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Abstract—The Internet is a complex ecosystem composed of
thousands of Autonomous Systems (ASs) operated by inde-
pendent organizations; each AS having a very limited view
outside its own network. These complexities and limitations
impede network operators to finely pinpoint the causes of service
degradation or disruption when the problem lies outside of their
network. In this paper, we present Chocolatine, a solution
to detect remote connectivity loss using Internet Background
Radiation (IBR) through a simple and efficient method. IBR
is unidirectional unsolicited Internet traffic, which is easily
observed by monitoring unused address space. IBR features two
remarkable properties: it is originated worldwide, across diverse
ASs, and it is incessant. We show that the number of IP addresses
observed from an AS or a geographical area follows a periodic
pattern. Then, using Seasonal ARIMA to statistically model IBR
data, we predict the number of IPs for the next time window.
Significant deviations from these predictions indicate an outage.
We evaluated Chocolatine using data from the UCSD Network
Telescope, operated by CAIDA, with a set of documented outages.
Our experiments show that the proposed methodology achieves
a good trade-off between true-positive rate (90%) and false-
positive rate (2%) and largely outperforms CAIDA’s own IBR-
based detection method. Furthermore, performing a comparison
against other methods, i.e., with BGP monitoring and active
probing, we observe that Chocolatine shares a large common
set of outages with them in addition to many specific outages
that would otherwise go undetected.

Index Terms—Outage detection, Internet Background Radia-
tion, ARIMA

I. INTRODUCTION

Connectivity disruptions caused by physical outages, soft-

ware bugs, misconfiguration, censorship, or malicious activity,

occur repeatedly on the Internet [1]. Monitoring the state of

Internet connectivity is useful to raise public awareness on

events of intentional disconnection due to censorship [14]. It

further helps operators pinpoint the location of an outage,

i.e., the place where there is a loss of connectivity, when

it happens outside their reach. This enables to speed up

recovery as the correct network operator team can be contacted

directly instead of reaching out to the global network operators

community via mailing lists or personal contacts. Fast outage

detection is also useful to locally switch to backup routes,

when available [16].

A few methods exist to detect connectivity outages. Mon-

itoring for withdrawals of BGP prefixes is a commonly used

approach, but it can only observe outages that affect the control

plane [10], [2]. Data-plane approaches solve this problem, and

can be either based on active measurements—e.g., Trinocu-

lar [21] sends pings to 4 M remote /24 address blocks to mea-

sure their liveness—or on passive traffic analysis—Disco [27]

relies on the long-running TCP connections between RIPE

Atlas probes and their controlling infrastructure to identify

bursts of disconnections.

Another data-plane approach for the detection of connectiv-

ity outages, is based on the analysis of Internet Background

Radiation (IBR) [5]. IBR is unsolicited traffic captured by

darknets (also known as network telescopes), which announce

unused IP prefixes on BGP, i.e., there are no actual services

running in the prefix, nor “eyeballs”. IBR is composed of

a constantly evolving mix of various phenomena: network

scans, the results of malware infections, DoS attacks using

spoofed IPs from the range announced by the telescope [4],

packets from misconfigured (or with a polluted DHT) Bit-

Torrent clients, etc. [31]. By leveraging the pervasiveness of

IBR sources, and the consistent presence of traffic, we can

infer a connectivity outage for a given geographic area or

Autonomous System (AS) based on a significant reduction of

IBR traffic that originates from them. In addition, Dainotti et

al. [8], [5] demonstrated that IBR can effectively complement

both control-plane and active probing data-plane approaches:

both in terms of coverage (not all networks respond to pings)

and in terms of information that it provides (e.g., confirm-

ing outbound connectivity for a remote network even when

inbound connectivity is disrupted).

The IODA system from CAIDA [17] has recently opera-

tionalized this method for extracting time series, i.e., “signals”,

at different spatial grain (e.g., countries or ASs). However,

IODA’s current automated detection algorithm is simplistic (a

threshold based on the last 7 days moving median) and unable

to take into account the IBR’s noise and the intensity variabil-

ity of the signal. Indeed, in order to avoid an overwhelming

amount of false positives, the threshold is currently set to

raise an outage alert when the signal intensity drops under

25% of the intensity of the median value observed in the last

7 days. That is, an outage is detected only when there is a

severe connectivity loss, leaving many cases of connectivity

loss undetected [18]. In particular, the test remains the same

whatever the period of the day and the week, such that a drop

occurring in an usually busy period is treated the same as if it

was occurring during an inactive one. In one word, this naive

model is static, and as such, challenging to calibrate, as it does

not take into account any trends in the traffic.

In this work, we take these trends into account by applying



Seasonal ARIMA (SARIMA) [9], a popular technique that

forecasts the behavior of the time series extracted at the

UCSD Network Telescope [29]. More specifically, we analyze

the number of unique source IP addresses that try to reach

the darknet of different countries/ASs. Chocolatine is

sensitive and robust, respectively to the seasonality and noise

observed in the data. We show that it is able to detect

outages with a true positive rate of 90% and a false posi-

tive rate of 2% with a detection delay of only 5 minutes.

Additionally, the comparison with CAIDA’s method showed

that Chocolatine can detect a large share of outages seen

by other data sources, as well as additional specific outages.

Another benefit of Chocolatine is that its algorithm auto-

matically self-tunes on time series exhibiting very different

magnitudes and levels of noise (e.g., time series of IBR

extracted for ASs and countries of different sizes and with

different compositions of IBR-generating sources). As a result,

Chocolatine can be applicable to other seasonal and noisy

data sources related to Internet traffic activity.

The remainder of the paper is structured as follows: back-

ground on main outage detection methods is first provided

in Section II. In Section III, we then introduce the dataset

we use, and explain why it is suited for outage detection. In

Section IV, we describe Chocolatine’s high-level design.

We also illustrate our outage detection process with a case

study of censorship occurred during the Egyptian revolution

(Section V). In Section VI, we evaluate Chocolatine,

validating it with ground truth data and also comparing its per-

formances against several current outage detection algorithms.

Lastly, we address the reproducibility of our experiments in

Section VII.

II. BACKGROUND

Outage detection can be achieved with different measure-

ment techniques and performance indicators. A recent sur-

vey [1] provides a taxonomy of most existing techniques,

including three main monitoring categories: active, passive,

and hybrid. We reuse this terminology here.

Active monitoring techniques generate traffic in order to

collect information and examine the state of networks. Most

active monitoring approaches are based on variants of ping and

traceroute, and rely on a set of vantage points (i.e., the devices

that perform the measurements) that are usually distributed

across different networks. For example, RIPE Atlas [24] is a

popular platform for network measurement that is composed of

over 10,000 probes. In [12], Fontugne et al. detect significant

link delay changes and rerouting from RIPE Atlas built-in

measurements. Dasu [28], on the other hand, is more versatile

than RIPE Atlas. It has been used for diverse measurements,

such as broadband performance measurements, as well as the

mapping of the Google CDN infrastructure. Thunderping [26]

measures the connectivity of residential Internet hosts before,

during, and after forecast periods of severe weather.

Passive monitoring techniques collect existing traffic and

infer the state of networks from it. Generally speaking, they

analyze real-user traffic to be close to the user experience. It

ensures that the inferred statistics correspond to real traffic,

thus granting a view of a network’s current state. Different

datasets have been leveraged for passive analysis, such as CDN

traces [23], or darknets [3].

Outage detection methods also rely on different theoretical

modeling techniques to discriminate outages from normal net-

work conditions. Trinocular [21] leverages Bayesian inference

to estimate the reachability of /24 subnetworks. Disco [27]

detects surge of Atlas probe disconnections using a burst

modeling algorithm. Using also Atlas data, authors of [12] rely

on the central limit theorem to model usual Internet delays and

identify network disruptions.

In this work, we rely on passive measurements collected

from CAIDA’s network telescope [29] and employ SARIMA

models to forecast IBR time series and detect outages.

III. DATASET

The data used for this study is obtained from the UCSD

network telescope [29]. The goal of this section is to provide

an overview of the characteristics of this dataset, and to

motivate why it is suitable for outage detection.

The collected data consists exclusively of unsolicited traffic

caused by both benign and malicious activities. For instance,

software and hardware errors, such as bit-flipping or hard-

coded IP addresses, result in IBR traffic. Network scans and

backscatter traffic are another common source of IBR traffic.

Backscatter traffic is usually the consequence of malicious

spoofed traffic sent to a victim and whose replies are returned

to unused addresses monitored by the network telescope.

Consequently, IBR data has been extensively used to study

worms [30], virus propagation [15], and Distributed Denial of

Service (DDoS) attacks [11].

CAIDA’s IODA [17] aggregates UCSD network telescope

data geographically and topologically, respectively using Ne-

tAcuity [19] IP geolocation datasets and longest prefix match-

ing against BGP announcements from public BGP data [20].

Consequently, we obtain IBR streams per country, regional

area (e.g., states in the US, provinces in France, etc.), and AS.

IODA also pre-filters the traffic that reaches the telescope,

removing large components of potentially spoofed-source-IP

traffic (since their presence would significantly alter inference

about originating ASs and geographical areas) using a set of

heuristics derived semi-manually [7].

Traffic from these streams can be summarized in different

ways, the most common being the number of bytes, the number

of packets, and the number of unique source IP addresses.

The number of unique source IP addresses [8] is defined as

the number of IP addresses originating from the same location

that contact the network telescope during a given time interval.

It is an adequate metric to study Internet outages because it

counts the number of devices that send traffic at a geographical

or topological location, while abstracting the need to analyze

traffic. In the event of an outage, some of these devices get

disconnected from the Internet, so we expect to observe drops

in the number of unique source IP addresses observed by the

network telescope.







of an outage should not be used for future predictions, which

brings us back to the problems discussed in Section IV-A,

where missing values, extreme values, and outages would

diminish the quality of the predictive model. In this phase,

we solve these problems differently, by doing what we refer

to as inpainting: if a new sample of data is considered to be an

extreme value (i.e., d < −1 or d > 1), we feed the predictive

model with the predicted value instead of the real one.

V. CASE STUDY

To illustrate the functioning of the proposed method and

some of its benefits, this section provides thorough results from

a specific case study.

On January 25th 2011, the Mubarak regime ordered net-

work operators to shut down Internet connectivity during the

Egyptian revolution, in an attempt to silence the opposition.

The chronology of this event has been described in [8]. The

authors used BGP routing data, ping, traceroute, and IBR data.

The IBR data was manually analyzed to shed light on the

massive packet-filtering mechanisms that were put in place,

and to identify denial-of-service attacks related to the political

events happening in Egypt during the same period. In this

section, we present how our solution analyzes the same IBR

data but allows us to systematically detect the beginning and

the end of the connectivity loss, and to estimate the severity

of the outage.

Figure 2 shows the time series of unique source IP addresses

from Egypt reaching the UCSD Network Telescope (plotted

in blue). The disconnections occurred between the 28th of

January and the 3rd of February, 2011, as it can be seen by

the loss of intensity of the signal depicted in the figure. Here,

we chose to include in our analysis also the values of the time

series after the outages, because of an interesting phenomenon

that was occurring: the values of the time series are higher

than usual during the days that follow the Egyptian revolution

and go back to normal around the 7th of February. In [6], the

authors revealed that a botnet covertly (and massively) scanned

the Internet during those days.

This time series is analyzed as follows. The training set, to

the left, is sanitized following the methods discussed in IV-A.

Multiple sets of ARMA parameters are then going to be used

to predict the calibration set. The predictions are plotted with

a green line. The set of parameters that resulted in the lowest

error (p = 4, q = 1 in this case) will be used for the rest of

the analysis. The difference between the predicted time series

and the original time series allowed us to compute prediction

intervals using the MAD. These intervals are plotted with gray

bars that surround the predictions.

Then the test set is compared to the ARMA model and

the prediction intervals computed in the previous step. The

sudden drop that occurs when the outage starts, puts the time

series below the prediction intervals, which means that an

outage is reported. Visually, this is shown with a red vertical

line. Additionally, it also means that the inpainting process

described in Section IV-D will take place, which is clear here,

since the trend of the predicted time series stays similar to that

of the original time series, even if an outage is occurring at

the same time. No alarm is reported during the botnet activity

([6]) that follows the outage, because the original time series

values are higher than our prediction intervals, which means

that the data is again inpainted and it will not count as an

anomaly.

VI. VALIDATION, CALIBRATION AND COMPARISON

We evaluate the limits, and performance of

Chocolatine through a validation and a comparison.

We start by considering a set of verified outages from our

ground-truth dataset, which we use to assess the accuracy of

our outage detector, and look for the best threshold, e.g., the

one determining the minimal number of IPs required to make

accurate predictions. We then use a different set of outages

in order to compare Chocolatine against CAIDA’s outage

detection techniques (using BGP dumps, active probing and

the network telescope data).

A. Validation

In this section, we evaluate the reliability of our tech-

nique using a reference dataset and gathering 130 time series

containing outages. These time series contain three different

types of spatial aggregates—ASs, countries, and regions within

countries—from various years (2009 to 2018). The duration of

these outages spans from an hour to a week. The comprehen-

sive list of time series that compose this dataset is given in

Table II. As an example, the RIPE NCC and Duke University

BGP experiment [25] caused several outages in different ASs

worldwide by triggering a bug in some Cisco routers.

We evaluate Chocolatine by computing the True Posi-

tive Rate (TPR) and the False Positive Rate (FPR), and show

our calibration results with a ROC curve. Our purpose is

twofold: we look into the accuracy of our approach, and

we search for its best parameters by exploring its calibration

spectrum. In particular, we determine which confidence level

should be used to assess whether an outage is occurring or

not. Our aim is to find the best trade-off between the TPR and

the FPR by considering our collection of documented outages

as the ground truth.

Moreover, to quantify the ability of our method to maximize

the TPR while keeping the FPR low, we need to set two eval-

uation parameters used in our ROC analysis. On the one hand,

we need to find out the minimal intensity required in the time

series for our method to finely operate, and on the other hand,

TABLE I: Number of time series per IP threshold and per

spatial scale

> 10 > 15 > 20 > 25 Total

Countries
144

(56.9%)
135

(53.3%)
128

(50.5%)
120

(47.3%)
253

Regions
1,038

(21.4%)
879

(18.1%)
778

(16.0%)
704

(14.5%)
4,846

ASs
1,157
(1.8%)

867
(1.4%)

719
(1.1%)

621
(1.0%)

61,639







TABLE II: Ground truth — validation (Section VI-A)

Event Detection Time Frame Time series

Czech ISP 16–02–2009 16:20–17:20 AS={62, 135, 158, 166, 223, 291, 348}

AfNOG 03–05–2009 12:00–13:00 AS={3, 242, 467}

CNCI 17–08–2009 18:00–18:40 AS={80, 149, 333, 360, 524, 580, 585}

RIPE-Duke 27–08–2010 08:30–09:30 AS={48, 54, 56, 63, 95, 143, 153, 204, 209, 210, 283, 310, 374, 377, 384, 385, 397, 398, 443, 474, 475, 483,

488, 497, 509, 564, 575, 595, 674, 676, 694, 714, 788, 791}

JunOS bug 07–11–2011 14:00–15:00 AS={7, 45, 68, 71, 73, 93, 119, 160, 177, 181, 187, 209, 215, 229, 257, 260, 273, 278, 297, 314, 316, 317, 320,

322, 324, 325, 328, 332, 335, 336, 337, 347, 392, 414, 415, 425, 429, 431, 479, 485, 490, 493, 501, 504, 529,

535, 569, 597, 624, 628, 636, 647, 650, 654, 655, 697}

Egypt 01–27–2011 21:00 – 02–02–2011 12:00 Countries={Egypt}, Regions={ 978, 971, 984, 985, 974, 979, 980, 993}, AS={8452, 36992, 24863, 24835}

Brazil 21–03–2018 18:45 – 22–03–2018 10:00 Countries={Brazil}, Regions={Amazonas, Bahia, Caera, Distrito Federal}

Syria 27–05–2018 22:00 – 28–05–2018 06:00 Countries={Syria}

Syria 30–05–2017 00:00–06:00 Countries={Syria}

Azerbaijan 02–07–2018 12:00–03–07–2018 18:00 Countries={Azerbaijan}

DRC 23–12–2017 15:00–26–12–2017 09:00 Countries={Democratic Republic of the Congo}

Gambia 30–11–2016 17:00–04–12–2016 22:00 Countries={Gambia}

TABLE III: Ground truth — comparison (Section VI-B)

Event Detection Time Frame Time series

Angola 07–09–2018 16:57 – 08–09–2018 06:20 Countries={Angola}

Iraq 13–10–2018 15:10 – 18–10–2018 19:32 Countries={Iraq}

Venezuela 15–10–2018 18:00 – 19–10–2018 05:00 Countries={Venezuela}

Tajikistan 26–10–2018 10:00–14:20 Countries={Tajikistan}

Ivory Coast 28–10–2018 23:00 – 29–10–2018 08:00 Countries={CI}

Argentina 17–11–2018 11:00 – 18-11-2018 01:00 Countries={Argentina}

Syria 18–11–2018 22:00 – 19–11–2018 03:00 Countries={Syria}

Taiwan 19–11–2018 00:00–06:00 Countries={Taiwan}

Armenia 20–11–2018 11:00–15:00 Countries={Armenia}

Algeria 30–11–2018 03:00–17:00 Countries={Algeria}

Gabon 11–12–2018 17:00–23:55 Countries={Gabon}

Kyrgyzstan 11–12–2018 22:00 – 12–12–2018 02:00 Countries={Kyrgyzstan}

AS 209 27–12–2019 15:00 – 28–12–2018 01:00 AS={209}
Ethiopia 03–01–2019 11:00–15:00 Countries={Ethiopia}

Cameroon 14–01–2019 11:00 – 15–01–2019 10:00 Countries={Cameroon}

Indonesia 14–01–2019 05:00 – 15–01–2019 08:00 Countries={Indonesia}

Zimbabwe 15–01–2019 04:00 – 17–01–2019 12:00 Countries={Zimbabwe}

Zimbabwe 17–01–2019 20:00 – 18–01–2019 16:00 Countries={Zimbabwe}

Panama 20–01–2019 15:00 – 21–01–2019 01:00 Countries={Panama}

Laos 24–01–2019 17:00–21:00 Countries={Laos}

Panama 29–01–2019 13:00–23:55 Countries={Panama}

Morocco 11–02–2019 06:00–16:00 Countries={Morocco}
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