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ABSTRACT

Data deduplication has been widely used in storage systems

to improve storage efficiency and I/O performance. In partic-

ular, content-defined variable-size chunking (CDC) is often

used in data deduplication systems for its capability to detect

and remove duplicate data in modified files. However, the

CDC algorithm is very compute-intensive and inherently

sequential. Efforts on accelerating it by segmenting a file and

running the algorithm independently on each segment in

parallel come at a cost of substantial degradation of dedupli-

cation ratio.

In this paper, we propose SS-CDC, a two-stage parallel

CDC, that enables (almost) full parallelism on chunking of a

file without compromising deduplication ratio. Further, SS-

CDC exploits instruction-level SIMD parallelism available

in today’s processors. As a case study, by using Intel AVX-

512 instructions, SS-CDC consistently obtains superlinear

speedups on a multi-core server. Our experiments using real-

world datasets show that, compared to existing parallel CDC

methods which only achieve up to a 7.7× speedup on an
8-core processor with the deduplication ratio degraded by

up to 40%, SS-CDC can achieve up to a 25.6× speedup with
no loss of deduplication ratio.
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1 INTRODUCTION

Backup storage is a critical infrastructure in protecting users

from data loss incidents, such as incautious data deletion.

To minimize the performance impact on production ser-

vices, backup jobs are usually scheduled after midnights

or during weekends. To complete backing up of a large

amount of data within a tight time window, the system has

to provide sufficiently high backup performance [11, 33].

The single-stream1 backup throughput measures how fast a

system can process one backup stream. With a higher single-

stream backup throughput, the backup system can complete

a backup job more quickly within the backup window. While

many backup systems support concurrent backups, they

usually have a limit on the maximum number of concurrent

backup streams [8, 18] to prevent resource contention, which

could degrade the performance of single-stream backups.

Using Deduplication to Improve Space Efficiency.

Along with the backup performance, space efficiency is also

an important aspect of a backup storage system. Backup files

usually contain a large amount of duplicate data due to small

changes between two consecutive backups. Accordingly, data

deduplication is often used to detect and remove redundant

data among backups. A data deduplication scheme partitions

input files into small chunks and only unique chunks are

stored in the system. Deduplication ratio, which is defined as

the ratio of the original data size and the size after deduplica-

tion, is used to measure its effectiveness in removing dupli-

cate data. Prior research [24] has demonstrated significant

space saving from deduplication, achieving deduplication

ratios from 2∼14× in production deployments.
1A backup client often creates a tar-like backup file and transfers backup

files as backup streams to the backup system.
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Figure 1: Deduplication ratio reduction caused by existing

parallel CDC approaches.

However, deduplication also adds significant performance

overhead to the system, especially with the variable-size

chunking process that is commonly used in backup storage

systems. A typical variable size chunking algorithm, such

as content-defined chunking (CDC) [16], scans almost every

byte in an input file using a fixed-size rolling window and

calculates a hash value for each rolling window2. A chunk

boundary is determined when two conditions are met. One

is that the chunk size is within the range of pre-defined min-

imum and maximum chunk sizes. And the other is that the

hash value of the rollingwindowmatches a pre-defined value.

As we need to calculate a hash value for the rolling window

at almost every byte offset of a file, this process consumes

significant CPU resource and has become a performance

bottleneck in many backup storage systems [1, 2, 30].

Accelerating CDC-based Deduplication. To alleviate

the bottleneck, many researchers have proposed to partition

an input file into segments, and leverage parallel hardware,

such as multi-core processors or GPGPU platforms, to per-

form chunking on the segments in parallel, termed as parallel

CDC hereafter. While they receive performance benefit of

parallelism to some extent, they have at least one of the two

limitations. They do not provide either guarantee of chunk-

ing invariability [27] or compatibility to the SIMD platforms,

such as Advanced Vector Extensions (AVX) [6] that is avail-

able in recent Intel and AMD processors or GPUs. We discuss

each of the two limitations in the below.

Chunking invariability requires that a parallel chunking

algorithm always generates the identical set of chunks in-

dependent of the parallelism degree and the segment size.

However, many parallel CDC algorithms do not provide this

guarantee. The chunks generated from a parallel chunking

2The hash function used here is different from the hash function used to

generate the fingerprint to uniquely identify a chunk. To support efficient

rolling hashing, we assume a hash function that can be incrementally calcu-

lated, such as CRC. For fingerprints, a cryptographic hash function, such as

SHA1, is adopted to minimize hash collisions.

are usually different from those from a sequential chunking

of the same file (sequential CDC) and they are also influ-

enced by the segment size. The fundamental reason is that

the boundary of the next chunk in a file is determined not

only by contents in the chunk but also by the boundary of its

previous chunk. Besides, to detect a new boundary we need

to skip a certain number of bytes from the last boundary to

maintain a minimum chunk size before starting the rolling-

window-based hashing. Due to existence of this inherent

dependency, chunk boundaries produced by independently

performing CDC within individual segments are different

from those produced by sequential CDC on the entire file.

Since the segmentation enabling the parallelism is not based

on the file content, the parallel CDC usually has a dedupli-

cation ratio lower than the sequential CDC. Figure 1 shows

the deduplication ratios of sequential CDC and parallel CDC

using 1MB segments and chunk size configuration from Dell

EMC Data Domain (4KB, 8KB, and 12KB as the minimum,

expected average, and maximum chunk sizes, respectively).

The deduplication ratios from the parallel CDC are reduced

by 6%∼25% compared to those of the sequential CDC.
The other limitation of many parallel CDC algorithms, in

particular the multithreading chunking algorithms, is that

they can only be accelerated with multiple cores, and can-

not take advantage of instruction-level parallelism offered

by the SIMD platforms, such as AVX or GPUs. The reason

is that SIMD requires simultaneous execution of the same

operation on different data. Any programs with frequent

branches cannot be efficiently executed on such platforms.

However, the chunking process does have frequent branches.

At the same offset for different segments, some may detect

valid chunk boundaries while others may not. As a result,

applying existing CDC algorithms on the SIMD platforms

cannot deliver the desired performance one may expect.

In the meantime, it becomes more and more important to

leverage the SIMD platforms for compute-intensive tasks,

such as chunking, for three reasons. One is that the cost per

CPU core increases superlinearly as we move to processors

with more cores. Using processors with a reasonable number

of cores is a necessity for keeping the hardware cost within

the budget. The second reason is that SIMDplatforms provide

better performance and power efficiency, as they can process

multiple data elements in a single instruction. The third

reason is these SIMD platforms are already or will soon be

available in enterprise storage systems. On a backup system,

compute-intensive chunking job is certainly a good candidate

to utilize them. By offloading chunking to SIMD platforms,

we can free up the CPU resources for other tasks, such as

compression. These motivate us to re-examine parallel CDC

to make it compatible with the SIMD platform.
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Our Contribution. In this work, we identify the root

cause of deduplication ratio degradation of existing parallel

CDC methods and provide quantitative analysis on it using

real-world datasets. We propose SS-CDC, a two-stage par-

allel chunking algorithm, that can be parallelized by SIMD

platforms and meanwhile provide chunking invariability. We

implemented SS-CDC with Intel AVX instructions as a case

study. To the best of our knowledge, this work is the first

to use Intel AVX instructions for parallel chunking. Our ex-

periments with real-world datasets show that compared to

existing multithreading CDC method, SS-CDC can improve

the deduplication ratio by about 47%, and achieve superlin-

ear speedups (higher than the number of cores) [26] of up to

additional 3.3× by exploiting parallelism from AVX.

2 BACKGROUND AND RELATEDWORK

In this section we provide additional background on chunk-

ing techniques of data deduplication, especially the time-

consuming content-defined chunking and efforts on its par-

allelization.

2.1 Fixed vs. Variable-size Chunking

A file can be partitioned into either fixed-size or variable-size

chunks for deduplication. With fixed-size chunking, chunk

boundaries are determined at offsets of multiple of a unit

size. It is usually used in primary storage systems where the

performance is critical, such as NetApp All Flash FAS [19]

or Pure Storage [20], due to its high chunking speed. How-

ever, fixed-size chunking cannot address the issue of bound-

ary shifting due to data insertions or deletions in a file. To

this end, variable-size chunking, whose chunk boundaries

are defined by file content, is proposed so that duplicate

chunks can be identified even after file data shifting. In the

so-called content-defined chunking (CDC) algorithm, a fixed-

size rolling window is used to scan a file in a byte-by-byte

manner to determine chunk boundaries. For the rolling win-

dow at any byte offset, a hash value is computed and com-

pared to a predefined value. If they match, a chunk boundary

is declared at the end of the window. Otherwise, the rolling

window moves forward by one byte. And the process is re-

peated. To avoid generating too small or too large chunks,

the minimum-chunk-size and maximum-chunk-size thresh-

olds are defined. When a chunk boundary is declared, the

rolling window skips the following minimum-chunk-size

bytes. Meanwhile, a chunk boundary is immediately declared

once the chunk size reaches the maximum-chunk-size.

It is noted that in the CDC chunking the process of de-

termining a sequence of boundaries in a file is inherently

sequential, as declaration of a new boundary is not only de-

pendant on the hash value of the current rolling window,

but also on the previous boundary’s position. This places

Segment boundary

Skipped boundary

Before change 

After change

B1 B2 B3

Minimum chunk size

Determined chunking boundary

Segment 1 Segment 2

B4 B5 B6

B’4 B’5 B’6 B’7

Inserted data

B1 B2 B3

Segment 1 Segment 2

Figure 2: An example showing how deduplication opportu-

nities are lost in existing segment-based CDC methods.

a challenge on its effective parallelization. Meanwhile, it is

important to accelerate the chunking process as it is highly

compute-intensive and can become the performance bottle-

neck of the system. There are two categories of efforts for

accelerating chunking process, which are optimization of

the rolling hashing and parallel chunking.

2.2 Optimizing Rolling Hashing

In CDC, a hash value is computed over the content of a rolling

window at almost every byte offset of a file. As a result, the

computation cost of the rolling hash function has a signifi-

cant impact on the chunking speed. Lightweight hash func-

tions have been proposed to reduce the cost. Gear [29] uses a

more lightweight hash function requiring only one bit-shift,

one add, and one table lookup, while Rabin fingerprint, such

as CRC used in this paper, requires two bit-shift, two XOR

operations, and two table lookups. FastCDC [30] proposed a

few techniques to accelerate the Gear-based chunking pro-

cess. AE [32] is a non-rolling-hash-based chunking algorithm

that employs an asymmetric rolling window to identify ex-

tremums of data stream as boundaries. Yu et al. [31] use two

functions, one lightweight and the other heavyweight, to

select a chunk boundary. A simpler condition is tested first.

Only when the condition is satisfied are additional compu-

tation steps performed. These techniques are orthogonal to

SS-CDC, and many of them can be parallelized and acceler-

ated using the SS-CDC technique.

2.3 Parallel Chunking and its Limitations

Another approach to speed up CDC is to parallelize and

run the algorithm on parallel hardware. Many backup sys-

tems [7, 18, 28] have taken the approach to partition the

input files into segments and use a thread to chunk a seg-

ment independently. With this approach, we can leverage

multi-core processors to achieve parallel chunking. However,

it does not guarantee chunking invariability and compro-

mises the deduplication ratio. And it cannot fully exploit the

parallelism on an SIMD hardware.
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Regarding the impact on deduplication ratio, Figure 2 il-

lustrates how a data insertion changes the segment bound-

aries and thus chunk boundaries, leading to the failure in

detecting identical data in the second segment using the

segment-based parallel chunking approach. Hash values for

rolling windows at offsets B1, B2, ..., B6, and B
′
4, B

′
5, B

′
6, and

B′7 all match the predefined value and thus these offsets may
potentially be chunk boundaries. Before the insertion, B′4, B

′
5,

B′6, and B
′
7 are too close to their respective previous chunks

(within the minimum chunk size) and thus were not selected

as chunk boundaries. Instead, B4, B5, and B6 were selected.
After the insertion of a few bytes at the beginning of the

file, as shown in Figure 2, the second segment shifts to the

left by the same number of bytes. Now B′4, B
′
5, B

′
6, and B

′
7

become valid chunk boundaries and accordingly invalidate

original chunk boundaries at offsets B4, B5, and B6. For the
second segment, the new chunks are unlikely to be identical

to the old ones and cannot be deduplicated. In general, data

insertions or deletions will shift segment boundaries, which

can change chunk boundaries and reduce deduplication ratio.

The root cause of the reduction is that segment boundaries

are not defined by data content, though chunks within each

segment are. In contrast, in a sequential CDC algorithm ev-

ery chunk is content-defined without impact of boundaries

defined by the segmentation.

There have been a few parallel chunking approaches. The

chunking operation in P-Dedup uses a segment-based and

multithreading approach [28]. It made efforts to achieve

chunking invariability. After chunks within each segment

are determined, a master thread computes additional rolling

hashes for the data between any two adjacent segments and

declares a new chunk boundary whenever it finds a matching

hash value. However, this approach only produces additional

small chunks and cannot ensure chunking invariability.

The only work we are aware of that guarantees chunking

invariability and also provides multithreading chunking is

MUCH [27]. In MUCH, data is partitioned into segments and

each segment is assigned to one thread for parallel chunking.

To ensure chunking invariability, it introduces a chunk mar-

shalling stage to additionally process chunks obtained within

each segment, which includes coalescing chunks that are

smaller than the minimum chunk size and splitting chunks

that are larger than the maximum chunk size. Nevertheless,

MUCHwas designed as amultithreading chunking algorithm

without consideration of running on an SIMD hardware. As

a result, it cannot be applied on AVX or GPUs.

Shredder [2] is a parallel chunking scheme that is designed

for running on GPUs. A major issue addressed in its design

is to reduce the overhead of data transfer from the main

memory to the GPU device’s local memory and to minimize

its performance impact on the chunking. However, because

the window does not roll over segment boundaries, chunk

Table 1: Comparison of existing parallel chunking algo-

rithms with SS-CDC

Chunking

invariability

Multi-core GPU AVX

P-Dedup No Yes No No

MUCH Yes Yes No No

Shredder No No Yes Maybe

SS-CDC Yes Yes Yes Yes

boundaries in corresponding regions can be missed. Thus,

Shredder does not guarantee chunking invariability.

Table 1 summarizes existing parallel chunking approaches

and compares them with our approach, SS-CDC. SS-CDC

is the only approach that guarantees chunking invariability

while at the same time enables parallel chunking on multi-

core processors, AVX, and GPUs.

3 THE DESIGN

SS-CDC is a new CDC approach which enables high par-

allelism for CDC chunking to utilize parallel hardware’s

computing power without compromising deduplication ra-

tio. The key insight of the work is that the chunking process

can be separated into two tasks. One task is for rolling win-

dow computation to generate all potential chunk boundaries,

which is expensive but can be performed in parallel in differ-

ent segments. The second task is to select chunk boundaries

out of the candidate ones so that they meet the minimum

and maximum chunk size requirements, whose execution

has to be serialized across the segments but is lightweight.

Accordingly, SS-CDC separates the chunking process into

two stages, one for each task. As both the rolling window

computation in the first stage and the searching for final

chunk boundaries in the second stage are conducted in par-

allel, the CDC chunking is almost fully parallelized at any

reasonably small granularity. Meanwhile, as the determina-

tion of chunk boundaries is performed sequentially, SS-CDC

produces identical set of chunk boundaries and the same

deduplication ratio as the sequential CDC.

3.1 Decoupling Rolling Hashing from
Chunk Boundary Determination

For rolling window based CDC, a chunk boundary is de-

clared at the end of the current window only when two con-

ditions are met. First, the hash value of the contents within

the rolling window matches a predefined value. Second, the

size of the chunk is within the range of the minimum and

maximum chunk sizes. Instead of simultaneously checking

both conditions at an offset, SS-CDC separates them into

two stages. Specifically, in the first stage a hash value for

each rolling window is calculated and compared with the

predefined value. A chunk boundary candidate is declared
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Figure 3: The two stages of SS-CDC algorithm.

Each thread continues the rolling hashing for extra

(rolling_window_size - 1) bytes from the next segment,

donated as E1, E2 and E3 in the figure. P0, P1, P2, and P3 are

processes (or threads) for chunking.

at the end of the rolling window if the hash value matches.

At the end of this stage, it produces a set of chunk bound-

ary candidates which satisfy the first condition. During the

second stage, final chunk boundaries are selected from the

candidates, which meet the minimum and maximum chunk

size constraints (the second condition).

Figure 3 illustrates operations involved in the two stages.

The input data is first partitioned into equal-size segments

(S1, S2, S3, and S4), each of which is assigned to a thread for
identifying chunk boundary candidates. To determine chunk

candidates at every offset, a thread working on a segment

will include the extra (rollinд_window_size − 1) bytes from
the next segment for rolling window computation, which are

illustrated as E1, E2, and E3 in Figure 3. The hash value of each
rolling window is calculated and compared to a predefined

value and the result is recorded in a bit array, where each

bit indicates whether there is a hash value match for the

corresponding rolling window. Multiple bits in the bit array

can be set simultaneously using SIMD instructions without

using locks. For an input data with N bytes, the output bit
array will be of N bits 3. A bit ‘1’ at the bit-offset k in the
bit array indicates a chunk boundary candidate at the byte-

offset k in the input file. After all candidates are identified,
SS-CDC enters its second stage where the bit array produced

by the first stage is scanned from its beginning, searching for

the ‘1’ bits that meet the minimum and maximum chunk size

constraints. These offsets are the final chunk boundaries.

3.2 Parallelizing Operations in SS-CDC

To achieve parallel chunking performance, SS-CDC paral-

lelizes both of its stages to take full advantage of the parallel

hardware. It is straightforward to parallelize computation in

the first stage. We assign each segment to a different thread,

3The additional memory to store the bit array can be freed or reused as

soon as the chunking is completed.

and the rolling window hashing and comparison are per-

formed independently in each thread in parallel. However,

the second stage must be performed by sequentially check-

ing the bit array in a bit-by-bit manner to find the next chunk

boundary which meets the minimum and maximum chunk

size constraints. With the first stage being optimized, the

runtime from the second stage becomes significant.

To address this issue, we observed that the bit array con-

tains mostly ‘0’ bits, with only a few ‘1’ bits. For example,

with an expected average chunk size of 4KB, there will be

one ‘1’ bit in every 4000 bits on average. The bit array can

be represented as an array consisting of values of a longer

data type, such as 32-bit integers. By comparing whether the

next 32-bit integer is 0, we effectively check the next 32 bits

in the bit array. When a non-zero value is found, a bit-by-bit

checking is needed. Furthermore, SIMD instructions [21]

(and multiple threads) can be used to check multiple values

in parallel and we can skip the ‘0’ bits and locate values with

‘1’s in the array quickly.

3.3 SS-CDC on AVX Instructions

SS-CDC can be easily deployed on a wide range of paral-

lel platforms, including multi/many-core systems, GPGPU

platforms and others supporting SIMD instructions. As a

case study, we implemented SS-CDC with Intel Advanced

Vector Extensions 512 (AVX-512) instructions [6, 21], which

are extensions to the x86 ISA for Intel and AMD processors,

and provide vector operations in an SIMD manner for some

instructions. They are generally available in today’s main-

stream processors [4, 5] and provide the benefit of parallel

execution without requiring extra hardware support. We

leave it as future work to port SS-CDC to other parallel hard-

ware. For processors with AVX-512 instructions support, the

extended registers are 512-bit long.

In the prototype, we use CRC-32 (with the polynomial

0xedb88320) as the rolling hash function for detecting chunk

boundaries. The hash value of a rolling window with size w

and ending at offset is calculated as shown in Equations 1

and 2. Like many other efficient CRC implementations [10],

we pre-compute two static tables, crcu and crct, and use them

to remove and add contribution of a byte in the rolling hash

computation. In Equation 1, the contribution of the leftmost

byte leaving the window is removed, while in Equation 2 the

contribution of the byte entering the window from the right

is added to the value. We use a rolling window of 256 bytes.

hash_tmp = hash_old ⊕ crcu[buf [offset − w]] (1)

hash_new = (hash_tmp >> 8) ⊕ crct[buf [offset]] (2)

In the first stage of SS-CDC, the input file, which are parti-

tioned into 16 equal-size segments, are processed in parallel

to identify all potential chunk boundaries. We use an AVX
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register (named Rc ) to store 16 CRC values for the current
16 rolling windows, one for each segment. The execution of

an AVX-512 instruction can be viewed as 16 parallel threads

performing the same operation. For the load operation, AVX-

512 instructions support loading 16 32-bit values from 16

different locations in the memory to an AVX register. So the

bytes entering and leaving a rolling window from a segment

are loaded with 32 bits at once into registers. To remove

the contribution of the byte leaving the window, for each

segment the leftmost byte in the corresponding window is

used as the index to retrieve a value from the crcu table. The

16 values from the table, one for each segment, are stored

in an AVX register (named Ru ). Then, the result of (Rc xor
Ru ) is stored in a register as hash_tmp. Similarly, we add

the contribution of the byte entering the window for each

segment by using the byte as the index to retrieve a value

from the crct table, and xor the 16 values with hash_tmp

right-shift by 8 bits, to obtain hash_new.

One challenge in the implementation is about the two

table lookups in each iteration of the computation, which can

be very time-consuming if performed sequentially because

it would require 16 separated memory accesses for each

lookup. One such example is to use the _mm512_set_epi32

instruction to directly set an AVX register with 16 values

from one of the tables. For higher efficiency, we instead

accelerate the table lookup by performing parallel fetching

with the _mm512_i32gather_epi32 instruction, and reduce

the time spent on the first stage by over 50%. The second

stage checks 512 bits together using one AVX instruction by

taking advantage of widespread ‘0’ bits in the bit array. In

most cases, we will have 512 consecutive ‘0’ bits.

To detect a boundary, after skipping

minimum_chunk_size bits, we load the following 512
bits (as 16 32-bit integers) from the bit array to a register,

and use the _mm512_cmpneq_epi32_mask instruction to

compare it with 16 ‘0’s and generate a 16-bit mask indicating

whether there are non-zero integers. SS-CDC will continue

with the next 512 bits in the bit array unless non-zero

integer(s) are found or the maximum chunk size is reached,

which will declare a chunk boundary. Compared to scanning

the bit array one bit at a time, using the AVX instructions

accelerates the second stage by 30-40×, making its running
time account for only ∼2% of the total chunking time.

3.4 SS-CDC on Multiple Cores with AVX

By leveraging AVX instructions, our implementation of SS-

CDC is able to do parallel chunking among segments from a

single file on individual cores. However, parallel chunking

from a single core may still not provide sufficient chunking

bandwidth for a single file. In that case, we need to further

explore multiple cores to further improve the chunking band-

width. In addition, most backup systems need to support

multiple concurrent backup jobs. Existing backup systems

have exploited job-level parallelism and CPU core-level par-

allelism. With AVX, we can additionally exploit instruction-

level parallelism. In this section, we will discuss how we

scale SS-CDC chunking to multiple cores for single files and

then how to handle multiple backup jobs (or backup files).

To scale chunking for a single file to multiple cores, the

backup file is first partitioned into fixed-size segments, which

are placed into a segment queue. The system allocates the

number of cores for chunking for this backup job. A chunk-

ing thread is started at each core. It retrieves a batch of (N )
segments each time from the head of the queue for the first-

stage chunking. As a lock is required to enforce an exclusive

access to the queue, a larger N is preferred to reduce the

locking cost. Another benefit for a thread to retrieve and pro-

cess multiple (contiguous) segments at a time is it only needs

to calculate the first hash from scratch for each batch and

the rest can be calculated incrementally, which is cheaper. A

barrier synchronization is used at the end of the first-stage

processing to synchronize the threads. After this, one of the

threads proceeds to the second stage to select the final chunk

boundaries according to the bit array produced in the first

stage. To avoid high synchronization time among the first-

stage threads due to an unbalanced load, a smaller segment

batch (N ) is preferred. To strike a balance between these two
requirements on the batch size, for a segment size of about

0.5% of a file size using an N value of 2-8 generally leads to
good performance. And our experiments find that the perfor-

mance is not sensitive to the value in the range. Therefore,

SS-CDC uses 4 as N ’s default value. Since the second stage
is very lightweight, the performance is acceptable to do it

sequentially. Besides, the other cores that have completed

their first-stage chunking can be used to process other files.

To handle multiple concurrent backup jobs, the system

can use a policy to determine how many cores to allocate

for each job for chunking. The system could allocate a single

core for chunking for each job if that can provide sufficient

chunking bandwidth or more cores to it if desired. The sys-

tem could allocate cores for chunking evenly among backup

jobs or based on priority. For a given number of cores and

the number of jobs, the combination of how to allocate cores

among jobs is very large. In our evaluation, we will instead

focus on demonstrating SS-CDC’s scalability with parallel

chunking by either using all cores to chunk one file at a time

or use each core to chunk a different file.

To make the presentation more concise, we follow the

Flynn’s taxonomy [25], which includes SIMD, to introduce

the following terms. SFMS (Single File Multiple Segments)

refers to parallel chunking of a single file at a time on multi-

ple cores and parallel chunking of multiple segments within
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each AVX-supported core. Similarly, SFSS (Single File Single

Segment) refers to parallel chunking of a single file on multi-

ple cores without using AVX for parallel chunking within a

core. MFMS (Multiple Files Multiple Segments) is similar to

SFMS except that multiple files, each at a different core, are

processed at the same time. MFSS (Multiple Files Single Seg-

ment) is similar to SFSS except that multiple files, each at a

different core, are processed concurrently without using AVX

within each core. To show the additional parallelism from

using AVX, we will compare the speedups between MFMS

and MFSS and between SFMS and SFSS in our evaluation.

4 EVALUATION

We answer the following questions in the evaluation. First,

how much speedup can SS-CDC provide by leveraging AVX

at a single core? To answer this question, we compare the

chunking time of SS-CDC with sequential CDC. Second,

how does SS-CDC with AVX scale to multiple cores? We

use the sequential CDC as the baseline and compare the

speedups from SS-CDC with existing multithreading CDC,

for both single-file chunking and multi-file chunking. Finally,

we evaluate the deduplication ratio reduction (degradation)

from existing segment-based multithreading CDC.

The experiments were conducted on a Dell-EMC Pow-

erEdge T440 server with 2 Intel Xeon 3.6GHz CPUs, each

with 4 cores and 16MB LLC. The server is equipped with

256GB DDR4 memory and installed with Ubuntu 18.04 OS.

The processors support Intel AVX-512 instructions. The

datasets are stored on the local disks. In the measurements,

the chunking time only includes the time spent on determin-

ing chunking boundaries, and excludes the time for loading

the data to memory before the chunking is performed. We

use 7 real-world datasets as shown in Table 2. For the Linux

source code, we downloaded all 1013 versions (from 3 to

4.9) from the Linux Kernel Archives [23]. Each version is

converted into a file of the mtar format [15] for backup. The

others are six groups of Docker images, downloaded from

Docker Hub [9], where each image is a tar file. In the fig-

ures showing experiment results, measurements about the

datasets are presented in the order of their deduplication

ratios, from low to high. Unless noted, we use 1MB as the

segment size for dispatching data to threads, and 2KB, 16KB,

and 64KB, as the minimum, expected average, and maximum

chunk size respectively, as those in LBFS [16].

4.1 Chunking Speed

With the instruction-level parallelism enabled by the AVX

instructions, we expect to see speedups in chunking for both

one core and multiple cores for SS-CDC.

Results on One Core.We first run the chunking process

on one core with different datasets and see how the use of
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Figure 4: Chunking speed of single-threaded SS-CDC and

sequential CDC with one core. The minimum, expected av-

erage and maximum chunk sizes are 2KB, 16KB, and 64KB,

respectively.

the AVX instructions improves the chunking performance.

Figure 4 shows the chunking throughput of SS-CDC and

sequential CDC with one thread running on one core. The

speedups are very consistently, about 3.3×, though different
datasets have different deduplication ratios. The speedups

are achieved by leveraging the instruction-level parallelism

within a single core and the deduplication ratio of a specific

dataset does not impact the speedup, as SS-CDC always scans

the complete dataset.

Although the speedup is significant, it may be lower than

one might expect in the light of parallelism provided by the

AVX-512 instructions, where it processes 16 segments con-

currently. There are several reasons. First, SS-CDC actually

needs to read more data and do more rolling hash calculation

than sequential chunking, as it does not skip the input data

using the minimum chunk size. As we will show, the mini-

mum chunk size has a considerable impact on the speedups

of SS-CDC. Second, while the chunking process is CPU inten-

sive, it also includes substantial memory accesses for loading

data from the memory to registers. While SS-CDC leverages

the AVX instructions and reduces number of instructions

executed for chunking, it does not reduce the amount of data

that needs to be loaded from the memory. Third, since we

conduct chunking for 16 segments concurrently, data are ac-

cessed at 16 different memory addresses in parallel. Existing

DRAM controllers and CPU caches may not be optimized to

handle such workloads. Nevertheless, for all datasets we ex-

amined, we achieved more than 3× speedups over sequential
CDC.

While the speedups are not impacted by the deduplica-

tion ratio of a dataset, the minimum chunk size has a direct

impact on the speedup of SS-CDC. The reason is that the

sequential CDC skips the minimum chunk size of bytes after

each new chunk boundary is detected while SS-CDC has

to scan and calculate a hash for every byte. To understand
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Table 2: Real-world datasets used in the experiments. All the Docker images are downloaded from Docker Hub [9].

Name Size (GB) # of files Dedup Ratio Description

Cassandra 14.2 40 5.0 Docker images of Apache Cassandra, an open-source storage system [3].

Redis 4.1 34 7.2 Docker images of the Redis key-value store database [22].

Debian 9.5 92 15.8 Docker images of Debian Linux distribution (since Ver. 7.11) [12].

Linux-src 570 1013 16.4 Uncompressed Linux source code (v3.0∼v4.9) downloaded from the website of Linux
Kernel Archives [23].

Neo4j 46.0 140 19.0 Docker images of neo4j graph database [17].

Wordpress 181.7 501 22.0 Docker images of WordPress rich content management system [14]

Nodejs 800.0 1567 41.4 Docker images of JavaScript-based runtime environment packages [13]
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Figure 5: Chunking speedups when different minimum

chunk sizes are used. The expected average and maximum

chunk sizes are 16KB and 64KB, respectively.

the impact of the minimum chunk size on SS-CDC’s perfor-

mance advantage, we measured the chunking speedups with

different minimum chunk sizes. The results are presented in

Figure 5. As expected, the chunking speedup is decreased

when the minimum chunk size is increased. However, even

with a large minimum chunk size (e.g., with a 8KB minimum

chunk size and a 16KB average chunk size, 50% of the input

data can be skipped in the sequential CDC baseline.), the

chunking speedups are still substantial, about 2.5×. As the
2KB minimum chunk size is commonly used, we adopt it as

the default value in the evaluation.

Results on Multiple cores. Next we evaluated the scal-

ability of the chunking speed of SS-CDC on multiple cores.

Specifically, we examined multithreading SFMS (scaling SS-

CDC to multiple cores for single files) and MFMS (scaling

SS-CDC to multiple cores for multiple files). We compared

them with multithreading regular CDC methods (SFSS and

MFSS) that do not use AVX. Their chunking speeds were

normalized to the sequential CDC without using AVX, one

file at a time, on one core.

To examine how SS-CDC scales for single file chunking,

we look at how the chunking speedup increases when we use

more threads for chunking a single file. After we establish

SS-CDC scales for single file chunking, we examine multiple

file chunking where one file is assigned to only one thread

and we increase the number of concurrent files being chun-

ked. While in a real deployment, there are many different

ways to assign chunking threads among backup jobs, the

experiments serve our purpose to demonstrate the scalabil-

ity of SS-CDC for both single file chunking and multiple

file chunking. For each dataset, we change the number of

chunking threads from 1 to 8 and show their speedups over

sequential chunking using one thread.

The results are shown in Figure 6 for single file chunking

and Figure 7 for multiple file chunking. From Figures 6(a)

and 7(a) (note the Y axes in the (a) and (b) figures use dif-

ferent ranges), we can see multithreading regular CDC re-

ceive a speedup approximately proportional to the number

of cores (or threads). This is especially true for the MFSS case

(Figure 7a) where each file is processed independently by a

chunking thread. For example, for the Cassandra dataset, its

MFSS speedups are 1.0, 2.0, 3.9, 7.5 on 1, 2, 4, and 8 cores,

respectively. The speedups become smaller (1.0, 1.9, 3.6 and

6.3) with its SFSS implementation, where one file is parti-

tioned into segments for the threads to process in parallel,

resulting in overheads for using locks at the segment queue

and waiting for all chunking threads to complete the first

stage.

In contrast, with its use of the AVX instructions, multi-

threading SS-CDC achieves superlinear chunking speedups.

Still take the Cassandra dataset as an example. Its MFMS

speedups are 3.5, 6.8, 12.5, and 23.6 on 1, 2, 4, and 8 cores,

respectively, which shows the extra speedup of using AVX

instructions scale well with the number of cores (consis-

tently ∼3×). When scaling SS-CDC’s performance to mul-
tiple cores for single-file chunking in SFMS, the speedups

become smaller. For example, the SFMS speedups for the

Cassandra dataset reduces to 3.1, 5.4, 9.8, and 17.8 on 1, 2, 4,

and 8 cores, respectively. Multithreading SFMS suffers from

the same bottlenecks as multithreading SFSS, such as the

use of a lock at the segment queue, barrier synchronization

at the end of the first stage, and serialization for the second

stage. Besides, SFMS needs to do more rolling hash calcula-

tion for the extra bytes, as shown in E1, E2, or E3 in Figure 3.
In spite of this, SFMS still achieves superlinear speedups,

though it cannot achieve the same speedups as MFMS. In the

meantime, it unlocks the opportunity of exploiting intra-file

chunking parallelism.
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Figure 6: Chunking speedups of multithreading regular CDC and multithreading SS-CDC over sequential CDC at one core

with different datasets and thread/core counts when a file is processed by all threads.
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(a) MFSS Regular CDC
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Figure 7: Chunking speedups of multithreading regular CDC and multithreading SS-CDC over sequential CDC at one core

with different datasets and thread/core counts when each file is processed by one thread.
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Figure 8: Deduplication ratio reduction of the regular mul-

tithreading CDC chunking approach (SFSS), compared with

that of SS-CDC’s SFMS implementation (on 8 cores) when

different segment sizes are used.

4.2 Deduplication Ratio

SS-CDC is designed to provide chunking invariability. When

used in either MFMS or SFMS, it can always achieve the

same deduplication ratio as that of sequential CDC. In fact,

during our development of SS-CDC, we compared the chunk

boundaries from SS-CDC with sequential CDC, to verify

our SS-CDC implementation is correct. However, existing

segment-based single file parallel chunking (SFSS) cannot

achieve this chunking invariability, and experience dedupli-

cation ratio reduction. To gauge significance of the reduction,

we compare the deduplication ratios of SS-CDC’s SFMS im-

plementation with SFSS and conduct a quantitative study

where we vary the segment size and the chunk size.

Figure 8 presents the deduplication ratio reduction from

SFSS with different segment sizes. The baseline is the dedu-

plication ratios from SS-CDC (and also sequential CDC). As

shown, SFSS can suffer significant deduplication ratio reduc-

tions when using different segment sizes. For example, the

reduction is about 45% when the segment size is 512KB for

the Node dataset. The reduction decreases when increasing

the segment size. However, for some datasets even when the

segment size is large, the reduction can still be substantial.

For example, for the Node dataset, the reduction is about 18%

when the segment size is 2MB. In many scenarios, including

execution at GPGPU’s cores, it is necessary to avoid using

very large segments to exploit sufficient parallelism or/and

to accommodate the segments in the limited device local

memory. Existing segment-based parallel chunking, as in

SFSS, has the fundamental limitation that requires a user

to make a tradeoff between fine-grain parallelism by using

a small segment size and a high deduplication ratio with a

94



Cassandra Redis Debian Linux-src Neo4j Wordpress Node

Datasets

0

10

20

30

40

50

D
ed
u
p
R
at
io
R
ed
u
ct
io
n
(%
) Mini=2 KB

Mini=4 KB

Mini=8 KB

(a) Varying minimum chunk sizes
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(b) Varying average chunk sizes
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Figure 9: Reduction of deduplication ratio (in percentage) for multithreading CDC (SFSS) on 8 cores, compared to SS-CDC

(multithreading SFMS) with different chunk size configurations. The segment size is 1MB.

large segment size.With SS-CDC, a user can use any segment

size without deduplication ratio reduction.

Next, we turn to look at how the chunk size impacts dedu-

plication ratio for SFSS. We vary all three parameters con-

trolling the chunk size, including the minimum, the expected

average, and the maximum chunk sizes, one at a time. The

deduplication ratios are compared with SS-CDC.

Across all three figures in Figure 9, in general when a

dataset has a higher deduplication ratio, the reduction of

deduplication ratio from SFSS is more significant. When

there are more duplicates in the dataset, SFSS is more likely

to turn a duplicate chunk into a unique one due to chunk

boundary shifts because of file segmentation. The dedupli-

cation ratio reduction is most significant when we vary the

minimum chunk size, ranging from 10% to 38% as shown

in Figure 9a. Furthermore, when we increase the minimum

chunk size, the reduction becomes larger. With a larger min-

imum chunk size, it increases the possibility of finding a

matching rolling hash value in that window and having dif-

ferent chunks between sequential CDC and SFSS. This can

leave the use of SFSS in a dilemma where a larger mini-

mum chunk size can skip more bytes for better chunking

performance while a smaller minimum chunk size can avoid

substantial deduplication ratio reduction.

The impacts of the average chunk size on deduplication

ratio for SFSS are more complicated. On one hand, with a

larger average chunk size, there are fewer chunks and thus

fewer chunk boundaries. We have a smaller probability to

find candidate chunk boundaries in the minimum chunk size

window that could lead to different chunks in segment-based

SFSS. On the other hand, with a larger average chunk size,

it takes more bytes for SFSS to synchronize back to chunk

boundaries as those in sequential CDC as there will be fewer

candidate chunk boundaries. To investigate which factor

has a larger impact on the deduplication ratio in SFSS, we

conduct experiments by varying the expected average chunk

size. As shown in Figure 9b, with a larger average chunk

size the deduplication ratio reduction is more significant,

which indicates the second factor has a bigger impact on

deduplication ratio reduction.

In addition to the minimum and the average chunk sizes,

the maximum chunk size also affects deduplication ratio. Fig-

ure 9c shows the deduplication ratio reduction when varying

the maximum chunk size. With a larger maximum chunk

size, the deduplication reduction is more significant. By us-

ing a larger maximum chunk size, the size of the chunks

are more likely larger as more bytes can be scanned when

deciding the next chunk boundary. So once a unique chunk

is generated due to the segmentation, it can potentially make

a larger range of bytes not deduplicated.

To summarize, existing parallel chunking using seg-

ments suffers significant deduplication ratio reduction when

they exploit segment-based parallelism. SS-CDC guarantees

chunking invariability and achieves parallel chunking per-

formance without impacting deduplication ratios.

5 CONCLUSIONS

In this paper, we presented SS-CDC, a new parallel CDC that

takes full advantage of the parallel computing power of the

underlying hardware for high chunking speed without com-

promising deduplication ratio. SS-CDC separates the chunk-

ing process into a stage that is compute intensive but easy to

parallelize and a second stage that is sequential but with low

runtime cost. It can achieve almost full parallel chunking

performance and the same deduplication ratio as sequential

CDC. With a prototype based on AVX-512, we demonstrated

SS-CDC can be implemented on an SIMD platform and eval-

uated that we can achieve parallel chunking performance for

both single file chunking and multi-file chunking. With SS-

CDC, we can now offload compute-intensive CDC to SIMD

platforms to exploit extra instruction-level parallelism to

accelerate chunking and get high deduplication ratios.
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