SDC: A Software Defined Cache for Efficient Data Indexing

Fan Ni, Song Jiang, Hong Jiang
University of Texas at Arlington
Arlington, TX
fan.ni@mavs.uta.edu,

{song jiang,hong jiang}@uta.edu

ABSTRACT

CPU cache has been used to bridge the processor-memory perfor-
mance gap to enable high-performance computing. As the cache
is of limited capacity, for its maximum efficacy it should (1) avoid
caching data that are less likely to be accessed and (2) identify and
cache data that would otherwise cost a program multiple memory
accesses to reach. Unfortunately, existing cache architectures are
inadequate on these two efforts. First, to cost-effectively exploit the
spatial locality, they adopt a relatively large and fixed-size cache
line as the caching unit. Thus, much of the space in a cache line
can be wasted when the data locality is weak. Second, for easy use,
the cache is designed to be transparent to programs, which hinders
programs from fully exploiting its performance potentials.

To address these problems, we propose a high-performance Soft-
ware Defined Cache (SDC) architecture providing a simple and
generic key-value abstraction that allows (1) caching data at a gran-
ularity smaller than a cache line, and (2) enabling programs to
explicitly insert, retrieve, and invalidate data in the cache with new
instructions. By providing a program with the ability of explicitly us-
ing the cache as a lookaside key-value buffer, SDC enables a much
more efficient cache without disruptively changing the existing
cache organization and without substantially increasing hardware
cost. We have prototyped SDC on the gem5 simulator and evaluated
it with various data index structures and workloads. Experiment
results show that SDC can improve the cache performance for the
workloads by up to 5.3X over current cache design.

CCS CONCEPTS

« Computer systems organization — Processors and mem-
ory architectures.

KEYWORDS

software-defined cache, key value, data indexing

ACM Reference Format:

Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu. 2019. SDC: A
Software Defined Cache for Efficient Data Indexing. In 2019 International
Conference on Supercomputing (ICS °19), June 26-28, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3330345.3330353

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6079-1/19/06...$15.00
https://doi.org/10.1145/3330345.3330353

Jian Huang
University of Illinois at
Urbana-Champaign
Urbana, IL
jianh@illinois.edu

82

Xingbo Wu
University of Illinois at Chicago
Chicago, IL
wuxb@uic.edu

1 INTRODUCTION

Computer systems have been using caches to bridge the well-known
performance gap between fast CPU and slow memory. Data accesses
are accelerated by keeping the most frequently accessed data in the
caches to avoid memory accesses that can be an order of magnitude
slower [22]. However, caches are much more expensive and smaller
in capacity than memory, and must be efficiently used. To this end,
the cache should make efforts to (1) cache only frequently accessed
data to maximize its hit ratio, and (2) remove metadata access by
enabling cache access of data directly. Existing cache architectures
are inadequate in these two aspects by employing a relatively large
cache access unit and transparent caching strategy, respectively.

1.1 The Issue with Large Cache Lines

The cache hit ratio can be seriously compromised with weak spa-
tial access locality. For highly efficient memory access, low cache
space overhead, and effective prefetching, the cache usually adopts
a relatively large access unit, such as 64-byte cache line. However,
there exist significant access patterns exhibiting weak intra-line
spatial locality, leading to fetching and caching of unused data
and compromised cache performance. A representative of such
access patterns is pointer chasing, where a sequence of data items
are accessed by following their pointers. Pointer chasing is com-
mon, especially in pointer-linked index structures, such as B+ tree,
skip list, and hash tables, that are widely used in data-intensive
applications [21, 26, 57].

To illustrate intra-line spatial locality exhibited in the access of B+
tree and hash table, we use each of them to build an index structure
by inserting 8,000 key-value items, each with a distinct 8-byte key
and an 8-byte value. The B+ tree has a fanout of 20, or at most 20
pointers in an internal node to its child nodes. The size of the hash
table is 8,000. That is, each of its linked-list buckets has one item
on average. Nodes in the data structures are individually allocated
with glibc’s malloc(). We issue 80,000 lookup requests to each of the
data structures. To reflect normal cache use scenario, we choose a
skewed key distribution (zipfian). We name every contiguous eight
bytes in a cache line as a cache slot. We track accesses to the slots
in the gem5 simulator [18] with a 32KB 8-way cache!. Figures 1a
and 1c show access count at each slot of a cache line after serving the
lookups on the B+ tree and hash table data structures, respectively.
As shown, for both data structures frequency of access to different
slots in a cache line is highly skewed. For example, in the 84th cache
line only three slots (Slots 2, 3, and 5) have references (62852, 62852,
and 125704 times, respectively) and other slots do not have any
references. This uneven use of slots occurs mostly at nodes that are

!We use a small processor cache to match the relatively small data set size used in our
experiments.

SDC: A Software Defined Cache for Efficient Data Indexing

’ |
‘ m 20000
L
B 15000
7
= 10000
2 | 5000
0 0
0 100 200 300 400 500
Cache Line ID
(a) B+ Tree
8
] ‘\ TV [N H ‘
G‘II\ | ‘I‘I oy e) g
) ‘ 150
4
2 ‘ | ‘ ‘ 100
LT T M Iy
50
0+ 0
0 100 200 300 400 500
Cache Line ID
(c) Hash Table

Slot No.

Slot No.

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

8
M \ I H Il
200
R |
‘ ‘ 150
4
il ‘\ ‘\‘ H\ ‘\ |
2 50
oL l I .
0 100 200 300 400 500
Cache Line ID
(b) B+ Tree with SDC
8
| ‘\‘ | “\ | | ‘\‘ H
200
M
A | | |
‘ ‘ ‘ ‘ 100
2 50
. l I | l | .
0 100 200 300 400 500
Cache Line ID
(d) Hash Table with SDC

Figure 1: Number of accesses at each 8-byte slot (on the Y axis) of every 64-byte cache line (on the X axis) in a 32KB 8-way
cache for serving 80,000 key lookups in each of the data structures (B+ tree and hash table) indexing 8,000 distinct keys. Keys
in the lookups follow the zipfian distribution. Figures (b) and (d) show results with the proposed SDC technique.

at or close to leaves of B+ tree, which dominate cache space held
by the data structure. This issue can be serious even for the hash
table whose average bucket size is only one, as shown in Figure 1c.
Admittedly this weak spatial locality issue is ameliorated when
most lookups are successful and a large piece of data is accessed
after a successful key lookup. However, referencing a small piece
of data after an index lookup is common. For example, Facebook
reported that in its Memcached key-value (KV) pools 90% of the KV
items have values of smaller than 500 bytes [3]. In a KV pool (USR)
dedicated for storing user-account statuses all values are of two
bytes. In a general-purpose pool (ETC), 40% of requests to the store
have values of 2, 3, or 11 bytes. In a pool for frequently accessed
data, 99% of KV items are smaller than 68 bytes [35]. In Twitter’s
KV workloads, after compression each tweet has only 46 bytes of
text [36]. In contrast, the space and time costs of pointer-linked
indexes are significant. In the Facebook’s Memcached servers, the
hash table, including the pointers in the buckets and in the LRU lists,
accounts for about 20~40% of the memory space [3]. A recent study
on modern in-memory databases shows that hash index accesses are
the most significant single source of run-time overhead, constituting
14~94% of total query execution time [26]. Therefore, the under-
utilization of cache space due to weak spatial locality exhibited in
the pointer-chasing accesses can be a serious performance issue.

1.2 The Issue with Transparent Caching

To minimize software burdens, the cache is designed to automati-
cally cache data at any memory address referenced by the instruc-
tions, and then access them via the addresses. In a program, there are

83

two ways in which data are addressed. One is that their addresses
are directly coded in the program and they can be referenced with
the addresses without any proceeding metadata accesses. Example
data include variables and data elements in an array. The other is
that the data have been named by the program’s users, such as user-
defined keys. To access the data in the memory, the program has to
first use index structure(s) to translate the keys into actual memory
addresses. Example data addressed in this way include values in key-
value (KV) caches (such as Memcached) or in-memory KV stores,
data accessed by keys in in-memory databases, and in-memory
inodes accessed via file paths (as the keys) in file systems.

In existing cache designs two levels of address translation are
performed to load and access a data item named by a user-defined
key in the cache, as illustrated in Figure 2(a). The first level of trans-
lation (from a key to a memory address) is conducted by software
with a number of memory accesses on an index structure. Note
that all accessed metadata on the index will also be loaded into the
cache, increasing demand on the cache space. The second level of
translation (from the memory address to a cache address) is con-
ducted by hardware. If we could access data in the cache directly
via their keys, the accesses and caching of the metadata would be
avoided. This is one of our design objectives.

Interestingly, the two levels of address translation also occur
in a physical-memory-address-indexed cache with every memory
address, as shown in Figure 2(b). The first-level translation is from
a process’s virtual address to the physical address, and the second-
level one is from the physical address to the cache address. The
first-level translation requires expensive traversal on the process’s
page table (a prefix tree). Fortunately, the TLB cache was invented

ICS 19, June 26-28, 2019, Phoenix, AZ, USA

Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu

| Index structure

E_ Hardware

Hashing Unit

Key
: Index structure | %LE_L
: TLB Page Table

Physical Address

Memory Address

Cache Address Cache Address

(a) Translate a key to a cache address. (b) From virtual addresses to cache addresses with TLB.

| Memory Address | Shadow Memory Address |

Cache Address

Figure 2: Various scenarios of address translation into the cache space.

to accelerate the translation by avoiding access of page table (the
metadata). In this work, we’d like to make the technique generalized
and make similar benefit available to user-defined index structures.

1.3 Our Solution: Software-Defined Cache

In this paper we propose a new cache design, Software-Defined
Cache (SDC), as a supplement to existing cache architecture to
allow the last-level cache (LLC) to serve as a look-aside cache for
programmers to explicitly insert, retrieve, or invalidate data in
the cache using a simple and generic key-value abstraction. As a
look-aside cache, SDC is presented to programmers much like a
scratch pad, whose cached data are not automatically associated to
or written back, upon eviction, to the memory, except that it does
not burden programmers as a scratch pad would.

First, SDC is accessed with user-defined keys, instead of memory
addresses. Second, the cache space is still managed by the hardware
for functions such as data replacement according to access locality,
to relieve programmers from the complex and often expensive task.
In addition, SDC uses a cache slot, which is much smaller than cache
line, as its access unit without substantially increasing overhead
cache space. These advantages of SDC are achieved by seamlessly
integrating it into existing cache architecture. As illustrated in Fig-
ure 2(c), SDC maps a key to a memory address in the shadow address
space, which is a (physical) address range that has not yet been
mapped to any physical memory, using a hardware hash unit. It
then leverages existing cache address mapping mechanism to map
the shadow address to a cache address for caching user-supplied
data. It also leverages existing cache’s replacement strategy to man-
age its space. In the meantime, the regular transparent caching is
still available, making the LLC be a hybrid cache. As part of the
LLC, SDC’s space size is dynamically determined by its data access
locality. And cache utilization with weak spatial locality can be
significantly improved, as illustrated in Figures 1b and 1d.

This paper makes three contributions. 1) We show two fundamen-
tal sources of caching inefficiency (large cache line and transparent
caching) that can seriously compromise the performance of data
indexing in data-intensive applications. 2) We propose SDC that
uses part of the LLC as a look-aside cache accessed via user-defined
keys at a fine granularity. SDC enables a KV cache at the LLC for
programs to access with a simple and generic key-value interface. 3)
We extensively evaluate the SDC design with a full-system simula-
tion on gem5 with various workloads. Experiment results show that
for its targeted workloads SDC significantly improves application

84

performance. As anecdotal examples, SDC improves throughput of
a real-world in-memory database by up to 3.3X.

2 THE DESIGN OF SDC

The design goal of SDC is to provide programs with explicit fine-
grained LLC cache access via user-defined keys. This KV-style use
of the cache provides programmers with a critical architectural sup-
port to overcome weak spatial locality and for TLB-like capability
to avoid index traversal. To achieve the goal, there are a number of
challenges to address to make it truly functional and efficient. First,
currently data are loaded into caches as a side effect of memory
accesses, and a program cannot insert data directly into the cache
without issuing a memory access. We need to carefully define a new
programming interface friendly to programmers and compilers and
being least intrusive to existing cache architecture. Second, in the
mapping from a potentially large key space to a cache space key
collision is unavoidable. We must develop effective mapping and
cache replacement strategy to minimize mapping conflicts. Third,
allowing smaller data items in the cache means higher space cost for
additional metadata. We need to carefully make trade-offs among
this space overhead, the APT’s usability, and the cache’s hit ratio to
build a cost-effective software-defined cache.

2.1 Extending ISA to Enable SDC

To enable use of CPU cache as a look-aside KV cache we introduce
three instructions (and more of their variants) to insert, look up,
and invalidate a KV item in the cache. Their formats are shown in
Table 1. A common operand of the instructions is the key, provided
in a 64-bit register. Admittedly user-defined keys can be of any
format and any length, such as a character string of variable length.
To enforce a consistent representation, it may require programmers
to first convert a key into a 64-bit number (e.g., taking the last
8 characters of the key string). Apparently, the conversion may
compromise uniqueness of the original keys. A similar issue will
occur in the SDC’s implementation, where for reducing metadata
space cost we reduce size of the tags (for matching cache slots) at
a (small) risk of returning wrong values upon the lookup (a false
hit). To address the issues, programmers are expected to verify
the truthfulness of the value?. A commonly used technique for
the verification is to store the original full key together with its
value, and use address of the KV pair in the memory as the value
in sdc_insert and sdc_lookup, or Mem(value addr) in Table 1.

2The security or privacy is not a concern here as SDC guarantees a KV item inserted
by one process will not be returned to another process.

(c) Translate a key to a cache address with SDC.

SDC: A Software Defined Cache for Efficient Data Indexing

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

Table 1: SDC Instructions. Operands 2 and 3 specify the memory address of the value to be inserted in sdc_insert, and that
for receiving return value in sdc_lookup, and the value size, respectively. For the case where the value size is 8 bytes (one cache
slot), these two instructions have variants directly storing the value in a register specified by Operand 2. Operation status is
a bit in the status register indicating success of the operation. To update a value in the cache, one needs to invalidate it and

then inserting the new value.

Name [Operand 1 [Operand 2 [Operand 3 [Operation status
sdc_insert Reg(key) Mem(value addr) | Reg(value size) lor0
sdc_invalidate | Reg(key) - - 1or0
sdc_lookup Reg(key) Mem(value addr) | Reg(value size) lor0

struct kv_entry buffer,
uint64_t key;

“p;

while (receive_req(command, &buffer) {
key = buffer.key;
switch (command) {
case LOOKUP:
if (sdc_lookup(key, &p,
if (p—>key == key){ /«
needed «
processing_data(p);

sizeof(p))) {

original key comparison may be

}
} else { /+ miss, do regular search «/
p = index_lookup (key);
if (p != NULL){
processing_data(p);
sdc_insert (key, &p,sizeof(p));
}
}
break;
clalseMDEEETES
sdc_invalidate (key);
del_from_the_kv_store (key);
break;
case INSERT:
p = ins_into_the_kv_store (key, &buffer);
if (p != NULL)
sdc_insert (key, &p,
break;
}

sizeof (p));

Figure 3: Pseudo code for a hypothetical KV store handling
various requests with the support of SDC functions.

After receiving the address returned by a lookup, the program will
compare the key at the address with the original key [2, 7, 28].

The return value (in Operands 2 and 3) is up to the programmer’s
interpretation. It can be either the cached value itself or a pointer
to the actual value. The value size can be of 1, 2, 4, or 8 slots (or
8, 16, 32, 64 bytes, respectively). The sdc_invalidate instruction
explicitly removes identified KV items from the cache. It is noted
that, like TLB, SDC uses the cache as a look-aside buffer. When the
items are evicted or invalidated, there are no write-back operations.

With the instructions, a library of functions can be available for
programmers to use the SDC cache. Figure 3 shows an example use
of the cache in a pseudo code, whose execution is facilitated by the
architecture illustrated in Figure 2(c).

2.2 Two Levels of Address Mapping

As mentioned, one of the SDC design principles is to seamlessly
integrate it into the existing cache architecture. In addition to the
benefit of simple design and reuse of the cache circuitry for a re-
duced cost, the integration allows efficient use of the cache space.
To achieve high cache-space efficiency, we must keep the most

85

frequently accessed data in the cache, regardless of their sources
(either loaded via regular memory accesses or inserted by SDC
instructions). If these two types of data were cached or managed
separately, it would be hard to consistently compare their access
locality, and it would also be difficult to determine the space allo-
cations between them to dynamically and accurately reflect their
respective space demands. To this end SDC maps its key space to a
range of physical address space not mapped to any physical mem-
ory, named shadow memory address space, from which the existing
cache scheme kicks in to further map it into cache address space.

Accordingly, there are two levels of address mapping in SDC. The
first-level mapping (from the user key space to the shadow memory
address space) is exclusively managed by SDC. The second-level
mapping (from the memory address space, including regular and
shadow memory addresses, to the cache space) is managed by the
existing cache scheme at the cache-line granularity and by SDC at
the slot granularity. Figure 4 illustrates these two levels of address
mapping, which serves as an overview of the SDC’s architecture
with details explained in the following two sections.

2.2.1 Mapping from User Key to Memory. For the first-level
mapping, we need to decide where the shadow memory fits into
the address space. In principle, it can be placed at any location
not used in current addressing. As the memory address space is
rarely fully occupied (by mapping to DRAM), we choose to double
current physical memory space to make SDC compatible with any
today’s and future’s system configurations by adding an extension
bit before the MSB (Most Significant Bit) of a memory address.
Accordingly, this bit will be the first bit of a cache line tag, with a “0”
indicating a regular cache line and a “1” an SDC cache line. In this
way, a physical address in the shadow memory will be of the format
’100...0bg _1bg_5...by° with a shadow memory size of 2k bytes. Note
that for SDC cache lines the sequence of ‘0’s before by_; does not
need to be stored in their tags to reduce cache metadata.

A critical issue in the SDC design is to guarantee security and
privacy of each process’s data in the SDC cache. A key is unique only
within a process. To isolate keys of one process from other processes
and make a key unique in an SDC cache, we evenly partition the
shadow memory space into shards. Keys of a process are mapped
exclusively to a dedicated shard. Suppose an SDC supports up to
eight processes simultaneously. The three bits by_1b_5bj_3 in the
aforementioned address format represent shard identifier, one for a
process. As will be further explained, sdc_lookup()) only returns
values inserted by the same caller process.

An important parameter in the SDC design is the size of the
shadow memory, or alternatively the size of a shard for a given

ICS 19, June 26-28, 2019, Phoenix, AZ, USA

Shadow memory address space
< >

Memory address space

I
nused zeros: 20 |
'
'

=2 Offsetin the shard: 22

1
1
L
28 27 25 24 23 22 21 20

0 0 0 1 0 1 1 0 0 0 ==~

6 5 3 0
0 1 00 1 00 o]

—
Shadow memory address
| ; Hash2 \ Hash
CI232 Collision seg: 2 ‘\I
'

Family segm): 2 : Oxeled3ef0 (64-bit key) User key space

[T o0 o0 -

ri-r
Sub-tag 10 1 01
b

(a) An example of the first-level address mapping. A 64-bit key
("0xeled3ef0") in an SDC instruction issued by a process is translated
into a 49-bit shadow memory address. The hash unit ("Hash") trans-
lates the key into a 22-bit offset in a shard. A 3-bit process id ("001")
is placed before the offset to indicate the shard ("Shard 1") where the
key is mapped. Note "sub-tag" is used in the second-level mapping.

Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu

Way 0 1 2 3 4 14 I5
Set 0
—p Set 1 I
1 >
1 \
g Sent| | [[[[l n] |
I ey i \
r > Pid: 3 \
1 | \
1 i
s ! .'.‘.‘.'."Slot id: 3
1 1 1 1 1
! —_ !
I_.m 47 2827 25 24 23 22 21 20 6 5 3 0
1 000 0 00101 10000100100 0]

Shadow memory address

(b) An example of the second-level address mapping. Like regular
cache, the 15-bit "set id" determines into which cache set the shadow
memory address is mapped. As detailed in Section 2.2.2 and illus-
trated in Figure 5, some other bits, such as "pid", "family bits", and
"family segment”, are used to determine a cache line in the set. The
3-bit "slot id" determines a slot in the cache line.

Figure 4: Two-level address mapping in SDC. Bit segments and their respective lengths are shown as segment name : segment

length in bits. A 32MB 16-way associative cache is illustrated.

number of shards. An ill-chosen size may compromise the SDC’s
performance advantage. A too large shard may cause the space
sparsely filled and many SDC cache lines under-utilized. However,
with a too small shard there can be many keys mapped to a single
address, increasing conflict misses. We set it to be the LLC cache
size, ensuring the cache space can be fully utilized.

SDC uses a hash function to map a key to an address in a shard.
Though a multi-choice hashing can help reduce mapping conflicts,
we do not choose it to avoid extra access latency and hardware cost.
Instead, SDC achieves the multi-choice capability in the second-
level mapping by reusing the hardware for the set associative cache.
At the first level, the hash function translate a 64-bit key into an
offset in a shard, and precedes it with a process id indicating the
process to which the key belongs, as illustrated in Figure 4a.

2.2.2 Mapping from Shadow Memory to Cache. The SDC cache
is hosted only in the LLC, as it is designed for memory-intensive
applications with large working sets whose caching in a small cache
is unlikely to yield many hits [48]. Though LLC is relatively slow, a
miss on a KV item in the SDC cache has a high penalty (multiple
memory accesses for the index search). Therefore, increasing cache
hit ratio outweighs achieving short hit time. Further, as LLC is
shared among cores in a processor, keeping SDC data only in the
LLC avoids the cost for maintaining cache coherence in a single-
socket system. For multi-socket systems, consistency of the SDC
data can be maintained either by hardware, using techniques such
as Intel QPI [58] or AMD HyperTransport interconnection [12], or
by relying on OS using techniques similar to that for TLB [1].

In SDC, in addition to the mapping conflicts from memory ad-
dresses to cache lines as that in regular caches, there is another
kind of conflicts in the mapping from user keys to shadow memory
addresses. To reduce the conflict misses, we introduce the concept
of cache-line family that includes all SDC cache lines in a set whose
tags differ only at the last m bits, as shown in Figure 4b. A family
in a cache set has 2 member cache lines. A shadow memory ad-
dress can be mapped to any cache lines in the family of a set. Keys

86

= Extension bit
= Pid

SDC cache line tag
(Family id) |

A

| r 1

CachcI line m

v

HHHH] TS TSN O

.
.!"

\ v

v

Per-slot
Sub-tag

(Famiy st Comionsgy 1001 == 0110 1100 0001 0010 1001 1110
Valid Bit L 0 _l___l__ ! ! ! !
Seq Bit Lo o0 o0 o v r 0
RefBit o0 0 0 1 1 1 1

Figure 5: Status bits for an SDC cache line and its slots.

mapped to the shadow memory address can then be stored in any
cache lines in the family, reducing impact of key collision. The use
of cache line family can also prevent one process from using the
cache space too aggressively in a multi-process context. Should the
family id field (see Figure 5) not be introduced, a value would likely
be placed in any line in a cache set.

SDC maintains some status bits for each slot in an SDC cache
line as listed below and illustrated in Figure 5.

o Sub-tag: bits for identifying a value matching a given user key.
A sub-tag of a slot consists of two bit segments. The first one is
the family segment field as shown in Figure 4b, which is the m
bits (assuming the family size is 2™) on the left of the set id field.
The other one is some bits generated by applying another hash
function (Hash2 in Figure 4a) on the original user key, aiming to
further reduce probability of returning a value not matching a
given user key (a false hit). If a value occupies multiple cache-line
slots, only the first slot needs to have a sub-tag created with the
above rules. Thus, the second hash function can produce more
bits to fill the space originally reserved for sub-tags to further
reduce probability of false hits.

SDC: A Software Defined Cache for Efficient Data Indexing

MRU cache line LRU cache line

/\

Cache line family

Figure 6: Two-level replacement strategy: a hypothetical
LRU replacement for cache lines in a cache set and a clock
replacement for SDC slots in a cache line family.

o Valid Bit: a bit indicating if the slot contains valid value.

e Sequence Bit: a bit indicating the first slot storing a user value. It
is noted that a value can occupy 1, 2, 4, or 8 contiguous slots in a
cache line, and is placed at a slot offset that is multiples of their
respective sizes. For a value, the sequence bit of its last occupied
slot is ‘0’ and the bits for its other slots are all ‘1’s.

o Reference Bit: a bit indicating if the slot has been recently refer-
enced. It is used to facilitate the clock replacement among slots in
a cache-line family. The bit is set to ‘1’ once the slot is accessed.

For an SDC operation, there can be multiple sub-tag-matching
slots in different cache lines of a family. For sdc_lookup, SDC ran-
domly selects one from the slots and returns it. For sdc_invalidate
and sdc_insert all the matching slots are invalidated.

When there is no free space available for inserting a new KV
item, SDC employs a two-level replacement strategy. The objective
is to keep hot (or frequently accessed) cache lines, either regular
or SDC cache lines, from being replaced, and keep hot slots in a
cache-line family from being replaced. When a KV item at a shadow
memory address is mapped into a family of SDC cache lines in a
cache set (all at the same cache-line offset, or slot address), the
item can be placed in any of the cache lines whose corresponding
slot (or multiple slots for a larger value size) is available (with "0’
valid bit). If none of them in the family is available and current
family size has not yet reached its maximum size, SDC will first
ask the existing cache-line-level replacement scheme, such as LRU
as illustrated in Figure 6, to identify a cold cache line in the set for
potential replacement. If the selected cache line does not belong to
the family, it is replaced and the value is stored in the corresponding
slot(s) of the cache line. Other unused slots in the cache line are
marked as invalid (0’ valid bits). Otherwise, instead of replacing
the entire SDC cache line selected by the replacement scheme, we
proceed with the slot-level CLOCK replacement within the family
as described in the below.

We first assume that value is one slot long. As shown in Figure 6,
a value can be stored at a slot in any cache line of the family (at the
same offset). The replacement policy checks reference bits of the
slots, one at a time, in a certain order. Whenever it encounters a
‘1’, it resets it to 0 and proceeds to the next one. It stops at a slot
whose reference bit is ‘0’ and replaces its current value with the
new one. Note that if the current value occupies more than one slot,
which can be known by examining sequence bits of this slot and its
neighboring slots, the other slots occupied by the value need to be
marked as invalid. If the new value is more than one slot long, the
replacement procedure is similar. The only difference is to check
reference bits of multiple slots starting at the offset in each cache
line and replace them together if they are all ‘0’s. Otherwise, they
are all reset to ‘0’. The two-level replacement policy dynamically
balances cache space allocation among regular data cache and SDC.

87

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

2.3 Metadata Storage Cost of SDC

While SDC supports cache space management at a finer granularity
(the slots), some metadata have to be associated with individual
slots. To have an empirical estimation of the space cost, we choose
a popular processor (Intel E5-2683 V4 CPUs [23]) for SDC to be
implemented in its LLC (L3). Its LLC has a 20-way set associative
40MB cache with 64-byte cache lines. The size of a shard is the
same as the cache size (40MB). There are eight 8-byte slots in a
cache line. Let’s assume a sub-tag of 4 bits (2-bit family segment
from the regular tag and 2-bit collision segment from key hashing).
Adding the 3 bits for the valid, sequence, and reference bits, each
SDC cache line requires 7 X 8 = 56 bits. Assuming that the SDC
supports up to 8 processes, an SDC tag has 7 bits, which is less than
regular tag size (27) by 20 bits. Therefore, to accommodate SDC
each cache line needs extra 56 — 20 = 36 bits, or 36/(64*8) = 7% of
the cache size. To further reduce the space cost, we can simplify
the design by fixing the slot size to 16-byte, which will save the
reference bit and accommodate 4 slots in a cache line. This will
reduce the space cost to less than 1% ((6 = 4-20)/(64 = 8) ~ 0.78%).

3 EVALUATION

To evaluate the performance of SDC, we prototype SDC in gem5 [6]
and conduct extensive experiments with micro-benchmarks, real-
world in-memory database and key-value cache traces from a pro-
duction system to reveal its performance insights.

3.1 Evaluation Methodology

W modify gem5’s memory system model [18] and enable SDC in
the LLC. We implement the three SDC instructions (sdc_insert,
sdc_invalidate, and sdc_lookup) as pseudo-instructions in the
X86 ISA. The processor’s pipeline is drained before simulated exe-
cution of a gem5’s pseudo-instruction. This operation and its per-
formance penalty do not occur in a real hardware implementation.
To estimate the penalty of pseudo-instruction execution, we tenta-
tively modify the SDC instructions to remove any cache/memory
accesses. In this case these gem5’s pseudo-instructions have an ex-
ecution time of about 20ns (50 cycles), much longer than expected
real execution time (about 1-2 cycles). To compensate the effect, we
conservatively deduct 4ns from each SDC instruction’s execution
time. Our experiments are carried out in the full-system simulation
mode and the simulation configurations are summarized in Table 2.
We choose a small LLC (3MB) for the sake of moderate simulation
time. The workloads’ data set sizes are determined accordingly. For
parameters not listed here, default values specified in the gem5
release are used.

We conduct experiments on the simulator by running an in-
memory key-value store serving insertion, lookup, and deletion
requests. The core index structure can be a B+ tree or a hash table.
The B+ tree used in the evaluation has a fanout of 20, and its source
code is taken from the open-source database LMDB [46]. The hash
table has 22! linked-list buckets, and the code is taken from the
open-source Memcached KV cache [17]. Both indexes are initially
populated with 1.5 million KV items. For the hash table the items’
keys are uniformly distributed in the buckets after hashing. Between
the two data structures, the B+ tree, which has five levels and stores
all KV items at the leaf nodes, represents index structures with a

ICS 19, June 26-28, 2019, Phoenix, AZ, USA

Table 2: Simulation Configurations

Processor Configuration

X86 (64-bit)

1 core, 2.5Ghz

32KB, 8-way, 3-cycle
3MB, 12-way, 22-cycle

ISA

CPU

Separated L1 I/D Cache
Unified L2 Cache (LLC)

Cache line size 64-byte
Cache replacement policy LRU
DRAM Configuration
Memory DDR3_1600_8x8
DRAM bus bandwidth 12.8 GB/s
SDC-related Configuration
Key 64-bit, zipfian distribution

3MB unless noted
3-bit unless noted
4 unless noted
xorshift [37]
hashé4shift [47]

Shadow memory size (one shard)
Sub-tag bits

cache line family size

Hash function for generating address
Hash function for generating sub-tag

Hardware hashing unit latency 5-cycle
SDC access latency 29-cycle
Data slot length 8-byte
Simulation Software Configuration
OS Linux 3.4.112, x86_64
Compiler gee-6
Compile option 03

high penalty for a key lookup miss in the cache. In contrast, the
hash table is configured so that each bucket has less than one KV
item on average, representing a relatively low miss penalty.

For a key-value item in the stores, the key and the value are
8 bytes and 512 bytes long, respectively. For SDC operations, the
8-byte key and 8-byte memory address of the KV item are actually
key and value, respectively, in sdc_insert for insertion. The value
returned by an sdc_lookup instruction is interpreted as the address
for locating the corresponding key-value item. Unless noted other-
wise only the first 64 bytes of a value are accessed after a successful
key lookup. After a KV store is populated, we continuously issue
lookup requests and measure the store’s throughput. The lookup
keys are pre-generated using Yahoo’s cloud serving benchmark tool
(YCSB) [14]. The keys follow a zipfian distribution with skewness
of 0.99 to simulate workload of strong temporal locality. Data set
involved in the lookups in an experiment can be a subset of KV
items pre-inserted in the stores. To calculate the data set’s size, for
values we only include the data that is actually accessed after a
lookup (64 bytes by default). In each experiment we will first replay
the lookup sequence three times to warm up the cache before actual
measurements are conducted.

For performance comparison, we use a system with regular LLC
cache configurations (see Table 2) as the baseline. Furthermore,
we compare SDC with a software solution for accelerating index
structure lookups, named SLB (Search Lookaside Buffer) [52]. SLB
is a carefully-tuned application-managed look-aside buffer, imple-
mented as a hash table, to cache frequently accessed data in an
index structure. In the experiments the SLB buffer is set to be of the
LLC cache size (3MB), at which it achieves its best performance [52].
In addition to the synthetic workloads for micro-benchmarking, we
also evaluate SDC in real-systems in Sections 3.5.

88

Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu

BB Regular [0 SLB B suc] BB Regular [0 SLB R sm‘]
Z10
t; 0.5 ﬂ
5
2o
02 04 08 16 32 64 128 256 02 04 08 16 32 64 128 256
Data set (x Cache size) Data set (x Cache size)
(a) B+-tree (b) Hash Table

Figure 7: Throughput of lookup requests in the B+-tree and
hash-table based stores with various cache set sizes.

[- Increase of Cache Hit

100 7= ¥ ¥ ¥ ¥ i ¥ ¥

3 Avoidance of Index Walk I

754

(%)

B+-Tree
100 q

75
=
X 504

25

0 ¥ f ¢ ¥ f f
0.20 040 0.80 1.60 3.20 6.40 1280 25.60

Hash Table
Data set (x Cache size)

Figure 8: Contributions to memory access reduction.

3.2 Microbenchmark Performance

In the evaluation with the micro-benchmarks, we are interested in
SDC’s quantitative performance advantages, sources of its perfor-
mance benefits, and impact of SDC’s parameters.

Figure 7 shows the lookup throughput of the two KV stores
on the three caches with varying data set sizes. As shown, SDC
produces the highest throughput in all testing scenarios. For the
B+-tree-based store, the improvements can be as high as 5.3X over
those of Regular at smaller data sets. The improvements with the
hash-table-based store are lower (at about 9.6%~23%). SDC improves
the performance mainly for two reasons. First, with SDC a lookup
request can be served by the SDC cache if the KV item has been
inserted and stays in the cache, removing the need of index walk,
which can be very expensive as it usually introduces a number of
memory accesses. Second, SDC makes efficient use of cache line
space by reducing idle data items in a cache line even with weak
spatial access locality, which improves cache hit ratio.

While both reasons can lead to reduction of memory accesses,
we measure their relative contributions to the reduction in each
scenarios and the results are shown in Figure 8. As shown, the two
reasons contribute differently in the two stores. The B+-tree store
benefits mostly from the first reason (avoidance of index walk),
as an SDC lookup hit may remove multiple (likely five or more)
memory accesses. In contrast, an SDC hit saves only one or two
memory accesses in the hash-table index due to small bucket size.
And the second reason (increase of cache hits due to higher cache

SDC: A Software Defined Cache for Efficient Data Indexing

bnh i

6.4 128 256 02 04 08 16 32 64 128 256
Data set (x Cache size)

rzzzziZZE
Num of DRAM acces

0.2 0.4 0.8 1.6 3.2
Data set (x Cache size)

(a) B+-Tree (b) Hash Table
Figure 9: Number of memory accesses served at the DRAM
per lookup in the B+-Tree and hash-table based stores.

line utilization) contributes more to hash table’s throughput im-
provement. Figure 9 shows average number of memory accesses per
lookup. SDC can significantly reduce memory accesses compared
to regular cache, especially for the B+-tree store (by up to 85%).
When the data set grows beyond a certain size (about 3.2 times
cache size) (see Figure 7), the working set starts to exceed the cache
size and the capacity misses keep increasing. Figure 10 shows the
hit ratio of the SDC cache with increase of the cache size. When
the working set grows very large and the SDC cache hit ratio is
reduced, SDC’s performance advantage shrinks. However, as SDC
is a user-defined cache, the user program may track the hit ratio
and selectively insert and look up a subset of its working set in the
cache and at least keep a high hit ratio for this smaller set of data.
Compared to SLB, SDC can provide up to 54% performance im-
provement. By maintaining an in-memory buffer, SLB requires an
extra memory copy to move a data item into the buffer. Further-
more, tracking access frequency to effectively perform replacement
policy requires extra space and time costs for recording, updating,
and searching a set of metadata about data items in the buffer. Ac-
cordingly, SLB increases its demand on cache space. It takes more
CPU cycles and memory accesses to insert data items into the cache.
Therefore, its performance advantage is smaller. Note that by design
SLB cannot be shared by multiple processes. If each process has its
own SLB buffer, the software-managed buffers may compete with
each other, leading to many cache misses and SLB’s inefficacy.

3.3 Performance Impact of Family Size

In the SDC design, the tag of an SDC cache line is actually a family
id used to identify a family of SDC cache lines in a cache set. And
a shadow address can be mapped to any of them. A sub-tag of
a cache-line slot is to perform address matching. A larger family
provides more candidate slots to serve a data insertion request and
helps to reduce conflict misses and improve the cache’s perfor-
mance. In the experiments, we measure the stores’ performance
with different family sizes to study its impact. Figures 11 and 12
show SDC’s hit ratio and the store’s throughput with different fam-
ily sizes, respectively. The throughput results are normalized to
their respective counterparts for the baseline store whose family
size is 1 and sub-tag is 3 bits long. When the family size doubles,
one more bit is added to the sub-tag. As shown, the improvement
with a larger family is substantial, especially with a larger data set
and consequentially more serious collisions among multiple keys
mapped to the same shadow address.

89

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

l- B+-Tree [Hash Tablel
100 . = =

801

601

40

204

SDC access hit ratio (%)

020 040 0.80 160 320 6.40 12.80 25.60
Data set (x Cache Size)

Figure 10: Hit ratio of SDC lookups for the B+-Tree and hash-
table based stores with various data set sizes.

020 040 080 1.60 3.20 6.40 12.80 25.60
Data set (x Cache Size)

100 = 100

80 | £ 8 |
60 { 60 |
10 N
BB il bl 1
==Y
B Family

40
[e
0
020 040 080 1.60 3.20 6.40 12.80 25.60
Data set (x Cache Size)

SDC access hit ra

SDC access hit ratio (%)

20
B il s

(a) B+-Tree (b) Hash Table
Figure 11: SDC access hit ratio for lookups in the B+-Tree
and hash-table based stores with different family sizes.

With a larger family size, the throughput can be up to 2.3x
higher (for the B+-tree store). The improvement reduces if we keep
increasing the data set size after the improvement peaks at around a
data set of 3.2x-cache-size large. This is due to an increased ratio of
false hits. With a large family size, a KV item can stay longer in the
cache and likely produce more hits. However, because key space
of a process can be much larger than a shard memory space, the
key collision can still become increasingly serious with a large data
set size. Therefore, using a larger family may also produce more
false hits. Fortunately, our evaluation shows most of the increased
hits are true ones (the false hit ratio is very low (< 1.5%)) and
SDC almost always obtains performance improvement with a large
family size. The only exceptions are with the hash-table when
the data sets are small and family size is 2. This is the situation
when using a large family cannot improve the hit ratio but receives
more false hits. By introducing the concept of cache line family
and making its size a design parameter, one can limit interference
among processes competing for cache lines in a cache set, which
helps reduce false hits.

3.4 Performance Impact of Sub-tag Length

As discussed, false hit can be a threat to the cache’s performance
as its penalty can be higher than that of a miss. It takes an extra
memory access for verification to reveal a false hit. False hits can
be minimized by increasing sub-tag length. Candidate data items in
slots of different cache lines in a family are more strictly screened
when longer sub-tags are compared before returning a matched
one to the program. For a short sub-tag, it can be easy to find one or
even multiple matched data items. In the case of multiple matchings,

ICS 19, June 26-28, 2019, Phoenix, AZ, USA

B Fonily size
Z 20| Family size=
T | EEE Family size=4
215
£
S10 B Fanily Sze-2l
£ Family §ze22
205 W Fanily Szeot
0.00
020 040 080 1.60 3.20 6.40 1280 25.60 0.20 0.40 080 1.60 3.20 6.40 12.80 25.60
Data set (x Cache Size) Data set (x Cache Size)
(a) B+-Tree (b) Hash Table

Figure 12: Throughput of lookups in the B+-Tree and hash-
table based stores with different family sizes.

SDC false hit ratio (%)

02 04 08 16 32 64
Data set (x Cache size)

12.8 256 0.2 0.4 0.8 L6 3.2 6.4
Data set (x Cache size)

128 256
(a) B+-Tree (b) Hash Table

Figure 13: SDC false hit ratio for lookups in the B+-tree and
hash-table based stores with different sub-tag lengths.

E= SubTaglen=3
R Regular

&

willion ops/sec)

0.0

Throughput (million ops/sec)

Thra

02 04 08 16 32 64 128 256
Data set (x Cache size)

02 04 08 L6 32 64 128 256
Data set (x Cache size)

(a) B+-Tree (b) Hash Table
Figure 14: Throughput of lookups in the B+-tree and hash-
table based stores with different sub-tag lengths.

SDC randomly picks one and returns it. This may turn many misses
(if long sub-tags are used) into (likely false) hits and artificially
boost the hit ratio. Figure 13 shows the false hit ratio with different
sub-tag lengths. And Figure 14 shows corresponding throughput. In
the experiment the family size is fixed at 4. As expected, using a very
short sub-tag (0 or 1 bit) can dramatically increase false hit ratio,
and reduce the throughput. Note that the throughput reduction is
moderate as most of false hits with short sub-tags are simply misses
with long sub-tags. As long as SDC uses a moderately sized sub-tag
(between 3 and 5), the false hit ratio can be made reasonably small.

3.5 Benefits for In-Memory Database

To evaluate the efficiency of SDC in real-systems, we run experi-
ments with Silo, an open-source in-memory database [50, 51]. In
Silo, a Masstree-inspired tree is used for data indexes. To enable
SDC accesses, we added about 100 lines of code to Silo. We use

90

Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu

Workload A
Workload B
Workload C
Workload D

Normalized throughput

%)

Figure 15: Throughput of the silo database with YCSB work-
loads at different value sizes. The throughput is normalized
to that with regular system without SDC.

8-byte strings as keys and vary the value size from 8 to 512 bytes.
To simulate the cost of data access, when a lookup returns a KV
item, we read the first 8-byte of every 64-byte of data in the value.
So accessing 512-byte data requires 8 memory accesses.

We first fill the database with 1 million KV items, and then use the
YCSB benchmark to generate four workloads, each issuing 128,000
requests with zipfian distribution. The four workloads follow the
same access patterns as that of YCSB’s A, B, C, and D workloads [14].
Workload A has 50% read and 50% update, representing a session
store. Workload B has 95% read and 5% update, representing photo
tagging applications. Workload C has 100% read, and Workload
D has 95% read and 5% insert with a bias towards records that
are created recently. We use the first 32,000 requests to warm up
the system and measure the time of serving the remaining 96,000
requests with one worker thread.

As shown in Figure 15, with a small value size SDC can signif-
icantly improve the throughput by up to 3.3% (e.g., for read-only
Workload C). For workloads with a larger percentage of write re-
quests, the improvement is less significant as SDC cannot accelerate
write operations. And for each write operation an sdc_invalidate
request needs to be issued to SDC to invalidate a possibly cached key.
With a larger data size, more time is spent on accessing in-memory
data and the overhead introduced by the index searching becomes
less significant. When the value size is 512-byte, the throughput is
improved by 1.9 for workload C. As existing studies have shown
small data are common in today’s data processing systems [3], the
above experiment results with real-world in-memory database show
that SDC is effective in improving the data indexing performance.

4 RELATED WORK

Effective use of CPU cache is critical to supporting high-performance
memory-intensive applications. There have been many works on
leveraging the cache to reduce or accelerate memory access.

Speeding up pointer chasing. Pointer chasing is a memory
access pattern that is notoriously inefficient due to its access ir-
regularity [16, 24, 25] and inherent serialization [24, 29, 31]. In the
meantime, it is performance critical and extensively used in soft-
ware such as databases, file systems, graph processing, dynamic
routing tables, and garbage collections. A major technique to ad-
dress the issue is to predict and prefetch the next node and pointer.

SDC: A Software Defined Cache for Efficient Data Indexing

It can be hardware-based [10, 13, 42] , software-based [29, 31] , or
pre-execution-based [11, 30]. This approach can be expensive by
consuming too much memory bandwidth [16, 24, 41], and cannot
be consistently effective on different data structures and access
patterns. Concerned with limited CPU cache capacity to hold the
working set accessed during pointer chasing, Hsieh et al. proposed
to perform pointer chasing inside memory with the PIM (processing-
in-memory) hardware support in the 3D-stacked memory [21]. In
fact, one does not have to cache entire working set, or all the data
in the pointer-linked nodes, in the cache. With SDC, programmers
can (selectively) insert only pointers to the next node in the cache.
With a much reduced data set for caching, the pointers can stay in
the cache to enable efficient in-cache pointer chasing.

Improving index search performance. Traversal on index
structures can be a frequent and expensive operation. There have
been many efforts on optimization of index data structures, such as
cuckoo hashing [43, 44], Masstree [32], Wormbhole [53], CSS-Trees
(Cache-Sensitive Search Trees) [38], and B* -Trees (Cache-Sensitive
B* -Trees) [39]. These efforts are limited to specific indexes. In con-
trast, SDC can help to avoid many traversals on any of the indexes
with expected access temporal locality. As mentioned, SLB is a
software-based technique to collect pairs of key and its correspond-
ing index search result into a memory buffer. With strong spatial
and temporal localities data in the buffer will also stay in the CPU
cache [52]. Compared with SDC, SLB may not be aware of the
cache size and demands on cache space from other data structures
and/or processes. Therefore, it does not know whether a data item
is cached and does not have a control over it. Further, cost of the
buffer management, including data admission and replacement, can
be expensive. SDC addresses these inadequacies.

Index search can also be accelerated with hardware supports
by designing new specialized hardware components [20, 26, 33] or
leveraging newly available hardware features [8, 19, 54, 56]. Widx,
an on-chip accelerator for database hash index lookups, is such
an example. To use Widx programmers must disclose how keys
are hashed into hash buckets and how walk on the nodes in the
bucket is conducted. In addition to its limited applicability only on
hash index, Widx increases programmers’ burden and is in a sharp
contrast with SDC, which does not require any knowledge on how
the search is actually conducted. There are proposals on using new
vector instructions for hash table search [20, 33]. However, their
usage is usually limited to Vectorwise database systems.

Memoization technique. Memoization technique has been
used in memory systems to cache the results of repetitive computa-
tions and allow the program to skip them. It can be implemented
using software and hardware. The software memoization [15, 45]
suffers from high runtime cost and is only beneficial for long mem-
oization tasks [9, 49]. The hardware implementation [9, 49] incurs
significant hardware overheads as it needs to introduce dedicate
memoization caches. Since not all applications can benefit from
the caches, it can waste a lot of chip area without benefits and
compromise power efficiency. MCache [55] stores memoization
tables in memory and allows them to share cache capacity with
conventional data. Different from existing solutions, SDC reuses
the regular cache space on-demand for caching frequently-accessed

91

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

index entries and only needs minor changes to existing cache struc-
tures. SDC can achieve the same goal of memoization technique
with low hardware cost and being easy-to-use for users.

Software-controlled use of CPU cache. There have been stud-
ies on incorporation of user knowledge on data access in the cache
management. Various techniques have been proposed, from cache
control instructions [40] to scratchpad memory [4]. User programs
can use the instructions to disclose memory access patterns, such
as data items that will only be used once. There are also instruc-
tions for prefetching a cache line, resetting data in a cache line
to 0, and invalidating or evicting a cache line. Compared to SDC,
these instructions add only limited capability to make the cache
more effectively used. In contrast, scratchpad is a technique that
removes an important cache feature — transparently mapping mem-
ory addresses to cache addresses — to allow great control over its
use by providing instructions to move data to and from the main
memory. A major disadvantage of scratchpad is its introduced new
address space (on scratchpad) that is different from memory address
space assumed in user programs and makes it very hard to adapt
programs to the platform. Thus, scratchpads work poorly with ir-
regular or input-dependent data sets [27, 34]. They are rarely used
in mainstream processors and often used in embedded systems and
special-purpose processors. In contrast, instead of removing the
memory address space, SDC enables an address space that is closer
to and more friendly to user programs’ semantics (the user-defined
keys) to customize cache uses. Further, SDC does not require a sepa-
rate fast memory. It dynamically allocates some space from existing
cache for user-defined use and enables efficient space sharing.

There have been works in the literature named as software-
defined caching [5] or software-defined cache hierarchies [48]. They
allow programs to define shares, which are collections of cache
banks, and accordingly to have control over data placement and
capacity allocation either at one cache level (Jigsaw [5]) or across
a cache hierarchy (Jenga [48]). They function at a coarser grain
for fitting working sets into the shares, while SDC allows user
programs to control caching of individual data items.

5 CONCLUSION

We propose SDC, a user-programmable CPU cache architecture
that enables key-value based data caching to allow programs to
place their selected data items in the cache for quick access. Our
design minimizes programming effort of using the user-controllable
look-aside cache, and enables rich performance optimization oppor-
tunities with a customized use of the CPU cache. SDC seamlessly
integrates into existing cache architecture. And its implementation
requires moderate changes to current cache circuitry. With a proto-
type implementation in gem5, we extensively conduct experiments
with various workloads. The results show that SDC improves the
performance of index-based data management programs by up to
5.3% over existing cache design.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valuable
comments and feedback. This work was supported in part by NSF
grants CNS-1527076 and CCF-1815303.

ICS 19, June 26-28, 2019, Phoenix, AZ, USA

REFERENCES

(1]

=

[9

[10]

[11]

[12]

(13

[14

[15

[16

[17

[18]

[19

[20]

Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC ’17). USENIX Association, Berkeley, CA, USA, 27-39.
http://dl.acm.org/citation.cfm?id=3154690.3154694

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast Array of Wimpy
Nodes. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles (SOSP’09). ACM, New York, NY, USA, 1-14. https://doi.org/10.1145/
1629575.1629577

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-scale Key-value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS °12). ACM, New
York, NY, USA, 53-64. https://doi.org/10.1145/2254756.2254766

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan, and Peter
Marwedel. 2002. Scratchpad memory: A design alternative for cache on-chip
memory in embedded systems. In Hardware/Software Codesign, 2002. CODES 2002.
Proceedings of the Tenth International Symposium on. IEEE, IEEE, Estes Park, CO,
USA, 73-78.

Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable Software-defined
Caches. In Proceedings of the 22Nd International Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’13). IEEE Press, Piscataway, NJ, USA,
213-224. http://dl.acm.org/citation.cfm?id=2523721.2523752

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1-7. https://doi.org/10.1145/2024716.2024718

W. A. Burkhard. 1976. Hashing and Trie Algorithms for Partial Match Retrieval.
ACM Trans. Database Syst. 1, 2 (June 1976), 175-187. https://doi.org/10.1145/
320455.320469

Eric S. Chung, John D. Davis, and Jaewon Lee. 2013. LINQits: Big Data on
Little Clients. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA ’13). ACM, New York, NY, USA, 261-272. https:
//doi.org/10.1145/2485922.2485945

Daniel Citron and Dror G Feitelson. 2000. Hardware memoization of mathemat-
ical and trigonometric functions. Technical Report. The Hebrew University of
Jerusalem.

Jamison Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen. 2002. Pointer
Cache Assisted Prefetching. In Proceedings of the 35th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO 35). IEEE Computer Society Press,
Los Alamitos, CA, USA, 62-73. http://dl.acm.org/citation.cfm?id=774861.774869
Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-
Fong Lee, Dan Lavery, and John P. Shen. 2001. Speculative Precomputation:
Long-range Prefetching of Delinquent Loads. In Proceedings of the 28th Annual
International Symposium on Computer Architecture (ISCA °01). ACM, New York,
NY, USA, 14-25. https://doi.org/10.1145/379240.379248

HyperTransport Technology Consortium et al. 2008. HyperTransport I/O link
specification. Revision 1 (2008), 111-118.

Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. 2002. A Stateless, Content-
directed Data Prefetching Mechanism. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS X). ACM, New York, NY, USA, 279-290. https://doi.org/10.
1145/605397.605427

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10). ACM, New York, NY,
USA, 143-154. https://doi.org/10.1145/1807128.1807152

Yonghua Ding and Zhiyuan Li. 2004. A Compiler Scheme for Reusing Intermediate
Computation Results. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization (CGO
’04). IEEE Computer Society, Washington, DC, USA, 279-. http://dl.acm.org/
citation.cfm?id=977395.977679

E. Ebrahimi, O. Mutlu, and Y. N. Patt. 2009. Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching systems. In 2009 IEEE
15th International Symposium on High Performance Computer Architecture. IEEE,
Raleigh, NC, USA, 7-17. https://doi.org/10.1109/HPCA.2009.4798232

Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux . 2004, 124
(Aug. 2004), 5-. http://dlLacm.org/citation.cfm?id=1012889.1012894

gemb5. 2014. Gem5-Classic Memory System. http://www.gemb5.org/Classic_
Memory_System.

Brian Gold, Anastassia Ailamaki, Larry Huston, and Babak Falsafi. 2005. Acceler-
ating Database Operators Using a Network Processor. In Proceedings of the 1st
International Workshop on Data Management on New Hardware (DaMoN "05). ACM,
New York, NY, USA, Article 1, 6 pages. https://doi.org/10.1145/1114252.1114260
Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero.
2012. Vector Extensions for Decision Support DBMS Acceleration. In Proceedings

92

[21

[25]

[26

[28

[29

[30

[32

(33]

[34

™
2

[36

[37

(38]

(39]

[40

Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu

of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-45). IEEE Computer Society, Washington, DC, USA, 166-176. https:
//doi.org/10.1109/MICRO.2012.24

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating pointer chasing
in 3D-stacked memory: Challenges, mechanisms, evaluation. In 2016 IEEE 34th
International Conference on Computer Design (ICCD). IEEE, Phoenix, USA, 25-32.
https://doi.org/10.1109/ICCD.2016.7753257

INTEL. 2013. Intel Haswell processors. http://www.7-cpu.com/cpu/Haswell.html.
Intel. 2016. Intel Xeon Processor E5-2683 v4. https://ark.intel.com/products/
91766/Intel-Xeon-Processor-E5-2683-v4-40M-Cache-2-10-GHz-.

Doug Joseph and Dirk Grunwald. 1997. Prefetching Using Markov Predictors. In
Proceedings of the 24th Annual International Symposium on Computer Architecture
(ISCA °97). ACM, New York, NY, USA, 252-263. https://doi.org/10.1145/264107.
264207

M. Karlsson, F. Dahlgren, and P. Stenstrom. 2000. A prefetching technique for
irregular accesses to linked data structures. In Proceedings Sixth International Sym-
posium on High-Performance Computer Architecture. HPCA-6 (Cat. No.PR00550).
IEEE, Touluse, France, 206-217. https://doi.org/10.1109/HPCA.2000.824351
Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerating Index Tra-
versals for In-memory Databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-46). ACM, New York, NY,
USA, 468-479. https://doi.org/10.1145/2540708.2540748

Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa,
Maria Kotsifakou, Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve. 2015.
Stash: Have Your Scratchpad and Cache It Too. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA °15). ACM, New York,
NY, USA, 707-719. https://doi.org/10.1145/2749469.2750374

Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. 2011. SILT:
A Memory-efficient, High-performance Key-value Store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (SOSP °11). ACM,
New York, NY, USA, 1-13. https://doi.org/10.1145/2043556.2043558

Mikko H Lipasti, William J Schmidt, Steven R Kunkel, and Robert R Roediger.
1995. SPAID: Software prefetching in pointer-and call-intensive environments. In
Microarchitecture, 1995., Proceedings of the 28th Annual International Symposium
on. IEEE, IEEE, Ann Arbor, MI, USA, 231-236.

Chi-Keung Luk. 2001. Tolerating Memory Latency Through Software-controlled
Pre-execution in Simultaneous Multithreading Processors. In Proceedings of the
28th Annual International Symposium on Computer Architecture (ISCA "01). ACM,
New York, NY, USA, 40-51. https://doi.org/10.1145/379240.379250

Chi-Keung Luk and Todd C. Mowry. 1996. Compiler-based Prefetching for
Recursive Data Structures. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS VII). ACM, New York, NY, USA, 222-233. https://doi.org/10.1145/
237090.237190

Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness
for Fast Multicore Key-value Storage. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys '12). ACM, New York, NY, USA, 183-196.
https://doi.org/10.1145/2168836.2168855

Rich Martin. 1996. A Vectorized Hash-Join. Technical Report. University of
California at Berkeley, California, USA.

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2016. Whirlpool:
Improving Dynamic Cache Management with Static Data Classification. In Pro-
ceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16). ACM, New York,
NY, USA, 113-127. https://doi.org/10.1145/2872362.2872363

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In Presented as part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13). USENIX, Lombard, IL, 385-398. https:
//www.usenix.org/conference/nsdil3/technical-sessions/presentation/nishtala
Brendan O’Connor. 2011. How much text versus metadata is in a tweet. http:
//goo.gl/EBFIFs.

Francois Panneton and Pierre L’Ecuyer. 2005. On the Xorshift Random Number
Generators. ACM Trans. Model. Comput. Simul. 15, 4 (Oct. 2005), 346-361. https:
//doi.org/10.1145/1113316.1113319

Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for Decision-
Support in Main Memory. In Proceedings of the 25th International Conference
on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 78-89. http://dl.acm.org/citation.cfm?id=645925.671362
Jun Rao and Kenneth A. Ross. 2000. Making B+- Trees Cache Conscious in
Main Memory. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’00). ACM, New York, NY, USA, 475-486.
https://doi.org/10.1145/342009.335449

Freescale Semiconductor. 2005. PowerPC €500 Core Family Reference Manual.
https://goo.gl/Jjs38u

SDC: A Software Defined Cache for Efficient Data Indexing

[41]

[42]

[43]

[45]

[46]

[47]

[48]

[49]

Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2007. Feedback
Directed Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers. In Proceedings of the 2007 IEEE 13th International Sympo-
sium on High Performance Computer Architecture (HPCA °07). IEEE Computer So-
ciety, Washington, DC, USA, 63-74. https://doi.org/10.1109/HPCA.2007.346185
Nitish Kumar Srivastava and Akshay Dilip Navalakha. 2018. Pointer-Chase
Prefetcher for Linked Data Structures. CoRR abs/1801.08088 (2018), 12.
arXiv:1801.08088 http://arxiv.org/abs/1801.08088

Y. Sun, Y. Hua, D. Feng, L. Yang, P. Zuo, and S. Cao. 2015. MinCounter: An efficient
cuckoo hashing scheme for cloud storage systems. In 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST). IEEE, Santa Clara, California, USA,
1-7. https://doi.org/10.1109/MSST.2015.7208292

Yuanyuan Sun, Yu Hua, Song Jiang, Qiuyu Li, Shunde Cao, and Pengfei Zuo. 2017.
SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud Storage
Systems. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 553-565. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/sun

Arjun Suresh, Erven Rohou, and André Seznec. 2017. Compile-time Function
Memoization. In Proceedings of the 26th International Conference on Compiler
Construction (CC 2017). ACM, New York, NY, USA, 45-54. https://doi.org/10.
1145/3033019.3033024

Symas. 2016. LMDB: Lightning Memory-Mapped Database Manager. http:
//www.lmdb.tech/doc/index.html.

Thomas Wang. 2007. Integer Hash Function. http://web.archive.org/web/
20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm.

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Software-defined
cache hierarchies. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). IEEE/ACM, Toronto, Ontario, Canada, 652-665.
https://doi.org/10.1145/3079856.3080214

Tomoaki Tsumura, Ikuma Suzuki, Yasuki Ikeuchi, Hiroshi Matsuo, Hiroshi
Nakashima, and Yasuhiko Nakashima. 2007. Design and Evaluation of an Auto-
memoization Processor. In Proceedings of the 25th Conference on Proceedings of
the 25th IASTED International Multi-Conference: Parallel and Distributed Com-
puting and Networks (PDCN’07). ACTA Press, Anaheim, CA, USA, 245-250.

93

[54

[55

[56

[58

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

http://dl.acm.org/citation.cfm?id=1295581.1295621

Stephen Tu. 2013. Silo source code on Github. https://github.com/stephentu/silo.
Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP’13).
ACM, New York, NY, USA, 18-32. https://doi.org/10.1145/2517349.2522713
Xingbo Wu, Fan Ni, and Song Jiang. 2017. Search Lookaside Buffer: Efficient
Caching for Index Data Structures. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC ’17). ACM, New York, NY, USA, 27-39. https://doi.org/10.
1145/3127479.3127483

Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered Index for In-
memory Data Management. In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys °19). ACM, New York, NY, USA, Article 18, 16 pages. https:
//doi.org/10.1145/3302424.3303955

Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Process-
ing Data Warehousing Queries on GPU Devices. Proc. VLDB Endow. 6, 10 (Aug.
2013), 817-828. https://doi.org/10.14778/2536206.2536210

Guowei Zhang and Daniel Sanchez. 2018. Leveraging Hardware Caches for
Memoization. IEEE Comput. Archit. Lett. 17, 1 (Jan. 2018), 59-63. https://doi.org/
10.1109/LCA.2017.2762308

Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-KV: A Case for GPUs to Maximize the Throughput of In-memory
Key-value Stores. Proc. VLDB Endow. 8, 11 (July 2015), 1226-1237. https://doi.
0rg/10.14778/2809974.2809984

Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards Practical Page
Coloring-based Multicore Cache Management. In Proceedings of the 4th ACM
European Conference on Computer Systems (EuroSys "09). ACM, New York, NY,
USA, 89-102. https://doi.org/10.1145/1519065.1519076

Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. 2010.
Intel® quickpath interconnect architectural features supporting scalable system
architectures. In High Performance Interconnects (HOTI), 2010 IEEE 18th Annual
Symposium on. IEEE, IEEE, Mountain View, California, US, 1-6.

