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ABSTRACT

CPU cache has been used to bridge the processor-memory perfor-

mance gap to enable high-performance computing. As the cache

is of limited capacity, for its maximum efficacy it should (1) avoid

caching data that are less likely to be accessed and (2) identify and

cache data that would otherwise cost a program multiple memory

accesses to reach. Unfortunately, existing cache architectures are

inadequate on these two efforts. First, to cost-effectively exploit the

spatial locality, they adopt a relatively large and fixed-size cache

line as the caching unit. Thus, much of the space in a cache line

can be wasted when the data locality is weak. Second, for easy use,

the cache is designed to be transparent to programs, which hinders

programs from fully exploiting its performance potentials.

To address these problems, we propose a high-performance Soft-

ware Defined Cache (SDC) architecture providing a simple and

generic key-value abstraction that allows (1) caching data at a gran-

ularity smaller than a cache line, and (2) enabling programs to

explicitly insert, retrieve, and invalidate data in the cache with new

instructions. By providing a programwith the ability of explicitly us-

ing the cache as a lookaside key-value buffer, SDC enables a much

more efficient cache without disruptively changing the existing

cache organization and without substantially increasing hardware

cost. We have prototyped SDC on the gem5 simulator and evaluated

it with various data index structures and workloads. Experiment

results show that SDC can improve the cache performance for the

workloads by up to 5.3× over current cache design.
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1 INTRODUCTION

Computer systems have been using caches to bridge thewell-known

performance gap between fast CPU and slowmemory. Data accesses

are accelerated by keeping the most frequently accessed data in the

caches to avoid memory accesses that can be an order of magnitude

slower [22]. However, caches are much more expensive and smaller

in capacity than memory, and must be efficiently used. To this end,

the cache should make efforts to (1) cache only frequently accessed

data to maximize its hit ratio, and (2) remove metadata access by

enabling cache access of data directly. Existing cache architectures

are inadequate in these two aspects by employing a relatively large

cache access unit and transparent caching strategy, respectively.

1.1 The Issue with Large Cache Lines

The cache hit ratio can be seriously compromised with weak spa-

tial access locality. For highly efficient memory access, low cache

space overhead, and effective prefetching, the cache usually adopts

a relatively large access unit, such as 64-byte cache line. However,

there exist significant access patterns exhibiting weak intra-line

spatial locality, leading to fetching and caching of unused data

and compromised cache performance. A representative of such

access patterns is pointer chasing, where a sequence of data items

are accessed by following their pointers. Pointer chasing is com-

mon, especially in pointer-linked index structures, such as B+ tree,

skip list, and hash tables, that are widely used in data-intensive

applications [21, 26, 57].

To illustrate intra-line spatial locality exhibited in the access of B+

tree and hash table, we use each of them to build an index structure

by inserting 8,000 key-value items, each with a distinct 8-byte key

and an 8-byte value. The B+ tree has a fanout of 20, or at most 20

pointers in an internal node to its child nodes. The size of the hash

table is 8,000. That is, each of its linked-list buckets has one item

on average. Nodes in the data structures are individually allocated

with glibc’smalloc(). We issue 80,000 lookup requests to each of the

data structures. To reflect normal cache use scenario, we choose a

skewed key distribution (zipfian). We name every contiguous eight

bytes in a cache line as a cache slot. We track accesses to the slots

in the gem5 simulator [18] with a 32KB 8-way cache1. Figures 1a

and 1c show access count at each slot of a cache line after serving the

lookups on the B+ tree and hash table data structures, respectively.

As shown, for both data structures frequency of access to different

slots in a cache line is highly skewed. For example, in the 84th cache

line only three slots (Slots 2, 3, and 5) have references (62852, 62852,

and 125704 times, respectively) and other slots do not have any

references. This uneven use of slots occurs mostly at nodes that are

1We use a small processor cache to match the relatively small data set size used in our
experiments.
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(a) B+ Tree (b) B+ Tree with SDC

(c) Hash Table (d) Hash Table with SDC

Figure 1: Number of accesses at each 8-byte slot (on the Y axis) of every 64-byte cache line (on the X axis) in a 32KB 8-way

cache for serving 80,000 key lookups in each of the data structures (B+ tree and hash table) indexing 8,000 distinct keys. Keys

in the lookups follow the zipfian distribution. Figures (b) and (d) show results with the proposed SDC technique.

at or close to leaves of B+ tree, which dominate cache space held

by the data structure. This issue can be serious even for the hash

table whose average bucket size is only one, as shown in Figure 1c.

Admittedly this weak spatial locality issue is ameliorated when

most lookups are successful and a large piece of data is accessed

after a successful key lookup. However, referencing a small piece

of data after an index lookup is common. For example, Facebook

reported that in its Memcached key-value (KV) pools 90% of the KV

items have values of smaller than 500 bytes [3]. In a KV pool (USR)

dedicated for storing user-account statuses all values are of two

bytes. In a general-purpose pool (ETC), 40% of requests to the store

have values of 2, 3, or 11 bytes. In a pool for frequently accessed

data, 99% of KV items are smaller than 68 bytes [35]. In Twitter’s

KV workloads, after compression each tweet has only 46 bytes of

text [36]. In contrast, the space and time costs of pointer-linked

indexes are significant. In the Facebook’s Memcached servers, the

hash table, including the pointers in the buckets and in the LRU lists,

accounts for about 20∼40% of the memory space [3]. A recent study

onmodern in-memory databases shows that hash index accesses are

themost significant single source of run-time overhead, constituting

14∼94% of total query execution time [26]. Therefore, the under-

utilization of cache space due to weak spatial locality exhibited in

the pointer-chasing accesses can be a serious performance issue.

1.2 The Issue with Transparent Caching

To minimize software burdens, the cache is designed to automati-

cally cache data at any memory address referenced by the instruc-

tions, and then access them via the addresses. In a program, there are

two ways in which data are addressed. One is that their addresses

are directly coded in the program and they can be referenced with

the addresses without any proceeding metadata accesses. Example

data include variables and data elements in an array. The other is

that the data have been named by the program’s users, such as user-

defined keys. To access the data in the memory, the program has to

first use index structure(s) to translate the keys into actual memory

addresses. Example data addressed in this way include values in key-

value (KV) caches (such as Memcached) or in-memory KV stores,

data accessed by keys in in-memory databases, and in-memory

inodes accessed via file paths (as the keys) in file systems.

In existing cache designs two levels of address translation are

performed to load and access a data item named by a user-defined

key in the cache, as illustrated in Figure 2(a). The first level of trans-

lation (from a key to a memory address) is conducted by software

with a number of memory accesses on an index structure. Note

that all accessed metadata on the index will also be loaded into the

cache, increasing demand on the cache space. The second level of

translation (from the memory address to a cache address) is con-

ducted by hardware. If we could access data in the cache directly

via their keys, the accesses and caching of the metadata would be

avoided. This is one of our design objectives.

Interestingly, the two levels of address translation also occur

in a physical-memory-address-indexed cache with every memory

address, as shown in Figure 2(b). The first-level translation is from

a process’s virtual address to the physical address, and the second-

level one is from the physical address to the cache address. The

first-level translation requires expensive traversal on the process’s

page table (a prefix tree). Fortunately, the TLB cache was invented
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(a) Translate a key to a cache address. (b) From virtual addresses to cache addresses with TLB. (c) Translate a key to a cache address with SDC.

Figure 2: Various scenarios of address translation into the cache space.

to accelerate the translation by avoiding access of page table (the

metadata). In this work, we’d like to make the technique generalized

and make similar benefit available to user-defined index structures.

1.3 Our Solution: Software-Defined Cache

In this paper we propose a new cache design, Software-Defined

Cache (SDC), as a supplement to existing cache architecture to

allow the last-level cache (LLC) to serve as a look-aside cache for

programmers to explicitly insert, retrieve, or invalidate data in

the cache using a simple and generic key-value abstraction. As a

look-aside cache, SDC is presented to programmers much like a

scratch pad, whose cached data are not automatically associated to

or written back, upon eviction, to the memory, except that it does

not burden programmers as a scratch pad would.

First, SDC is accessed with user-defined keys, instead of memory

addresses. Second, the cache space is still managed by the hardware

for functions such as data replacement according to access locality,

to relieve programmers from the complex and often expensive task.

In addition, SDC uses a cache slot, which is much smaller than cache

line, as its access unit without substantially increasing overhead

cache space. These advantages of SDC are achieved by seamlessly

integrating it into existing cache architecture. As illustrated in Fig-

ure 2(c), SDCmaps a key to a memory address in the shadow address

space, which is a (physical) address range that has not yet been

mapped to any physical memory, using a hardware hash unit. It

then leverages existing cache address mapping mechanism to map

the shadow address to a cache address for caching user-supplied

data. It also leverages existing cache’s replacement strategy to man-

age its space. In the meantime, the regular transparent caching is

still available, making the LLC be a hybrid cache. As part of the

LLC, SDC’s space size is dynamically determined by its data access

locality. And cache utilization with weak spatial locality can be

significantly improved, as illustrated in Figures 1b and 1d.

This papermakes three contributions. 1)We show two fundamen-

tal sources of caching inefficiency (large cache line and transparent

caching) that can seriously compromise the performance of data

indexing in data-intensive applications. 2) We propose SDC that

uses part of the LLC as a look-aside cache accessed via user-defined

keys at a fine granularity. SDC enables a KV cache at the LLC for

programs to access with a simple and generic key-value interface. 3)

We extensively evaluate the SDC design with a full-system simula-

tion on gem5 with various workloads. Experiment results show that

for its targeted workloads SDC significantly improves application

performance. As anecdotal examples, SDC improves throughput of

a real-world in-memory database by up to 3.3×.

2 THE DESIGN OF SDC

The design goal of SDC is to provide programs with explicit fine-

grained LLC cache access via user-defined keys. This KV-style use

of the cache provides programmers with a critical architectural sup-

port to overcome weak spatial locality and for TLB-like capability

to avoid index traversal. To achieve the goal, there are a number of

challenges to address to make it truly functional and efficient. First,

currently data are loaded into caches as a side effect of memory

accesses, and a program cannot insert data directly into the cache

without issuing a memory access. We need to carefully define a new

programming interface friendly to programmers and compilers and

being least intrusive to existing cache architecture. Second, in the

mapping from a potentially large key space to a cache space key

collision is unavoidable. We must develop effective mapping and

cache replacement strategy to minimize mapping conflicts. Third,

allowing smaller data items in the cache means higher space cost for

additional metadata. We need to carefully make trade-offs among

this space overhead, the API’s usability, and the cache’s hit ratio to

build a cost-effective software-defined cache.

2.1 Extending ISA to Enable SDC

To enable use of CPU cache as a look-aside KV cache we introduce

three instructions (and more of their variants) to insert, look up,

and invalidate a KV item in the cache. Their formats are shown in

Table 1. A common operand of the instructions is the key, provided

in a 64-bit register. Admittedly user-defined keys can be of any

format and any length, such as a character string of variable length.

To enforce a consistent representation, it may require programmers

to first convert a key into a 64-bit number (e.g., taking the last

8 characters of the key string). Apparently, the conversion may

compromise uniqueness of the original keys. A similar issue will

occur in the SDC’s implementation, where for reducing metadata

space cost we reduce size of the tags (for matching cache slots) at

a (small) risk of returning wrong values upon the lookup (a false

hit). To address the issues, programmers are expected to verify

the truthfulness of the value2. A commonly used technique for

the verification is to store the original full key together with its

value, and use address of the KV pair in the memory as the value

in sdc_insert and sdc_lookup, or Mem(value addr) in Table 1.

2The security or privacy is not a concern here as SDC guarantees a KV item inserted
by one process will not be returned to another process.
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Table 1: SDC Instructions. Operands 2 and 3 specify the memory address of the value to be inserted in sdc_insert, and that

for receiving return value in sdc_lookup, and the value size, respectively. For the case where the value size is 8 bytes (one cache

slot), these two instructions have variants directly storing the value in a register specified by Operand 2. Operation status is

a bit in the status register indicating success of the operation. To update a value in the cache, one needs to invalidate it and

then inserting the new value.

Name Operand 1 Operand 2 Operand 3 Operation status

sdc_insert Reg(key) Mem(value addr) Reg(value size) 1 or 0

sdc_invalidate Reg(key) - - 1 or 0

sdc_lookup Reg(key) Mem(value addr) Reg(value size) 1 or 0

1 s t r u c t kv_en t ry bu f f e r , ∗ p ;
2 u i n t 6 4 _ t key ;
3 . . .
4 wh i l e ( r e c e i v e _ r e q ( command , &b u f f e r ) {
5 key = b u f f e r . key ;
6 sw i t ch ( command ) {
7 c a s e LOOKUP :
8 i f ( sdc_ lookup ( key , &p , s i z e o f ( p ) ) ) {
9 i f ( p−>key == key ) { / ∗ o r i g i n a l key compar ison may be

needed ∗ /
10 p r o c e s s i n g _ d a t a ( p ) ;
11 }
12 } e l s e { / ∗ miss , do r e g u l a r s e a r ch ∗ /
13 p = index_ lookup ( key ) ;
14 i f ( p != NULL ) {
15 p r o c e s s i n g _ d a t a ( p ) ;
16 s d c _ i n s e r t ( key , &p , s i z e o f ( p ) ) ;
17 }
18 }
19 break ;
20 c a s e DELETE :
21 s d c _ i n v a l i d a t e ( key ) ;
22 d e l _ f r om_ th e_kv_ s t o r e ( key ) ;
23 break ;
24 c a s e INSERT :
25 p = i n s _ i n t o _ t h e _ k v _ s t o r e ( key , &b u f f e r ) ;
26 i f ( p != NULL )
27 s d c _ i n s e r t ( key , &p , s i z e o f ( p ) ) ;
28 break ;
29 }
30 }

Figure 3: Pseudo code for a hypothetical KV store handling

various requests with the support of SDC functions.

After receiving the address returned by a lookup, the program will

compare the key at the address with the original key [2, 7, 28].

The return value (in Operands 2 and 3) is up to the programmer’s

interpretation. It can be either the cached value itself or a pointer

to the actual value. The value size can be of 1, 2, 4, or 8 slots (or

8, 16, 32, 64 bytes, respectively). The sdc_invalidate instruction
explicitly removes identified KV items from the cache. It is noted

that, like TLB, SDC uses the cache as a look-aside buffer. When the

items are evicted or invalidated, there are no write-back operations.

With the instructions, a library of functions can be available for

programmers to use the SDC cache. Figure 3 shows an example use

of the cache in a pseudo code, whose execution is facilitated by the

architecture illustrated in Figure 2(c).

2.2 Two Levels of Address Mapping

As mentioned, one of the SDC design principles is to seamlessly

integrate it into the existing cache architecture. In addition to the

benefit of simple design and reuse of the cache circuitry for a re-

duced cost, the integration allows efficient use of the cache space.

To achieve high cache-space efficiency, we must keep the most

frequently accessed data in the cache, regardless of their sources

(either loaded via regular memory accesses or inserted by SDC

instructions). If these two types of data were cached or managed

separately, it would be hard to consistently compare their access

locality, and it would also be difficult to determine the space allo-

cations between them to dynamically and accurately reflect their

respective space demands. To this end SDC maps its key space to a

range of physical address space not mapped to any physical mem-

ory, named shadow memory address space, from which the existing

cache scheme kicks in to further map it into cache address space.

Accordingly, there are two levels of address mapping in SDC. The

first-level mapping (from the user key space to the shadow memory

address space) is exclusively managed by SDC. The second-level

mapping (from the memory address space, including regular and

shadow memory addresses, to the cache space) is managed by the

existing cache scheme at the cache-line granularity and by SDC at

the slot granularity. Figure 4 illustrates these two levels of address

mapping, which serves as an overview of the SDC’s architecture

with details explained in the following two sections.

2.2.1 Mapping from User Key to Memory. For the first-level

mapping, we need to decide where the shadow memory fits into

the address space. In principle, it can be placed at any location

not used in current addressing. As the memory address space is

rarely fully occupied (by mapping to DRAM), we choose to double

current physical memory space to make SDC compatible with any

today’s and future’s system configurations by adding an extension

bit before the MSB (Most Significant Bit) of a memory address.

Accordingly, this bit will be the first bit of a cache line tag, with a “0”

indicating a regular cache line and a “1” an SDC cache line. In this

way, a physical address in the shadow memory will be of the format

’100...0bk−1bk−2...b0’ with a shadow memory size of 2
k bytes. Note

that for SDC cache lines the sequence of ‘0’s before bk−1 does not
need to be stored in their tags to reduce cache metadata.

A critical issue in the SDC design is to guarantee security and

privacy of each process’s data in the SDC cache. A key is unique only

within a process. To isolate keys of one process from other processes

and make a key unique in an SDC cache, we evenly partition the

shadow memory space into shards. Keys of a process are mapped

exclusively to a dedicated shard. Suppose an SDC supports up to

eight processes simultaneously. The three bits bk−1bk−2bk−3 in the
aforementioned address format represent shard identifier, one for a

process. As will be further explained, sdc_lookup()) only returns
values inserted by the same caller process.

An important parameter in the SDC design is the size of the

shadow memory, or alternatively the size of a shard for a given
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(a) An example of the first-level address mapping. A 64-bit key

("0xe1ed3ef0") in an SDC instruction issued by a process is translated

into a 49-bit shadow memory address. The hash unit ("Hash") trans-

lates the key into a 22-bit offset in a shard. A 3-bit process id ("001")

is placed before the offset to indicate the shard ("Shard 1") where the

key is mapped. Note "sub-tag" is used in the second-level mapping.

(b) An example of the second-level address mapping. Like regular

cache, the 15-bit "set id" determines into which cache set the shadow

memory address is mapped. As detailed in Section 2.2.2 and illus-

trated in Figure 5, some other bits, such as "pid", "family bits", and

"family segment", are used to determine a cache line in the set. The

3-bit "slot id" determines a slot in the cache line.

Figure 4: Two-level address mapping in SDC. Bit segments and their respective lengths are shown as segment name : segment

length in bits. A 32MB 16-way associative cache is illustrated.

number of shards. An ill-chosen size may compromise the SDC’s

performance advantage. A too large shard may cause the space

sparsely filled and many SDC cache lines under-utilized. However,

with a too small shard there can be many keys mapped to a single

address, increasing conflict misses. We set it to be the LLC cache

size, ensuring the cache space can be fully utilized.

SDC uses a hash function to map a key to an address in a shard.

Though a multi-choice hashing can help reduce mapping conflicts,

we do not choose it to avoid extra access latency and hardware cost.

Instead, SDC achieves the multi-choice capability in the second-

level mapping by reusing the hardware for the set associative cache.

At the first level, the hash function translate a 64-bit key into an

offset in a shard, and precedes it with a process id indicating the

process to which the key belongs, as illustrated in Figure 4a.

2.2.2 Mapping fromShadowMemory toCache. The SDC cache

is hosted only in the LLC, as it is designed for memory-intensive

applications with large working sets whose caching in a small cache

is unlikely to yield many hits [48]. Though LLC is relatively slow, a

miss on a KV item in the SDC cache has a high penalty (multiple

memory accesses for the index search). Therefore, increasing cache

hit ratio outweighs achieving short hit time. Further, as LLC is

shared among cores in a processor, keeping SDC data only in the

LLC avoids the cost for maintaining cache coherence in a single-

socket system. For multi-socket systems, consistency of the SDC

data can be maintained either by hardware, using techniques such

as Intel QPI [58] or AMD HyperTransport interconnection [12], or

by relying on OS using techniques similar to that for TLB [1].

In SDC, in addition to the mapping conflicts from memory ad-

dresses to cache lines as that in regular caches, there is another

kind of conflicts in the mapping from user keys to shadow memory

addresses. To reduce the conflict misses, we introduce the concept

of cache-line family that includes all SDC cache lines in a set whose

tags differ only at the lastm bits, as shown in Figure 4b. A family
in a cache set has 2m member cache lines. A shadow memory ad-

dress can be mapped to any cache lines in the family of a set. Keys

Figure 5: Status bits for an SDC cache line and its slots.

mapped to the shadow memory address can then be stored in any

cache lines in the family, reducing impact of key collision. The use

of cache line family can also prevent one process from using the

cache space too aggressively in a multi-process context. Should the

family id field (see Figure 5) not be introduced, a value would likely

be placed in any line in a cache set.

SDC maintains some status bits for each slot in an SDC cache

line as listed below and illustrated in Figure 5.

• Sub-tag: bits for identifying a value matching a given user key.

A sub-tag of a slot consists of two bit segments. The first one is

the family segment field as shown in Figure 4b, which is the m

bits (assuming the family size is 2m ) on the left of the set id field.

The other one is some bits generated by applying another hash

function (Hash2 in Figure 4a) on the original user key, aiming to

further reduce probability of returning a value not matching a

given user key (a false hit). If a value occupies multiple cache-line

slots, only the first slot needs to have a sub-tag created with the

above rules. Thus, the second hash function can produce more

bits to fill the space originally reserved for sub-tags to further

reduce probability of false hits.
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Figure 6: Two-level replacement strategy: a hypothetical

LRU replacement for cache lines in a cache set and a clock

replacement for SDC slots in a cache line family.

• Valid Bit: a bit indicating if the slot contains valid value.

• Sequence Bit: a bit indicating the first slot storing a user value. It

is noted that a value can occupy 1, 2, 4, or 8 contiguous slots in a

cache line, and is placed at a slot offset that is multiples of their

respective sizes. For a value, the sequence bit of its last occupied

slot is ‘0’ and the bits for its other slots are all ‘1’s.

• Reference Bit: a bit indicating if the slot has been recently refer-

enced. It is used to facilitate the clock replacement among slots in

a cache-line family. The bit is set to ‘1’ once the slot is accessed.

For an SDC operation, there can be multiple sub-tag-matching

slots in different cache lines of a family. For sdc_lookup, SDC ran-
domly selects one from the slots and returns it. For sdc_invalidate
and sdc_insert all the matching slots are invalidated.
When there is no free space available for inserting a new KV

item, SDC employs a two-level replacement strategy. The objective

is to keep hot (or frequently accessed) cache lines, either regular

or SDC cache lines, from being replaced, and keep hot slots in a

cache-line family from being replaced. When a KV item at a shadow

memory address is mapped into a family of SDC cache lines in a

cache set (all at the same cache-line offset, or slot address), the

item can be placed in any of the cache lines whose corresponding

slot (or multiple slots for a larger value size) is available (with ’0’

valid bit). If none of them in the family is available and current

family size has not yet reached its maximum size, SDC will first

ask the existing cache-line-level replacement scheme, such as LRU

as illustrated in Figure 6, to identify a cold cache line in the set for

potential replacement. If the selected cache line does not belong to

the family, it is replaced and the value is stored in the corresponding

slot(s) of the cache line. Other unused slots in the cache line are

marked as invalid (’0’ valid bits). Otherwise, instead of replacing

the entire SDC cache line selected by the replacement scheme, we

proceed with the slot-level CLOCK replacement within the family

as described in the below.

We first assume that value is one slot long. As shown in Figure 6,

a value can be stored at a slot in any cache line of the family (at the

same offset). The replacement policy checks reference bits of the

slots, one at a time, in a certain order. Whenever it encounters a

‘1’, it resets it to 0 and proceeds to the next one. It stops at a slot

whose reference bit is ‘0’ and replaces its current value with the

new one. Note that if the current value occupies more than one slot,

which can be known by examining sequence bits of this slot and its

neighboring slots, the other slots occupied by the value need to be

marked as invalid. If the new value is more than one slot long, the

replacement procedure is similar. The only difference is to check

reference bits of multiple slots starting at the offset in each cache

line and replace them together if they are all ‘0’s. Otherwise, they

are all reset to ‘0’. The two-level replacement policy dynamically

balances cache space allocation among regular data cache and SDC.

2.3 Metadata Storage Cost of SDC

While SDC supports cache space management at a finer granularity

(the slots), some metadata have to be associated with individual

slots. To have an empirical estimation of the space cost, we choose

a popular processor (Intel E5-2683 V4 CPUs [23]) for SDC to be

implemented in its LLC (L3). Its LLC has a 20-way set associative

40MB cache with 64-byte cache lines. The size of a shard is the

same as the cache size (40MB). There are eight 8-byte slots in a

cache line. Let’s assume a sub-tag of 4 bits (2-bit family segment

from the regular tag and 2-bit collision segment from key hashing).

Adding the 3 bits for the valid, sequence, and reference bits, each

SDC cache line requires 7 × 8 = 56 bits. Assuming that the SDC

supports up to 8 processes, an SDC tag has 7 bits, which is less than

regular tag size (27) by 20 bits. Therefore, to accommodate SDC

each cache line needs extra 56 − 20 = 36 bits, or 36/(64*8) = 7% of

the cache size. To further reduce the space cost, we can simplify

the design by fixing the slot size to 16-byte, which will save the

reference bit and accommodate 4 slots in a cache line. This will

reduce the space cost to less than 1% ( (6 ∗ 4-20)/(64 ∗ 8) ≈ 0.78%).

3 EVALUATION

To evaluate the performance of SDC, we prototype SDC in gem5 [6]

and conduct extensive experiments with micro-benchmarks, real-

world in-memory database and key-value cache traces from a pro-

duction system to reveal its performance insights.

3.1 Evaluation Methodology

Wmodify gem5’s memory system model [18] and enable SDC in

the LLC. We implement the three SDC instructions (sdc_insert,
sdc_invalidate, and sdc_lookup) as pseudo-instructions in the
X86 ISA. The processor’s pipeline is drained before simulated exe-

cution of a gem5’s pseudo-instruction. This operation and its per-

formance penalty do not occur in a real hardware implementation.

To estimate the penalty of pseudo-instruction execution, we tenta-

tively modify the SDC instructions to remove any cache/memory

accesses. In this case these gem5’s pseudo-instructions have an ex-

ecution time of about 20ns (50 cycles), much longer than expected

real execution time (about 1-2 cycles). To compensate the effect, we

conservatively deduct 4ns from each SDC instruction’s execution

time. Our experiments are carried out in the full-system simulation

mode and the simulation configurations are summarized in Table 2.

We choose a small LLC (3MB) for the sake of moderate simulation

time. The workloads’ data set sizes are determined accordingly. For

parameters not listed here, default values specified in the gem5

release are used.

We conduct experiments on the simulator by running an in-

memory key-value store serving insertion, lookup, and deletion

requests. The core index structure can be a B+ tree or a hash table.

The B+ tree used in the evaluation has a fanout of 20, and its source

code is taken from the open-source database LMDB [46]. The hash

table has 221 linked-list buckets, and the code is taken from the

open-source Memcached KV cache [17]. Both indexes are initially

populated with 1.5 million KV items. For the hash table the items’

keys are uniformly distributed in the buckets after hashing. Between

the two data structures, the B+ tree, which has five levels and stores

all KV items at the leaf nodes, represents index structures with a
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Table 2: Simulation Configurations

Processor Configuration

ISA X86 (64-bit)

CPU 1 core, 2.5Ghz
Separated L1 I/D Cache 32KB, 8-way, 3-cycle
Unified L2 Cache (LLC) 3MB, 12-way, 22-cycle
Cache line size 64-byte
Cache replacement policy LRU

DRAM Configuration

Memory DDR3_1600_8x8
DRAM bus bandwidth 12.8 GB/s

SDC-related Configuration

Key 64-bit, zipfian distribution
Shadow memory size (one shard) 3MB unless noted
Sub-tag bits 3-bit unless noted
cache line family size 4 unless noted
Hash function for generating address xorshift [37]
Hash function for generating sub-tag hash64shift [47]
Hardware hashing unit latency 5-cycle
SDC access latency 29-cycle
Data slot length 8-byte

Simulation Software Configuration

OS Linux 3.4.112, x86_64
Compiler gcc-6
Compile option O3

high penalty for a key lookup miss in the cache. In contrast, the

hash table is configured so that each bucket has less than one KV

item on average, representing a relatively low miss penalty.

For a key-value item in the stores, the key and the value are

8 bytes and 512 bytes long, respectively. For SDC operations, the

8-byte key and 8-byte memory address of the KV item are actually

key and value, respectively, in sdc_insert for insertion. The value

returned by an sdc_lookup instruction is interpreted as the address

for locating the corresponding key-value item. Unless noted other-

wise only the first 64 bytes of a value are accessed after a successful

key lookup. After a KV store is populated, we continuously issue

lookup requests and measure the store’s throughput. The lookup

keys are pre-generated using Yahoo’s cloud serving benchmark tool

(YCSB) [14]. The keys follow a zipfian distribution with skewness

of 0.99 to simulate workload of strong temporal locality. Data set

involved in the lookups in an experiment can be a subset of KV

items pre-inserted in the stores. To calculate the data set’s size, for

values we only include the data that is actually accessed after a

lookup (64 bytes by default). In each experiment we will first replay

the lookup sequence three times to warm up the cache before actual

measurements are conducted.

For performance comparison, we use a system with regular LLC

cache configurations (see Table 2) as the baseline. Furthermore,

we compare SDC with a software solution for accelerating index

structure lookups, named SLB (Search Lookaside Buffer) [52]. SLB

is a carefully-tuned application-managed look-aside buffer, imple-

mented as a hash table, to cache frequently accessed data in an

index structure. In the experiments the SLB buffer is set to be of the

LLC cache size (3MB), at which it achieves its best performance [52].

In addition to the synthetic workloads for micro-benchmarking, we

also evaluate SDC in real-systems in Sections 3.5.
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Figure 7: Throughput of lookup requests in the B+-tree and

hash-table based stores with various cache set sizes.
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Figure 8: Contributions to memory access reduction.

3.2 Microbenchmark Performance

In the evaluation with the micro-benchmarks, we are interested in

SDC’s quantitative performance advantages, sources of its perfor-

mance benefits, and impact of SDC’s parameters.

Figure 7 shows the lookup throughput of the two KV stores

on the three caches with varying data set sizes. As shown, SDC

produces the highest throughput in all testing scenarios. For the

B+-tree-based store, the improvements can be as high as 5.3X over

those of Regular at smaller data sets. The improvements with the

hash-table-based store are lower (at about 9.6%∼23%). SDC improves

the performance mainly for two reasons. First, with SDC a lookup

request can be served by the SDC cache if the KV item has been

inserted and stays in the cache, removing the need of index walk,

which can be very expensive as it usually introduces a number of

memory accesses. Second, SDC makes efficient use of cache line

space by reducing idle data items in a cache line even with weak

spatial access locality, which improves cache hit ratio.

While both reasons can lead to reduction of memory accesses,

we measure their relative contributions to the reduction in each

scenarios and the results are shown in Figure 8. As shown, the two

reasons contribute differently in the two stores. The B+-tree store

benefits mostly from the first reason (avoidance of index walk),

as an SDC lookup hit may remove multiple (likely five or more)

memory accesses. In contrast, an SDC hit saves only one or two

memory accesses in the hash-table index due to small bucket size.

And the second reason (increase of cache hits due to higher cache
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Figure 9: Number of memory accesses served at the DRAM

per lookup in the B+-Tree and hash-table based stores.

line utilization) contributes more to hash table’s throughput im-

provement. Figure 9 shows average number of memory accesses per

lookup. SDC can significantly reduce memory accesses compared

to regular cache, especially for the B+-tree store (by up to 85%).

When the data set grows beyond a certain size (about 3.2 times

cache size) (see Figure 7), the working set starts to exceed the cache

size and the capacity misses keep increasing. Figure 10 shows the

hit ratio of the SDC cache with increase of the cache size. When

the working set grows very large and the SDC cache hit ratio is

reduced, SDC’s performance advantage shrinks. However, as SDC

is a user-defined cache, the user program may track the hit ratio

and selectively insert and look up a subset of its working set in the

cache and at least keep a high hit ratio for this smaller set of data.

Compared to SLB, SDC can provide up to 54% performance im-

provement. By maintaining an in-memory buffer, SLB requires an

extra memory copy to move a data item into the buffer. Further-

more, tracking access frequency to effectively perform replacement

policy requires extra space and time costs for recording, updating,

and searching a set of metadata about data items in the buffer. Ac-

cordingly, SLB increases its demand on cache space. It takes more

CPU cycles and memory accesses to insert data items into the cache.

Therefore, its performance advantage is smaller. Note that by design

SLB cannot be shared by multiple processes. If each process has its

own SLB buffer, the software-managed buffers may compete with

each other, leading to many cache misses and SLB’s inefficacy.

3.3 Performance Impact of Family Size

In the SDC design, the tag of an SDC cache line is actually a family

id used to identify a family of SDC cache lines in a cache set. And

a shadow address can be mapped to any of them. A sub-tag of

a cache-line slot is to perform address matching. A larger family

provides more candidate slots to serve a data insertion request and

helps to reduce conflict misses and improve the cache’s perfor-

mance. In the experiments, we measure the stores’ performance

with different family sizes to study its impact. Figures 11 and 12

show SDC’s hit ratio and the store’s throughput with different fam-

ily sizes, respectively. The throughput results are normalized to

their respective counterparts for the baseline store whose family

size is 1 and sub-tag is 3 bits long. When the family size doubles,

one more bit is added to the sub-tag. As shown, the improvement

with a larger family is substantial, especially with a larger data set

and consequentially more serious collisions among multiple keys

mapped to the same shadow address.
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Figure 10: Hit ratio of SDC lookups for theB+-Tree andhash-

table based stores with various data set sizes.
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Figure 11: SDC access hit ratio for lookups in the B+-Tree

and hash-table based stores with different family sizes.

With a larger family size, the throughput can be up to 2.3×

higher (for the B+-tree store). The improvement reduces if we keep

increasing the data set size after the improvement peaks at around a

data set of 3.2×-cache-size large. This is due to an increased ratio of

false hits. With a large family size, a KV item can stay longer in the

cache and likely produce more hits. However, because key space

of a process can be much larger than a shard memory space, the

key collision can still become increasingly serious with a large data

set size. Therefore, using a larger family may also produce more

false hits. Fortunately, our evaluation shows most of the increased

hits are true ones (the false hit ratio is very low (< 1.5%)) and

SDC almost always obtains performance improvement with a large

family size. The only exceptions are with the hash-table when

the data sets are small and family size is 2. This is the situation

when using a large family cannot improve the hit ratio but receives

more false hits. By introducing the concept of cache line family

and making its size a design parameter, one can limit interference

among processes competing for cache lines in a cache set, which

helps reduce false hits.

3.4 Performance Impact of Sub-tag Length

As discussed, false hit can be a threat to the cache’s performance

as its penalty can be higher than that of a miss. It takes an extra

memory access for verification to reveal a false hit. False hits can

be minimized by increasing sub-tag length. Candidate data items in

slots of different cache lines in a family are more strictly screened

when longer sub-tags are compared before returning a matched

one to the program. For a short sub-tag, it can be easy to find one or

even multiple matched data items. In the case of multiple matchings,
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Figure 12: Throughput of lookups in the B+-Tree and hash-

table based stores with different family sizes.
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Figure 13: SDC false hit ratio for lookups in the B+-tree and

hash-table based stores with different sub-tag lengths.
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Figure 14: Throughput of lookups in the B+-tree and hash-

table based stores with different sub-tag lengths.

SDC randomly picks one and returns it. This may turn many misses

(if long sub-tags are used) into (likely false) hits and artificially

boost the hit ratio. Figure 13 shows the false hit ratio with different

sub-tag lengths. And Figure 14 shows corresponding throughput. In

the experiment the family size is fixed at 4. As expected, using a very

short sub-tag (0 or 1 bit) can dramatically increase false hit ratio,

and reduce the throughput. Note that the throughput reduction is

moderate as most of false hits with short sub-tags are simply misses

with long sub-tags. As long as SDC uses a moderately sized sub-tag

(between 3 and 5), the false hit ratio can be made reasonably small.

3.5 Benefits for In-Memory Database

To evaluate the efficiency of SDC in real-systems, we run experi-

ments with Silo, an open-source in-memory database [50, 51]. In

Silo, a Masstree-inspired tree is used for data indexes. To enable

SDC accesses, we added about 100 lines of code to Silo. We use
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Figure 15: Throughput of the silo database with YCSB work-

loads at different value sizes. The throughput is normalized

to that with regular system without SDC.

8-byte strings as keys and vary the value size from 8 to 512 bytes.

To simulate the cost of data access, when a lookup returns a KV

item, we read the first 8-byte of every 64-byte of data in the value.

So accessing 512-byte data requires 8 memory accesses.

We first fill the database with 1million KV items, and then use the

YCSB benchmark to generate four workloads, each issuing 128,000

requests with zipfian distribution. The four workloads follow the

same access patterns as that of YCSB’s A, B, C, and Dworkloads [14].

Workload A has 50% read and 50% update, representing a session

store. Workload B has 95% read and 5% update, representing photo

tagging applications. Workload C has 100% read, and Workload

D has 95% read and 5% insert with a bias towards records that

are created recently. We use the first 32,000 requests to warm up

the system and measure the time of serving the remaining 96,000

requests with one worker thread.

As shown in Figure 15, with a small value size SDC can signif-

icantly improve the throughput by up to 3.3× (e.g., for read-only

Workload C). For workloads with a larger percentage of write re-

quests, the improvement is less significant as SDC cannot accelerate

write operations. And for each write operation an sdc_invalidate
request needs to be issued to SDC to invalidate a possibly cached key.

With a larger data size, more time is spent on accessing in-memory

data and the overhead introduced by the index searching becomes

less significant. When the value size is 512-byte, the throughput is

improved by 1.9× for workload C. As existing studies have shown

small data are common in today’s data processing systems [3], the

above experiment results with real-world in-memory database show

that SDC is effective in improving the data indexing performance.

4 RELATEDWORK

Effective use of CPU cache is critical to supporting high-performance

memory-intensive applications. There have been many works on

leveraging the cache to reduce or accelerate memory access.

Speeding up pointer chasing. Pointer chasing is a memory

access pattern that is notoriously inefficient due to its access ir-

regularity [16, 24, 25] and inherent serialization [24, 29, 31]. In the

meantime, it is performance critical and extensively used in soft-

ware such as databases, file systems, graph processing, dynamic

routing tables, and garbage collections. A major technique to ad-

dress the issue is to predict and prefetch the next node and pointer.
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It can be hardware-based [10, 13, 42] , software-based [29, 31] , or

pre-execution-based [11, 30]. This approach can be expensive by

consuming too much memory bandwidth [16, 24, 41], and cannot

be consistently effective on different data structures and access

patterns. Concerned with limited CPU cache capacity to hold the

working set accessed during pointer chasing, Hsieh et al. proposed

to perform pointer chasing insidememorywith the PIM (processing-

in-memory) hardware support in the 3D-stacked memory [21]. In

fact, one does not have to cache entire working set, or all the data

in the pointer-linked nodes, in the cache. With SDC, programmers

can (selectively) insert only pointers to the next node in the cache.

With a much reduced data set for caching, the pointers can stay in

the cache to enable efficient in-cache pointer chasing.

Improving index search performance. Traversal on index

structures can be a frequent and expensive operation. There have

been many efforts on optimization of index data structures, such as

cuckoo hashing [43, 44], Masstree [32], Wormhole [53], CSS-Trees

(Cache-Sensitive Search Trees) [38], and B+-Trees (Cache-Sensitive

B+-Trees) [39]. These efforts are limited to specific indexes. In con-

trast, SDC can help to avoid many traversals on any of the indexes

with expected access temporal locality. As mentioned, SLB is a

software-based technique to collect pairs of key and its correspond-

ing index search result into a memory buffer. With strong spatial

and temporal localities data in the buffer will also stay in the CPU

cache [52]. Compared with SDC, SLB may not be aware of the

cache size and demands on cache space from other data structures

and/or processes. Therefore, it does not know whether a data item

is cached and does not have a control over it. Further, cost of the

buffer management, including data admission and replacement, can

be expensive. SDC addresses these inadequacies.

Index search can also be accelerated with hardware supports

by designing new specialized hardware components [20, 26, 33] or

leveraging newly available hardware features [8, 19, 54, 56]. Widx,

an on-chip accelerator for database hash index lookups, is such

an example. To use Widx programmers must disclose how keys

are hashed into hash buckets and how walk on the nodes in the

bucket is conducted. In addition to its limited applicability only on

hash index, Widx increases programmers’ burden and is in a sharp

contrast with SDC, which does not require any knowledge on how

the search is actually conducted. There are proposals on using new

vector instructions for hash table search [20, 33]. However, their

usage is usually limited to Vectorwise database systems.

Memoization technique. Memoization technique has been

used in memory systems to cache the results of repetitive computa-

tions and allow the program to skip them. It can be implemented

using software and hardware. The software memoization [15, 45]

suffers from high runtime cost and is only beneficial for long mem-

oization tasks [9, 49]. The hardware implementation [9, 49] incurs

significant hardware overheads as it needs to introduce dedicate

memoization caches. Since not all applications can benefit from

the caches, it can waste a lot of chip area without benefits and

compromise power efficiency. MCache [55] stores memoization

tables in memory and allows them to share cache capacity with

conventional data. Different from existing solutions, SDC reuses

the regular cache space on-demand for caching frequently-accessed

index entries and only needs minor changes to existing cache struc-

tures. SDC can achieve the same goal of memoization technique

with low hardware cost and being easy-to-use for users.

Software-controlled use ofCPUcache. There have been stud-

ies on incorporation of user knowledge on data access in the cache

management. Various techniques have been proposed, from cache

control instructions [40] to scratchpad memory [4]. User programs

can use the instructions to disclose memory access patterns, such

as data items that will only be used once. There are also instruc-

tions for prefetching a cache line, resetting data in a cache line

to 0, and invalidating or evicting a cache line. Compared to SDC,

these instructions add only limited capability to make the cache

more effectively used. In contrast, scratchpad is a technique that

removes an important cache feature – transparently mapping mem-

ory addresses to cache addresses – to allow great control over its

use by providing instructions to move data to and from the main

memory. A major disadvantage of scratchpad is its introduced new

address space (on scratchpad) that is different frommemory address

space assumed in user programs and makes it very hard to adapt

programs to the platform. Thus, scratchpads work poorly with ir-

regular or input-dependent data sets [27, 34]. They are rarely used

in mainstream processors and often used in embedded systems and

special-purpose processors. In contrast, instead of removing the

memory address space, SDC enables an address space that is closer

to and more friendly to user programs’ semantics (the user-defined

keys) to customize cache uses. Further, SDC does not require a sepa-

rate fast memory. It dynamically allocates some space from existing

cache for user-defined use and enables efficient space sharing.

There have been works in the literature named as software-

defined caching [5] or software-defined cache hierarchies [48]. They

allow programs to define shares, which are collections of cache

banks, and accordingly to have control over data placement and

capacity allocation either at one cache level (Jigsaw [5]) or across

a cache hierarchy (Jenga [48]). They function at a coarser grain

for fitting working sets into the shares, while SDC allows user

programs to control caching of individual data items.

5 CONCLUSION

We propose SDC, a user-programmable CPU cache architecture

that enables key-value based data caching to allow programs to

place their selected data items in the cache for quick access. Our

design minimizes programming effort of using the user-controllable

look-aside cache, and enables rich performance optimization oppor-

tunities with a customized use of the CPU cache. SDC seamlessly

integrates into existing cache architecture. And its implementation

requires moderate changes to current cache circuitry. With a proto-

type implementation in gem5, we extensively conduct experiments

with various workloads. The results show that SDC improves the

performance of index-based data management programs by up to

5.3× over existing cache design.
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