A Multiversion Programming Inspired
Approach to Detecting Audio Adversarial Examples

Qiang Zeng', Jianhai Suf, Chenglong Fu¥, Golam Kayas®, Lannan Luof, Xiaojiang Du®, Chiu C. Tan}, Jie Wu}

YUniversity of South Carolina

Abstract—Adversarial examples (AEs) are crafted by adding
human-imperceptible perturbations to inputs such that a
machine-learning based classifier incorrectly labels them. They
have become a severe threat to the trustworthiness of machine
learning. While AEs in the image domain have been well studied,
audio AEs are less investigated. Recently, multiple techniques are
proposed to generate audio AEs, which makes countermeasures
against them urgent. Our experiments show that, given an audio
AE, the transcription results by Automatic Speech Recognition
(ASR) systems differ significantly (that is, poor transferability),
as different ASR systems use different architectures, parameters,
and training datasets. Based on this fact and inspired by Multi-
version Programming, we propose a novel audio AE detection
approach MVP-EARS, which utilizes the diverse off-the-shelf
ASRs to determine whether an audio is an AE. We build the
largest audio AE dataset to our knowledge, and the evaluation
shows that the detection accuracy reaches 99.88%.

While transferable audio AEs are difficult to generate at this
moment, they may become a reality in future. We further adapt
the idea above to proactively train the detection system for coping
with transferable audio AEs. Thus, the proactive detection system
is one giant step ahead of attackers working on transferable AEs.

Index Terms—Adversarial Example, transferability, Automatic
Speech Recognition, DNN.

I. INTRODUCTION

Automatic Speech Recognition (ASR) is a system that
converts speech to text. ASR has been studied intensively for
decades. Many various technologies, such as gaussian mix-
ture models and hidden Markov models, were developed. In
particular, recent advances [1] based on deep neural networks
(DNNs) have improved the accuracy significantly. DNN-based
speech recognition thus has become the mainstream technique
in ASR systems. The industrial companies including Google,
Apple and Amazon have widely adopted DNN-based ASRs for
interacting with IoT devices, smart phones and cars. Gartner
[2] estimates that, by 2020, 75% of American households will
have at least one smart voice-enabled speaker, where DNN-
based ASR plays a critical role.

Despite the great accuracy improvement, recent studies [3],
[4] show that DNN is vulnerable to adversarial examples. An
adversarial example (AE) x’ is a mix of a host sample z and
a carefully crafted, human-imperceptible perturbation ¢ such
that a DNN will assign different labels to x’ and x. Figure
1 shows an audio AE example, which sounds as in the text
shown on the left to human, but is transcribed by an ASR
system into a completely different text as shown on the right.

Several techniques have been proposed to generate audio
AEs. There are two state-of-the-art audio AE generation
methods: (1) White-box attacks: Carlini et al. propose an

$Temple University

””H” Audio AE generatiokn ”””
[)
| 4

“I wish you wouldn’t” “Open the front door”

Fig. 1: The generation of an audio AE.

optimization based method to convert an audio to an AE
that transcribes to an attacker-designated phrase [5]. It is
classified as white-box attacks because the target system’s
detailed internal architecture and parameters are required to
perform the attack. (2) Black-box attacks: Taori et al. [6]
combine the genetic algorithm [7] and gradient estimation
to generate AEs. This attack method does not require the
knowledge of the ASR’s internal parameters, but imposes a
larger perturbation (94.6% similarity on average between an
AE and its original audio, compared to 99.9% in [5]). The
rapid development of audio AE generation methods makes
countermeasures against audio AEs an urgent and important
problem. The goal of our work is to detect audio AEs.

Existing work on audio AE detection is rare and limited.
Yang et al. [8] hypothesized that AEs are fragile: given an au-
dio AE, if it is cut into two sections, which are then transcribed
separately, then the transcription by splicing the two sectional
results is very different from the result if the AE is transcribed
as a whole. However, as admitted by the authors [8], this
method cannot handle ‘“adaptive attacks”, which may evade
the detection by embedding a malicious command into one
section alone. Rajaratnam et al. [9] proposed detection based
on audio pre-processing methods. Yet, if an attacker knows the
detection details, he can take the pre-processing effect into
account when generating AEs. Such attacks have been well
demonstrated for bypassing similar techniques for detecting
image AEs [10]. An effective and robust audio AE detection
method is missing.

Our key observation is that existing ASRs are diverse in
terms of architectures, parameters and training processes. Our
hypothesis is that an AE that is effective on one ASR system is
likely to fail on another, which is verified by our experiments.
How to generate transferable audio AEs that can fool multiple
heterogeneous ASR systems is still an “open question” [5]
(discussed in Section III). This inspires us to borrow the idea of
multiversion programming (MVP) [11], a method in software
engineering where multiple functionally equivalent programs
are independently developed from the same specification, such

that an exploit that compromises one program is ineffective
on others. We thus propose to run multiple ASR systems in
parallel, and an input is determined as an AE if the ASR
systems generate very dissimilar transcription results.

Moreover, while it is unknown how to systematically gen-
erate transferable audio AEs at this moment, we predict that
such techniques may be proposed in future. We thus aim to
handle transferable audio AEs as well, which is a notable
challenge to our system for two reasons. First, since there
are no transferable audio AEs, how can our machine learning
based AE detector be trained? Second, since such hypothetical
transferable AEs can fool multiple ASRs, how can this idea
still work?

Our first insight is that our detector essentially is not trained
using AEs, but similarity scores (which are calculated based
on the similarity of transcription results of different ASRs).
Thus, if we assign a high similarity score between two ASRs,
it simulates the effect that an AE can fool both. This way, we
can conveniently generate a dataset of hypothetical AEs in the
form of vectors of similarity scores. Our another insight is that,
due to the complexity and diversity of ASRs, it is difficult, if
not impossible, to generate audio AEs to fool all ASRs in
foreseeable future. In light of this, we generate a dataset of
hypothetical AEs that are rather transferable but cannot fool all
ASRs. We make use of this dataset to proactively train an audio
AE detection system that can keep resilient to transferable
AEs, as long as there is still one ASR that cannot be fooled by
the AEs. The code, datasets and models are publicly available.!

We made the following contributions.

o« We empirically investigate the transferability of audio
AEs with multiple experiments and analyze the reasons
behind the poor transferability.

o To our knowledge, we build the largest audio AE dataset,
which can be reused by interested researchers.

« We propose a novel audio AE detection approach, called
MVP-EARS, inspired by multiversion programming,
which reaches accuracy 99.88%. The detection method
dramatically reduces the flexibility of the adversary, in
that audio AEs cannot succeed unless the host text is
highly similar to the malicious command.

o We propose the idea of proactively training a transferable-
AE detection system, such that our system is one giant
step ahead of attackers who are working on generating
transferable AEs.

The rest of this paper is organized as follows. We provide
some background knowledge about the ASR system’s general
architecture and audio AE generation in Section II. Then, we
discuss the transferability of audio AEs in Section III. We
describe the main idea and system architecture in Section IV
and present the detailed evaluation in Section V. SectionVI
gives a survey about related works. Finally, we present some
discussion in Section VII and conclude in Section VIII.

Thttps://github.com/quz105/MVP-audio- AE-detector

Waveform MWW

Slide window segmentation

l
J
§

Feature extraction

0 '

Spectrogram

l Acoustic feature recognition «—— 9 Acoustic model
Phonemes S-P-lIY-CH

l Phoneme assembling «—— E Dictionary
Words SPEECH

l Language generation «—— 9 Language model
Sentences SPEECH ON

Fig. 2: The process of converting an audio into a text sentence.

II. BACKGROUND
A. Automatic Speech Recognition System

An Automatic speech recognition (ASR) system is used to
automatically interpret human’s speech audio into texts [12].
ASR has been an active research topic since the first digit
recognizer Audrey was published by Bell Laboratories in
1952. As illustrated in Figure 2, the process of converting
an audio into a text sentence typically involves the following
four stages: feature extraction, acoustic feature recognition,
phoneme assembling, and language generation.

The input is an audio represented in the form of a waveform.
(1) Feature Extraction. The input audio is first segmented into
short frames, each of which is converted into feature vectors,
such as MFCC feature vectors, LPC feature vectors, and
PLP feature vectors. Because MFCC approximates the human
auditory system’s response more closely than others, MFCC
feature vector is considered as the most suitable frequency
transformation format for speech data, and thus adopted by
most recent ASR systems [13]. (2) Acoustic feature recog-
nition. The extracted feature vectors are then recognized by
the acoustic model as phonemes; the phoneme is the minimal
unit of sounds of languages. (3) Phoneme assembling. Next,
the combined phonemes are used to estimate the potential
phoneme letter sequence, where the dictionary model is used
to correct the word spelling of the phoneme letter sequence.
(4) Language generation. At the last step, the generated words
are further adjusted to the contexts and merged to the final text
sentence by the language model.

The core part of an ASR system is the acoustic feature
recognition stage, which outputs phonemes. A phoneme is
affected by the sound in the corresponding frame and also the

https://github.com/quz105/MVP-audio-AE-detector

two adjacent frames. Different ASR models utilize different
approaches to recognizing phonemes. As the features are
processed with certain correlations, temporal models are well
utilized, e.g.,a hybrid system of GMM and HMM (GMM-
HMM). GMM-HMM is used as a statistical classifier to
convert the feature vectors into phonemes, but it is limited in
dealing with overlapping sound from different sources [14].
Recently, DNN-HMM [15]-[17] is widely used to analyze the
features, and can provide better recognition performance.
However, when training GMM-HMM and DNN-HMM
based ASR systems, each audio sample needs to be aligned
and labeled manually at the phoneme level in order to assemble
phonemes into words, which is time consuming and error-
prone. To address this issue, Connectionist Temporal Classifi-
cation based on Recurrent Neural Network (RNN-CTC) [18]
is proposed and used for end-to-end speech recognition. CTC
can directly convert the feature vectors into words without the
need of generating phonemes as the intermediate result. Thus,
CTC-based ASR systems outperform HMM-based ones. Deep-
speech [19] is the most popular open-source implementation
of a CTC-based ASR system, and is maintained regularly by
Mozilla. As a result, Deepspeech is often used as the attack
target model by many recent audio AE generation works.

B. Audio Adversarial Examples

Despite the great advances and diverse applications of
machine learning and deep learning [20]-[22], adversarial
examples (AEs) [23] can be crafted to fool them. As explained
by Goodfellow et al. [4], the existence of adversarial examples
is due to the neural network’s linear nature. Based on this
observation, they propose the Fast Gradient Sign Method
(FGSM) as a simple but efficient algorithm to generate AEs.

Although a lot of successful AE attacks targeting image
classification systems have been realized [24], this is not
the case for the audio domain. Unlike DNN-based image
classifiers where the pixels of an image are directly used as
inputs of DNN, an audio needs to be first segmented into short
frames with each converted into feature vectors, which are
then fed into the DNN model of the ASR. Moreover, different
ASRs use different lengths to segment an audio. These make
the audio AE generation much more challenging. For example,
by directly applying FGSM, Cisse et al. can only generate
adversarial spectrogram instead of an audio AE [25].

White-box AEs. Carlini et al. overcome this limitation by
adding the MFCC reconstruction layer into the backpropa-
gation optimization of gradients and provide an end-to-end
method for creating targeted audio AEs with the white-box
setting [5]. It is classified as white-box attacks because the
target ASR system’s detailed internal architecture and param-
eters are required to generate AEs.

Black-box AEs. With a black-box setting, the targeted ASR
internal architecture and parameters are not known. Alzantot
et al. [7] make the first effort to generate black-box AEs. They
adopt the genetic algorithm to iteratively add noises into an
input audio sample and discard outputs with bad performance

in each generation. The iteration ends up with a black-box AE
that can fool a single-word classification system (not ASR).
Taori et al. [6] extend this work and combine the genetic
algorithm with gradient estimation to generate black-box AEs,
which can fool Deepspeech. However, the genetic algorithm-
based method imposes a larger perturbation (94.6% similarity
on average between a black-box AE and its original audio,
compared to 99.9% between a white-box AE and its original
audio). Their current AE generation only embeds up to two
words in one audio.

III. TRANSFERABILITY OF AES

There are two types of adversarial examples (AEs): non-
targeted AEs and targeted AEs. A non-targeted AE is consid-
ered successful as long as it is classified as a incorrect label,
while a targeted AE is successful only if it is classified as a
label desired by attackers.

In the context of audio based human-computer interaction,
a non-targeted AE is not very useful, as it cannot make the
ASR system issue an attacker-desired command. This explains
why state-of-the-art audio AE generation methods all generate
targeted AEs [5], [6]. Thus, our work focuses on detection of
targeted AEs, although the proposed approach is also effective
in detecting non-targeted AEs (see Section V-J).

A. Transferability in Image Domain

An intriguing property of AEs in the image domain is
the existence of transferable adversarial examples. That is,
an image AE crafted to mislead a specific model can also
fool another different model [3], [4], [26], [27]. By exploiting
this property, Papernot et al. [28] propose a reservoir-sampling
based approach to generate transferable non-targeted image
AEs and successfully launch black-box attacks against both
image classification systems from Amazon and Google.

But a recent study [29] points out that the transferability
property does not hold in some scenarios: their experiment
shows a failure of AE’s transferability between a linear model
and a quadratic model. For targeted image AEs, Liu et al. [30]
propose an ensemble-based approach to craft AEs that can
transfer to ResNet, VGG and GoogleNet models with success
rates of 40%, 24%, and 11%, respectively. Thus, generating
transferable image AEs is a resolved problem [31].

B. Transferability in Audio Domain: Open Question

To the best of our knowledge, no systematic approaches
have been proposed to generate transferable audio AEs. Carlini
et al. [5] find that the attacking method derived from Fast
Gradient Sign Method [4] in the image domain is ineffective
for generating audio AEs because of a large degree of non-
linearity in ASRs, and further state that the transferability of
audio AEs is an open question.

A recent work CommanderSong [32] aims to generate AEs
that can fool an ASR system in the presences of background
noise. This work also slightly explored transferability of audio
AEs (see Section 5.3 of the paper [32]). Specifically, to create
AEs that can transfer from Kaldi to DeepSpeech (both Kaldi

and DeepSpeech are open source ASR systems, and Kaldi is
the target ASR system of CommanderSong), a two-iteration
recursive AE generation method is described in Commander-
Song: an AE generated by CommanderSong, embedding a
malicious command ¢ and able to fool Kaldi, is used as a
host sample in the second iteration of AE generation using
the method [5], which targets DeepSpeech v0.1.0 and embeds
the same command c. We followed this two-iteration recursive
AE generation method to generate AEs, but our experiment
results [33] showed that the generated AEs could only fool
DeepSpeech but not Kaldi. That is, AEs generated using this
method are not transferable.

Furthermore, we adapted the two-iteration AE generation
method by concatenating the two aforementioned state-of-the-
art attack methods [5] and [6] targeting DeepSpeech v0.1.0 and
v0.1.1, respectively, expecting to generate AEs that can fool
both DeepSpeech v0.1.0 and v0.1.1. But none of the generated
AEs showed transferability [33].

Moreover, by changing the value of
“——frame-subsampling—-factor” from 1 to 3, which
is a parameter configuration of the Kaldi model, we derived
a variant of Kaldi. The AEs generated by CommanderSong
did not show transferability on the variant, even given the
fact that the variant was only slightly modified from the
model targeted by CommanderSong. Here, we clarify that
CommanderSong did not claim their AEs could transfer
across the Kaldi variants.

Based on our detailed literature review and empirical study,
we find that so far there are no systematic methods that can
generate transferable audio AEs effective across diverse ASR
systems. This is consistent with the statement by Carlini et
al. [5] that transferability of audio AEs is an open question.

IV. MVP-INSPIRED AUDIO AE DETECTION
A. Multi-Version Programming

Multi-version programming (MVP) was first introduced in
1977 to enhance the reliability of software and computer
systems [34]. The main idea of MVP is to independently
develop multiple programs based on the same specification.
At runtime, multiple programs are executed concurrently and
perform the same task. At each checkpoint, each program
generates the result, which is to check the consistency of the
execution. After that, all programs reach consensus on the
execution states, and then proceed to the next stage.

The most significant benefit of MVP is relaxing the rigorous
requirement of the reliability of software by providing fault
tolerance from the system level. Since the multiple software
programs are developed independently, the probability that
they share the same flaw is very small. Especially, some
implementation specific flaws usually only occur in one pro-
gram. The software flaws of any program not only affect
the execution flow but also cause inconsistency among com-
parison results. Upon detecting inconsistency, some decision
algorithms are applied to determine the correct execution flow
and prevent the crashing of the execution. Such a concept
has already been used as an effective defense method against

Target ASR
II|III|||I|I- Auxiliary Similarity Binary Detection
ASR; Calculation Classifier result
Auxiliary
ASR,

Fig. 3: Architecture of the proposed detection system.

software flaws [35], and are widely used in development of
highly reliable software, such as flight control software on
modern airliners. Beside the fault tolerance, it has also been
proved to be effective to detect attacks that exploit zero-day
software vulnerabilities [36].

B. MVP-Inspired Idea

Given a system with MVP, an exploit that compromises one
program probably fails on other programs. This inspires us to
propose a system design that runs multiple ASRs in parallel.
The intuition behind this design is that different ASRs can
be regarded as “’independently developed programs” in MVP.
Since they follow the same specification—that is, to covert
audios into texts. Given a benign sample, they should output
very similar recognition results. On the other hand, an audio
AE can be regarded as an “exploit”, and cannot fool all ASR
systems as illustrated in Section III-B. Thus, by comparing
the results of the multiple ASRs, we are able to determine
whether an audio is an AE or not.

This idea is comparable with the ensemble approach, where
multiple detection methods are combined to form a stronger
one [37]-[39]. But they do not adopt a concise architecture like
ours (e.g., [39] requires different input processing methods,
while [38] needs a generalist and multiple specialists), which
simply runs multiple ASRs in parallel for detection. Our work
is in spirit similar to an independent work [31]. However,
they differ in the following aspects: (1) That work [31]
aims to detect image AEs, while our work detects audio
AEs. More critically, their approach uses the softmax layer
outputs as features for AE detection and attackers can thus
adaptively generate the AE that leads to similar softmax
outputs between models, while we use the final transcription
outputs for AE detection and adaptive attacks cannot succeed
unless transcriptions are similar, which is difficult as discussed
in Section III-B. (2) That work only considers the bi-model
design, while we consider a more general N-model design. (3)
We do not stop at detecting existing audio AEs, but propose
the idea for proactively training systems to detect transferable
audio AEs, which may become possible in future.

C. Architecture

Figure 3 shows the system architecture. It consists of a
target ASR, multiple auxiliary ASRs, a similarity calculation
component, and a binary classifier. The target ASR is the
model targeted by the adversary (e.g., the speech recognition

system at a smart home), and each auxiliary ASR is a model
that is different from the target ASR. The detection of AEs
involves the following three steps.

e An audio is first fed into the target ASR and auxiliary
ASRs. Each ASR independently and simultaneously con-
verts the audio into a text sentence (i.e., a transcription).

o The transcriptions are then sent to the similarity cal-
culation component, which calculates similarity scores
between the transcription recognized by the target ASR
and that by each auxiliary ASR.

« Finally, these similarity scores are passed into a binary
classifier to determine whether the audio is adversarial.

The second step, similarity calculation, involves the follow-
ing two sub-steps.

o Each transcription is converted into its phonetic-encoding
representation. Phonetic encoding converts a word to the
representation of its pronunciation [40]. This helps handle
variations between ASRs, as they may output different
words for similar sounds. The validity of using phonetic
encoding is demonstrated in Section V-D.

o For each auxiliary ASR, a similarity score is calculated
to measure the similarity between the transcriptions gen-
erated by the target ASR and the auxiliary ASR. We
have tried different similarity measurement methods, and
finally adopted the Jaro-Winkler distance method [41] due
to the higher detection accuracy (see Section V-D). It
outputs a score € [0, 1], where 0 indicates very dissimilar
and 1 similar.

D. Diverse ASRs

Yu and Li [42] summarized the recent progress in deep-
learning based ASR acoustic models, where both recurrent
neural network (RNN) and convolutional neural network
(CNN) come to play as parts of deep neural networks. Stan-
dard RNN could capture sequence history in its internal states,
but can only be effective for short-range sequence due to its
intrinsic issue of exploding and vanishing gradients. This issue
is resolved by the introduction of long short-term memory
(LSTM) RNN [43], which outperforms RNNs on a variety of
ASR tasks [44]-[46].

As to CNNg, its inherent translational invariability facilitates
the exploitation of variable-length contextual information in
the input speech. The first CNN model proposed for ASRs
is the time delay neural network [47] that applies multiple
CNN layers. Later, several studies [48]-[50] combine CNN
and Hidden-Markov Model to create hybrid models that are
more robust against vocal-tract-length variability between dif-
ferent speakers. However, currently, there is no single uniform
structure used across all ASRs.

In addition to several opensource systems, many companies
have independently developed their own proprietary ASRs,
such as Google Now, Apple Siri, and Microsoft Cortana.

In our system, we use the following three ASRs, including
DeepSpeech, Google Cloud Speech, and Amazon Transcribe.
DeepSpeech is an end-to-end speech recognition software

TABLE I: Recognition results of an AE by multiple ASRs:
the host transcription is “I wish you wouldn’t’, while the
embedded text is “a sight for sore eyes”.

ASR
DeepSpeech v0.1.0
DeepSpeech v0.1.1

Google Cloud Speech
Amazon Transcribe

Transcribed Text

A sight for sore eyes
1 wish you live

1 wish you wouldn’t.
I wish you wouldn'’t.

opensourced by Mozilla based on Baidu’s research paper [51].
DeepSpeech v0.1.0 [51] uses a five-layer neural network where
the fourth layer is a RNN layer, while DeepSpeech v0.1.1
follows the same architecture and makes some improvements
on the implementation. Even though these two ASR systems
are very similar, our experiments (Section V-E) show that,
when the two are used to build an MVP-inspired detection sys-
tem, the AE detection accuracy is still very high. This means
that for any target ASR system, we have potentially many
candidate auxiliary ASR systems available without having to
worry about the extent of (dis)similarity of the models.

Unlike DeepSpeech, the DNN behind Google Cloud Speech
is a LSTM-based RNN according to the source [52]. Each
memory block in Google’s LSTM network [45] is a standard
LSTM memory block with an added recurrent projection layer.
This design enables the model’s memory to be increased
independently from the output layer and recurrent connections.

However, for Amazon Transcribe, there is no available
public information about its internal details.

In short, existing ASR systems are diverse with regard to
architectures, parameters and training datasets. Compared to
opensource systems, proprietary ASR systems provide little
information that can be exploited by attackers. Given the
diversity of ASR systems (and proprietary networks), it is
unclear how to propose a generic AE generation method that
can simultaneously mislead all of them.

Target ASR. Our system uses DeepSpeech v0.1.0 as the
target ASR. The reason is the opensource white-box AE
generation method [5] targets DeepSpeech v0.1.0. Note that
the generation of white-box AEs requires the knowledge of
the model architecture and parameters.

Auxiliary ASRs. We use DeepSpeech v0.1.1, Google Cloud
Speech, and Amazon Transcribe as the auxiliary ASRs. They
are all off-the-shelf widely used ASRs.

Table I shows a typical example, where the AE can only fool
one ASR but fails on others. It illustrates that, given an AE,
the recognition result by the target ASR differs significantly
from those by the auxiliary ASRs.

E. Questions to Be Explored

There are still several system design questions to be an-
swered. (Ql) How to measure the similarity of two tran-
scriptions? (Q2) How many auxiliary ASRs work the best?
More ASRs make the system more robust and resilient to
attacks, but will they introduce more false positives? (Q3)
Which classification algorithm works best? (Q4) Transferable

TABLE II: Datasets used in our evaluation.

Dataset Name # of Samples
Benign 2400
AE White-box AEs 1800
Black-box AEs 600

audio AEs cannot be created systematically at this moment,
but they may become a reality in future. How can our system
be proactively trained to deal with them?

We choose to perform experiments to guide and validate the
system design and answer these questions in Section V.

V. EXPERIMENT-GUIDED SYSTEM DESIGN AND THE
EVALUATION

We finalize some system design details according to exper-
iment results and evaluate the accuracy and robustness of the
system. We first describe the experiment settings (Section V-A)
and discuss the dataset used in our evaluation (Section V-B).
We then investigate the feasibility of our idea (Section V-C),
and examine different methods for calculating similarity scores
and select the best one (Section V-D). Next, we evaluate
the accuracy of our system when one auxiliary ASR is used
(Section V-E) and more than one auxiliary ASR is used
(Section V-F), and also evaluate the robustness of our system
against unseen attack methods (Section V-G). After that,
we conduct an experiment to examine whether our system
can work well when facing (hypothetical) transferable AEs
(Section V-H). We next evaluate the time overhead due to
detection (Section V-I). Finally, we evaluate the detection
effectiveness against non-targeted AEs (Section V-J).

A. Experimental Settings

Our experiments were performed on a 64-bit Linux machine
with an Intel i9-7980XE CPU @ 2.60GHz (18-core), dual
NVIDIA GeForce GTX 1080 Ti, and 32GB DDR4-RAM.

As explained in Section IV-D, we use DeepSpeech
v0.1.0 [53] (called DS0) as the target model. DeepSpeech
v0.1.1 [53] (called DS1), Google Cloud Speech [54] (called
GCS), and Amazon Transcribe [55] (called AT) are the three
auxiliary ASRs. We use X+{Yy, ..., Y, } to denote a system
using X as the target model and Yy, ..., Y, as the auxiliary
models. For example, DSO+{DS1} means a system using DSO
as the target model and DS1 as the single auxiliary model.

B. Dataset Preparation

We consider two audio AE generation techniques: white-
box based [5] and black-box based [6] methods, and build two
datasets: a Benign dataset and an AE dataset, each of which
contains 2400 audio samples, as shown in Table II. The audio
samples of the Benign dataset are randomly selected from the
dev_clean dataset of LibriSpeech [56].

The AE dataset consists of the following two parts. (1) 1800
white-box AEs, including 990 AEs provided by [5] and 810
created by us. We created the AEs following the style of [5]
by using randomly selected samples from LibriSpeech as the

host audios to embed the English sentences provided by [5].
(2) 600 black-box AEs constructed by applying the black-box
approach [6]; each AE embeds only two words. The two-word
limit is due to the current capacity of [6]. Each white-box AE
takes 18 minutes on average to generate, while each black-
box AE takes 90 minutes. The datasets and the transcription
details are made publicly available.> We have verified that all
AEs can successfully fool the target model DSO.

C. Feasibility Analysis

To validate the feasibility of the MVP-inspired idea, we feed
all the benign samples and AEs into each of the four ASRs,
and calculate the similarity scores. Given an audio (benign
sample or AE), the similarity score indicates the similarity of
the transcription of DSO and that of an auxiliary ASR.

The histograms in Figure 4 confirm the feasibility of the
idea: in each of the three cases, the similarity scores for AEs
and those for benign samples form two almost disjoint clusters.
It means that benign samples lead to relatively high similarity
scores, while AEs low scores.

D. Choosing Similarity Calculation Methods

Many methods can be used to measure the similarity be-
tween two strings. Some well-known ones include Jaccard
index [57], Cosine similarity, and Edit distance (e.g., JaroWin-
kler [41]). In addition, we propose to convert the transcription
into its phonetic encoding (PE) [40]. Our hypothesis is that
this may help reduce the false positives: given a benign
sample, different ASRs may output different words of similar
pronunciations, which can lead to higher similarity scores after
phonetic encoding.

To choose the similarity measurement method and validate
the hypothesis above, we consider six different combinations
of similarity calculation methods, as shown in Table III.
For example, PE_JaroWinkler means phonetic encoding and
JaroWinkler are used as the similarity calculation method. In
each case, we train a SVM based classifier using 80% of
audios in the two datasets (Benign and AE), and then test the
classifier using the rest 20% (that is, 4800 * 0.2 = 960 audios).
Table III shows that the combination PE_JaroWinkler achieves
the highest accuracies in all the four example systems. For
example, when DS1, GCS, AT are used as the auxiliary ASRs,
it achieves the accuracy 99.90%(, although other methods also
lead to high accuracies at least 99.58%). Thus, we choose
PE_JaroWinkler as the similarity calculation method.

E. Effectiveness of Single-Auxiliary-Model Systems

A detection system that uses a single auxiliary ASR has
the advantage of a cheap deployment. We build three such
systems: DSO+{DS1}, DSO+{GCS}, and DSO+{AT}. We use
k-fold cross validation (k = 5) to evaluate the three systems:
the datasets are divided into 5 equal subsets and, in each of
the five runs, one subset is used for testing and the rest four
for training. As shown in Table IV, the mean and standard
deviation of the results across the 5 runs are reported.

Zhttps://g00.gl/CImrQh

https://goo.gl/CJmrQh

1000

1600 700

W Benign Samples
1400 600 g P

800
700
600 -
500
400
300
200 -
[|

M Benign Samples
1200 M Benign Samples 500 - i Adversarial Examples
] Adversarial Examples

1000

Adversasrial Examples 400 -
800

600 300

Number of Samples
Number of Samples
Number of Samples

400 200

200 - 100

0.35
045 =

(a) DSO+{Ds1} (b) DSO+{GCS} (c) DSO+{AT}

Fig. 4: Similarity score histograms of the three single-auxiliary-model systems.

TABLE III: Accuracies when different similarity calculation methods are used.

T System
Similarity Method | Performance | o6 e ey T 5504 (D51, AT} | DSO+{GCS, AT} | DSOF{DSL, GCS, AT)
Accuracy 958/960 (99.79%) | 957/960 (99.69%) | 952/960 (99.17%) 957/960 (99.69%)
Cosine FPR 2/480 (0.42%) 2/480 (0.42%) 7/480 (1.46%) 2/480 (0.42%)
FNR 0/480 (0.00%) 1/480 (0.21%) 1/480 (0.21%) 1/480 (0.21%)
Accuracy 957/960 (99.69%) | 958/960 (99.79%) | 921/960 (95.94%) 956/960 (99.58%)
Jaccard FPR 3/480 (0.63%) 2/480 (0.42%) 38/480 (7.92%) 4/480 (0.83%)
FNR 0/480 (0.00%) 0/480 (0.00%) 1/480 (0.21%) 0/480 (0.00%)
Accuracy 958/960 (99.79%) | 958/960 (99.79%) | 956/960 (99.58%) 958/960 (99.79%)
JaroWinkler FPR 1/480 (0.21%) 1/480 (0.21%) 2/480 (0.42%) 1/480 (0.21%)
FNR 1/480 (0.21%) 1/480 (0.21%) 2/480 (0.42%) 1/480 (0.21%)
Accuracy 958/960 (99.79%) | 958/960 (99.79%) | 957/960 (99.69%) 958/960 (99.79%)
PE_Cosine FPR 2/480 (0.42%) 2/480 (0.42%) 2/480 (0.42%) 2/480 (0.42%)
FNR 0/480 (0.00%) 0/480 (0.00%) 1/480 (0.21%) 0/480 (0.00%)
Accuracy 958/960 (99.79%) | 958/960 (99.79%) | 443/960 (99.69%) 958/960 (99.79%)
PE _Jaccard FPR 2/480 (0.42%) 2/480 (0.42%) 3/480 (0.63%) 2/480 (0.42%)
FNR 0/480 (0.00%) 0/480 (0.00%) 0/480 (0.00%) 0/480 (0.00%)
Accuracy 958/960 (99.79%) | 959/960 (99.90%) | 958/960 (99.79 %) 959/960 (99.90 %)
PE_JaroWinkler FPR 1/480 (0.21%) 0/480 (0.00%) 0/480 (0.00%) 1/480 (0.21%)
FNR 1/480 (0.21%) 1/480 (0.21%) 2/480 (0.42%) 0/480 (0.00%)

TABLE IV: Testing results of single-auxiliary-model systems. The mean and standard deviation across the 5-fold cross validation
are reported, denoted as mean/STD. FPR: false positive rate; FNR: false negative rate.

. System

Classifier Performance DS01{ps1] DS50+{GCs) DS0F{AT]
Accuracy 99.56% / 0.18% | 98.92% / 0.22% | 99.71% / 0.14%
SVM FPR 0.38% / 0.16% 1.71% / 0.40% 0.25% / 0.24%
FNR 0.50% / 0.41% 0.46% / 0.24% 0.34% / 0.21%
Accuracy 99.36% / 0.12% | 98.35% / 0.12% | 99.65% / 0.16%
KNN FPR 0.67% / 0.27% 2.04% / 0.16% 0.25% / 0.24%
FNR 0.63% / 0.48% 1.25% 1 0.19% 0.46% / 0.24%
Accuracy 99.31% / 0.19% | 98.04% / 0.15% | 99.54% / 0.21%
Random Forest FPR 0.63% / 0.23% 2.21% / 0.39% 0.46% / 0.24%
FNR 0.75% / 0.60% 1.71% / 0.15% 0.46% / 0.33%

We use three different binary classifiers, including SVM, seed of 200 as the starting random state.
KNN and Random Forest, and configure each classifier as
follows: (1) SVM uses a 3-degree polynomial kernel; (2) KNN

uses 10 neighbors to vote; and (3) Random Forest uses a

Based on the results, we conclude that (1) all the single-
auxiliary-model systems achieve high accuracies (over 98%)
and low FPRs/FNRs; and (2) SVM performs slightly better

than the other two classifier methods.

But it is worth mentioning that if the auxiliary ASR (like
Kaldi) is not accurate in recognizing benign audios, the AE
detection accuracy is bad (e.g., <80% with Kaldi).

FE. Effectiveness of Multi-Auxiliary-Model Systems

A multi-auxiliary-model system uses more than one aux-
iliary model. We build four multiple-auxiliary-model sys-
tems, denoted as: DS0+{DS1, GCS}, DSO0+{DS1, AT},
DS0+{GCS, AT}, and DSO+{DS1, GCS, AT}.

For a multi-auxiliary-model system with n auxiliary models,
given an input audio, n similarity scores are calculated and
form a feature vector. The feature vector is then fed into the
binary classifier to predict whether the audio is an AE.

Table V shows the testing results using 5-fold cross vali-

dation. All the accuracy results are higher than 99.70%, and
FPR and FNR are lower than 0.30%, regardless of the auxiliary
models and binary classifiers used. The three-auxiliary-model
system performs the best and reaches the accuracy 99.88%. We
also observe that a system with more auxiliary models achieves
better accuracy, probably because extra models provide more
features in the feature vector.
Does FPR increase due to more auxiliary ASRs? To answer
this intriguing question, we extract the FPR and FNR results
when SVM is used as the binary classifier from Table IV
and Table V and obtain Table VI, which shows that both
FPRs and FNRs tend to slightly decline when more auxiliary
ASRs are used. This conclusion holds when either KNN or
RandomForest is used as the binary classifier.

G. Robustness against Unseen Attack Methods

This experiment aims to examine whether a system trained
on AEs generated by a particular attack method is able to
detect AEs generated by other kinds of attack methods—such
an AE is called an unseen-attack AE. We use the defense rate,
defined as the ratio of the number of successfully detected AEs
among the total number of AEs, to measure the robustness.

Single-auxiliary-model systems. We first examine all the
three single-auxiliary-model systems. We train each system
using only the 2400 benign samples, and test it using all the
2400 AEs (see Table II), which all can can be considered as
unseen-attack AEs.

We simply use a similarity score threshold 7" for detecting
AEs: an audio that has a score lower than 7" is detected as
an AE. First, the threshold is determined by having the FPR
less than 5%. The detection results are presented in Table VII.
Each of the three detection systems achieves excellent defense
rates > 99.83%. Second, we vary T and obtain the Receiver
Operating Characteristic (ROC) curve, as shown in Figure 5.
The AUC in each case is close to 1, implying high detection
accuracies, which is consistent with the results of the machine
learning based approaches (see Section V-E).

Multiple-auxiliary-model systems. We next examine the four
multiple-auxiliary-model systems. As aforementioned, two
different methods are used to generate AEs: the white-box

approach and black-box approach. We have totally 1800 white-
box AEs and 600 black-box AEs. We conduct two different
experiments to evaluate each of the four multiple-auxiliary-
model systems.

We first use all the 1800 white-box AEs and 1800 benign
samples to train each system, and use all the black-box AEs
to test each trained system. The results are showed in the
second column in Table VIII. We can see that all the systems
perform very well, and the lowest defense rate is 99.17% for
the DSO+{AT} system.

We next use all the 600 black-box AEs and 600 benign
samples to train each system, and use all the white-box AEs
to test each trained system. The results are showed in the
third column in Table VIII. There are three systems achieve
the defense rate of 100%—that is, all the white-box AEs can
be successfully detected. For the system DS0+{GCS, AT}, it
achieve a high defense rate of 99.89%.

Therefore, we can conclude that our detection systems are
very robust against unseen-attack AEs.

H. Detecting Hypothetical Multiple-ASR-Effective AEs

In this experiment, we seek to understand whether our
proposed system can work well when facing AEs that can
fool more than one ASRs, which we call multiple-ASR-
effective (MAE) AEs. The problem here is the lack of methods
for generating such MAE AEs. We thus propose to create
hypothetical MAE AEs. Note that we do not really create a
real MAE AE in the form of an audio, instead we synthesize
a feature vector to represent it. In the following presentation,
we refer to a hypothetical MAE AE as a MAE AE.

Creating MAE AEs. We use a multiple-auxiliary-model
system, DSO+{DS1, GCS, AT}, in this experiment. Thus, for
a given input audio, its feature vector contains three similarity
scores. We have the following critical observation. If an MAE
AE successfully fools the target model and an auxiliary model,
both models should convert the audio into transcriptions the
same as or highly similar to the command desired by the
attacker (since it is a targeted attack). This AE works just
like a benign sample (whose transcription is the command)
for the perspective of the two models. Thus, the similarity
score of the AE corresponding to the auxiliary model should
be as high as that of a benign sample. We thus construct the
feature vectors for MAE AEs as follows.

First, from the previous experiments, we collect two pools
of similarity scores: one contains the similarity scores for the
2400 benign samples, denoted as Ap.; and the other contains
the similarity scores for the 2400 AEs, denoted as A 4.

Second, to create an MAE AE that can fool DS0O and DS1,
for example, we randomly select a similarity score from Apg.
(representing that this AE can successfully attack DSO and
DS1), and two similarity scores from A4y (representing that
this AE cannot attack GCS and AT, resulting in a low similarity
score for each ASR). The created MAE AE is denoted as
AE(DS0,DS1).

Similarly, consider creating an MAE AE that can fool DSO,
DS1, and GCS, as another example. This AE is denoted

TABLE V: 5-fold cross validation testing results (reported as mean/STD) of four multi-auxiliary-model systems.

Classifier Performance System

DS0+{Ds1, GCS} | DS0+{Ds1, AT} | DSO+{GCS, AT} | DSO+{DS1, GCS, AT}

Accuracy 99.75% / 0.05% 99.86% / 0.08% 99.82% / 0.10% 99.88% / 0.10%

SVM FPR 0.29% / 0.21% 0.08% / 0.10% 0.08% / 0.10% 0.04% / 0.08%

FNR 0.21% / 0.23% 0.21% / 0.23% 0.29% / 0.21% 0.21% / 0.23%

Accuracy 99.77% / 0.04% 99.81% / 0.08% 99.75% / 0.17% 99.86% / 0.08%

KNN FPR 0.25% / 0.16% 0.13% / 0.10% 0.21% / 0.23% 0.08% / 0.10%

FNR 0.21% / 0.23% 0.25% / 0.21% 0.29% / 0.21% 0.21% / 0.23%

Accuracy 99.73% 0.08% 99.81% / 0.12% 99.77% / 0.08% 99.84% / 0.08%

Random Forest FPR 0.25% / 0.16% 0.13% / 0.17% 0.17% / 0.08% 0.08% / 0.10%

FNR 0.29% / 0.28% 0.25% / 0.21% 0.29% / 0.21% 0.25% / 0.21%

1.0 @ = e e e e e ° 1.0{ gweeeeeeses-0-0-0-0-90-0 -0 00-—-------c- ° 1.0 -r-no—o- >----- ---0
rﬁﬂm r
0.81 ¢ 0.8{ ¢ 0.8
L] *
4 $
0.61 o 0.6 ; 0.6
x . o« : o
= = : [
041t 0.4 { 0.4
H M
0.2 ¢ DeepSpeech0.1.0+ 0.2 DeepSpeech0.1.0+ 0.2 DeepSpeech0.1.0+
--e-- DeepSpeech0.1.1 --e-- GoogleCloudSpeech --e-- AmazonTranscribe
AUC=0.9999 AUC=0.9961 AUC=0.9998
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR FPR

(a) DSO+{Ds1}

(b) DSO+{GCs}

(c) DSO+{AT}

Fig. 5: The ROC curves of the three single-auxiliary-model systems.

TABLE VI: Impact of the number of ASRs on FPR and FNR.

of Aux. ASRs System FPR FNR
DS0+{DS1} 0.38% | 0.50%

1 DS0+{GCS} 1.71% | 0.46%
DSO0+{AT} 0.25% | 0.34%

DS0+{DS1, GCS} 029% | 0.21%

2 DS0+{DS1, AT} 0.08% | 0.21%
DS0+{GCS, AT} 0.08% | 0.29%

3 DS0+{DS1, GCS, AT} | 0.04% | 0.21%

TABLE VII: The detection results of unseen-attack AEs for

TABLE VIII: The detection results of unseen-attack AEs for
four multiple-auxiliary-models.

System Defense rate
Black-box AEs | White-box AEs
DS0+{DS1, GCS} 99.33% 100%
DS0+{DS1, AT} 99.17% 100%
DS0+{GCs, AT} 99.33% 99.89%
DS0+{DS1, GCS, AT} 99.33% 100%

TABLE IX: Six different types of hypothetical MAE AEs.

three single-auxiliary-models. Type MAE AE F of MAE AR

iys;em 3 Thge;l;old 4F1Pgl({7 FI(;IS OF(l)\(I)l; Deffg(s)e; rate Type-1 AE(DS0,DS1) 2.400
DSO0+4DS . 13% . 0 o

DS0+{GCS) | 082 | 475% | 4 | 0.17% | 99.83% Dype-2 | AF(DSO,GCS) 2,400

DSOL{AT] | 085 |3.92% | 2 |008% | 99.92% Type-3 AE(DSO0, AT) 2,400

Type-4 | AE(DS0,DS1,GCS) 2,400

Type-5 | AE(DS0,DS1,AT) 2,400

Type-6 | AFE(DSO0,GCS,AT) 2,400

as AE(DS0,DS1,GCS). Two similarity scores are selected
from Ap. (representing that this AE can successfully attack
DSO, DS1, and GCS), and one similarity score from Ay
(representing that this AE cannot attack AT).

Through this, we create six different types of MAE AEs, as
listed in Table IX. Each type contains 2400 MAE AE:s.

Accuracy. For each type of MAE AEs, we construct six
datasets: each dataset contains 2400 benign samples and 2400
the corresponding MAE AEs. For each dataset, 80% of its

benign samples and MAE AEs are used for training, and the
remaning 20% for testing. We use SVM as the binary classifier,
and PE_JaroWinkler to measure the similarity.

Table X shows the testing results. We can see that the
systems trained on different types of MAE AEs have very
high accuracies (higher than 97%), and low FPRs and FNRs.

Robustness to unseen-attack MAE AEs. We further investi-

TABLE X: Testing results of the system with respect to
different types of MAE AE:s.

MAE AE type | Accuracy FPR FNR
Type-1 98.12% | 3.75% | 0.00%
Type-2 99.25% 1.50% | 0.00%
Type-3 99.12% 1.75% | 0.00%
Type-4 96.46% | 5.34% | 1.75%
Type-5 97.02% | 3.46% | 2.50%
Type-6 98.52% | 2.46% | 0.50%

gate whether the system is able to detect unseen-attack MAE
AEs. We also include the original AEs in this experiment.
Specifically, we use one type of AEs and the benign samples
to train the system, and use another type of AEs to test the
trained system. The result is presented in Table XI.

We can conclude that (1) all the systems trained on different
types of AEs work very well on the original AEs—achieving
more than 99% defense rates (the second column in Table XI).

(2) If a system is trained on one type of MAE AEs that
can fool a set of ASRs, A = {A;,..., A, } where A; is an
ASR, then it can defend against another type of MAE AEs
that can fool a set of the ASRs, A’ C A, with almost 100%
defense rates (the italic numbers in Table XI). For example, if
the system is trained on Type-4 MAE AEs that can fool DSO,
DS1, and GCS, then it can defend against Type-I MAE AEs
that can fool DSO and DS1.

(3) We especially notice that some defense rates are quite
low: for example, if the system is trained on Type-2 MAE AEs
that can fool DSO and GCS, its defense rate against Type-5
MAE AEs that can fool DSO, DS1 and AT is only 16.04%.
This is expected, as the training data has never seen Type-5
MAE AE:s.

Comprehensive system. To build a comprehensive system
that can defend all the 6 types of MAE AEs, we build a
system using Type-4, Type-5 and Type-6 MAE AEs. They
constitute a dataset of totally 7200 MAE AEs, and we also
build another dataset of (feature vectors corresponding to)
7200 benign samples. We use 80% of them for training and the
rest for testing. The detection result on the testing set (of the
three types of MAE AEs and benign samples) shows 97.22%
detection accuracy, 3.47% FPR and 2.08% FNR. The system’s
defense rates over original AE, Type-1, Type-2 and Type-3
MAE AEs are impressive, as shown in Table XII. All the four
types of AEs are 100% detected.

We thus conclude the MVP-inspired idea lets us proactively
train systems that can detect transferable AEs even before their
existence. This is a big step ahead of attackers working on
methods for generating transferable audio AEs.

1. Overhead Measurement

We evaluate the time overhead imposed by the detection.
Both Google Cloud Speech and Amazon Transcribe are re-
mote cloud based services, whose delays are dominated by
networks and service dispatching. We are more interested

10

in the overhead imposed by the detection itself. Thus, we
measure the time overhead on DS0+{DS1}. We use SVM as
the binary classifier, and evaluate using all the 2400 AEs and
2400 benign samples in our datasets. The average recognition
time of DSO is 8.8 seconds per audio. The time overhead
in DSO+{DS1} comprises three parts: recognition overhead
(due to the parallel ASRs), similarity calculation overhead and
classification overhead, which are 0.065s (0.74%), 5.0e-06s
and 4.2e-07s. Thus, they incur negligible overheads.

J. Detecting Non-targeted Attacks

Non-targeted AEs make the ASR system output incorrect
transcriptions. Compared to targeted AEs, attacks based on
non-targeted AEs are much weaker, as they cannot fool the
ASR system to generate attacker-desired results.

We find that non-targeted AEs actually can be generated
by simply adding noises to benign audio samples. We ran-
domly choose 118 benign audio samples from CommonVoice
dataset [58] which are labeled with US accent and high-quality
vote. The noise is added to the audio samples with SNR set
to -6dB. After adding the noise, the output sample is still
recognizable to humans but the ASR transcription results have
higher than 80% word error rate (WER).

We treat non-targeted AEs as unseen-attack AEs and use
the same evaluation method used in Section V-G. Specifically,
we choose the similarity score threshold by having the FPR
as 5%, and use that threshold to determine whether an input
is an AE. The testing results show that the defense rate is
higher than 90% no matter which auxiliary ASR is used. The
defense rate is lower than the case of targeted attack AEs,
mainly because of the relatively small WER when generating
non-targeted AEs.

VI. RELATED WORK
A. Audio Adversarial Example Generation

An AE generation method can be categorized as white-
box/blackbox and targeted/non-targeted. Tavish et al. [59] and
Carlini et al. [60] proposed methods for generating commands
that are recognized by ASRs but are considered as noise by
humans. However, the produced sound examples are noises
and incomprehensible to humans, which greatly undermines
the power of their attacks.

To address this limitation, [25] proposed a semi-targeted
AE generation method to embed text to host audios with
similar content. Carlini proposed the first targeted audio AE
generation system, but is is a whitebox method [6]. Alzantot et
al. proposed a blackbox scheme to generate adversarial audio
examples targeting a simple speech command classification
model (not an ASR) [7]. Taori et al. [6] combined the genetic
algorithm [7] and gradient estimation to generate blackbox
AEs. Finally, Yuan et al. aimed to craft audio AEs that remain
effective when they are played over the air [32].

B. Audio Adversarial Example Defense and Detection

The emergence of adversarial examples has attracted re-
searchers to study its defense strategies. Many studies on

TABLE XI: Defense rates against unseen-attack MAE AE:s.

AEs included in _ AEs included in festing dataset
training dataset Original Type-1 Type-2 Type-3 Type-4 Type-5 Type-6
AEs AE(DSO0,Ds1) | AE(Ds0,GCS) | AE(DSO,AT) | AE(DSO0,DS1,GCS) | AE(DS0,DS1,AT) | AE(DSO,GCS,AT)
Original AEs — 99.83% 99.83% 99.83% 36.79% 30.33% 65.17%
AE(DS0,DS1) 99.96 % — 99.96% 100% 89.12% 75.75% 63.33%
AE(DSO0, GCS) 99.83% 99.88% — 99.71% 68.13% 16.04% 82.58%
AE(DSO, AT) 99.83% 99.67% 99.71% — 20.75% 58.50% 86.21%
AE(DS0,DS1,GCS) 100% 100% 100% 100% — 76.17% 74.38%
AE(DS0,DS1,AT) 99.92% 100% 99.67% 100% 23.13% — 72.12%
AE(DS0,GCS,AT) 99.92 % 89.62% 99.96% 100% 10.08% 16.04% —

TABLE XII: Defense rates of the comprehensive system
against unseen-attack MAE AEs and the original AEs.

Unseen-attack AE | Defense rate
Original AE 100%
AE(DSO, DS1) 100%
AE(DSO, GCS) 100%
AE(DSO, AT) 100%

detecting image AEs have been reported, such as [27], while
only a few are presented to cope with audio AEs, probably
because techniques for crafting audio AEs just surfaced in the
past two years. This also makes countermeasures against audio
AEs urgent and important.

Rajaratnam et al. [9] proposed to detect audio AEs based on
audio pre-processing methods. Yet, if an attacker knows the
detection details, he can take the pre-processing effect into
account when generating AEs. Such attacks have been well
demonstrated for bypassing similar techniques for detecting
image AEs [10]. [61] further pointed out that the input
transformation only gives a false sense of robustness against
AEs by imposing obfuscation over gradients which can be
circumvented by their proposed method. Carlini et al. [60]
trained a logistic regression classifier, which was trained using
a mix of benign and Hidden-Voice-Command (HVC) audios.
But it can only detect hidden voice commands, instead of
general audio AEs.

Yang et al. [8] proposed to identify audio AEs based on the
assumption that audio AEs need complete audio information
to resolve temporal dependencies. They cut the input audio
into two sections, which were then transcribed separately. If
the input is an AE, the result obtained by splicing of the two
sectional results will be very different from the result when the
input is transcribed as a whole. However, as admitted by the
authors, their method cannot handle “adaptive attacks”, which
evade the detection by only embedding malicious commands
into one section alone. In short, the literature has not reported
an effective and robust audio AE detection method like ours.

VII. DISCUSSION

If the malicious command embedded in an AE and the host
transcription are very similar, our method will probably fail
as their similarity score is high. But note that, prior to our
work, the existing AE generation methods claim that any host
audio can be used to embed a malicious command [5], [6]. Our
detection method dramatically reduces this attack flexibility, in

11

that the attack cannot succeed unless the host transcription is
similar to the malicious command.

The current prototype system successfully demonstrates the
feasibility of the Multiversion Programming inspired approach
to detecting audio AEs, and the novel idea of proactively
preparing a detection system resilient to transferable AEs,
which may be generated in future. However, to deploy such
a system still needs more engineering efforts. For example,
the online Amazon Transcribe ASR imposes large delays to
return the transcription result immediately, probably because
of the server load control on the Amazon side. However, we
argue that such delays are inherent in our idea or system
design. The delays as well as the deployment barrier can be
eliminated by running multiple high-quality ASRs locally. For
example, by using DeepSpeech v0.1.0 and DeepSpeech v0.1.1
to build the MVP-EARS system, it imposes negligible delays
(see Section V-I) and achieves satisfactory accuracy (99.56%).

VIII. CONCLUSION

Research on handling audio AEs is still limited. Considering
that ASRs are widely deployed in smart homes, smart phones
and cars, how to detect audio AEs is an important problem.
Inspired by Multiversion Programming, we propose to run
multiple different ASR systems in parallel, and an audio input
is determined as adversarial if the multiple ASRs generate very
dissimilar transcriptions. Detection systems with one single
auxiliary ASR achieve satisfactory accuracies (>98%), while
systems with more than one ASR reach even higher accuracies
(99.88%) as more features are provided to the classifier. The
research results invalidate the widely-believed claim that an
adversary can embed a malicious command to any host audio.

In addition, we propose the novel idea of training a proactive
detection system for handling transferable audio AEs, such
that the detection keeps effective as long as the AE is not
able to fool all the ASRs in the detection system. Therefore,
it makes our system one stride ahead of attackers working on
generating transferable audio AEs.

ACKNOWLEDGMENT

This project was supported by NSF CNS-1815144 and
NSF CNS-1856380. The authors would like to thank Nicholas
Carlini for sharing their AEs [5], and anonymous reviewers
for their comments and suggestions. In the early stage of this
project, we used the Chameleon Cloud (funded by NSF), so
we would like to thank this project [62].

[1]

[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning
Approach, 2nd ed., ser. Signals and Communication Technology. Lon-
don: Springer-Verlag London, 2015.

InsideRadio, “Microsoft hopes skype sets its smart speaker apart,”
http://www.insideradio.com/free/microsoft-hopes- skype-sets-its-smart-
speaker-apart/article_df50d874-1f52-11e7-a34f-eb5f9f355¢22.html,
2017.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
CoRR, vol. abs/1312.6199, 2013.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks
on speech-to-text,” in 2018 IEEE Security and Privacy Workshops
(SPW). IEEE, 2018, pp. 1-7.

R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial
examples for black box audio systems,” CoRR, vol. abs/1805.07820,
2018.

M. Alzantot, B. Balaji, and M. Srivastava, “Did you hear that? adver-
sarial examples against automatic speech recognition,” arXiv preprint
arXiv:1801.00554, 2018.

Z. Yang, B. Li, P-Y. Chen, and D. Song, “Towards mitigating audio
adversarial perturbations,” ICLR workshop, 2018.

K. Rajaratnam, K. Shah, and J. Kalita, “Isolated and ensemble audio
preprocessing methods for detecting adversarial examples against auto-
matic speech recognition,” arXiv preprint arXiv:1809.04397, 2018.

N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. ACM, 2017, pp.
3-14.

A. A. Liming Chen, “N-version programming: A fault-tolerance ap-
proach to reliability of software operation,” in Twenty-Fifth International
Symposium on Fault-Tolerant Computing, 1995.

D. Campbell, K. Palomaki, and G. Brown, “A matlab simulation of”
shoebox” room acoustics for use in research and teaching,” Computing
and Information Systems, vol. 9, no. 3, p. 48, 2005.

D. OShaughnessy, “Automatic speech recognition: History, methods and
challenges,” Pattern Recognition, vol. 41, no. 10, pp. 2965-2979, 2008.
J. Schroder, J. Anemiiller, and S. Goetze, “Performance comparison
of gmm, hmm and dnn based approaches for acoustic event detection
within task 3 of the dcase 2016 challenge,” in Proc. Workshop Detect.
Classification Acoust. Scenes Events, 2016, pp. 80-84.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in International Conference on Machine
Learning, 2014, pp. 1764-1772.

P. Laffitte, D. Sodoyer, C. Tatkeu, and L. Girin, “Deep neural networks
for automatic detection of screams and shouted speech in subway trains,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 6460—-6464.

A. Diment, E. Cakir, T. Heittola, and T. Virtanen, “Automatic recognition
of environmental sound events using all-pole group delay features,” in
23rd European Signal Processing Conference (EUSIPCO), 2015, pp.
729-733.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 369-376.

D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International Conference on Machine Learning, 2016, pp. 173-182.

F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine
translation inspired binary code similarity comparison beyond function
pairs,” in NDSS, 2019.

K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruction
embedding model for natural language processing-inspired binary code
analysis,” arXiv preprint arXiv:1812.09652, 2018.

L. Luo and Q. Zeng, “Solminer: mining distinct solutions in programs,”
in 2016 IEEE/ACM 38th International Conference on Software Engi-
neering Companion (ICSE-C), 2016, pp. 481-490.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

12

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2574-2582.

M. M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling
deep structured visual and speech recognition models with adversarial
examples,” in Advances in Neural Information Processing Systems,
2017, pp. 6977-6987.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on, 2016, pp. 372-387.

F. Zuo, B. Yang, X. Li, L. Luo, and Q. Zeng, “Aepecker: [p adversarial
examples are not strong enough,” arXiv preprint arXiv:1812.09638,
2018.

N. Papernot, P. McDaniel, and 1. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

F. Tramer, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“The space of transferable adversarial examples,” arXiv preprint
arXiv:1704.03453, 2017.

Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable ad-
versarial examples and black-box attacks,” CoRR, vol. abs/1611.02770,
2016.

J. Monteiro, Z. Akhtar, and T. H. Falk, “Generalizable adversarial ex-
amples detection based on bi-model decision mismatch,” arXiv preprint
arXiv:1802.07770, 2018.

X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang,
H. Huang, X. Wang, and C. A. Gunter, “Commandersong: A system-
atic approach for practical adversarial voice recognition,” in USENIX
Security Symposium. USENIX Association, 2018, pp. 49-64.

“Test 10 commandersong aes over iflyteck, google
cloud speech and kaldi,” https://drive.google.com/open?id=
1CMtDOI|tBpNrbaTknxSsmB5xjoNbj YXq, 2018.

A. Avizienis, “On the implementation of n-version programming for
software fault tolerance during execution,” Proc. COMPSAC, 1977, pp.
149-155, 1977.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless frame-
work for security through diversity.” in USENIX Security Symposium,
2006, pp. 105-120.

L. Nagy, R. Ford, and W. Allen, “N-version programming for the
detection of zero-day exploits,” Tech. Rep., 2006.

W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defense: Ensembles of weak defenses are not strong,” in /1th {USENIX}
Workshop on Offensive Technologies ({WOOT} 17), 2017.

M. Abbasi and C. Gagné, “Robustness to adversarial examples through
an ensemble of specialists,” arXiv preprint arXiv:1702.06856, 2017.
W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv preprint arXiv:1704.01155,
2017.

“Wikipage of phonetic
Phonetic_algorithm, 2017.
“Jarowinkler distance,”
93Winkler_distance, 2018.
D. Yu and J. Li, “Recent progresses in deep learning based acoustic
models,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3, pp.
396-409, 2017.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with
deep recurrent neural networks,” in ICASSP, 2013, pp. 6645-6649.

H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Fifteenth annual conference of the international speech communication
association, 2014.

X. Li and X. Wu, “Constructing long short-term memory based deep
recurrent neural networks for large vocabulary speech recognition,”
CoRR, vol. abs/1410.4281, 2014.

K. J. Lang, A. Waibel, and G. E. Hinton, “A time-delay neural network
architecture for isolated word recognition,” Neural Networks, vol. 3,
no. 1, pp. 23-43, 1990.

algorithm,” https://en.wikipedia.org/wiki/

https://en.wikipedia.org/wiki/Jaro%E2%80%

http://www.insideradio.com/free/microsoft-hopes-skype-sets-its-smart-speaker-apart/article_df50d874-1f52-11e7-a34f-eb5f9f355c22.html
http://www.insideradio.com/free/microsoft-hopes-skype-sets-its-smart-speaker-apart/article_df50d874-1f52-11e7-a34f-eb5f9f355c22.html
https://drive.google.com/open?id=1CMtDOIjtBpNrbaTknxSsmB5xjoNbjYXq
https://drive.google.com/open?id=1CMtDOIjtBpNrbaTknxSsmB5xjoNbjYXq
https://en.wikipedia.org/wiki/Phonetic_algorithm
https://en.wikipedia.org/wiki/Phonetic_algorithm
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
http://dx.doi.org/10.1162/neco.1997.9.8.1735

(48]

[49]
[50]

[51]

[52]

[53]

[54]

O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural
network structures and optimization techniques for speech recognition,”
in INTERSPEECH. ISCA, 2013, pp. 3366-3370.

L. Téth, “Modeling long temporal contexts in convolutional neural
network-based phone recognition,” in ICASSP, 2015.

T. Sercu and V. Goel, “Dense prediction on sequences with time-dilated
convolutions for speech recognition,” CoRR, vol. abs/1611.09288, 2016.
A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng,
“Deep speech: Scaling up end-to-end speech recognition,” CoRR, vol.
abs/1412.5567, 2014.

“Google ai blog: The neural networks behind google voice
transcription,” https://ai.googleblog.com/2015/08/the-neural-networks-
behind- google-voice.html, 2015.

“Deepspeech github repository,” https://github.com/mozilla/DeepSpeech,
2018.

“Google cloud speech homepage,” https://cloud.google.com/speech-to-

13

[55]

[56]
[57]
(58]
[59]

[60]

[61]

[62]

text, 2018.
“Amazon
2018.
“Librispeech asr corpus,” http://www.openslr.org/12, 2015.

“Jaccard index,” https://en.wikipedia.org/wiki/Jaccard_index, 2018.
“CommonVoice,” https://voice.mozilla.org/, 2018.

T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine noodles:
Exploiting the gap between human and machine speech recognition,”
in WOOT. USENIX Association, 2015.

N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. A.
Wagner, and W. Zhou, “Hidden voice commands,” in USENIX Security
Symposium. USENIX Association, 2016, pp. 513-530.

A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
arXiv preprint arXiv:1802.00420, 2018.

“Chameleon Cloud,” https://www.chameleoncloud.org.

transcribe homepage,” https://aws.amazon.com/transcribe,

https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://github.com/mozilla/DeepSpeech
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
https://aws.amazon.com/transcribe
http://www.openslr.org/12
https://en.wikipedia.org/wiki/Jaccard_index
https://voice.mozilla.org/
https://www.chameleoncloud.org

	Introduction
	Background
	Automatic Speech Recognition System
	Audio Adversarial Examples

	Transferability of AEs
	Transferability in Image Domain
	Transferability in Audio Domain: Open Question

	MVP-Inspired Audio AE Detection
	Multi-Version Programming
	MVP-Inspired Idea
	Architecture
	Diverse ASRs
	Questions to Be Explored

	Experiment-Guided System Design and the Evaluation
	Experimental Settings
	Dataset Preparation
	Feasibility Analysis
	Choosing Similarity Calculation Methods
	Effectiveness of Single-Auxiliary-Model Systems
	Effectiveness of Multi-Auxiliary-Model Systems
	Robustness against Unseen Attack Methods
	Detecting Hypothetical Multiple-ASR-Effective AEs
	Overhead Measurement
	Detecting Non-targeted Attacks

	Related Work
	Audio Adversarial Example Generation
	Audio Adversarial Example Defense and Detection

	Discussion
	Conclusion
	References

