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Abstract— Caching popular files in the storage of edge
networks, namely edge caching, is a promising approach for
service providers (SPs) to reduce redundant backhaul trans-
mission to edge nodes (ENs). It is still an open problem to
design an efficient incentive mechanism for edge caching in
5G networks with a large number of ENs and mobile users. In this
paper, an edge network with one SP, a large number of ENs
and mobile users with time-dependent requests is investigated.
A convergent and scalable Stackelberg game for edge caching
is designed. Specifically, the game is decomposed into two types
of sub-games, a storage allocation game (SAG) and a number
of user allocation games (UAGs). A Stackelberg game-based
alternating direction method of multipliers (Stackelberg game-
based ADMM) is proposed to solve either the SAG or each UAG
in a distributed manner. Based on both analytical and simula-
tion results, the convergence speed, the optimum of the entire
game, and the amount of information exchange are linearly (or
sublinearly) related to the network size, which indicates that
this framework can potentially cope with large-scale caching
problems. The proposed approach also requires less backhaul
resource than the existed approaches.

Index Terms— Stackelberg game, alternating direction of mul-
tipliers (ADMM), proactive caching, large-scale networks.

I. INTRODUCTION
ITH recent advances in wireless communication net-
works, an increasing number of users have been
attracted to heterogenous multimedia services through mobile
devices. Global mobile data traffic reached 7.2 exabytes
(7.2x 1018 bytes) per month in 2016, of which more than 50%
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corresponds to mobile multimedia streaming [1], [2]. As a
result, limited transmission resources in wireless communica-
tion networks cannot support excessive requests for multime-
dia streaming, especially in the backhaul links among the core
networks, i.e., the service providers (SPs) in the Internet, and
the edge nodes (ENs), i.e., base stations (BSs), small-cell base
stations (SBSs), and WiFi access points (APs).

Fortunately, a significant number of multimedia requests
are repetitive among users. The popularity of files usually
satisfies Zipf’s law [3], under which various users concentrate
on a few types of similar files. Thus, the redundancy of file
transmission in the backhaul can be greatly reduced when the
SPs can generate and cache popular files in edge networks
before the files are requested by end users [4]. This brings
the files closer to the users. Specifically, during times of light
traffic, the SPs can proactively transmit popular files to storage
devices at the edge, and those files are delivered from the edge
networks to mobile users directly when they are requested.
With proper proactive caching strategies, the heavy traffic load
can be relieved during times of peak traffic and latency can
be reduced as well.

A. Related Work in Edge Caching

A number of techniques have been proposed and applied to
edge caching and many ENs in 5G networks have already
deployed storage capability [5]-[14]. The work in [6] has
proposed the concept of “Femto Caching” and designed a
greedy algorithm to achieve a sub-optimal delay reduction
through file selection and user access control. In [7] and [8],
novel caching approaches exploit physical layer models in the
wireless links between the ENs and the users. In addition,
device-to-device communications have been further considered
in [9] and [10], where the users can obtain their desired files
from neighboring users in addition to the ENs. A number of
recent works, for example [11], have taken dynamic changes
into account. In [12]-[14], edge caching is investigated in
the context of stochastic networks via stochastic geometry,
where the distributions of the ENs and the users are modeled
as Poisson point processes (PPPs). The fluctuations in users’
demands have been used in [15] to develop an online caching
scheme to update the users’ time dependent demands.

In edge caching, the SPs and ENs usually have their
own individual benefits when applying caching strategies, and
their benefits may conflict with each other, which makes
centralized caching approaches difficult to deploy. Caching
more files in the storage devices of the ENs can help the
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SPs save more backhaul resources and serve more users
directly. But this may jeopardize the benefits to the ENs
due to the cost of occupying limited caching storage. Thus,
it is necessary to design incentive mechanisms whereby
the SPs pay for the ENs’ storage and backhaul resources.
Thus, game theory plays an important role [16]-[20].
Matching-based approaches on file-EN pairing have been
developed in [16], where a multiple object auction has been
proposed. In [17], a Stackelberg game is considered in which
the SPs are the leaders that provide payments to the ENs,
the followers, which adjust their storage resources accordingly.
A reverse Stackelberg game has been considered in [18], in
which the SPs, modeled as the followers, decide the prices
based on the storage resources provided by the ENs. In [19],
a contract game approach has been used to deal with different
types of SPs. The ENs provide various contracts to the SPs
based on the popularity of their generated files. In [20],
the caching problem has been modeled as a potential game
considering the storage and backhaul constraints in each EN.
The Nash equilibrium (NE) among various ENs on file caching
is achieved with an iterative potential function update in a
decentralized way, in which only local information exchange
is needed among the ENs.

B. Contributions

The above game theoretic works address the incentive mech-
anism design problem in edge caching. However, the com-
plexity and scalability of edge caching need to be further
considered in future wireless communication networks that
will have tremendous numbers of ENs, users, and service
demands and involve a huge amount of data. Here, complexity
describes the number of iteration steps of an algorithm and the
amount of information exchanged among players in the game,
while the scalability reflects how the algorithm performs as
the network grows.

In this paper, we develop a framework for convergent
and scalable incentive mechanism design in edge caching.
Specifically, a network with one SP, multiple ENs, and mul-
tiple users with time-dependent requests is considered. The
problem is formulated as a Stackelberg game, in which the
SP (modeled as the leader) decides the prices for the storage
and backhaul resources of the ENs (modeled as the followers).
Since the entire game is a non-convex mixed-integer problem,
which is even hard to solve in a centralized way, the prob-
lem is decomposed into two types of sub-games, a storage
allocation game (SAG) and a number of user allocation
games (UAGs). All of the sub-games are convex. We apply
a Stackelberg game-based alternating direction method of
multipliers (ADMM) to solve both the SAG and the UAGs
in a distributed manner [21]-[23]. The main contributions of
this work are listed as follows.

1) We prove that the convergence speed of the Stackelberg
game-based ADMM is linearly related to the network
size, measured by the number of ENs, the number of
users, and the time frame within which users change their
file demands.

2) Through analytical and simulation results, we show that
the Stackelberg game-based ADMM can approximate the

5199

User
Storage
File
Backhaul

_____________

________

Fig. 1.

System model.

Stackelberg equilibrium, which requires fewer backhaul
resources than centralized popularity-based caching and
random caching approaches.

3) Based on both analytical and simulation results, we show

that the total number of scalars exchanged between the
SP and the ENs increases linearly relative to the network
size. Therefore, the framework can potentially address
large-scale caching problems.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the prob-
lem. The Stackelberg game-based ADMM is presented in
Section III. In Section IV, the properties of the Stackelberg
game-based ADMM are analyzed. Simulation results are
provided in Section V. In Section VI, we draw our main
conclusions.

II. SYSTEM MODEL

Consider an edge network as shown in Fig. 1, with one SP,
K ENs with storage capability, and N users. The numbers
of ENs and users can be very large in the future wireless
networks. The SP generates a library of multimedia files,
denoted by F = {1,2,...,f,..., F}. Each user n requires
a set of files in the library from the SP. In traditional wireless
networks without caching, when user n requires a file, f, from
the SP, the SP first sends file f from the core network via a
backhaul link to EN k that servers user n [3]. Then, EN £k
transmits file f to user n.

When the SP can anticipate the file demands of the users
using, say, a learning mechanism [4], the SP proactively caches
some popular files in the ENs so that these files can be directly
transmitted to the users without going through a backhaul link
when required. The above process is called proactive caching
and can provide faster multimedia services and relieve the
transmission burden on the backhaul links.

In the rest of this section, we present models of the
distribution and coverage of the ENs in detail, the file demands
from various users, the traffic model, and the time span.
Then, we formulate and simplify the optimization problem
of interest.

A. Distribution and Coverage of ENs

As in Fig. 2, we assume that the ENs are deployed in
a two-dimensional L x W rectangular area following a homo-
geneous PPP [24]. That is to say, the location of each EN is
drawn from an independent and uniform distribution in this
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Fig. 2. Squares generating file demands.

rectangular area. Similarly, the locations of the users satisfy
another independent PPP, that is, each user is independently
and uniformly located in this area. Each EN k can transmit
files to the users inside a circle area with a radius of dy, which
is also called the coverage of EN k. We set I}, ,, = 1 if user n
is inside EN k’s coverage, otherwise I;, = 0. Define the
converge matrix as & € REXN where &, = 1 if user n is
served by EN k, otherwise &, = 0. In this paper, we assume
that each user can connect to exactly one EN. Hence, for each
user n, the following constraint is naturally satisfied:

K
D Tknérn =1, (1)
k=1

B. File Demand and Caching Capacity

As in Fig. 2, the large-scale network is divided into @
squares. In practice, the whole area may be divided into
irregular sub-areas rather than the simple squares. In this paper,
we use () squares to simply simulate the change of demand
probabilities, depending on real historical data.

Inside each square ¢, the demand probability for file f
by user n, denoted by py,, follows a Zipf (power-law)
distribution [4],

i
: 9q,

Pfpn = minq p Zle (z’)_wl , 2)
where > 0 is the skewness parameter and can be anticipated
by the SP, p describes the users’ demand degree, where a
larger p indicates that each user wants more files,! and A,
is a permutation of the vector {1,2,..., F'} for area ¢ with
A, ¢ being the f'" element of A,. A, indicates that in
different areas, the demand probabilities for different files can
be different.

Denote by sy the size of file f, which follows a uniform
distribution between sy and sy. Denote by Skc the storage

The range of the parameter p can be selected between 0 and Z‘Fli

When p = 0, the demand probability of user n for file f, py, = 0.
Xim (7"

F—r
for any user n and file f, the demand probability equals 1, which indicates

F N — K
that each user requires all files. When p > 0 and p < %, for
each user, the demand probability for different files can be different and vary
between 0 and 1.

This indicates no file is required from any user. When p =
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capacity of EN k. We use the file matrix n € REXF to
represent the set of files stored by the ENs, where 7y = 1
if file f is cached in EN k, otherwise 7 ; = 0. Therefore,
the overall file size cached in EN £ will be Sj, = E?zl Mo, f*Sf
and must satisfy a capacity constraint,

F
Se =Y mey-sp<SE. 3)
f=1

C. Traffic Model

If file f requested by user n is cached in EN £k, it can
be transmitted from EN k directly. If it is not cached, EN &
needs to set up a backhaul connection to the core network,
i.e., the SP, which will allocate bandwidth by, ,, ¢ to user n at
EN £ to transmit file f. It is natural to assume that each user n
has a minimum bandwidth by to satisfy a minimum backhaul
download speed, that is,

bin,; = bo. )

In this paper, we consider only the backhaul resources
and not the spectrum and power resources in the traf-
fic model. The scheduling of other resources is considered
in [4], [7], and [8].

D. Time Span

Consider an one-day time span for the caching scenario.
At off-peak times, e.g., late at night, when only a few
users have file demands, the SP optimizes the storage allo-
cation, that is, decides which files are cached at each EN.
During peak times, i.e., in the daytime and evening, the
SP optimizes which users access which ENs, i.e., user alloca-
tion, to consume the minimum total backhaul resources. The
operation of caching from the SP to the ENs is operated at one-
day intervals. In contrast, the user allocation is processed over
a shorter time interval. Correspondingly, we assume that the
locations and the file demands of users between two nearest
user allocation processes are not changed. Thus, the SP’s
objective is to minimize the total backhaul resources for all
users’ demands throughout one day, denoted by U, through
optimizing storage allocation and user allocation, given as

T K F
mm U= ZZZB“)
t=1 k=1 f=1
K F
=32 ol —ky) Zfl‘fLCif’f . ©)
t=1 k=1 f=1

where B{ is the total backhaul bandwidth for EN
C’r(f)f is an indicator for user n to request file f at time ¢,

with C(t) = 1 if requested and C(t) = 0 otherwise, and
T denotes the total number of tlmes to perform the user
allocation during one day. 7' = 24 indicates that the users
change their file requests and locations hourly. A(*) denotes
the value of variable A at time ¢. Changes in users’ locations
and requests can be modeled as below.

At a time ¢, the system will generate independent
matrices {I,it}} in (1), which indicates that the users can
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change their locations within their corresponding ENs’ cov-
erage randomly and independently. Then, the demand proba-
bility, p;i)yb, in (2) will change with time, independently from
square to square. Finally, based on the demand probability,
P ff)n, the specific demand of each user, Cy(f)f will be generated
at time t. The time-relevant movement model or the time-

relevant file demand model is not considered in this paper.

E. Problem Formulation

The authority to adjust the storage size, Si, and the amount
of the backhaul resources, By, are controlled by each EN &
rather than the SP [25]. If the SP and ENs belong to different
operators, the ENs are reluctant to help the SP without any
incentives. Thus, the SP needs to incentivize each EN to
allocate its storage and backhaul resources through payments.
Then, each EN k’s objective is to maximize its utility, denoted
by Vj, calculated as follows:

max
e, s 3F &k on

T Z <¢>(”B(“

where 6 is the price to EN k for prov1d1n§ storage Sk,
X1 (Sk) represents the storage cost for EN k, d) is the price
to EN k for providing B (, ") backhaul bandwidth, and Y}, (B,(:))
represents the backhaul cost.

According to the law of diminishing marginal utility [26],
both the cost functions X(Sk) and Y} (B,(:)) should be
monotone increasing concave functions. For simplicity, we use
quadratic functions, given by

Xi(Sk) = ak - (Sk)?, @)
Yi(BY) = g (B2, @®)

where o, > 0 and [ > 0 are coefﬁc1ents of proportionality.
We briefly explain X (sy) and Yk(B ) in Remark 1.
Remark 1: The monotone increasing concavity is motivated
mainly by the economics rather than the physical-layer prop-
erties. In practice, when there are other SPs in the network,
such as in [16]-[18], EN k will call back storage resources
from other SPs to provide services for the SP considered here.
A rational EN k will take back the storage that caches files
with lower popularity at first and then those with higher pop-
ularity. Thus, the number of served users will decrease faster
when EN £ calls back more storage resources. That is why
the cost function, X (Sk), is usually a monotone increasing
function. In practice, X (S)) might be more complicated, such
as in [16]-[18], but this feature is beyond the focus of this
paper. Thus, we use the quadratic function here to reflect the
monotone increasing concavity of the cost function. Similar

8. ©

analysis can be done for Yj (B,(;)).

Based on the above discussion, the problem can be for-
mulated as a Stackelberg game [27] with private information
from the ENs, where the SP is the leader and the ENs are
the K followers. In a Stackelberg game, the leader selects
its strategy to optimize its utility first and then the followers
move to optimize their utilities based on the leader’s strategy.
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In particular, here the SP adjusts the prices, {0} and {qbk .
as a strategy, to incentivize the ENs to cache the proper
files, {7, ¢}, and serve the users, {fl(fzb}, which are the
followers’ strategies. Mathematically, the Stackelberg game
can be expressed as,?

Lo 0 (o4} -
argmax

FG: {nj s}, {( (t)) } N {me.s3. {60}

(1) and (3), ©)

where LG and FG denote the leader’s game and the followers’
game, respectively, and A* represents the optimal value of A
when LG and FG reach a Stackelberg equilibrium.

argmin U,
{ak,f},{¢£';1,}

Vkv

Constraints:

F. Problem Decomposition

It is hard to reach a strict optimum in the game in (9) for
both the SP and the ENs due the following reasons.
1) The storage allocation variables, {n s}, and user allo-

cation variables, { ,(:21}, are coupled in both the SP’s

utility in (5) and each EN’s utility in (6). In this situation,
the SP’s utility in (5) is in general non-convex. Thus, it is
hard to directly find the optimal values of {n ¢} and

{f ,(Ctzl} simultaneously.
2) Furthermore, {7, s} and {f ,(ctzl} are 0-1 integer variables

whereas the prices, {0} and {4)5:)} are continuous
variables, and thus the game in (9) is a non-convex mixed
integer problem, for which there is no general method to
find an optimum [28].

To facilitate its solution and maintain low complexity,

we decompose the game into a number of subgames as

follows.

We decompose the game into 7"+ 1 subgames: a storage-
allocation game and 7' user-allocation games. The SP and
the ENs solve the SAG once and solve the UAG at each
time ¢. Through the decomposition, all utility functions and
the constraints in both the SAG and the UAGs are convex.

1) In the SAG, the SP and ENs play a subgame on the

storage allocation and the prices for the storage resources,
i,e., they solve for the optimal values of {n ¢} and {6 }.
And thus, the SAG is given by

LG: {0} = argminUgaq
{0k}

= argmmz Z bo(1 — i, f <Z E,gc),
(S g =1
FG: {U;:,f} = argmax Vsag i
{nk,f}
= argmax 0Sr — X (Sk),
{nk,f}

(3),

2The SP is assumed to be cost-unaware, which indicates that the SP cares
only about how to incentive the ENs to reach the minimum backhaul, but is not
concerned about the payments. Mathematically, the prices are not considered
in the SP’s utility.

Constraints: (10)
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where E( ) is an estimate of the total number of users
for file f at time ¢, Usaq is the utility of the SP, and
Vsaa,k is the utility of EN £ in the SAG. The estimation
of E{"} is discussed in Appendix A. In the SAG, the SP
calculates E( ) rather than the exact value of each C (t)
2) With the optlmal storage allocation in the SAG, in the
UAG at each time ¢, the SP and the ENs play a sub-
game on user allocation and the prices for the backhaul
resources, i.e., they solve for the optimal values of {{ (£) }

and { (£) } And thus, the UAG at time ¢ is given by

LG: {( ,(ct)n)*} = ar{gerriin Uvac
!
= argminZZbo (1 —nkf

{o.} k=171

()

argmax VUAG,k

Fa {(6) )

{e,r}
= argmax Z (b -Ys (B,(Ct)),
{E](:),L} n=1
Constraints: (1), (11)

where Uy ac is the utility of the SP and Vs i is the
utility of EN £ in the UAG at time ¢. In the UAG at time ¢,
the SP needs to know the exact value of each C . That
is to say, for the user allocation at time ¢, each user must
tell the SP which files it requires.

III. STACKELBERG GAME-BASED ADMM

In this section, the Stackelberg game-based ADMM is
adopted to solve both the SAG and UAGs in a distributed
manner. In the Stackelberg game-based ADMM, the SP adjusts
the prices iteratively. At each iteration, under the current
prices from the SP, each EN feeds back the storage (or back-
haul) resources to reach an optimal point of a well-designed
incentive function through a convex optimization approach,
such as ADMM. Then, the SP adjusts the prices in the next
iteration and the ENs feed back the optimal resources with
the new prices. With a few iterations, the Stackelberg game-
based ADMM can converge to a Stackelberg equilibrium.
The Stackelberg game-based ADMM is suitable to solve the
game especially when the network includes large numbers of
ENs and users [21]-[23]. In this section, we will discuss the
Stackelberg game-based ADMM for the SAG and the UAGs,
respectively.

A. Stackelberg Game-Based ADMM for the SAG

It can be directly observed that the SAG can be further
decomposed into K independent sub-SAGs. Sub-SAG Fk for
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the SP and EN £, is given by,

LG: 60 = argmin » bo(1 —1ng,f) E(f) ,
o3 1) (3

FG: {n; ;} = argmax6xSk — Xi(Sk),

{nn.s}
F
Constraint: Z M- sp < SE. (12)
=1
The SP can play K sub-SAGs with K ENs independently in

parallel.

In sub-SAG £, the operation of the Stackelberg game-based
ADMM is an iterative process. Given the price from the
SP to each EN £k at each step p, Okp , EN k updates the

storage allocation as {ny, s} = {nk f} to minimize its incentive
function, @(p ), defined as follows:

T
— Zbo(l — Nk, f) <Z E,(Ct)f> + X(Sk) — el(cp)sk.
f=1 t=1
(13)

The incentive function equals a part of the SP’s utility function
plus EN £’s utility in (12), which can be physically interpreted
as follows: EN k£ helps optimize the SP’s utility with the price
and simultaneously optimize EN k’s own utility. That is to
say, the SP must tell EN k an estimate of the requirements for
the files, Zf 1 (t)f

With the incentive function in (13) for each EN, the Stack-
elberg game-based ADMM for the sub-SAG is a two-tier

(p)

iteration, where the process to achieve {77 } inside each step

p is called the inner loop, and the one to update the price, 0y,
from step p to step p + 1 is called the outer loop.
1) Inner loop: The inner loop is processed on EN k. Given

the price from the SP, 9,(;) ), EN £ finds the optimal storage

allocation, {n,(f) J)c} to minimize the incentive function

in (13) under the constraints in (12) with an ADMM

iterative process [29], where m is the iteration step for

the inner loop.

a) Sequential updates for {n r|f =
given by

., F} are

(»)
n,(f} (m+ 1) =argmin @,ip) -

Nk, f

N (mmilysg

F 2
5| D i m)setnlysr—Sol
g:Lg#f

(14)

for f =1,2,...,F, v > 0 is a damping factor, and
m = m + 1 when f < g and m = m when f > g,
which is set to satisfy the constraints in (12). With this
step, EN k& will achieve a set 0f continuous storage

allocation variables with price 0, () The update must

be operated sequentially on {n,(cp J)c} rather than in
parallel, which is the basic condition to guarantee the

convergence of the inner loop [30].
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b) The boundary for {n’}(m + 1)|f = 1,2,...,F} is
given by
0, n?H(m+1) <0,
mepm + 1) =9} m+ 1), 0<yf)(m+1)<1,
1, N m+1) > 1,
(15)

which is the common process to restrict the variables,
{nff}(m + 1)},
c) The dual update is given by

between O and 1.

AP (m+1) = AP (m)
F
—7 | 2 mr1)sp)—SE | (16)
f=1
for k =1,2,..., K, which guarantees the convergence
with ADMM.

d) Steps a), b), and c) are repeated until each n(p )
and each )\,(Cp ) have no significant change. (The
sequential update guarantees convergence.) The current
total amount of storage resources for caching files
by EN &, S,(Cp), is calculated by

Z My

2) Outer loop: After EN k£ achieves its current quota of
storage resources to cache files, S,(Cp ), EN k feeds back
its marginal cost to the SP for price update as

dx5(5")
dsSy, '

The marginal cost can be interpreted as the current cost
for EN k to provide an additional unit storage when
it has already provided S ,Ep ) resources to the SP. It is
rational to set the price equal to or larger than the
marginal cost when the SP wants EN £ to provide more
storage resources. The outer loop stops when the EN
cannot adjust its storage too much, which mathematically
satisfies a primal stopping criterion,

ot = (18)

‘@,(j’) —or Y| <. (19)

When the outer loop stops at step p, the EN k£ has
already determined its storage resources as S,(Cp ) and the
SP has determined price 9,(€p ). However, some variables

{n,(cp J)c} may not equal 0 or 1, which is not reasonable

since EN k cannot cache only a part of a file. In this case,

EN k& must transform continuous variables in {n,(cp }} to

discrete ones through sequencing: EN k caches Fj, files
with the largest 771(5 J)c, where the constraints in (12) are
simultaneously satisfied.
With K sub-SAGs, the SP and ENs determine which files are
cached on which ENs, {7y ,}, and the optimal prices, {0} }.
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B. Stackelberg Game-Based ADMM for the UAGs

The UAG is played at each time ¢. Different from that for
the SAG, the SP can calculate the user allocation, {¢ ,(:ZL} ina
centralized way. Then, the SP can ask each EN £ to provide
enough backhaul resources, By, to serve the allocated users
with the Stackelberg game-based ADMM. The reasons are as
follows.

1) As in the UAG in (11), each EN k cares only
about its total backhaul resources, B,(f), and the price,
qb,(ct), regardless of which users EN k serves. Thus, the
SP can buy enough backhaul resources from EN £ to
serve the users.

2) The UAG in (11) does not have a constraint on private
information of ENs, which is different from the SAG
in (10) with a total storage constraint on EN k, Sk,c.

3) The centralized user allocation problem, as given below,
has a closed-form solution for the SP, which does not
need complicated calculations even when the network has
a large number of users.

e S b )

klfl

N
(z s,at;cf:;)

n=1

sit. Zlk n€in = (20)
The closed-form solution for (20) is given by?
w _ 1 x0 =min{xOll=1,2,... K}, on
m 0, Xz(ct)n > mln{x(t)ﬂ: 1,2,...,K},

where X( ) _ represents the total backhaul resources needed
by user n to obtain its desired files, calculated by,

chf)n ZbOl_nkf (t)

For convenience, we use f k.n Y to represent the user allocation
calculated by the SP. From (20) and (21), the desired backhaul
resources for each EN k, B,g ), can be calculated by

F
F=1

Then, the UAG in (11) can be decomposed into K sub-UAGs
at time ¢. Each sub-UAG for the SP and EN £ is given by,
argmin

. (t)\2
LG: ( 5:)) - : <(ng(1&)) _Bl(ct)>7
{2} \ 25

FG: By = argmax (qb,(j)) BY —v, (B}j)), (24b)
B

(22)

(23)

(24a)

(®)
(BA ) — B(f) is designed by the SP to achieve B(t)

where

backhaul resources from EN £, since the optimal point of

(B(t))z ¢ . t A (L
( 250 —B,@) is B = B

(t)

3When there are more than one X}, t)\l =

k= k1 and let §(t) = 1 and for other indices, e.g., k2, let §(t) =0.

that equal min{y I,

and X, one ra.ndomly select one index k, e.g.,
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To incentive each EN k to provide B,(Ct) backhaul resources

for the allocated users, the SP adopts the Stackelberg game-
based ADMM to adjust the price, d),(:). The operation of the
Stackelberg game-based ADMM is an iterative process. Given
the price from the SP to EN k£ at each step p, d),(f’p ), each
EN £ updates the backhual resources, B,(:) = B,(:’p ), to mini-

)

. . . . . t,
mize its incentive function, \Ilé P) " defined as,

(t)y2
v = <—(B’f (t)) - ij)) —o\"P'BY 1y, (B,(f)) . (25)
2B,

The first term is a part of the SP’s utility in sub-UAG k
in (24a), while the rest is EN k’s utility in (24b). That is
to(ts)ay, the SP must tell EN k the desired backhaul resources,
B

kWith the incentive function for each EN £, the Stackelberg
game-based ADMM is an one-tier iteration described as
follows.

1) With the price from the SP, ¢\"*’, EN £ finds the optimal
backhual bandwidth, B{""’ to minimize the incentive
function in (25). The closed-form solution for the incen-
tive function minimization is given by

14

Bl(:J)) — .
B+,j> + 20

(26)

Since the closed-form solution can be easily calculated,
there is no need to use a numerical approach, such
as ADMM.

2) After EN k achieves its current quota of backhaul
resources to Serve users, B,(Ct’p ), EN £k feeds back its
marginal cost to the SP, which is used to update the
price as

oyl = k2 27)

The marginal cost can be interpreted as the current price

for EN £ to provide an additional unit of backhaul

resources when EN k has already provided B ,ip ) resources
to the SP. It is reasonable to set the price equal to or larger
than the marginal cost when the SP wants EN k to provide
more backhaul resources.

3) The iteration stops at step p when each EN k cannot
adjust its backhaul bandwidth too much any more, that
is,

< &9.

‘\p,(j”” — gl (28)

As a result, EN k provides B,(:’p ) backhaul resources,
the set of users it serves is given in (21) and the price
from the SP to EN % equals qb,(:’p ),
The entire framework including the SAG and the UAGs is
summarized in Algorithm 1.

IV. PROPERTIES OF STACKELBERG GAME-BASED ADMM

In this section, we discuss the properties of the Stackelberg
game-based ADMM for the SAG and UAGs. We first investi-
gate the convergence and the optimum of the game. The total
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Algorithm 1 Stackelberg game-based ADMM for SAG
and UAG
SAG: The SP and each EN £ play the sub-SAG
in (12), g) =0
while @kp) — @,(Cpfl) > ¢ do
(a) Optimize storage allocation with ADMM (inner
loop) at EN k in (14)-(16);
(b) EN £k feeds back the marginal cost in (18) to the

SP;
©p=p+1
end
When the outer loop st0§)s at step p, EN k caches F},
(p

files with the largest 7, e where the constraint in (12) is
simultaneously satisfied. The price from the SP
equals 67
UAG: The SP and each EN £ play the sub-UAG
in (24) at each time t, p =0
while U") — 0" > <, do
(a) Optimize backhaul resources in closed-form at EN
k in (26);
(b) EN £k feeds back the marginal cost in (27) to the
SP;
©p=p+1
end
EN £k provides B,(f’p ) backhaul resources, and the set of
users it serves is as in (21). The price from the SP to
EN k equals ¢\"".

number of information exchanges is derived afterwards. Then,
we discuss the scalability of our algorithm, and finally, the
issue of outage is investigated.

A. Convergence

Based on [21, Proposition 1], the Stackelberg game-based
ADMM for either the SAG or the UAGs converges at a
linear rate. The rapid convergence of the SAG and the UAGs
indicates that the SP and ENs do not spend too much time
on the storage and backhaul resource allocation and price
negotiation. Specifically, the average iteration time for the

whole SAG in (10), denoted by psag = %, is bounded

by O gJZ—lT).“ e1 describes the distance between the cur-
rent value of the leader’s utility function and the optimum,
which is the primal stopping criterion given in (19). The
reciprocal of €1 has a linear relation to the iteration, which
corresponds to linear convergence (also known as first order
convergence) [28]. The iteration time for the SAG also has a
linear relation to the number of users, /N, and to the time
for backhual resource allocation, 7'. Similarly, the average
iteration time for the UAGs at time ¢ in (11), denoted by

puac = % is bounded by O (%)

40(-) represents the complexity. A function p(N) = O(N) indicates that
at least one 0 < pp < oo exists to guarantee p(N) < pg - N. O(N)
is usually defined as linear complexity, O(N®) defines sublinear complexity
when 0 < a < 1. O(N®) defines superlinear complexity when v > 1 [31].
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B. Optimum

In this part, we discuss the optima of the SAG and UAGs,
respectively.

1) Approximate Optimum of the SAG: The SAG will con-
verge into an approximate Stackelberg equilibrium, in which
the utilities of the SP and each EN approximate the optimal
utility values in the SAG with storage resource allocation
and price negotiation. The gaps to the optimal utilities for
the SP and each EN are listed in Theorems 1 and 2, proved
in Appendices B and C, respectively.

Theorem 1: Denote the optimal utility value of the SP in
the SAG in (10) as Ug 4. When the Stackelberg game-based
ADMM converges, the utility of the SP is denoted by U é’ﬁa
Then, the maximum gap between U éﬁc and U} 4, is given by

K T
0< ngc —Usag <bo- Z <m?XZE15t}>
k=1 t=1

T
< Kby n]}axz EY. = O(KNT). (29)
t=1

N

Theorem 1 indicates that the Stackelberg game-based
ADMM has at worst a K -file gap to the minimum utility of
the SP. More specifically, the Stackelberg game-based ADMM
fails to cache at most one file in each EN.

Theorem 2: Denote the optimal utility value of each EN k&
in the SAG in (10) as V&, ,. When the Stackelberg game-
based ADMM converges, the utility of EN k is denoted

by V:éi)c_k. Then, the maximum gap between Vélﬁc , and
V§Ac,k is given by,
0<Viagr— Vs(ix)a,k < ak(su)’. (30

Theorem 2 indicates that the Stackelberg game-based

ADMM reaches at worst a one-file lower utility of EN k,

Otk(SH)Q.

2) Strict Optimum of the UAG at Time t: The UAG at time ¢
will converge into a strict Stackelberg optimum, in which
the utilities of the SP and each EN reach the strict optimal
utility values in the UAG at time ¢. Specifically, the optimal
utilities for the SP and each EN are listed in Corollary 1
and Corollary 2, which can be directly derived based
on [21, Proposition 1], [22, Proposition 1], and [23, Remark 6].

Corollary 1: When the Stackelberg game-based ADMM
converges for all sub-UAGs in (24) at the maximum step p,
the utility of the SP, denoted by Ué,ij, reaches the strictly
optimal point, in which U[(JPAG is minimized.

Corollary 2: When the Stackelberg game-based ADMM
converges for each sub-UAG k in (24) at step p, the utility
of EN K, denoted by Vé’gak, reaches the strictly optimal
point, at which V4, is maximized.

3) Suboptimum for the Entire Game: The entire game
in (9) can reach a suboptimal point through implementing the
Stackelberg game-based ADMM in the SAG and the T" UAGs.
However, the gap between the optimal utility values and our
algorithm is hard to find even for a strictly optimal solution
found in a centralized manner.
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C. Information Exchange

The total amount of information exchange can be described
by the number of scalars exchanged between the SP and the
ENs. In the SAG, each EN £ needs to send the marginal cost,
%;C’ip)), and the storage, S,(Cp ), to the SP at each step in the
outer loop. The total number of scalars from K ENs sent to
the SP equals 2K. Then, the SP will transmit the new prices,
{9,(61) +1)}, to K ENs. Finally, when the Stackelberg game-
based ADMM for each sub-SAG converges at step O(]Z—lT)
the SP needs to send the final storage allocation results, {n,: f 1,
K F scalars, to the ENs. Therefore, the total number of scalars
transmitted between the SP and the ENs in the SAG is given
by

NT

F5:3K-O(—) + KF.
€1

(€19

The total amount of information exchange for the UAG
at each time t can be calculated similarly. For the UAG
throughout one day, t = {1,2,...,T}, the total number of
scalars transmitted between the SP and the ENs is given as

follows:
N
Ty :T(3K-O (—) +KN>.
€2

Thus, we have the corollary on the total information exchange
as below.

Corollary 3: The total number of transmitted scalars in the
entire game, I, is given by

(32)

I'=Ts+TIvy
—3K-0 (E) +KF+T(3K-O(E> +KN>
€1 €2
— O(KNT). (33)

D. Scalability

Scalability indicates how the algorithm performs when
the network size increases. It is very important to extend
an algorithm to large-scale networks such that the perfor-
mance metrics for the algorithm have a linear relation to,
sub-linear relation to, or are independent of the network
size [32]. In this paper, the metrics that describe our algorithm
performance are the convergence speed in Section IV-A,
the optimum gap in Section IV-B, and the information
exchange in Section IV-C. The variables that describe the
network size are the number of ENs K, the number of users IV,
and the time for use allocation, 7'. The metrics that can be
analytically derived have been given in the above sections. The
others will be examined through simulation results. In a word,
the optimum can be guaranteed and the convergence speed is
linear with or independent of the network size. This indicates
that our algorithm is scalable for future large scale networks.

E. Outage

Besides the total backhual resources, the outage is another
important performance metric in caching problems [13].
Outage is defined as the proportion of file requests that cannot
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TABLE I
SIMULATION PARAMETERS

L x W | Constant 1000mx 1000m

K Variable between 10 and 100

N Variable between 100 and 1000

F Constant 20

P Constant 1

Q Constant 100

T Variable between 1 and 24

bo Constant 5 Units

Sg Constant 200 Units

sy Uniformly distributed between 10 and 30 Units
ag Uniformly distributed between 0 and 10—
B Uniformly distributed between 0 and 10—
£1 Constant 0.1

€2 Constant 0.1

be fulfilled by the ENs directly throughout the entire network.
Mathematically, the outage can be calculated as follows:

T K F N t t
o T T S (- ) (S5 60,00
= K F N
S S S (L ehel)

From (34), the outage is obviously linearly dependent on the
total amount of the backhaul resources, i.e., the SP’s utility
in (5). Thus, we omit any further discussion of this metric.

) . (34

V. SIMULATION RESULTS

Several representative examples are shown through
simulation results, whose parameters are listed in TABLE 1.
The simulation results include three aspects: the convergence,
the optimum, and the total amount of information exchange.
The independence or the approximate linear relation between
the convergence speed and the network size indicates that the
Stackelberg game-based ADMM can be applied in large scale
networks. The optimum indicates that the Stackelberg game-
based ADMM can approximately achieve the minimum of
the total backhaul resources no matter how the network size
changes. Finally, we show that the total number of scalars that
the SP and the ENs exchange in the Stackelberg game-based
ADMM has a linear correlation with the network size.

A. Convergence

In this part, we illustrate the convergence of the SAG and the
UAGs in Fig. 3 and Fig. 4, respectively. In Fig. 3, the relations
between the average iteration time, psaq, in the SAG and
the number of ENs, K, the number of users, /N, and the
time for user allocation, 7', are provided. From the figure,
psac changes sublinearly with N and 7. In addition,
Ppsac is always below two, which indicates that the storage
allocation and price negotiation between the SP and the K ENs
can accomplished within two steps on average.

In Fig. 4, we illustrate the relations between the average
iteration time, py aq, in the UAG and the number of ENs, K,
the number of users, /N, and the time for user allocation, 7.
From Fig. 4, py A is independent of K and 7" and increases
with IV at an approximately linear speed.

Fig. 3.
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Fig. 4. Convergence of the UAGs.
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Fig. 5. The optimum of the SP’s utility in the SAG, Ugs a¢, with K = 100.

B. Optimum

In Fig. 5 and Fig. 6, we show the approximate optimum of
the SAG. In Fig. 5, the SP’s utility in the SAG, Ugag, can
approximate the optimal one. The optimum is reached through
relaxing the SAG to a continuous problem, and the one-file
loss indicates that the optimal value plus a one-file backhual as
in (29). The gap increases linearly with the number of users,
N, as indicated by Theorem 1. In Fig 6, the average of the
ENs’ utilities in the SAG is also inside a one-file gap with the
optimal value and is independent of the number of users as
discussed by Theorem 2.
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Fig. 6. The optimum of the average of the ENs’ utilities in the SAG, Vg AG, k>
with K = 100.
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Fig. 7. Total backhaul resources, U,
based ADMM, popularity-based caching,
K =100, T =1, and N varies.
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and random caching when
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Fig. 8. Total backhaul resources, U, with the Stackelberg game-
based ADMM, popularity-based caching, and random caching when
K =100, N = 1000, and T varies.

In Fig. 7 and Fig. 8, we compare the performance of the
Stackelberg game-based ADMM with two other approaches.
In popularity-based caching, each EN k caches the most
popular files, i.e., the files with the largest EtT:l E,it}, and
the user accesses the EN to obtain as many files as possible at
each time ¢. Similar approaches can be found in [4] assuming
the users’ demands follow Zipf’s law. In random caching,

each EN K caches files that can fill up the storage capacity.
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Fig. 9. The number of scalars transmitted in the entire game with the
Stackelberg game-based ADMM when K, N, and T vary.

This usually happens when the users’ file demands follow a
uniform distribution. The optimum is reached through relaxing
the SAG to a continuous problem, and then solving the SAG
and UAGs in a centralized manner. We test the utility of the
SP, U, for the entire game in (9), i.e., the total backhaul, and
find that the our algorithm achieves a lower total backhaul
than popularity-based caching and random caching. In Fig. 7,
the total backhual increases approximately linearly with the
number of users.

In Fig. 8, a larger time 7" means that the users’ file demands
change more frequently, in which case the caching process
may miss more users’ requests. Thus, the average of the total
backhual at each time, U/T, increases with the time of user
allocation.

C. Information Exchange

Fig. 9 shows the total number of scalars, I', that are
transmitted in the entire game. It is can be observed that T’
has a linear correlation with the number of users, N.
In addition, comparing different curves, I' is approxi-
mately linearly correlated with the number of ENs, K,
and the number for user allocations, 7. This corroborates
Corrollary 3.

VI. CONCLUSION

In this paper, we have proposed a convergent and scalable
Stackelberg game for edge caching. Specifically, a network
with one SP, multiple ENs, and multiple users with time-
dependent requests has been considered. The problem has
been formulated as a Stackelberg game, and decomposed into
two types of sub-games, a SAG and a number of UAGs.
The proposed Stackelberg game-based ADMM can solve both
the SAG and UAGs in a distributed manner. In either the
SAG or each UAG, the Stackelberg game-based ADMM
converges linearly in the network size. In addition, it has been
proved that the Stackelberg game-based ADMM approximates
the optimum of the SAG to within a gap having a linear
relation with the network size. The Stackelberg game-based
ADMM has been proved to reach the strict optimum of
each UAG. The entire game achieves lower total backhaul
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Fig. 10. Coverage estimation of the number of users by EN k.

than centralized popularity-based caching and random caching.
Furthermore, based on our analytical and simulation results,
the total number of scalars exchanged in the network has a
linear correlation with the network size. The rapid convergence
and scalability of our framework have shown its potential to
address caching for networks with large numbers of ENs and
users.

APPENDIX A
THE ESTIMATE E,Et} IN (10)

E,(Ct)f is the estimate of the total number of users that are

allocated to EN £, for file f at time ¢. We calculate E,(J}
the following assumption.

Assumption 1: Each user is willing to connect to the
nearest EN.

under

Then, based on stochastic geometry, E,(Ct)f can be
calculated as,
N
() _ (t) ~(t)
s~ 2 (et
n=1
)"
__N XQ: Yy, - min 4 p® (Aqff 1
- q F ey )
W 2z (1)
(35)

where E denotes the expectation, Y, , is the coverage of EN &
in square ¢ based on the rule that each user is likely to access
the nearest EN. An example is shown in Fig. 10. The solid
lines represent the coverage boundary for EN k. The dotted
lines represent the boundaries of squares. Then, E,(Ct)f can be

calculated from
(A(t) )7’{
Thg -min? pt) Nl

N F \—r’
L-w Zi=1(l)

. (At(ztz),f)iﬁ .

LW | S
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(Az(z?,f) N

N
+——— Tk g - Min p(t) .

L-w "% POHRNO RS
® \ "
N (AQ47f)
t——— Ty -ming p 222 15 (36)
L-w e S (67"
APPENDIX B

PROOF OF THEOREM 1

The minimum value of the SP’s utility in the SAG in (10),
Ug 4c» can be reached through solving K 0-1 integer pro-

gramming problems as follows:
T
(t)
().
t=1

> bo( =1k p)

min
{nk,r} f=1
F
s.t. an,f sp < s 37
f=1
where £ = 1,2,..., K. Each problem in (37) a typical

knapsack problem [32] when each 7 s is a 0-1 integer
variable, which is NP-hard. We relax the problem in (37) to
a continuous problem, denoted by =j, through continuation,
in which each 7, ¢ satisfies 0 < 7,y < 1. The optimal utility
for the continuous problem, = is denoted by US AG,k- Then,
it is intuitive that the following inequality is satisfied:

> Usack < Usag- (38)
k=1
Then, we prove Theorem 1 through proving the following
lemma.
Lemma 1: When the Stackelberg game-based ADMM for
the sub-SAG £ in (12) converges at step p, the following

inequation is satisfied:

F
S b1 -} (ZE‘”) USAGk<m?xbo <ZE(”>
f=1

t=1
(39)

Proof: When the Stackelberg game-based ADMM for the
sub-SAG k converges at step p, there exists at most one n( P)
for index f such that 0 < 7 J)c < 1. For any other n,(f ) for
index f, it equals either O or 1. The reasons for this are listed
as follows.

1) First, based on a proof in our prior work in ([22],
Proposition 1), the term by (1 — n,(f}) (Zf 1 E,Etf> will
reach a minimum point where each 7y ¢ is a continuous
variable.

2) Then, the step in (15) can restrict each U

(p ) to satisfy

3) Fmally, when there are more than one n,(cp J)c for index f
that do not equal O or 1, assume that 0 < n(p) < 1 and

(7) (7)
0 < n(l)) <1, and i, E k. f1 Zt 19 Byt

can reach a smaller value of bo(l — n,(f ])c) (ZtT:l E,(J})

. Then we
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when 7y, ¢, subtracts § and 7, 5, adds 5% where § > 0
is a small scalar. This deviates from the property in 1).

Hence, we have at most one n,(f ])c for index f such that
(p) ’

O<m <l
When n,(f ¢ = 1 for index f, file f is cached by EN k.
When n,(c} = 0, file f is not cached. When 0 < n(pj)c <1,

whether it is cached depends on whether EN %k has enough
storage resources. The worst case is that file f is always not
cached when 0 < 771(;,) J)c < 1. Assuming that fj is the file with

0< n(p) < 1. In this case, we have

T

t

St (358
f=1 t=1
T

<bo > B,
t=1
This completes the proof of Lemma 1.
Finally, we can derive that

—Usac.k

T
< maxbo S B, (40)

t=1

USAG U§AG
K F T
t *
=2 b =np) (DB |~ Ubaa
k=1 f=1 t=1
K F T
<3 (Som - (S5 - s
k=1 \ f=1 t=1
K

(41)

Since E() is intuitively proportional to the number of
users, NV, we have

Kby max Z E

’f1

= O(KNT). (42)

This completes the proof of Theorem 1.

APPENDIX C
PROOF OF THEOREM 2

Based on [22, Remark 6], the Stackelberg game-based
ADMM can reach the strict optimal point for EN £ in sub-
SAG k in (12) when each 7 ¢ is a continuous variable.
Correspondingly, the optimal value of the storage provided by
EN £ is denoted by S’S Ac,k» and the optimal value of EN £’s
utility is denoted by VS AG,k- When each 7, r is a 0-1 integer,
the optimal value of the storage provided by EN £ is denoted
by S§aq k- Intuitively, we have

* * * 2
= ekSSAG,k- — Qg (SSAG,k)
. . N 2
< Vsac,k = 0iSsac,k — ax (SSAG,k) .43

Then, we prove Theorem 2 through proving the following
lemma.

Lemma 2: When the Stackelberg game-based ADMM for
sub-SAG k converges at step p, the following inequality is
satisfied:

*
Viaak

Vsack — Villar < onlsm)?. (44)
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Proof: We have the following inequality:

Vsagk — VSAG k

= 05 Ssack
. 2
—ay (SSAG,k) - (ezsng)G,k
. . 2
0:Ssaa,k — o (SSAG,k)

- (92 (SSAG,k- - SH) — g (S'SAG,k - 5H)2)

=Sy (9* — 2ak§3AG,k -+ aksH) .

- (5864))

IN

(45)

According to [22, Remark 6], the strictly optimal point for
EN k in sub-SAG k in (12) is reached when each 7, ¢ is a
continuous variable. Thus, we have

IV 5
ﬂ =0* — QOékSSAng =0. (46)
0Ssaa.k
We combine (46) into (45) and finally achieve that
Vsac — Vil < anlsm)?. (47)

Based on Lemma 2, we can finally derive that

Viack — Vs(i)G,k < VSAGJ@ - VS(‘I;X)G,k <o(sm)®  (48)

This completes the proof of Theorem 2.
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