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ABSTRACT KEYWORDS
Data deduplication has been widely used in storage systems Storage, Deduplication, Content-defined-Chunking (CDC)

to improve storage efficiency and I/O performance. In partic-
ular, content-defined variable-size chunking (CDC) is often
used in data deduplication systems for its capability to detect
and remove duplicate data in modified files. However, the
CDC algorithm is very compute-intensive and inherently
sequential. Efforts on accelerating it by segmenting a file and
running the algorithm independently on each segment in
parallel come at a cost of substantial degradation of dedupli-
cation ratio.

In this paper, we propose SS-CDC, a two-stage parallel
CDC, that enables (almost) full parallelism on chunking of a
file without compromising deduplication ratio. Further, SS-
CDC exploits instruction-level SIMD parallelism available
in today’s processors. As a case study, by using Intel AVX-
512 instructions, SS-CDC consistently obtains superlinear
speedups on a multi-core server. Our experiments using real-
world datasets show that, compared to existing parallel CDC
methods which only achieve up to a 7.7Xx speedup on an
8-core processor with the deduplication ratio degraded by
up to 40%, SS-CDC can achieve up to a 25.6X speedup with
no loss of deduplication ratio.
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1 INTRODUCTION

Backup storage is a critical infrastructure in protecting users
from data loss incidents, such as incautious data deletion.
To minimize the performance impact on production ser-
vices, backup jobs are usually scheduled after midnights
or during weekends. To complete backing up of a large
amount of data within a tight time window, the system has
to provide sufficiently high backup performance [11, 33].
The single-stream’ backup throughput measures how fast a
system can process one backup stream. With a higher single-
stream backup throughput, the backup system can complete
a backup job more quickly within the backup window. While
many backup systems support concurrent backups, they
usually have a limit on the maximum number of concurrent
backup streams [8, 18] to prevent resource contention, which
could degrade the performance of single-stream backups.

Using Deduplication to Improve Space Efficiency.
Along with the backup performance, space efficiency is also
an important aspect of a backup storage system. Backup files
usually contain a large amount of duplicate data due to small
changes between two consecutive backups. Accordingly, data
deduplication is often used to detect and remove redundant
data among backups. A data deduplication scheme partitions
input files into small chunks and only unique chunks are
stored in the system. Deduplication ratio, which is defined as
the ratio of the original data size and the size after deduplica-
tion, is used to measure its effectiveness in removing dupli-
cate data. Prior research [24] has demonstrated significant
space saving from deduplication, achieving deduplication
ratios from 2~14x in production deployments.

1A backup client often creates a tar-like backup file and transfers backup
files as backup streams to the backup system.
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Figure 1: Deduplication ratio reduction caused by existing
parallel CDC approaches.

However, deduplication also adds significant performance
overhead to the system, especially with the variable-size
chunking process that is commonly used in backup storage
systems. A typical variable size chunking algorithm, such
as content-defined chunking (CDC) [16], scans almost every
byte in an input file using a fixed-size rolling window and
calculates a hash value for each rolling window?. A chunk
boundary is determined when two conditions are met. One
is that the chunk size is within the range of pre-defined min-
imum and maximum chunk sizes. And the other is that the
hash value of the rolling window matches a pre-defined value.
As we need to calculate a hash value for the rolling window
at almost every byte offset of a file, this process consumes
significant CPU resource and has become a performance
bottleneck in many backup storage systems [1, 2, 30].

Accelerating CDC-based Deduplication. To alleviate
the bottleneck, many researchers have proposed to partition
an input file into segments, and leverage parallel hardware,
such as multi-core processors or GPGPU platforms, to per-
form chunking on the segments in parallel, termed as parallel
CDC hereafter. While they receive performance benefit of
parallelism to some extent, they have at least one of the two
limitations. They do not provide either guarantee of chunk-
ing invariability [27] or compatibility to the SIMD platforms,
such as Advanced Vector Extensions (AVX) [6] that is avail-
able in recent Intel and AMD processors or GPUs. We discuss
each of the two limitations in the below.

Chunking invariability requires that a parallel chunking
algorithm always generates the identical set of chunks in-
dependent of the parallelism degree and the segment size.
However, many parallel CDC algorithms do not provide this
guarantee. The chunks generated from a parallel chunking

2The hash function used here is different from the hash function used to
generate the fingerprint to uniquely identify a chunk. To support efficient
rolling hashing, we assume a hash function that can be incrementally calcu-
lated, such as CRC. For fingerprints, a cryptographic hash function, such as
SHAL1, is adopted to minimize hash collisions.

87

are usually different from those from a sequential chunking
of the same file (sequential CDC) and they are also influ-
enced by the segment size. The fundamental reason is that
the boundary of the next chunk in a file is determined not
only by contents in the chunk but also by the boundary of its
previous chunk. Besides, to detect a new boundary we need
to skip a certain number of bytes from the last boundary to
maintain a minimum chunk size before starting the rolling-
window-based hashing. Due to existence of this inherent
dependency, chunk boundaries produced by independently
performing CDC within individual segments are different
from those produced by sequential CDC on the entire file.
Since the segmentation enabling the parallelism is not based
on the file content, the parallel CDC usually has a dedupli-
cation ratio lower than the sequential CDC. Figure 1 shows
the deduplication ratios of sequential CDC and parallel CDC
using 1MB segments and chunk size configuration from Dell
EMC Data Domain (4KB, 8KB, and 12KB as the minimum,
expected average, and maximum chunk sizes, respectively).
The deduplication ratios from the parallel CDC are reduced
by 6%~25% compared to those of the sequential CDC.

The other limitation of many parallel CDC algorithms, in
particular the multithreading chunking algorithms, is that
they can only be accelerated with multiple cores, and can-
not take advantage of instruction-level parallelism offered
by the SIMD platforms, such as AVX or GPUs. The reason
is that SIMD requires simultaneous execution of the same
operation on different data. Any programs with frequent
branches cannot be efficiently executed on such platforms.
However, the chunking process does have frequent branches.
At the same offset for different segments, some may detect
valid chunk boundaries while others may not. As a result,
applying existing CDC algorithms on the SIMD platforms
cannot deliver the desired performance one may expect.

In the meantime, it becomes more and more important to
leverage the SIMD platforms for compute-intensive tasks,
such as chunking, for three reasons. One is that the cost per
CPU core increases superlinearly as we move to processors
with more cores. Using processors with a reasonable number
of cores is a necessity for keeping the hardware cost within
the budget. The second reason is that SIMD platforms provide
better performance and power efficiency, as they can process
multiple data elements in a single instruction. The third
reason is these SIMD platforms are already or will soon be
available in enterprise storage systems. On a backup system,
compute-intensive chunking job is certainly a good candidate
to utilize them. By offloading chunking to SIMD platforms,
we can free up the CPU resources for other tasks, such as
compression. These motivate us to re-examine parallel CDC
to make it compatible with the SIMD platform.



Our Contribution. In this work, we identify the root
cause of deduplication ratio degradation of existing parallel
CDC methods and provide quantitative analysis on it using
real-world datasets. We propose SS-CDC, a two-stage par-
allel chunking algorithm, that can be parallelized by SIMD
platforms and meanwhile provide chunking invariability. We
implemented SS-CDC with Intel AVX instructions as a case
study. To the best of our knowledge, this work is the first
to use Intel AVX instructions for parallel chunking. Our ex-
periments with real-world datasets show that compared to
existing multithreading CDC method, SS-CDC can improve
the deduplication ratio by about 47%, and achieve superlin-
ear speedups (higher than the number of cores) [26] of up to
additional 3.3% by exploiting parallelism from AVX.

2 BACKGROUND AND RELATED WORK

In this section we provide additional background on chunk-
ing techniques of data deduplication, especially the time-
consuming content-defined chunking and efforts on its par-
allelization.

2.1 Fixed vs. Variable-size Chunking

A file can be partitioned into either fixed-size or variable-size
chunks for deduplication. With fixed-size chunking, chunk
boundaries are determined at offsets of multiple of a unit
size. It is usually used in primary storage systems where the
performance is critical, such as NetApp All Flash FAS [19]
or Pure Storage [20], due to its high chunking speed. How-
ever, fixed-size chunking cannot address the issue of bound-
ary shifting due to data insertions or deletions in a file. To
this end, variable-size chunking, whose chunk boundaries
are defined by file content, is proposed so that duplicate
chunks can be identified even after file data shifting. In the
so-called content-defined chunking (CDC) algorithm, a fixed-
size rolling window is used to scan a file in a byte-by-byte
manner to determine chunk boundaries. For the rolling win-
dow at any byte offset, a hash value is computed and com-
pared to a predefined value. If they match, a chunk boundary
is declared at the end of the window. Otherwise, the rolling
window moves forward by one byte. And the process is re-
peated. To avoid generating too small or too large chunks,
the minimum-chunk-size and maximum-chunk-size thresh-
olds are defined. When a chunk boundary is declared, the
rolling window skips the following minimum-chunk-size
bytes. Meanwhile, a chunk boundary is immediately declared
once the chunk size reaches the maximum-chunk-size.

It is noted that in the CDC chunking the process of de-
termining a sequence of boundaries in a file is inherently
sequential, as declaration of a new boundary is not only de-
pendant on the hash value of the current rolling window,
but also on the previous boundary’s position. This places
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Figure 2: An example showing how deduplication opportu-
nities are lost in existing segment-based CDC methods.

a challenge on its effective parallelization. Meanwhile, it is
important to accelerate the chunking process as it is highly
compute-intensive and can become the performance bottle-
neck of the system. There are two categories of efforts for
accelerating chunking process, which are optimization of

the rolling hashing and parallel chunking.

2.2 Optimizing Rolling Hashing

In CDC, a hash value is computed over the content of a rolling
window at almost every byte offset of a file. As a result, the
computation cost of the rolling hash function has a signifi-
cant impact on the chunking speed. Lightweight hash func-
tions have been proposed to reduce the cost. Gear [29] uses a
more lightweight hash function requiring only one bit-shift,
one add, and one table lookup, while Rabin fingerprint, such
as CRC used in this paper, requires two bit-shift, two XOR
operations, and two table lookups. FastCDC [30] proposed a
few techniques to accelerate the Gear-based chunking pro-
cess. AE [32] is a non-rolling-hash-based chunking algorithm
that employs an asymmetric rolling window to identify ex-
tremums of data stream as boundaries. Yu et al. [31] use two
functions, one lightweight and the other heavyweight, to
select a chunk boundary. A simpler condition is tested first.
Only when the condition is satisfied are additional compu-
tation steps performed. These techniques are orthogonal to
SS-CDC, and many of them can be parallelized and acceler-
ated using the SS-CDC technique.

2.3 Parallel Chunking and its Limitations

Another approach to speed up CDC is to parallelize and
run the algorithm on parallel hardware. Many backup sys-
tems [7, 18, 28] have taken the approach to partition the
input files into segments and use a thread to chunk a seg-
ment independently. With this approach, we can leverage
multi-core processors to achieve parallel chunking. However,
it does not guarantee chunking invariability and compro-
mises the deduplication ratio. And it cannot fully exploit the
parallelism on an SIMD hardware.



Regarding the impact on deduplication ratio, Figure 2 il-
lustrates how a data insertion changes the segment bound-
aries and thus chunk boundaries, leading to the failure in
detecting identical data in the second segment using the
segment-based parallel chunking approach. Hash values for
rolling windows at offsets By, By, ..., B, and B}, Bz, By, and
B7, all match the predefined value and thus these offsets may
potentially be chunk boundaries. Before the insertion, B}, B,
B, and B, are too close to their respective previous chunks
(within the minimum chunk size) and thus were not selected
as chunk boundaries. Instead, By, Bs, and By were selected.
After the insertion of a few bytes at the beginning of the
file, as shown in Figure 2, the second segment shifts to the
left by the same number of bytes. Now B, B, B, and B
become valid chunk boundaries and accordingly invalidate
original chunk boundaries at offsets By, Bs, and Bg. For the
second segment, the new chunks are unlikely to be identical
to the old ones and cannot be deduplicated. In general, data
insertions or deletions will shift segment boundaries, which
can change chunk boundaries and reduce deduplication ratio.
The root cause of the reduction is that segment boundaries
are not defined by data content, though chunks within each
segment are. In contrast, in a sequential CDC algorithm ev-
ery chunk is content-defined without impact of boundaries
defined by the segmentation.

There have been a few parallel chunking approaches. The
chunking operation in P-Dedup uses a segment-based and
multithreading approach [28]. It made efforts to achieve
chunking invariability. After chunks within each segment
are determined, a master thread computes additional rolling
hashes for the data between any two adjacent segments and
declares a new chunk boundary whenever it finds a matching
hash value. However, this approach only produces additional
small chunks and cannot ensure chunking invariability.

The only work we are aware of that guarantees chunking
invariability and also provides multithreading chunking is
MUCH [27]. In MUCH, data is partitioned into segments and
each segment is assigned to one thread for parallel chunking.
To ensure chunking invariability, it introduces a chunk mar-
shalling stage to additionally process chunks obtained within
each segment, which includes coalescing chunks that are
smaller than the minimum chunk size and splitting chunks
that are larger than the maximum chunk size. Nevertheless,
MUCH was designed as a multithreading chunking algorithm
without consideration of running on an SIMD hardware. As
a result, it cannot be applied on AVX or GPUs.

Shredder [2] is a parallel chunking scheme that is designed
for running on GPUs. A major issue addressed in its design
is to reduce the overhead of data transfer from the main
memory to the GPU device’s local memory and to minimize
its performance impact on the chunking. However, because
the window does not roll over segment boundaries, chunk
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Table 1: Comparison of existing parallel chunking algo-
rithms with SS-CDC

Chunking Multi-core | GPU | AVX
invariability
P-Dedup | No Yes No No
MUCH | Yes Yes No No
Shredder | No No Yes | Maybe
SS-CDC | Yes Yes Yes Yes

boundaries in corresponding regions can be missed. Thus,
Shredder does not guarantee chunking invariability.

Table 1 summarizes existing parallel chunking approaches
and compares them with our approach, SS-CDC. SS-CDC
is the only approach that guarantees chunking invariability
while at the same time enables parallel chunking on multi-
core processors, AVX, and GPUs.

3 THE DESIGN

SS-CDC is a new CDC approach which enables high par-
allelism for CDC chunking to utilize parallel hardware’s
computing power without compromising deduplication ra-
tio. The key insight of the work is that the chunking process
can be separated into two tasks. One task is for rolling win-
dow computation to generate all potential chunk boundaries,
which is expensive but can be performed in parallel in differ-
ent segments. The second task is to select chunk boundaries
out of the candidate ones so that they meet the minimum
and maximum chunk size requirements, whose execution
has to be serialized across the segments but is lightweight.
Accordingly, SS-CDC separates the chunking process into
two stages, one for each task. As both the rolling window
computation in the first stage and the searching for final
chunk boundaries in the second stage are conducted in par-
allel, the CDC chunking is almost fully parallelized at any
reasonably small granularity. Meanwhile, as the determina-
tion of chunk boundaries is performed sequentially, SS-CDC
produces identical set of chunk boundaries and the same
deduplication ratio as the sequential CDC.

3.1 Decoupling Rolling Hashing from
Chunk Boundary Determination

For rolling window based CDC, a chunk boundary is de-
clared at the end of the current window only when two con-
ditions are met. First, the hash value of the contents within
the rolling window matches a predefined value. Second, the
size of the chunk is within the range of the minimum and
maximum chunk sizes. Instead of simultaneously checking
both conditions at an offset, SS-CDC separates them into
two stages. Specifically, in the first stage a hash value for
each rolling window is calculated and compared with the
predefined value. A chunk boundary candidate is declared
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Each thread continues the rolling hashing for extra

stages

(rolling_window_size - 1) bytes from the next segment,
donated as Ej, E; and E3 in the figure. PO, P1, P2, and P3 are
processes (or threads) for chunking.

at the end of the rolling window if the hash value matches.
At the end of this stage, it produces a set of chunk bound-
ary candidates which satisfy the first condition. During the
second stage, final chunk boundaries are selected from the
candidates, which meet the minimum and maximum chunk
size constraints (the second condition).

Figure 3 illustrates operations involved in the two stages.
The input data is first partitioned into equal-size segments
(S1, Sz, S3, and Sy), each of which is assigned to a thread for
identifying chunk boundary candidates. To determine chunk
candidates at every offset, a thread working on a segment
will include the extra (rolling_window_size — 1) bytes from
the next segment for rolling window computation, which are
illustrated as Eq, E,, and Es in Figure 3. The hash value of each
rolling window is calculated and compared to a predefined
value and the result is recorded in a bit array, where each
bit indicates whether there is a hash value match for the
corresponding rolling window. Multiple bits in the bit array
can be set simultaneously using SIMD instructions without
using locks. For an input data with N bytes, the output bit
array will be of N bits 3. A bit ‘1” at the bit-offset k in the
bit array indicates a chunk boundary candidate at the byte-
offset k in the input file. After all candidates are identified,
SS-CDC enters its second stage where the bit array produced
by the first stage is scanned from its beginning, searching for
the ‘1’ bits that meet the minimum and maximum chunk size
constraints. These offsets are the final chunk boundaries.

3.2 Parallelizing Operations in SS-CDC

To achieve parallel chunking performance, SS-CDC paral-
lelizes both of its stages to take full advantage of the parallel
hardware. It is straightforward to parallelize computation in
the first stage. We assign each segment to a different thread,

3The additional memory to store the bit array can be freed or reused as
soon as the chunking is completed.
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and the rolling window hashing and comparison are per-
formed independently in each thread in parallel. However,
the second stage must be performed by sequentially check-
ing the bit array in a bit-by-bit manner to find the next chunk
boundary which meets the minimum and maximum chunk
size constraints. With the first stage being optimized, the
runtime from the second stage becomes significant.

To address this issue, we observed that the bit array con-
tains mostly ‘0’ bits, with only a few ‘1’ bits. For example,
with an expected average chunk size of 4KB, there will be
one ‘1’ bit in every 4000 bits on average. The bit array can
be represented as an array consisting of values of a longer
data type, such as 32-bit integers. By comparing whether the
next 32-bit integer is 0, we effectively check the next 32 bits
in the bit array. When a non-zero value is found, a bit-by-bit
checking is needed. Furthermore, SIMD instructions [21]
(and multiple threads) can be used to check multiple values
in parallel and we can skip the ‘0’ bits and locate values with
‘1’s in the array quickly.

3.3 SS-CDC on AVX Instructions

SS-CDC can be easily deployed on a wide range of paral-
lel platforms, including multi/many-core systems, GPGPU
platforms and others supporting SIMD instructions. As a
case study, we implemented SS-CDC with Intel Advanced
Vector Extensions 512 (AVX-512) instructions [6, 21], which
are extensions to the x86 ISA for Intel and AMD processors,
and provide vector operations in an SIMD manner for some
instructions. They are generally available in today’s main-
stream processors [4, 5] and provide the benefit of parallel
execution without requiring extra hardware support. We
leave it as future work to port SS-CDC to other parallel hard-
ware. For processors with AVX-512 instructions support, the
extended registers are 512-bit long.

In the prototype, we use CRC-32 (with the polynomial
0xedb88320) as the rolling hash function for detecting chunk
boundaries. The hash value of a rolling window with size w
and ending at offset is calculated as shown in Equations 1
and 2. Like many other efficient CRC implementations [10],
we pre-compute two static tables, crcu and cret, and use them
to remove and add contribution of a byte in the rolling hash
computation. In Equation 1, the contribution of the leftmost
byte leaving the window is removed, while in Equation 2 the
contribution of the byte entering the window from the right
is added to the value. We use a rolling window of 256 bytes.

hash_tmp = hash_old & crcu[ buf [ offset — w]] (1)

()
In the first stage of SS-CDC, the input file, which are parti-

tioned into 16 equal-size segments, are processed in parallel
to identify all potential chunk boundaries. We use an AVX

hash_new = (hash_tmp >> 8) @& crct[buf [offset]]



register (named R.) to store 16 CRC values for the current
16 rolling windows, one for each segment. The execution of
an AVX-512 instruction can be viewed as 16 parallel threads
performing the same operation. For the load operation, AVX-
512 instructions support loading 16 32-bit values from 16
different locations in the memory to an AVX register. So the
bytes entering and leaving a rolling window from a segment
are loaded with 32 bits at once into registers. To remove
the contribution of the byte leaving the window, for each
segment the leftmost byte in the corresponding window is
used as the index to retrieve a value from the crcu table. The
16 values from the table, one for each segment, are stored
in an AVX register (named R,,). Then, the result of (R, xor
R,) is stored in a register as hash_tmp. Similarly, we add
the contribution of the byte entering the window for each
segment by using the byte as the index to retrieve a value
from the crct table, and xor the 16 values with hash_tmp
right-shift by 8 bits, to obtain hash_new.

One challenge in the implementation is about the two
table lookups in each iteration of the computation, which can
be very time-consuming if performed sequentially because
it would require 16 separated memory accesses for each
lookup. One such example is to use the _mm512_set_epi32
instruction to directly set an AVX register with 16 values
from one of the tables. For higher efficiency, we instead
accelerate the table lookup by performing parallel fetching
with the _mmb512_i32gather_epi32 instruction, and reduce
the time spent on the first stage by over 50%. The second
stage checks 512 bits together using one AVX instruction by
taking advantage of widespread ‘0’ bits in the bit array. In
most cases, we will have 512 consecutive ‘0’ bits.

To detect a boundary, after skipping
minimum_chunk_size bits, we load the following 512
bits (as 16 32-bit integers) from the bit array to a register,
and use the _mm512_cmpneq_epi32_mask instruction to
compare it with 16 ‘0’s and generate a 16-bit mask indicating
whether there are non-zero integers. SS-CDC will continue
with the next 512 bits in the bit array unless non-zero
integer(s) are found or the maximum chunk size is reached,
which will declare a chunk boundary. Compared to scanning
the bit array one bit at a time, using the AVX instructions
accelerates the second stage by 30-40%, making its running
time account for only ~2% of the total chunking time.

3.4 SS-CDC on Multiple Cores with AVX

By leveraging AVX instructions, our implementation of SS-
CDC is able to do parallel chunking among segments from a
single file on individual cores. However, parallel chunking
from a single core may still not provide sufficient chunking
bandwidth for a single file. In that case, we need to further
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explore multiple cores to further improve the chunking band-
width. In addition, most backup systems need to support
multiple concurrent backup jobs. Existing backup systems
have exploited job-level parallelism and CPU core-level par-
allelism. With AVX, we can additionally exploit instruction-
level parallelism. In this section, we will discuss how we
scale SS-CDC chunking to multiple cores for single files and
then how to handle multiple backup jobs (or backup files).

To scale chunking for a single file to multiple cores, the
backup file is first partitioned into fixed-size segments, which
are placed into a segment queue. The system allocates the
number of cores for chunking for this backup job. A chunk-
ing thread is started at each core. It retrieves a batch of (N)
segments each time from the head of the queue for the first-
stage chunking. As a lock is required to enforce an exclusive
access to the queue, a larger N is preferred to reduce the
locking cost. Another benefit for a thread to retrieve and pro-
cess multiple (contiguous) segments at a time is it only needs
to calculate the first hash from scratch for each batch and
the rest can be calculated incrementally, which is cheaper. A
barrier synchronization is used at the end of the first-stage
processing to synchronize the threads. After this, one of the
threads proceeds to the second stage to select the final chunk
boundaries according to the bit array produced in the first
stage. To avoid high synchronization time among the first-
stage threads due to an unbalanced load, a smaller segment
batch (N) is preferred. To strike a balance between these two
requirements on the batch size, for a segment size of about
0.5% of a file size using an N value of 2-8 generally leads to
good performance. And our experiments find that the perfor-
mance is not sensitive to the value in the range. Therefore,
SS-CDC uses 4 as N’s default value. Since the second stage
is very lightweight, the performance is acceptable to do it
sequentially. Besides, the other cores that have completed
their first-stage chunking can be used to process other files.

To handle multiple concurrent backup jobs, the system
can use a policy to determine how many cores to allocate
for each job for chunking. The system could allocate a single
core for chunking for each job if that can provide sufficient
chunking bandwidth or more cores to it if desired. The sys-
tem could allocate cores for chunking evenly among backup
jobs or based on priority. For a given number of cores and
the number of jobs, the combination of how to allocate cores
among jobs is very large. In our evaluation, we will instead
focus on demonstrating SS-CDC'’s scalability with parallel
chunking by either using all cores to chunk one file at a time
or use each core to chunk a different file.

To make the presentation more concise, we follow the
Flynn’s taxonomy [25], which includes SIMD, to introduce
the following terms. SFMS (Single File Multiple Segments)
refers to parallel chunking of a single file at a time on multi-
ple cores and parallel chunking of multiple segments within



each AVX-supported core. Similarly, SFSS (Single File Single
Segment) refers to parallel chunking of a single file on multi-
ple cores without using AVX for parallel chunking within a
core. MFMS (Multiple Files Multiple Segments) is similar to
SFMS except that multiple files, each at a different core, are
processed at the same time. MFSS (Multiple Files Single Seg-
ment) is similar to SFSS except that multiple files, each at a
different core, are processed concurrently without using AVX
within each core. To show the additional parallelism from
using AVX, we will compare the speedups between MFMS
and MFSS and between SFMS and SFSS in our evaluation.

4 EVALUATION

We answer the following questions in the evaluation. First,
how much speedup can SS-CDC provide by leveraging AVX
at a single core? To answer this question, we compare the
chunking time of SS-CDC with sequential CDC. Second,
how does SS-CDC with AVX scale to multiple cores? We
use the sequential CDC as the baseline and compare the
speedups from SS-CDC with existing multithreading CDC,
for both single-file chunking and multi-file chunking. Finally,
we evaluate the deduplication ratio reduction (degradation)
from existing segment-based multithreading CDC.

The experiments were conducted on a Dell-EMC Pow-
erEdge T440 server with 2 Intel Xeon 3.6GHz CPUs, each
with 4 cores and 16MB LLC. The server is equipped with
256GB DDR4 memory and installed with Ubuntu 18.04 OS.
The processors support Intel AVX-512 instructions. The
datasets are stored on the local disks. In the measurements,
the chunking time only includes the time spent on determin-
ing chunking boundaries, and excludes the time for loading
the data to memory before the chunking is performed. We
use 7 real-world datasets as shown in Table 2. For the Linux
source code, we downloaded all 1013 versions (from 3 to
4.9) from the Linux Kernel Archives [23]. Each version is
converted into a file of the mtar format [15] for backup. The
others are six groups of Docker images, downloaded from
Docker Hub [9], where each image is a tar file. In the fig-
ures showing experiment results, measurements about the
datasets are presented in the order of their deduplication
ratios, from low to high. Unless noted, we use 1MB as the
segment size for dispatching data to threads, and 2KB, 16KB,
and 64KB, as the minimum, expected average, and maximum
chunk size respectively, as those in LBFS [16].

4.1 Chunking Speed

With the instruction-level parallelism enabled by the AVX
instructions, we expect to see speedups in chunking for both
one core and multiple cores for SS-CDC.

Results on One Core. We first run the chunking process
on one core with different datasets and see how the use of
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Figure 4: Chunking speed of single-threaded SS-CDC and
sequential CDC with one core. The minimum, expected av-
erage and maximum chunk sizes are 2KB, 16KB, and 64KB,
respectively.

the AVX instructions improves the chunking performance.
Figure 4 shows the chunking throughput of SS-CDC and
sequential CDC with one thread running on one core. The
speedups are very consistently, about 3.3%, though different
datasets have different deduplication ratios. The speedups
are achieved by leveraging the instruction-level parallelism
within a single core and the deduplication ratio of a specific
dataset does not impact the speedup, as SS-CDC always scans
the complete dataset.

Although the speedup is significant, it may be lower than
one might expect in the light of parallelism provided by the
AVX-512 instructions, where it processes 16 segments con-
currently. There are several reasons. First, SS-CDC actually
needs to read more data and do more rolling hash calculation
than sequential chunking, as it does not skip the input data
using the minimum chunk size. As we will show, the mini-
mum chunk size has a considerable impact on the speedups
of SS-CDC. Second, while the chunking process is CPU inten-
sive, it also includes substantial memory accesses for loading
data from the memory to registers. While SS-CDC leverages
the AVX instructions and reduces number of instructions
executed for chunking, it does not reduce the amount of data
that needs to be loaded from the memory. Third, since we
conduct chunking for 16 segments concurrently, data are ac-
cessed at 16 different memory addresses in parallel. Existing
DRAM controllers and CPU caches may not be optimized to
handle such workloads. Nevertheless, for all datasets we ex-
amined, we achieved more than 3x speedups over sequential
CDC.

While the speedups are not impacted by the deduplica-
tion ratio of a dataset, the minimum chunk size has a direct
impact on the speedup of SS-CDC. The reason is that the
sequential CDC skips the minimum chunk size of bytes after
each new chunk boundary is detected while SS-CDC has
to scan and calculate a hash for every byte. To understand



Table 2: Real-world datasets used in the experiments. All the Docker images are downloaded from Docker Hub [9].

Name Size (GB) | # of files | Dedup Ratio | Description
Cassandra 14.2 40 5.0 Docker images of Apache Cassandra, an open-source storage system [3].
Redis 4.1 34 7.2 Docker images of the Redis key-value store database [22].
Debian 9.5 92 15.8 Docker images of Debian Linux distribution (since Ver. 7.11) [12].
Linux-src 570 1013 16.4 Uncompressed Linux source code (v3.0~v4.9) downloaded from the website of Linux
Kernel Archives [23].
Neodj 46.0 140 19.0 Docker images of neo4j graph database [17].
Wordpress 181.7 501 22.0 Docker images of WordPress rich content management system [14]
Nodejs 800.0 1567 414 Docker images of JavaScript-based runtime environment packages [13]

Ezz Mini=2 KB E= Mini=4 KB Mini=8 KB

Chunking Speedup

Linux-src
Datasets

Debian

Figure 5: Chunking speedups when different minimum
chunk sizes are used. The expected average and maximum
chunk sizes are 16KB and 64KB, respectively.

the impact of the minimum chunk size on SS-CDC'’s perfor-
mance advantage, we measured the chunking speedups with
different minimum chunk sizes. The results are presented in
Figure 5. As expected, the chunking speedup is decreased
when the minimum chunk size is increased. However, even
with a large minimum chunk size (e.g., with a 8KB minimum
chunk size and a 16KB average chunk size, 50% of the input
data can be skipped in the sequential CDC baseline.), the
chunking speedups are still substantial, about 2.5X. As the
2KB minimum chunk size is commonly used, we adopt it as
the default value in the evaluation.

Results on Multiple cores. Next we evaluated the scal-
ability of the chunking speed of SS-CDC on multiple cores.
Specifically, we examined multithreading SFMS (scaling SS-
CDC to multiple cores for single files) and MFMS (scaling
SS-CDC to multiple cores for multiple files). We compared
them with multithreading regular CDC methods (SFSS and
MFSS) that do not use AVX. Their chunking speeds were
normalized to the sequential CDC without using AVX, one
file at a time, on one core.

To examine how SS-CDC scales for single file chunking,
we look at how the chunking speedup increases when we use
more threads for chunking a single file. After we establish
SS-CDC scales for single file chunking, we examine multiple
file chunking where one file is assigned to only one thread
and we increase the number of concurrent files being chun-
ked. While in a real deployment, there are many different
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ways to assign chunking threads among backup jobs, the
experiments serve our purpose to demonstrate the scalabil-
ity of SS-CDC for both single file chunking and multiple
file chunking. For each dataset, we change the number of
chunking threads from 1 to 8 and show their speedups over
sequential chunking using one thread.

The results are shown in Figure 6 for single file chunking
and Figure 7 for multiple file chunking. From Figures 6(a)
and 7(a) (note the Y axes in the (a) and (b) figures use dif-
ferent ranges), we can see multithreading regular CDC re-
ceive a speedup approximately proportional to the number
of cores (or threads). This is especially true for the MFSS case
(Figure 7a) where each file is processed independently by a
chunking thread. For example, for the Cassandra dataset, its
MFSS speedups are 1.0, 2.0, 3.9, 7.5 on 1, 2, 4, and 8 cores,
respectively. The speedups become smaller (1.0, 1.9, 3.6 and
6.3) with its SFSS implementation, where one file is parti-
tioned into segments for the threads to process in parallel,
resulting in overheads for using locks at the segment queue
and waiting for all chunking threads to complete the first
stage.

In contrast, with its use of the AVX instructions, multi-
threading SS-CDC achieves superlinear chunking speedups.
Still take the Cassandra dataset as an example. Its MFMS
speedups are 3.5, 6.8, 12.5, and 23.6 on 1, 2, 4, and 8 cores,
respectively, which shows the extra speedup of using AVX
instructions scale well with the number of cores (consis-
tently ~3%). When scaling SS-CDC’s performance to mul-
tiple cores for single-file chunking in SFMS, the speedups
become smaller. For example, the SFMS speedups for the
Cassandra dataset reduces to 3.1, 5.4, 9.8, and 17.8 on 1, 2, 4,
and 8 cores, respectively. Multithreading SFMS suffers from
the same bottlenecks as multithreading SFSS, such as the
use of a lock at the segment queue, barrier synchronization
at the end of the first stage, and serialization for the second
stage. Besides, SFMS needs to do more rolling hash calcula-
tion for the extra bytes, as shown in E;, Ez, or E5 in Figure 3.
In spite of this, SEMS still achieves superlinear speedups,
though it cannot achieve the same speedups as MFMS. In the
meantime, it unlocks the opportunity of exploiting intra-file
chunking parallelism.
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Figure 8: Deduplication ratio reduction of the regular mul-
tithreading CDC chunking approach (SFSS), compared with
that of SS-CDC’s SFMS implementation (on 8 cores) when
different segment sizes are used.

4.2 Deduplication Ratio

SS-CDC is designed to provide chunking invariability. When
used in either MFMS or SFMS, it can always achieve the
same deduplication ratio as that of sequential CDC. In fact,
during our development of SS-CDC, we compared the chunk
boundaries from SS-CDC with sequential CDC, to verify
our SS-CDC implementation is correct. However, existing
segment-based single file parallel chunking (SFSS) cannot
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achieve this chunking invariability, and experience dedupli-
cation ratio reduction. To gauge significance of the reduction,
we compare the deduplication ratios of SS-CDC’s SFMS im-
plementation with SFSS and conduct a quantitative study
where we vary the segment size and the chunk size.

Figure 8 presents the deduplication ratio reduction from
SFSS with different segment sizes. The baseline is the dedu-
plication ratios from SS-CDC (and also sequential CDC). As
shown, SFSS can suffer significant deduplication ratio reduc-
tions when using different segment sizes. For example, the
reduction is about 45% when the segment size is 512KB for
the Node dataset. The reduction decreases when increasing
the segment size. However, for some datasets even when the
segment size is large, the reduction can still be substantial.
For example, for the Node dataset, the reduction is about 18%
when the segment size is 2MB. In many scenarios, including
execution at GPGPU’s cores, it is necessary to avoid using
very large segments to exploit sufficient parallelism or/and
to accommodate the segments in the limited device local
memory. Existing segment-based parallel chunking, as in
SFSS, has the fundamental limitation that requires a user
to make a tradeoff between fine-grain parallelism by using
a small segment size and a high deduplication ratio with a
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Figure 9: Reduction of deduplication ratio (in percentage) for multithreading CDC (SFSS) on 8 cores, compared to SS-CDC
(multithreading SFMS) with different chunk size configurations. The segment size is 1MB.

large segment size. With SS-CDC, a user can use any segment
size without deduplication ratio reduction.

Next, we turn to look at how the chunk size impacts dedu-
plication ratio for SFSS. We vary all three parameters con-
trolling the chunk size, including the minimum, the expected
average, and the maximum chunk sizes, one at a time. The
deduplication ratios are compared with SS-CDC.

Across all three figures in Figure 9, in general when a
dataset has a higher deduplication ratio, the reduction of
deduplication ratio from SFSS is more significant. When
there are more duplicates in the dataset, SFSS is more likely
to turn a duplicate chunk into a unique one due to chunk
boundary shifts because of file segmentation. The dedupli-
cation ratio reduction is most significant when we vary the
minimum chunk size, ranging from 10% to 38% as shown
in Figure 9a. Furthermore, when we increase the minimum
chunk size, the reduction becomes larger. With a larger min-
imum chunk size, it increases the possibility of finding a
matching rolling hash value in that window and having dif-
ferent chunks between sequential CDC and SESS. This can
leave the use of SFSS in a dilemma where a larger mini-
mum chunk size can skip more bytes for better chunking
performance while a smaller minimum chunk size can avoid
substantial deduplication ratio reduction.

The impacts of the average chunk size on deduplication
ratio for SESS are more complicated. On one hand, with a
larger average chunk size, there are fewer chunks and thus
fewer chunk boundaries. We have a smaller probability to
find candidate chunk boundaries in the minimum chunk size
window that could lead to different chunks in segment-based
SFSS. On the other hand, with a larger average chunk size,
it takes more bytes for SFSS to synchronize back to chunk
boundaries as those in sequential CDC as there will be fewer
candidate chunk boundaries. To investigate which factor
has a larger impact on the deduplication ratio in SFSS, we
conduct experiments by varying the expected average chunk
size. As shown in Figure 9b, with a larger average chunk
size the deduplication ratio reduction is more significant,
which indicates the second factor has a bigger impact on
deduplication ratio reduction.
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In addition to the minimum and the average chunk sizes,
the maximum chunk size also affects deduplication ratio. Fig-
ure 9c shows the deduplication ratio reduction when varying
the maximum chunk size. With a larger maximum chunk
size, the deduplication reduction is more significant. By us-
ing a larger maximum chunk size, the size of the chunks
are more likely larger as more bytes can be scanned when
deciding the next chunk boundary. So once a unique chunk
is generated due to the segmentation, it can potentially make
a larger range of bytes not deduplicated.

To summarize, existing parallel chunking using seg-
ments suffers significant deduplication ratio reduction when
they exploit segment-based parallelism. SS-CDC guarantees
chunking invariability and achieves parallel chunking per-
formance without impacting deduplication ratios.

5 CONCLUSIONS

In this paper, we presented SS-CDC, a new parallel CDC that
takes full advantage of the parallel computing power of the
underlying hardware for high chunking speed without com-
promising deduplication ratio. SS-CDC separates the chunk-
ing process into a stage that is compute intensive but easy to
parallelize and a second stage that is sequential but with low
runtime cost. It can achieve almost full parallel chunking
performance and the same deduplication ratio as sequential
CDC. With a prototype based on AVX-512, we demonstrated
SS-CDC can be implemented on an SIMD platform and eval-
uated that we can achieve parallel chunking performance for
both single file chunking and multi-file chunking. With SS-
CDC, we can now offload compute-intensive CDC to SIMD
platforms to exploit extra instruction-level parallelism to
accelerate chunking and get high deduplication ratios.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers, for their valu-
able comments that improved the paper. This work was sup-
ported in part by NSF grants CNS-1527076 and CCF-1815303.



REFERENCES

(1]

—_
Do
—

(12]
(13]
(14]

(15

=

16]

(17]
(18]

(19]

[20]

Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George
Yuan, and Matei Ripeanu. 2008. StoreGPU: Exploiting Graphics Pro-
cessing Units to Accelerate Distributed Storage Systems. In Proceed-
ings of the 17th International Symposium on High Performance Dis-
tributed Computing (HPDC ’08). ACM, New York, NY, USA, 165-174.
https://doi.org/10.1145/1383422.1383443

Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. 2012. Shred-
der: GPU-accelerated Incremental Storage and Computation. In Pro-
ceedings of the 10th USENIX Conference on File and Storage Tech-
nologies (FAST’12). USENIX Association, Berkeley, CA, USA, 14-14.
http://dl.acm.org/citation.cfm?id=2208461.2208475
Apache  Cassandra.  2014. Apache
http://planetcassandra.org/what-is-apache-cassandra.
Intel Corporation. 2013. Intel Xeon Phi processors.
//www.intel.com/content/www/us/en/products/processors/
xeon-phi/xeon-phi-processors.html.

Intel Corporation. 2015. Intel Skylake Processors. https://ark.intel.
com/products/codename/37572/Skylake.

Intel Corporation. 2018. Intel  Architecture
tion Set Extensions Programming Reference.
//software.intel.com/sites/default/files/managed/c5/15/
architecture-instruction- set-extensions-programming-reference.pdf.
Dell EMC. 2019.
Protection.

cassandra.

https:

Instruc-

https:

Data Domain - Data Backup Appliance, Data
https://www.dellemc.com/en-us/data-protection/
data-domain-backup- storage.htm
DELL EMC inc. 2018. Supported Stream Counts for Data Domain OS
5.7. https://community.emc.com/docs/DOC-63282.

Docker, Inc. 2016. Official repositories on Docker Hub. https://hub.
docker.com/.

Gary S. Brown. 1986. CRC32 code in FreeBSD derived from work by
Gary S. Brown. http://web.mit.edu/freebsd/head/sys/libkern/crc32.c.

Fanglu Guo and Petros Efstathopoulos. 2011. Building a High-
performance Deduplication System. In Proceedings of the 2011 USENIX
Conference on USENLX Annual Technical Conference (USENIXATC’11).
USENIX Association, Berkeley, CA, USA, 25-25. http://dlL.acm.org/
citation.cfm?id=2002181.2002206

Docker Inc. 2018. debian: Docker Official Images. https://hub.docker.
com/_/debian/.

Docker Inc. 2018. Node: Docker Official Images. https://hub.docker.
com/_/node/.

Docker Inc. 2018. wordpress: Docker Official Images. https://hub.
docker.com/_/wordpress/.

Xing Lin, Fred Douglis, Jim Li, Xudong Li, Robert Ricci, Stephen Smal-
done, and Grant Wallace. 2015. Metadata Considered Harmful ... To
Deduplication. In Proceedings of the 7th USENIX Conference on Hot
Topics in Storage and File Systems (HotStorage’15). USENIX Association,
Berkeley, CA, USA, 11-11. http://dl.acm.org/citation.cfm?id=2813749.
2813760

Athicha Muthitacharoen, Benjie Chen, and David Maziéres. 2001. A
Low-bandwidth Network File System. SIGOPS Oper. Syst. Rev. 35, 5
(Oct. 2001), 174-187. https://doi.org/10.1145/502059.502052

Neo Technology. 2018. Neo4j Graph Database Platform. https://neo4;.
com/.

NETAPP inc. 2015. NetApp® AltaVault® Cloud Integrated Storage 4.0:
Installation and Service Guide for Physical Appliances. goo.gl/wj2Y4K.

NETAPP inc. 2019. AFF A-Series All Flash Arrays: Leads the market
with new performance benchmark results. https://www.netapp.com/
us/products/storage-systems/all-flash-array/aff-a-series.aspx.

Pure Storage, Inc. 2019. Pure Unifies Cloud: Your Hybrid Cloud Journey
Just Got A Lot Easier. https://www.purestorage.com/.

96

[21]

[22]
[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

James Reinders. 2013. Intel AVX-512 instructions. https://software.
intel.com/en-us/blogs/2013/avx-512-instructions

Salvatore Sanfilippo and Pieter Noordhuis. 2015. Redis. http://redis.io.

The Linux Kernel Organization, Inc. 2019. The Linux Kernel Archives.
https://www.kernel.org

Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen
Smaldone, Mark Chamness, and Windsor Hsu. 2012. Characteristics
of Backup Workloads in Production Systems. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies (FAST’12). USENIX
Association, Berkeley, CA, USA, 4-4. http://dl.acm.org/citation.cfm?
1d=2208461.2208465

Wikipedia. 2019. Flynn’s taxonomy. https://en.wikipedia.org/wiki/
Flynn%27s_taxonomy

Wikipedia. 2019. Speedup. https://en.wikipedia.org/wiki/Speedup#
Super-linear_speedup.

Y. Won, K. Lim, and J. Min. 2015. MUCH: Multithreaded Content-
Based File Chunking. IEEE Trans. Comput. 64, 5 (May 2015), 1375-1388.
https://doi.org/10.1109/TC.2014.2322600

Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Zhongtao Wang.
2012. P-dedupe: Exploiting parallelism in data deduplication system. In
2012 IEEE Seventh International Conference on Networking, Architecture,
and Storage. IEEE, IEEE, Xiamen, China, 338-347.

Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou.
2014. Ddelta: A deduplication-inspired fast delta compression ap-
proach. Performance Evaluation 79 (2014), 258-272.

Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu,
Yucheng Zhang, and Qing Liu. 2016. FastCDC: A Fast and Efficient
Content-defined Chunking Approach for Data Deduplication. In Pro-
ceedings of the 2016 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC °16). USENIX Association, Berkeley, CA, USA,
101-114. http://dl.acm.org/citation.cfm?id=3026959.3026969

C. Yu, C. Zhang, Y. Mao, and F. Li. 2015. Leap-based Content Defined
Chunking AAT Theory and Implementation. In 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST). IEEE, Santa Clara,
CA, 1-12. https://doi.org/10.1109/MSST.2015.7208290

Yucheng Zhang, Dan Feng, Hong Jiang, Wen Xia, Min Fu, Fangting
Huang, and Yukun Zhou. 2017. A Fast Asymmetric Extremum Con-
tent Defined Chunking Algorithm for Data Deduplication in Backup
Storage Systems. IEEE Trans. Comput. 66, 2 (Feb 2017), 199-211.
https://doi.org/10.1109/TC.2016.2595565

Benjamin Zhu, Kai Li, and Hugo Patterson. 2008. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System. In Pro-
ceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST’08). USENIX Association, Berkeley, CA, USA, Article 18, 14 pages.
http://dl.acm.org/citation.cfm?id=1364813.1364831



