time t, the system will generate independent

matrices {I
(t)
k,f} in (1), which indicates that the users can
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change their locations within their corresponding ENs’ cov-

erage randomly and independently. Then, the demand proba-

bility, p
(t)
f,n, in (2) will change with time, independently from

square to square. Finally, based on the demand probability,

p
(t)
f,n, the specific demand of each user, C

(t)
n,f , will be generated

at time t. The time-relevant movement model or the time-

relevant file demand model is not considered in this paper.

E. Problem Formulation

The authority to adjust the storage size, Sk, and the amount

of the backhaul resources, Bk, are controlled by each EN k
rather than the SP [25]. If the SP and ENs belong to different

operators, the ENs are reluctant to help the SP without any

incentives. Thus, the SP needs to incentivize each EN to

allocate its storage and backhaul resources through payments.

Then, each EN k’s objective is to maximize its utility, denoted

by Vk, calculated as follows:

max
{ηk,f}1×F ,{ξk,n}1×N

Vk = (θkSk − Xk(Sk))

+

T
∑

t=1

(

φ
(t)
k B

(t)
k − Yk(B

(t)
k )

)

, (6)

where θk is the price to EN k for providing storage Sk,

Xk(Sk) represents the storage cost for EN k, φ
(t)
k is the price

to EN k for providing B
(t)
k backhaul bandwidth, and Yk(B

(t)
k )

represents the backhaul cost.

According to the law of diminishing marginal utility [26],

both the cost functions Xk(Sk) and Yk(B
(t)
k ) should be

monotone increasing concave functions. For simplicity, we use

quadratic functions, given by

Xk(Sk) = αk · (Sk)2, (7)

Yk(B
(t)
k ) = βk · (B

(t)
k )2, (8)

where αk > 0 and βk > 0 are coefficients of proportionality.

We briefly explain Xk(sk) and Yk(B
(t)
k ) in Remark 1.

Remark 1: The monotone increasing concavity is motivated

mainly by the economics rather than the physical-layer prop-

erties. In practice, when there are other SPs in the network,

such as in [16]–[18], EN k will call back storage resources

from other SPs to provide services for the SP considered here.

A rational EN k will take back the storage that caches files

with lower popularity at first and then those with higher pop-

ularity. Thus, the number of served users will decrease faster

when EN k calls back more storage resources. That is why

the cost function, Xk(Sk), is usually a monotone increasing

function. In practice, Xk(Sk) might be more complicated, such

as in [16]–[18], but this feature is beyond the focus of this

paper. Thus, we use the quadratic function here to reflect the

monotone increasing concavity of the cost function. Similar

analysis can be done for Yk(B
(t)
k ).

Based on the above discussion, the problem can be for-

mulated as a Stackelberg game [27] with private information

from the ENs, where the SP is the leader and the ENs are

the K followers. In a Stackelberg game, the leader selects

its strategy to optimize its utility first and then the followers

move to optimize their utilities based on the leader’s strategy.

In particular, here the SP adjusts the prices, {θk} and {φ
(t)
k },

as a strategy, to incentivize the ENs to cache the proper

files, {ηk,f}, and serve the users, {ξ
(t)
k,n}, which are the

followers’ strategies. Mathematically, the Stackelberg game

can be expressed as,2

LG: {θ⋆
k},

{(

φ
(t)
k

)⋆}

= argmin
{θk,f},

�
φ

(t)
k,n

� U,

FG: {η⋆
k,f},

{(

ξ
(t)
k,n

)⋆}

= argmax
{ηk,f},

�
ξ
(t)
k,n

� Vk,

Constraints: (1) and (3), (9)

where LG and FG denote the leader’s game and the followers’

game, respectively, and A
⋆ represents the optimal value of A

when LG and FG reach a Stackelberg equilibrium.

F. Problem Decomposition

It is hard to reach a strict optimum in the game in (9) for

both the SP and the ENs due the following reasons.
1) The storage allocation variables, {ηk,f}, and user allo-

cation variables,
{

ξ
(t)
k,n

}

, are coupled in both the SP’s

utility in (5) and each EN’s utility in (6). In this situation,

the SP’s utility in (5) is in general non-convex. Thus, it is

hard to directly find the optimal values of {ηk,f} and
{

ξ
(t)
k,n

}

simultaneously.

2) Furthermore, {ηk,f} and
{

ξ
(t)
k,n

}

are 0-1 integer variables

whereas the prices, {θk} and
{

φ
(t)
k

}

, are continuous

variables, and thus the game in (9) is a non-convex mixed

integer problem, for which there is no general method to

find an optimum [28].
To facilitate its solution and maintain low complexity,

we decompose the game into a number of subgames as

follows.

We decompose the game into T + 1 subgames: a storage-

allocation game and T user-allocation games. The SP and

the ENs solve the SAG once and solve the UAG at each

time t. Through the decomposition, all utility functions and

the constraints in both the SAG and the UAGs are convex.

1) In the SAG, the SP and ENs play a subgame on the

storage allocation and the prices for the storage resources,

i,e., they solve for the optimal values of {ηk,f} and {θk}.

And thus, the SAG is given by

LG: {θ⋆
k} = argmin

{θk}

USAG

= argmin
{θk}

K
∑

k=1

F
∑

f=1

b0(1 − ηk,f )

(

T
∑

t=1

E
(t)
k,f

)

,

FG: {η⋆
k,f} = argmax

{ηk,f}

VSAG,k

= argmax
{ηk,f}

θkSk − Xk(Sk),

Constraints: (3), (10)

2The SP is assumed to be cost-unaware, which indicates that the SP cares
only about how to incentive the ENs to reach the minimum backhaul, but is not
concerned about the payments. Mathematically, the prices are not considered
in the SP’s utility.
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where E
(t)
k,f is an estimate of the total number of users

for file f at time t, USAG is the utility of the SP, and

VSAG,k is the utility of EN k in the SAG. The estimation

of E
(t)
k,f is discussed in Appendix A. In the SAG, the SP

calculates E
(t)
k,f rather than the exact value of each C

(t)
f,n.

2) With the optimal storage allocation in the SAG, in the

UAG at each time t, the SP and the ENs play a sub-

game on user allocation and the prices for the backhaul

resources, i.e., they solve for the optimal values of
{

ξ
(t)
k,n

}

and
{

φ
(t)
k,n

}

. And thus, the UAG at time t is given by

LG:
{(

φ
(t)
k,n

)⋆}

= argmin
{θk}

UUAG

= argmin�
φ

(t)
k,n

�

K
∑

k=1

F
∑

f=1

b0(1 − η⋆
k,f )

×

(

N
∑

n=1

ξ
(t)
k,nC

(t)
n,f

)

,

FG:
{(

ξ
(t)
k,n

)⋆}

= argmax
{ηk,f}

VUAG,k

= argmax�
ξ
(t)
k,n

�

N
∑

n=1

φ
(t)
k,nξ

(t)
k,n − Yk(B

(t)
k ),

Constraints: (1), (11)

where UUAG is the utility of the SP and VUAG,k is the

utility of EN k in the UAG at time t. In the UAG at time t,

the SP needs to know the exact value of each C
(t)
f,n. That

is to say, for the user allocation at time t, each user must

tell the SP which files it requires.

III. STACKELBERG GAME-BASED ADMM

In this section, the Stackelberg game-based ADMM is

adopted to solve both the SAG and UAGs in a distributed

manner. In the Stackelberg game-based ADMM, the SP adjusts

the prices iteratively. At each iteration, under the current

prices from the SP, each EN feeds back the storage (or back-

haul) resources to reach an optimal point of a well-designed

incentive function through a convex optimization approach,

such as ADMM. Then, the SP adjusts the prices in the next

iteration and the ENs feed back the optimal resources with

the new prices. With a few iterations, the Stackelberg game-

based ADMM can converge to a Stackelberg equilibrium.

The Stackelberg game-based ADMM is suitable to solve the

game especially when the network includes large numbers of

ENs and users [21]–[23]. In this section, we will discuss the

Stackelberg game-based ADMM for the SAG and the UAGs,

respectively.

A. Stackelberg Game-Based ADMM for the SAG

It can be directly observed that the SAG can be further

decomposed into K independent sub-SAGs. Sub-SAG k for

the SP and EN k, is given by,

LG: θ⋆
k = argmin

θk

F
∑

f=1

b0(1 − ηk,f )

(

T
∑

t=1

E
(t)
k,f

)

,

FG: {η⋆
k,f} = argmax

{ηk,f}

θkSk − Xk(Sk),

Constraint:

F
∑

f=1

ηk,f · sf ≤ SC
k . (12)

The SP can play K sub-SAGs with K ENs independently in

parallel.

In sub-SAG k, the operation of the Stackelberg game-based

ADMM is an iterative process. Given the price from the

SP to each EN k at each step p, θ
(p)
k , EN k updates the

storage allocation as {ηk,f} = {η
(p)
k,f} to minimize its incentive

function, Θ
(p)
k , defined as follows:

Θ
(p)
k =

F
∑

f=1

b0(1 − ηk,f )

(

T
∑

t=1

E
(t)
k,f

)

+ Xk(Sk) − θ
(p)
k Sk.

(13)

The incentive function equals a part of the SP’s utility function

plus EN k’s utility in (12), which can be physically interpreted

as follows: EN k helps optimize the SP’s utility with the price

and simultaneously optimize EN k’s own utility. That is to

say, the SP must tell EN k an estimate of the requirements for

the files,
∑T

t=1 E
(t)
k,f .

With the incentive function in (13) for each EN, the Stack-

elberg game-based ADMM for the sub-SAG is a two-tier

iteration, where the process to achieve
{

η
(p)
k,f

}

inside each step

p is called the inner loop, and the one to update the price, θk,

from step p to step p + 1 is called the outer loop.

1) Inner loop: The inner loop is processed on EN k. Given

the price from the SP, θ
(p)
k , EN k finds the optimal storage

allocation,
{

η
(p)
k,f

}

, to minimize the incentive function

in (13) under the constraints in (12) with an ADMM

iterative process [29], where m is the iteration step for

the inner loop.

a) Sequential updates for {ηk,f |f = 1, 2, . . . , F} are

given by

η
(p)
k,f (m + 1) =

(p)

argmin
ηk,f

Θ
(p)
k − λ

(p)
k (m)η

(p)
k,f sf

+
γ

2

∣

∣

∣

∣

F
∑

g=1,g �=f

η
(p)
k,g(m̂)sg+η

(p)
k,fsf−S0

∣

∣

∣

∣

2

,

(14)

for f = 1, 2, . . . , F , γ > 0 is a damping factor, and

m̂ = m + 1 when f < g and m̂ = m when f > g,

which is set to satisfy the constraints in (12). With this

step, EN k will achieve a set of continuous storage

allocation variables with price θ
(p)
k . The update must

be operated sequentially on
{

η
(p)
k,f

}

rather than in

parallel, which is the basic condition to guarantee the

convergence of the inner loop [30].
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b) The boundary for {η
(p)
k,f (m + 1)|f = 1, 2, . . . , F} is

given by

η
(p)
k,f (m + 1)=

⎧

⎪

⎨

⎪

⎩

0, η
(p)
k,f (m + 1) ≤ 0,

η
(p)
k,f (m + 1), 0 < η

(p)
k,f (m+1)≤1,

1, η
(p)
k,f (m + 1) > 1,

(15)

which is the common process to restrict the variables,
{

η
(p)
k,f (m + 1)

}

, between 0 and 1.

c) The dual update is given by

λ
(p)
k (m + 1) = λ

(p)
k (m)

− γ

⎛

⎝

F
∑

f=1

(η
(p)
k,f (m+1)sf)−S0

k

⎞

⎠, (16)

for k = 1, 2, . . . , K , which guarantees the convergence

with ADMM.

d) Steps a), b), and c) are repeated until each η
(p)
k,f

and each λ
(p)
k have no significant change. (The

sequential update guarantees convergence.) The current

total amount of storage resources for caching files

by EN k, S
(p)
k , is calculated by

S
(p)
k =

F
∑

i=1

η
(p)
k,fsf . (17)

2) Outer loop: After EN k achieves its current quota of

storage resources to cache files, S
(p)
k , EN k feeds back

its marginal cost to the SP for price update as

θ
(p+1)
k =

dXk(S
(p)
k )

dSk

. (18)

The marginal cost can be interpreted as the current cost

for EN k to provide an additional unit storage when

it has already provided S
(p)
k resources to the SP. It is

rational to set the price equal to or larger than the

marginal cost when the SP wants EN k to provide more

storage resources. The outer loop stops when the EN

cannot adjust its storage too much, which mathematically

satisfies a primal stopping criterion,
∣

∣

∣

∣

Θ
(p)
k − Θ

(p−1)
k

∣

∣

∣

∣

< ε1. (19)

When the outer loop stops at step p, the EN k has

already determined its storage resources as S
(p)
k and the

SP has determined price θ
(p)
k . However, some variables

in
{

η
(p)
k,f

}

may not equal 0 or 1, which is not reasonable

since EN k cannot cache only a part of a file. In this case,

EN k must transform continuous variables in
{

η
(p)
k,f

}

to

discrete ones through sequencing: EN k caches Fk files

with the largest η
(p)
k,f , where the constraints in (12) are

simultaneously satisfied.

With K sub-SAGs, the SP and ENs determine which files are

cached on which ENs, {η⋆
k,f}, and the optimal prices, {θ⋆

k}.

B. Stackelberg Game-Based ADMM for the UAGs

The UAG is played at each time t. Different from that for

the SAG, the SP can calculate the user allocation, {ξ
(t)
k,n}, in a

centralized way. Then, the SP can ask each EN k to provide

enough backhaul resources, Bk, to serve the allocated users

with the Stackelberg game-based ADMM. The reasons are as

follows.

1) As in the UAG in (11), each EN k cares only

about its total backhaul resources, B
(t)
k , and the price,

φ
(t)
k , regardless of which users EN k serves. Thus, the

SP can buy enough backhaul resources from EN k to

serve the users.

2) The UAG in (11) does not have a constraint on private

information of ENs, which is different from the SAG

in (10) with a total storage constraint on EN k, SC
k .

3) The centralized user allocation problem, as given below,

has a closed-form solution for the SP, which does not

need complicated calculations even when the network has

a large number of users.

min�
ξ
(t)
k,n

�
K

∑

k=1

F
∑

f=1

b0(1 − η⋆
k,f )

(

N
∑

n=1

ξ
(t)
k,nC

(t)
n,f

)

,

s.t.

K
∑

k=1

Ik,nξ
(t)
k,n = 1. (20)

The closed-form solution for (20) is given by3

ξ
(t)
k,n =

{

1, χ
(t)
k,n = min{χ

(t)
l,n|l = 1, 2, . . . , K},

0, χ
(t)
k,n > min{χ

(t)
l,n|l = 1, 2, . . . , K},

(21)

where χ
(t)
k,n represents the total backhaul resources needed

by user n to obtain its desired files, calculated by,

χ
(t)
k,n =

F
∑

f=1

b0(1 − η⋆
k,f )C

(t)
n,f . (22)

For convenience, we use ξ̂
(t)
k,n to represent the user allocation

calculated by the SP. From (20) and (21), the desired backhaul

resources for each EN k, B̂
(t)
k , can be calculated by

B̂
(t)
k =

F
∑

f=1

b0(1 − η⋆
k,f )

(

N
∑

n=1

ξ̂
(t)
k,nC

(t)
n,f

)

. (23)

Then, the UAG in (11) can be decomposed into K sub-UAGs

at time t. Each sub-UAG for the SP and EN k is given by,

LG:
(

φ
(t)
k

)⋆

= argmin��
φ

(t)
k,n

��

(

(B
(t)
k )2

2B̂
(t)
k

− B
(t)
k

)

, (24a)

FG: Bk(t) = argmax
B

(t)
k

(

φ
(t)
k

)⋆

B
(t)
k − Yk

(

B
(t)
k

)

, (24b)

where

(

(B
(t)
k

)2

2B̂
(t)
k

− B
(t)
k

)

is designed by the SP to achieve B̂
(t)
k

backhaul resources from EN k, since the optimal point of
(

(B
(t)
k

)2

2B̂
(t)
k

− B
(t)
k

)

is B
(t)
k = B̂

(t)
k .

3When there are more than one χ
(t)
k,n

that equal min{χ
(t)
l,n

|l =

1, 2, . . . , K}, e.g., χ
(t)
k1,n

and χ
(t)
k2,n

, randomly select one index k, e.g.,

k = k1 and let ξ
(t)
k1,n

= 1 and for other indices, e.g., k2, let ξ
(t)
k2,n

= 0.
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To incentive each EN k to provide B̂
(t)
k backhaul resources

for the allocated users, the SP adopts the Stackelberg game-

based ADMM to adjust the price, φ
(t)
k . The operation of the

Stackelberg game-based ADMM is an iterative process. Given

the price from the SP to EN k at each step p, φ
(t,p)
k , each

EN k updates the backhual resources, B
(t)
k = B

(t,p)
k , to mini-

mize its incentive function, Ψ
(t,p)
k , defined as,

Ψ
(t,p)
k =

(

(B
(t)
k )2

2B̂
(t)
k

− B
(t)
k

)

−φ
(t,p)
k B

(t)
k + Yk

(

B
(t)
k

)

. (25)

The first term is a part of the SP’s utility in sub-UAG k
in (24a), while the rest is EN k’s utility in (24b). That is

to say, the SP must tell EN k the desired backhaul resources,

B̂
(t)
k .

With the incentive function for each EN k, the Stackelberg

game-based ADMM is an one-tier iteration described as

follows.

1) With the price from the SP, φ
(t,p)
k , EN k finds the optimal

backhual bandwidth, B
(t,p)
k to minimize the incentive

function in (25). The closed-form solution for the incen-

tive function minimization is given by

B
(t,p)
k =

1 + φ
(t,p)
k

1

B̂
(t)
k

+ 2βk

. (26)

Since the closed-form solution can be easily calculated,

there is no need to use a numerical approach, such

as ADMM.

2) After EN k achieves its current quota of backhaul

resources to serve users, B
(t,p)
k , EN k feeds back its

marginal cost to the SP, which is used to update the

price as

φ
(t,p+1)
k =

dYk(B
(t,p)
k )

dB
(t)
k

. (27)

The marginal cost can be interpreted as the current price

for EN k to provide an additional unit of backhaul

resources when EN k has already provided B
(p)
k resources

to the SP. It is reasonable to set the price equal to or larger

than the marginal cost when the SP wants EN k to provide

more backhaul resources.

3) The iteration stops at step p when each EN k cannot

adjust its backhaul bandwidth too much any more, that

is,
∣

∣

∣

∣

Ψ
(t,p)
k − Ψ

(t,p−1)
k

∣

∣

∣

∣

< ε2. (28)

As a result, EN k provides B
(t,p)
k backhaul resources,

the set of users it serves is given in (21) and the price

from the SP to EN k equals φ
(t,p)
k .

The entire framework including the SAG and the UAGs is

summarized in Algorithm 1.

IV. PROPERTIES OF STACKELBERG GAME-BASED ADMM

In this section, we discuss the properties of the Stackelberg

game-based ADMM for the SAG and UAGs. We first investi-

gate the convergence and the optimum of the game. The total

Algorithm 1 Stackelberg game-based ADMM for SAG

and UAG

SAG: The SP and each EN k play the sub-SAG

in (12), p = 0
while Θ

(p)
k − Θ

(p−1)
k ≥ ε1 do

(a) Optimize storage allocation with ADMM (inner

loop) at EN k in (14)-(16);

(b) EN k feeds back the marginal cost in (18) to the

SP;

(c) p = p + 1;

end

When the outer loop stops at step p, EN k caches Fk

files with the largest η
(p)
k,f , where the constraint in (12) is

simultaneously satisfied. The price from the SP

equals θ
(p)
k .

UAG: The SP and each EN k play the sub-UAG

in (24) at each time t, p = 0
while Ψ

(p)
k − Ψ

(p−1)
k ≥ ε2 do

(a) Optimize backhaul resources in closed-form at EN

k in (26);

(b) EN k feeds back the marginal cost in (27) to the

SP;

(c) p = p + 1;

end

EN k provides B
(t,p)
k backhaul resources, and the set of

users it serves is as in (21). The price from the SP to

EN k equals φ
(t,p)
k .

number of information exchanges is derived afterwards. Then,

we discuss the scalability of our algorithm, and finally, the

issue of outage is investigated.

A. Convergence

Based on [21, Proposition 1], the Stackelberg game-based

ADMM for either the SAG or the UAGs converges at a

linear rate. The rapid convergence of the SAG and the UAGs

indicates that the SP and ENs do not spend too much time

on the storage and backhaul resource allocation and price

negotiation. Specifically, the average iteration time for the

whole SAG in (10), denoted by p̄SAG =
�

K
i=1 pk

K
, is bounded

by O
(

NT
ε1

)

.4 ε1 describes the distance between the cur-

rent value of the leader’s utility function and the optimum,

which is the primal stopping criterion given in (19). The

reciprocal of ε1 has a linear relation to the iteration, which

corresponds to linear convergence (also known as first order

convergence) [28]. The iteration time for the SAG also has a

linear relation to the number of users, N , and to the time

for backhual resource allocation, T . Similarly, the average

iteration time for the UAGs at time t in (11), denoted by

p̄UAG =
�

K
i=1 pk

K
, is bounded by O

(

N
ε2

)

.

4O(·) represents the complexity. A function p(N) = O(N) indicates that
at least one 0 < p0 < +∞ exists to guarantee p(N) ≤ p0 · N . O(N)
is usually defined as linear complexity, O(Nα) defines sublinear complexity
when 0 < α < 1. O(Nα) defines superlinear complexity when α > 1 [31].
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B. Optimum

In this part, we discuss the optima of the SAG and UAGs,

respectively.

1) Approximate Optimum of the SAG: The SAG will con-

verge into an approximate Stackelberg equilibrium, in which

the utilities of the SP and each EN approximate the optimal

utility values in the SAG with storage resource allocation

and price negotiation. The gaps to the optimal utilities for

the SP and each EN are listed in Theorems 1 and 2, proved

in Appendices B and C, respectively.

Theorem 1: Denote the optimal utility value of the SP in

the SAG in (10) as U⋆
SAG. When the Stackelberg game-based

ADMM converges, the utility of the SP is denoted by U
(p)
SAG.

Then, the maximum gap between U
(p)
SAG and U⋆

SAG is given by

0 ≤ U
(p)
SAG − U⋆

SAG ≤ b0 ·

K
∑

k=1

(

max
f

T
∑

t=1

E
(t)
k,f

)

≤ Kb0 max
k,f

T
∑

t=1

E
(t)
k,f = O(KNT ). (29)

Theorem 1 indicates that the Stackelberg game-based

ADMM has at worst a K-file gap to the minimum utility of

the SP. More specifically, the Stackelberg game-based ADMM

fails to cache at most one file in each EN.

Theorem 2: Denote the optimal utility value of each EN k
in the SAG in (10) as V ⋆

SAG,k. When the Stackelberg game-

based ADMM converges, the utility of EN k is denoted

by V
(p)
SAG,k. Then, the maximum gap between V

(p)
SAG,k and

V ⋆
SAG,k is given by,

0 ≤ V ⋆
SAG,k − V

(p)
SAG,k ≤ αk(sH)2. (30)

Theorem 2 indicates that the Stackelberg game-based

ADMM reaches at worst a one-file lower utility of EN k,

αk(sH)2.

2) Strict Optimum of the UAG at Time t: The UAG at time t
will converge into a strict Stackelberg optimum, in which

the utilities of the SP and each EN reach the strict optimal

utility values in the UAG at time t. Specifically, the optimal

utilities for the SP and each EN are listed in Corollary 1

and Corollary 2, which can be directly derived based

on [21, Proposition 1], [22, Proposition 1], and [23, Remark 6].

Corollary 1: When the Stackelberg game-based ADMM

converges for all sub-UAGs in (24) at the maximum step p,

the utility of the SP, denoted by U
(p)
UAG, reaches the strictly

optimal point, in which U
(p)
UAG is minimized.

Corollary 2: When the Stackelberg game-based ADMM

converges for each sub-UAG k in (24) at step p, the utility

of EN K , denoted by V
(p)
UAG,k, reaches the strictly optimal

point, at which VUAG,k is maximized.

3) Suboptimum for the Entire Game: The entire game

in (9) can reach a suboptimal point through implementing the

Stackelberg game-based ADMM in the SAG and the T UAGs.

However, the gap between the optimal utility values and our

algorithm is hard to find even for a strictly optimal solution

found in a centralized manner.

C. Information Exchange

The total amount of information exchange can be described

by the number of scalars exchanged between the SP and the

ENs. In the SAG, each EN k needs to send the marginal cost,
dXk(S

(p)
k

)

dSk
, and the storage, S

(p)
k , to the SP at each step in the

outer loop. The total number of scalars from K ENs sent to

the SP equals 2K . Then, the SP will transmit the new prices,

{θ
(p+1)
k }, to K ENs. Finally, when the Stackelberg game-

based ADMM for each sub-SAG converges at step O(NT
ε1

),
the SP needs to send the final storage allocation results, {η⋆

k,f},

KF scalars, to the ENs. Therefore, the total number of scalars

transmitted between the SP and the ENs in the SAG is given

by

ΓS = 3K · O

(

NT

ε1

)

+ KF. (31)

The total amount of information exchange for the UAG

at each time t can be calculated similarly. For the UAG

throughout one day, t = {1, 2, . . . , T}, the total number of

scalars transmitted between the SP and the ENs is given as

follows:

ΓU = T

(

3K · O

(

N

ε2

)

+ KN

)

. (32)

Thus, we have the corollary on the total information exchange

as below.

Corollary 3: The total number of transmitted scalars in the

entire game, Γ, is given by

Γ = ΓS + ΓU

= 3K · O

(

NT

ε1

)

+ KF + T

(

3K · O

(

N

ε2

)

+ KN

)

= O(KNT ). (33)

D. Scalability

Scalability indicates how the algorithm performs when

the network size increases. It is very important to extend

an algorithm to large-scale networks such that the perfor-

mance metrics for the algorithm have a linear relation to,

sub-linear relation to, or are independent of the network

size [32]. In this paper, the metrics that describe our algorithm

performance are the convergence speed in Section IV-A,

the optimum gap in Section IV-B, and the information

exchange in Section IV-C. The variables that describe the

network size are the number of ENs K , the number of users N ,

and the time for use allocation, T . The metrics that can be

analytically derived have been given in the above sections. The

others will be examined through simulation results. In a word,

the optimum can be guaranteed and the convergence speed is

linear with or independent of the network size. This indicates

that our algorithm is scalable for future large scale networks.

E. Outage

Besides the total backhual resources, the outage is another

important performance metric in caching problems [13].

Outage is defined as the proportion of file requests that cannot
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TABLE I

SIMULATION PARAMETERS

be fulfilled by the ENs directly throughout the entire network.

Mathematically, the outage can be calculated as follows:

Ω =

∑T
t=1

∑K
k=1

∑F
f=1(1 − ηk,f )

(

∑N
n=1 ξ

(t)
k,nC

(t)
n,f

)

∑T
t=1

∑K
k=1

∑F
f=1

(

∑N
n=1 ξ

(t)
k,nC

(t)
n,f

) . (34)

From (34), the outage is obviously linearly dependent on the

total amount of the backhaul resources, i.e., the SP’s utility

in (5). Thus, we omit any further discussion of this metric.

V. SIMULATION RESULTS

Several representative examples are shown through

simulation results, whose parameters are listed in TABLE I.

The simulation results include three aspects: the convergence,

the optimum, and the total amount of information exchange.

The independence or the approximate linear relation between

the convergence speed and the network size indicates that the

Stackelberg game-based ADMM can be applied in large scale

networks. The optimum indicates that the Stackelberg game-

based ADMM can approximately achieve the minimum of

the total backhaul resources no matter how the network size

changes. Finally, we show that the total number of scalars that

the SP and the ENs exchange in the Stackelberg game-based

ADMM has a linear correlation with the network size.

A. Convergence

In this part, we illustrate the convergence of the SAG and the

UAGs in Fig. 3 and Fig. 4, respectively. In Fig. 3, the relations

between the average iteration time, p̄SAG, in the SAG and

the number of ENs, K , the number of users, N , and the

time for user allocation, T , are provided. From the figure,

p̄SAG changes sublinearly with N and T . In addition,

p̄SAG is always below two, which indicates that the storage

allocation and price negotiation between the SP and the K ENs

can accomplished within two steps on average.

In Fig. 4, we illustrate the relations between the average

iteration time, p̄UAG, in the UAG and the number of ENs, K ,

the number of users, N , and the time for user allocation, T .

From Fig. 4, p̄UAG is independent of K and T and increases

with N at an approximately linear speed.

Fig. 3. Convergence of the SAG.

Fig. 4. Convergence of the UAGs.

Fig. 5. The optimum of the SP’s utility in the SAG, USAG, with K = 100.

B. Optimum

In Fig. 5 and Fig. 6, we show the approximate optimum of

the SAG. In Fig. 5, the SP’s utility in the SAG, USAG, can

approximate the optimal one. The optimum is reached through

relaxing the SAG to a continuous problem, and the one-file

loss indicates that the optimal value plus a one-file backhual as

in (29). The gap increases linearly with the number of users,

N , as indicated by Theorem 1. In Fig 6, the average of the

ENs’ utilities in the SAG is also inside a one-file gap with the

optimal value and is independent of the number of users as

discussed by Theorem 2.
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Fig. 6. The optimum of the average of the ENs’ utilities in the SAG, V̄SAG,k,
with K = 100.

Fig. 7. Total backhaul resources, U , with the Stackelberg game-
based ADMM, popularity-based caching, and random caching when
K = 100, T = 1, and N varies.

Fig. 8. Total backhaul resources, U , with the Stackelberg game-
based ADMM, popularity-based caching, and random caching when
K = 100, N = 1000, and T varies.

In Fig. 7 and Fig. 8, we compare the performance of the

Stackelberg game-based ADMM with two other approaches.

In popularity-based caching, each EN k caches the most

popular files, i.e., the files with the largest
∑T

t=1 E
(t)
k,f , and

the user accesses the EN to obtain as many files as possible at

each time t. Similar approaches can be found in [4] assuming

the users’ demands follow Zipf’s law. In random caching,

each EN K caches files that can fill up the storage capacity.

Fig. 9. The number of scalars transmitted in the entire game with the
Stackelberg game-based ADMM when K , N , and T vary.

This usually happens when the users’ file demands follow a

uniform distribution. The optimum is reached through relaxing

the SAG to a continuous problem, and then solving the SAG

and UAGs in a centralized manner. We test the utility of the

SP, U , for the entire game in (9), i.e., the total backhaul, and

find that the our algorithm achieves a lower total backhaul

than popularity-based caching and random caching. In Fig. 7,

the total backhual increases approximately linearly with the

number of users.

In Fig. 8, a larger time T means that the users’ file demands

change more frequently, in which case the caching process

may miss more users’ requests. Thus, the average of the total

backhual at each time, U/T , increases with the time of user

allocation.

C. Information Exchange

Fig. 9 shows the total number of scalars, Γ, that are

transmitted in the entire game. It is can be observed that Γ
has a linear correlation with the number of users, N .

In addition, comparing different curves, Γ is approxi-

mately linearly correlated with the number of ENs, K ,

and the number for user allocations, T . This corroborates

Corrollary 3.

VI. CONCLUSION

In this paper, we have proposed a convergent and scalable

Stackelberg game for edge caching. Specifically, a network

with one SP, multiple ENs, and multiple users with time-

dependent requests has been considered. The problem has

been formulated as a Stackelberg game, and decomposed into

two types of sub-games, a SAG and a number of UAGs.

The proposed Stackelberg game-based ADMM can solve both

the SAG and UAGs in a distributed manner. In either the

SAG or each UAG, the Stackelberg game-based ADMM

converges linearly in the network size. In addition, it has been

proved that the Stackelberg game-based ADMM approximates

the optimum of the SAG to within a gap having a linear

relation with the network size. The Stackelberg game-based

ADMM has been proved to reach the strict optimum of

each UAG. The entire game achieves lower total backhaul
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Fig. 10. Coverage estimation of the number of users by EN k.

than centralized popularity-based caching and random caching.

Furthermore, based on our analytical and simulation results,

the total number of scalars exchanged in the network has a

linear correlation with the network size. The rapid convergence

and scalability of our framework have shown its potential to

address caching for networks with large numbers of ENs and

users.

APPENDIX A

THE ESTIMATE E
(t)
k,f IN (10)

E
(t)
k,f is the estimate of the total number of users that are

allocated to EN k, for file f at time t. We calculate E
(t)
k,f under

the following assumption.

Assumption 1: Each user is willing to connect to the

nearest EN.

Then, based on stochastic geometry, E
(t)
k,f can be

calculated as,

E
(t)
k,f = E

(

N
∑

n=1

ξ
(t)
k,nC

(t)
n,f

)

=
N

L · W
·

Q
∑

q=1

⎛

⎜

⎝
Υk,q · min

⎧

⎪

⎨

⎪

⎩

ρ(t) ·

(

Λ
(t)
q,f

)−κ

∑F
i=1 (i)−κ

, 1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠
,

(35)

where E denotes the expectation, Υk,q is the coverage of EN k
in square q based on the rule that each user is likely to access

the nearest EN. An example is shown in Fig. 10. The solid

lines represent the coverage boundary for EN k. The dotted

lines represent the boundaries of squares. Then, E
(t)
k,f can be

calculated from

E
(t)
k,f =

N

L · W
· Υk,q1 · min

⎧

⎪

⎨

⎪

⎩

ρ(t) ·

(

Λ
(t)
q1,f

)−κ

∑F
i=1 (i)

−κ
, 1

⎫

⎪

⎬

⎪

⎭

+
N

L · W
· Υk,q2 · min

⎧

⎪

⎨

⎪

⎩

ρ(t) ·

(

Λ
(t)
q2,f

)−κ

∑F
i=1 (i)

−κ
, 1

⎫

⎪

⎬

⎪

⎭

,

+
N

L · W
· Υk,q3 · min

⎧

⎪

⎨

⎪

⎩

ρ(t) ·

(

Λ
(t)
q3,f

)−κ

∑F
i=1 (i)

−κ
, 1

⎫

⎪

⎬

⎪

⎭

+
N

L · W
· Υk,q4 · min

⎧

⎪

⎨

⎪

⎩

ρ(t) ·

(

Λ
(t)
q4,f

)−κ

∑F
i=1 (i)

−κ
, 1

⎫

⎪

⎬

⎪

⎭

. (36)

APPENDIX B

PROOF OF THEOREM 1

The minimum value of the SP’s utility in the SAG in (10),

U⋆
SAG, can be reached through solving K 0-1 integer pro-

gramming problems as follows:

min
{ηk,f}

F
∑

f=1

b0(1 − ηk,f )

(

T
∑

t=1

E
(t)
k,f

)

,

s.t.

F
∑

f=1

ηk,f · sf ≤ sC
k , (37)

where k = 1, 2, . . . , K . Each problem in (37) a typical

knapsack problem [32] when each ηk,f is a 0-1 integer

variable, which is NP-hard. We relax the problem in (37) to

a continuous problem, denoted by Ξk, through continuation,

in which each ηk,f satisfies 0 ≤ ηk,f ≤ 1. The optimal utility

for the continuous problem, Ξk is denoted by ÛSAG,k. Then,

it is intuitive that the following inequality is satisfied:

K
∑

k=1

ÛSAG,k ≤ U⋆
SAG. (38)

Then, we prove Theorem 1 through proving the following

lemma.

Lemma 1: When the Stackelberg game-based ADMM for

the sub-SAG k in (12) converges at step p, the following

inequation is satisfied:

F
∑

f=1

b0(1 − η
(p)
k,f )

(

T
∑

t=1

E
(t)
k,f

)

−ÛSAG,k≤max
f

b0

(

T
∑

t=1

E
(t)
k,f

)

.

(39)

Proof: When the Stackelberg game-based ADMM for the

sub-SAG k converges at step p, there exists at most one η
(p)
k,f

for index f such that 0 < η
(p)
k,f < 1. For any other η

(p)
k,f for

index f , it equals either 0 or 1. The reasons for this are listed

as follows.

1) First, based on a proof in our prior work in ([22],

Proposition 1), the term b0(1 − η
(p)
k,f )

(

∑T
t=1 E

(t)
k,f

)

will

reach a minimum point where each ηk,f is a continuous

variable.

2) Then, the step in (15) can restrict each η
(p)
k,f to satisfy

0 ≤ η
(p)
k,f ≤ 1.

3) Finally, when there are more than one η
(p)
k,f for index f

that do not equal 0 or 1, assume that 0 < η
(p)
k,f1

< 1 and

0 < η
(p)
k,f2

< 1, and

�
T
t=1 E

(t)
k,f1

s1
≤
�

T
t=1 E

(t)
k,f2

s2
. Then we

can reach a smaller value of b0(1 − η
(p)
k,f )

(

∑T
t=1 E

(t)
k,f

)
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when ηk,f1 subtracts δ and ηk,f2 adds δs1

s2
, where δ > 0

is a small scalar. This deviates from the property in 1).

Hence, we have at most one η
(p)
k,f for index f such that

0 < η
(p)
k,f < 1.

When η
(p)
k,f = 1 for index f , file f is cached by EN k.

When η
(p)
k,f = 0, file f is not cached. When 0 < η

(p)
k,f < 1,

whether it is cached depends on whether EN k has enough

storage resources. The worst case is that file f is always not

cached when 0 < η
(p)
k,f < 1. Assuming that f0 is the file with

0 < η
(p)
k,f < 1. In this case, we have

F
∑

f=1

b0(1 − η
(p)
k,f )

(

T
∑

t=1

E
(t)
k,f

)

− ÛSAG,k

≤ b0

(

T
∑

t=1

E
(t)
k,f0

)

≤ max
f

b0

(

T
∑

t=1

E
(t)
k,f

)

. (40)

This completes the proof of Lemma 1.

Finally, we can derive that

U
(p)
SAG − U⋆

SAG

=

K
∑

k=1

F
∑

f=1

b0(1 − η
(p)
k,f )

(

T
∑

t=1

E
(t)
k,f

)

− U⋆
SAG

≤

K
∑

k=1

⎛

⎝

F
∑

f=1

b0(1 − η
(p)
k,f )

(

T
∑

t=1

E
(t)
k,f

)

− ÛSAG,k

⎞

⎠

≤

K
∑

k=1

(

max
f

b0

(

T
∑

t=1

E
(t)
k,f

))

≤ Kb0 max
k,f

T
∑

t=1

E
(t)
k,f .

(41)

Since E
(t)
k,f is intuitively proportional to the number of

users, N , we have

Kb0 max
k,f

T
∑

t=1

E
(t)
k,f = O(KNT ). (42)

This completes the proof of Theorem 1.

APPENDIX C

PROOF OF THEOREM 2

Based on [22, Remark 6], the Stackelberg game-based

ADMM can reach the strict optimal point for EN k in sub-

SAG k in (12) when each ηk,f is a continuous variable.

Correspondingly, the optimal value of the storage provided by

EN k is denoted by ŜSAG,k, and the optimal value of EN k’s

utility is denoted by V̂SAG,k. When each ηk,f is a 0-1 integer,

the optimal value of the storage provided by EN k is denoted

by S⋆
SAG,k. Intuitively, we have

V ⋆
SAG,k = θ⋆

kS⋆
SAG,k − αk

(

S⋆
SAG,k

)2

≤ V̂SAG,k = θ⋆
kŜSAG,k − αk

(

ŜSAG,k

)2

. (43)

Then, we prove Theorem 2 through proving the following

lemma.

Lemma 2: When the Stackelberg game-based ADMM for

sub-SAG k converges at step p, the following inequality is

satisfied:

V̂SAG,k − V
(p)
SAG,k ≤ αk(sH)2. (44)

Proof: We have the following inequality:

V̂SAG,k − V
(p)
SAG,k

= θ⋆
kŜSAG,k

−αk

(

ŜSAG,k

)2

−

(

θ⋆
kS

(p)
SAG,k − αk

(

S
(p)
SAG,k

)2
)

≤ θ⋆
kŜSAG,k − αk

(

ŜSAG,k

)2

−

(

θ⋆
k

(

ŜSAG,k − sH

)

− αk

(

ŜSAG,k − sH

)2
)

= sH

(

θ⋆ − 2αkŜSAG,k + αksH

)

. (45)

According to [22, Remark 6], the strictly optimal point for

EN k in sub-SAG k in (12) is reached when each ηk,f is a

continuous variable. Thus, we have

∂V̂SAG,k

∂ŜSAG,k

= θ⋆ − 2αkŜSAG,k = 0. (46)

We combine (46) into (45) and finally achieve that

V̂SAG,k − V
(p)
SAG,k ≤ αk(sH)2. (47)

Based on Lemma 2, we can finally derive that

V ⋆
SAG,k − V

(p)
SAG,k ≤ V̂SAG,k − V

(p)
SAG,k ≤ αk(sH)2. (48)

This completes the proof of Theorem 2.
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