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Abstract— In this paper, we study the problem of exploring a
translating plume with a team of aerial robots. The shape and
the size of the plume are unknown to the robots. The objective
is to find a tour for each robot such that they collectively
explore the plume. Specifically, the tours must be such that
each point in the plume must be visible from the field-of-view
of some robot along its tour. We propose a recursive Depth-First
Search (DFS)-based algorithm that yields a constant competitive
ratio for the exploration problem. The competitive ratio is
2(Sr+Sp)(R+blogRc)
(Sr−Sp)(1+blogRc) where R is the number of robots, and Sr

and Sp are the robot speed and the plume speed, respectively.
We also consider a more realistic scenario where the plume
shape is not restricted to grid cells but an arbitrary shape. We
show our algorithm has 2(Sr+Sp)(18R+blogRc)

(Sr−Sp)(1+blogRc) competitive ratio
under the fat condition. We empirically verify our algorithm
using simulations.

I. INTRODUCTION

We investigate the problem of exploring and mapping
flows of an unknown hazardous agent in aquatic environ-
ments using a team of autonomous aerial robots. Our overall
vision is to develop algorithms for enabling a team of robots
to assist emergency responders in disaster scenarios, such
as dispersal of oil aerosols and radioactive particulates in
the environment. limiting their ability to respond quickly
and effectively. This motivates the use of Unmanned Aerial
Vehicles (UAVs) which can provide a wider (regional) pic-
ture and that can coordinate with USVs for more targeted
deployments.

Fig. 1. An aerial robot (UAV) conducting the plume exploration in an
abandoned quarry near Blacksburg, Virginia.

Teams of UAVs can collectively track the plumes and
act as scouts to direct the USVs to sense for hazardous
regions of interest (Figure 1). As a first step towards enabling
coordination between UAVs and USVs, in this paper, we
focus on the problem of mapping the extent of a 2D plume.

The problem of exploring an unknown 2D environment is
a well-studied one in the robotics [1]–[4] and computational
geometry [5]–[8] communities. The problem considered in
this paper differs from these works in two critical ways. First,
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we consider the case where the plume is not static but is
instead translating with a given velocity. As a result, the
performance of the algorithm depends on the relative speeds
of the robots and the plume. Second, in our setup the robots
are not restricted to stay inside (or over) the plume all the
time. The robots can fly over locations that are not part of the
plume, thereby allowing them to “shortcut” from one part of
the plume to the other. Contrast this with conventional 2D
exploration problems, where the robots are restricted to stay
within the boundary of the environment. Because the robots
do not know the shape of the plume a priori, they may not
be able to take a “shortcut” even if one exists. As a result,
the robots may ending up taking a longer path, resulting in a
poorer performance. Nevertheless, we present an algorithm
that is competitive with respect to the optimal algorithm.

We use the notion of competitive ratio [9] to analyze the
performance of our algorithm. The competitive ratio for an
online algorithm is defined as the largest (i.e., worst-case
input) ratio of the time taken by the online algorithm to
the time taken by an offline, optimal algorithm. The offline
algorithm is one which knows the shape of the 2D plume
a priori. We seek algorithms that have a low (preferably,
constant) competitive ratio. Our main result is a constant
competitive ratio for exploring a translating plume for a
fixed number of robots. The constant depends on the relative
speeds of the plume and the robots.

We require the robots to ensure that all points of the plume
are within the Field-of-View (FOV) of at least one of the
aerial robots along their paths. The objective is to minimize
the time required for all the robots to explore the plume and
return back to the starting position. Our algorithm builds on
the one presented by Higashikawa et al. [8] for exploring an
unknown binary tree. We show how to reduce the problem
of exploring the plume to that of exploring a binary tree.
We first start with the simpler scenario where the plume is
modeled as a 2D grid and then generalize it to the case
where the plume boundary is any smooth (formally defined
in Section II 2D curve. For both cases, we show that our
algorithm yields a constant-competitive ratio.

Related Work: The problem of monitoring an en-
vironmental monitoring has been extensively studied in
robotics [10] because of its relevance to a number of applica-
tions. These applications include precision agriculture [11],
[12], wildlife habitat monitoring [13]–[15] and atmospheric
plume tracking [16]–[18]. A basic capability for environ-
mental monitoring is that of area exploration and coverage.
Galceran and Carreras [19] survey planning algorithms for
area coverage under a variety of sensing and motion models.



The first step in our algorithm is to model the plume as
a 2D grid polygon. Exploring an unknown grid polygon has
been studied under two models: lawn mowing and milling.
The former allows a robot to move outside the boundary
of the polygon whereas the latter does not and restricts the
motion of the robot to always be inside the polygon. Arkin
et al. [20] presented (3 + ε)–approximation algorithm for
offline lawn mowing and 2.5–approximation algorithm for
offline milling with a single robot. Arya et al. [21] presented
an approximation algorithm for offline milling for multiple
robots. Here, offline denotes the fact that the algorithm knows
the polygon a priori. The problem we consider is that of
online lawn mowing.

Icking and Kamphans [22] proposed a strategy that yields
a competitive tour for online milling of an polygon which
may contain holes with a single robot. Icking [5] presented
a 4

3–competitive algorithm for online milling of polygons
without holes. Kolenderska et al. [6] improved upon this to
give an online milling algorithm with a competitive ratio
of 5

4 . None of these online algorithms are designed for
multiple robots. Furthermore, in all of these works, the
grid environment is static. We present the first constant-
competitive ratio algorithm for online lawn mowing with
multiple robots.

The objective of online exploration strategies [2]–[4], [23]
is to explore and map an unknown environment. When
multiple robots are considered, a common strategy [1], [7],
[8], [24] is to abstract the problem as that of exploring a
tree by employing a recursive Depth-First Search (DFS).
Fraigniaud [7] proposed O(R logR)–competitive algorithm
where R denotes the number of robots. Brass et al. [1] and
Higashikawa et al. [8] improved this competitive ratio to
2e
R +O((R+ r)R−1) where e denotes the number of edges
and r is the radius of graph and to R+blogRc

1+blogRc , respectively.
In these works, the environment to be explored is assumed

to be a tree. Preshant et al. [24] showed that the competitive
ratio remains largely the same, 2(

√
2R+logR)
1+logR , when the envi-

ronment is an orthogonal polygon1 but is modeled as a tree.
We build on this and generalize this to the case where the
environment boundary is not necessarily orthogonal. In fact,
it can be curved and may contain holes as well. Furthermore,
we show how to adapt this algorithm to the case where the
environment itself is translating.

The contributions of this paper are as follows:

• If the plume is a 2D grid polygon, then we present
an online exploration algorithm for R robots with a
competitive ratio of 2(Sr+Sp)(R+blogRc)

(Sr−Sp)(1+blogRc) .
• If the plume has an arbitrary shape, then our online

exploration algorithm yields a competitive ratio of
2(Sr+Sp)(18R+blogRc)
(Sr−Sp)(1+blogRc) .

Here Sr and Sp are the speeds of the robots and the plume,
respectively.

1An orthogonal polygon is one in which the edges are aligned with either
the X or Y axes.

II. PROBLEM DESCRIPTION

We consider the problem of mapping a slowly translating
plume (Definition 1) using a team with R robots. The size
and the shape of the plume is not known to the robots a
priori. We use P ∈ R2 to denote the 2D plume. Let int(P )
be the interior of P and ∂P be the boundary of P .

We assume the plume is translating on the plane at zero
height and that the aerial robots fly at a fixed altitude. Each
robot has a downwards-facing camera that yields a square
footprint on the plane containing the plume. That is the FOV
is a square. Without loss of generality, we assume that the
side length of the square FOV is 1 in this work.

We consider plumes whose size of the plume is at least as
large as the FOV of the robots. Specifically, we require the
plume to satisfy the following assumption.

Definition 1 (Fat Plumes). For any p′ ∈ ∂P , let p ∈ int(P )
be a point on the normal to ∂P at p′ such that p is at a
distance of

√
2
2 from p′. Let B(p) be an open ball of radius√

2
2 , i.e., B(p) = {q | ‖p− q‖2 <

√
2
2 } where q ∈ R2. We

say that the plume P is fat if B(p) lies completely inside
int(P ) for all p′ ∈ ∂P .

Fig. 2. We restrict our attention to plumes that are fat (Definition 1).

Figure 2 shows an example of a plume that is fat. This
definition disallows plumes that have a width less than that
of the FOV of the robot. Note, however, we still allow the
plume to contain one or more holes.

We assume that the plume translates at a fixed velocity of
Sp which is known to the robots. 2 The velocity of the plume
can be determined from the flow of the water which can be
found from the environmental conditions such as wind and
ocean current models [25].

We assume that all robots move at a speed of Sr > Sp.
We further assume that all robots can communicate with each
other at all times and thus, restrict our attention to centralized
algorithms.

We focus on the mapping problem in this paper. Therefore,
we assume that all robots start at the same location where
they first observe the plume. We seek tours for each robot that
explore the plume and return back to this starting location.

Problem 1 (Multi-Robot Exploration of Translating Plume).
Find a tour for all the robots that minimizes the exploration

time such that every point in the plume is visible from the
FOV of at least one robot’s tour. All tours must return to the
same starting position. The exploration time is given by the
time when the last robot returns to the starting position.

The proposed problem is an online exploration problem.
The objective function is the exploration time which is the

2This is equivalent to the rigid-body translation of P .



time of the longest tour. In the next section, we present
an algorithm that is based on recursive DFS which is
competitive with respect to the optimal solution.

III. PLUME EXPLORATION ALGORITHM

In this section, we present our main algorithm. We first
solve a simpler version of Problem 1 where the plume is
approximated as a grid map. We then use this result to solve
Problem 1 by relaxing the grid approximation afterwards.
Our algorithm is based on the recursive DFS that models
the plume under exploration as a tree. We first show that
our strategy is competitive for the grid map case and then
analyze the effect of approximating an arbitrary plume shape
with a grid.

A. Recursive DFS Algorithm for a Grid Map

In this section, we assume that the plume is represented as
a grid map [26]. The environment is modeled as a collection
of cells, each of which is a square of unit side length. Each
cell is connected to four of its neighbors. The plume P is
just a collection of C cells that form one connected set (if a
cell c ∈ P is part of the plume, then one of its four neighbors
must also be a part of the plume when C > 1).

The problem of exploring the plume is then simplified
to that of exploring a grid map and identify the cells that
belong in P . Since we assume that the FOV is also a unit
square, a robot may obtain an image by positioning itself at
the center of a cell. By analyzing the pixels on the boundary
of the image, the robot can then determine if any of the four
neighboring cells are also part of the plume or not.

We model P as a tree and propose a recursive DFS
algorithm based on the tree exploration algorithm given by
Higashikawa et al. [8]. Higashikawa et al. [8] developed a
recursive DFS algorithm for exploring a binary tree. In our
case, the grid graph to be explored is not necessarily a tree (it
may contain cycles). Regardless, we show that modeling the
underlying graph as a binary tree still leads to an algorithm
with a constant competitive ratio.

The root of the tree is the cell corresponding to the starting
position of the robots. Upon visiting a cell, the robots can
identify if one or more of the four neighboring cells also
contain the plume. The neighboring cells that contain the
plume are added as children of the present cell in the tree
unless those cells have been previously added to the tree.
This condition prevents cycles.

The number of neighboring cells when a robot visits a new
cell can be at most three. Therefore, the resulting tree may
not be binary. However, by introducing a dummy edge of
weight 0, we can convert the tree into a binary tree without
loss of generality.3

Each neighboring plume cell determined by the sensing
model becomes one of candidate cells that robots can choose
from as the next vertex to visit. The goal becomes to visit
all C − 1 cells (excluding the starting cell) at least once by
one of the robots.

3This step is included in Line 15 of Algorithm 1.

The weight of an edge is equal to the time taken by
the robot to go from the center of one cell to that of the
neighbor. Since we know the velocity with which the plume
is translating, we can determine the location of the center
of the neighboring cell at a future time instance using the
relative velocities between the plume and the robots.

If R = 1, then our algorithm becomes conventional
recursive DFS for a single robot. However, in the multi-
robot case, as the robots build the tree, we split the robots as
equally as possible and assign them to explore the children
vertices.

We define three states for each vertex in the tree: un-
explored if the vertex is not visited by any robots; under
exploration if the vertex is visited by any robots but the
leaf vertex connected from the vertex is not visited by any
robots; and explored if the vertex as well as the leaf vertex
in the same branch are visited by any robots. When robots
decide which vertex to move among neighboring cells of
a plume region, they do not consider explored vertices but
vertices that are either unexplored or under exploration. This
is because having explored vertex means that the offspring of
it must have also been explored by any robots (see Figure 3).

(a) Two robots exploring the grid map. (b) Tree generated from
the recursive DFS.

Fig. 3. Description of tree components. The binary tree consists of a
backbone and a finite number of ribs. Each vertex is marked as one of
unexplored, under exploration or explored.

The details are given in Algorithm 14. All vertices are
marked as unexplored state in the beginning. Each robot runs
Algorithm 1 whenever it reaches a vertex. The algorithm can
be implemented to a single robot independently with respect
to other robots as long as they can share the state information
of vertices. The algorithm terminates when all robots return
to the starting vertex and all vertices are marked as explored.

B. Theoretical Analysis

In this section we analyze the proposed Algorithm 1. We
start with the following lemma which bounds the total weight
of the tree generated by the robots.

Lemma 1 (Total Weight of the DFS Tree). Let L be the
sum of the weights of all the edges in the tree generated by
the recursive DFS algorithm. We have L ≤ C−1

Sr−Sp
.

Proof. A tree containing C vertices always has C−1 edges.
The weight of an edge is equal to the time taken by the
robot to go between the centers of the respective cells. The

4In the algorithm, we use N(vi) to denote the neighborhood of the i-th
vertex such that N(vi) = {vj ∈ V |(vj , vi) ∈ E}.



Algorithm 1: Multi-Robot Recursive DFS

1 Observe N(v) to determine whether neighboring cells
are plume cells or non-plume cells.

2 if |N(v)|=0 then
3 Mark v as explored.
4 Move back to the parent vertex (→next vertex) and

directly jump to Line 24.
5 end
6 Communicate with robots to update the state of N(v),

i.e., unexplored, under exploration, and explored.
7 N(v)← N(v)\{explored vertices}.
8 if v′ ∈ N(v) is under exploration then
9 if moving to v′ generates a cycle in the tree then

10 N(v)← N(v)\{v′}.
11 end
12 end
13 if |N(v)| > 1 then
14 if |N(v)| > 2 then
15 Add a dummy edge of weight 0 in order to

keep the tree as a binary tree.
16 end
17 Split robots into two children as equally as possible.
18 Move to one of two children (→next vertex) and

mark v as under exploration.
19 else if |N(v)| = 1 then
20 Move to the child (→next vertex) and mark v as

under exploration.
21 else if |N(v)| = 0 then
22 Move back to the parent vertex (→next vertex).
23 end
24 v ←the next vertex.

cells are a unit distance apart from each other. However, the
robot travels with a speed of Sr and the plume (thereby, the
center of the cell) travels with a speed of Sp. The worst-case
time taken by the robot to travel a unit distance occurs when
the plume (i.e, the center) is moving directly away from the
robot. The minimum relative speed is Sr − Sp. Therefore,
the maximum time taken for executing an edge is 1

Sr−Sp
.

Since there are C− 1 edges in the tree, the total weight will
be less than C−1

Sr−Sp
.

a) Upper Bound Analysis: To analyze the cost of
the proposed algorithm, we adapt the token collecting rule
proposed by Higashikawa et al. [8] to the case of a translating
plume. They place tokens with a total weight of 2(L −
dmax) + (1 + blogRc)dmax spread over the edges. Here,
dmax denotes the distance of the farthest vertex in the tree
from the root. The details of the token collecting rules are
given in Corollary 6 in [8]. They assume that the robots move
at unit speed. We only describe how the rule is adapted to
handle the case of a translating plume (i.e., tree). The reader
is referred to the Corollary 6 in [8] for the full details.

The modified rule is as follows: (1) At least (Sr−Sp) and
at most (Sr + Sp) tokens per unit time are collected by one
robot in a group that visits an edge e in a rib in the forward

direction for the first time. (2) At least (Sr−Sp) and at most
(Sr + Sp) tokens per unit time are collected by one robot
in a group that visits an edge e in a rib in the backward
direction for the first time. (3) At least (Sr − Sp) and at
most (Sr+Sp) tokens per unit time are collected by each of
1+blogRc robots that move along a backbone edge e in the
forward direction for the first time. (4) At least (Sr − Sp)
and at most (Sr + Sp) tokens per unit time are collected by
one robot in a group that move along a backbone edge e in
the forward direction after the first group.

Let tlast be the time when the last robot reaches a leaf
node in the tree. Then, based on the four observations above
we have:
(Sr − Sp)(1 + blogRc)tlast ≤ total amount of tokens

≤ (Sr + Sp)(1 + blogRc)tlast.
(1)

The total amount of tokens is equal to 2(L− dmax) + (1 +
blogRc)dmax.

We denote the time taken by the proposed algorithm by
ALG. We are now ready to state the upper bound on ALG.

Lemma 2 (Upper Bound for Multi-Robot Recursive DFS).

ALG ≤ 2(C + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

. (2)

The proof is given in Appendix A.

Corollary 1 (Special Cases). Upper bounds for the follow-
ing special cases can be derived from Lemma 2, such as
Multi-Robot Static Plume (MRSP), Single Robot Translating
Plume (SRTP), and Single Robot Static Plume (SRSP).

MRSP SRTP SRSP

ALG ≤ 2(C+dmaxblogRc)
Sr(1+blogRc) ALG ≤ 2C

Sr−Sp
ALG ≤ 2C

Sr

TABLE I
UPPER BOUNDS OF SPECIAL CASES.

Note that the upper bound for MRSP becomes the result
from Higashikawa et al. [8] if Sr = 1. Also, the upper bound
for SRSP is equivalent to Icking et al. [22] if Sr = 1.

Proof. Please refer to Appendix B.

b) Lower Bound Analysis: We study the lower bound
for the optimal algorithm in order to obtain a competitive
ratio. Let OPT1

g be the time taken by the optimal algorithm
to explore a grid map when using a single robot. The lower
bound can be constructed as:

OPT1
g ≥

C − 1

Sr + Sp
. (3)

We use OPTR
g to represent the time taken by the optimal

algorithm over any grid polygon of a plume region using R
robots. Then, the following lemma gives the lower bound for
OPTR

g .

Lemma 3 (Lower Bound for Optimal Algorithm).

OPTR
g ≥

C − 1

(Sr + Sp)R
. (4)



Proof. Please refer to Appendix C.

Theorem 1 (Competitive Ratio over the Grid Polygon). The
competitive ratio of Algorithm 1 for a grid map is:

ALG ≤2(Sr + Sp)(R+ blogRc)
(Sr − Sp)(1 + blogRc)

OPTR
g

+
2

(Sr − Sp)(1 + blogRc)
.

(5)

Proof. Substituting Equation (4) into Equation (2) gives:

ALG ≤
2((Sr + Sp)ROPTR

g + 1 + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

. (6)

Since dmax

Sr+Sp
≤ OPTR

g , it follows:

≤
2(Sr + Sp)(R+ blogRc)OPTR

g + 2

(Sr − Sp)(1 + blogRc)
. (7)

C. Arbitrary Plume Shape

The presented results so far are for a grid map approxima-
tion of the plume. In this section, we will relate the bounds
obtained for the grid map case to the case of arbitrarily-
shaped plumes. Specifically, we will extend Lemma 2 to
apply to a plume region that may have an arbitrary shape.

The algorithm for exploring the plume remains the same.
We will still construct a tree that represents a grid map
of the plume. The main difference here is that in the
previous analysis, we assumed that the boundary of the
plume matched the boundary of a grid map exactly. This
will no longer hold. Instead, we will explore a grid map that
is an outer approximation of the plume (Figure 4).

We define CALG
out and CALG

in to denote the number of cells
in the outer and inner grid approximation by our algorithm,
respectively. The outer grid map completely contains the
plume whereas the inner grid map lies completely inside the
plume. Therefore, the term C in the upper bound (Lemma 2)
will now be replaced by CALG

out . However, the C term in
the lower bound (Lemma 3) cannot be replaced by CALG

in .
This is because CALG

in is defined by the grid imposed by our
algorithm. It may be possible to have another grid map (of
the same unit side length) that is oriented and/or translated
such that it contains fewer than CALG

in cells in the interior.
We will first find the relationship between CALG

out and CALG
in .

Then, we will relate CALG
in to CBEST

in which is the best grid
that contains the fewest number of cells completely inside
the plume.

By a slight abuse of notation, we interchangeably use CALG
out

and CALG
in to also denote the corresponding set of cells (along

with denoting the number of cells in the set).

Lemma 4 (Grid Approximation of Arbitrary Plume Shape).
The upper bound on CALG

out for a fat polygon (from Defini-
tion 1) is given by:

CALG
out ≤ 3CALG

in + 6. (8)
Proof. To prove the lemma, we define an EXCESS set that
contains all cells, p ∈ P\CALG

in . That is, EXCESS set contains

Fig. 4. Row formation of CALG
in cells as the number of cells changes from

1 to a finite number.

all cells in CALG
in but not in CALG

in . Therefore, the size of the
EXCESS set is equal to CALG

in −CALG
in . We prove the lemma

in three steps.
EXCESS is maximum if all cells in CALG

in form a convex
polygon. If there is a reflex vertex vertex in CALG

in , then
the reflex vertex cell does not contribute any cell to the
EXCESS set that is not already contributed by one of the
neighbors of the reflex vertex. Since CALG

in is a grid map, the
only convex shape possible is a rectangle.

If the width of the rectangle is equal to one, then each cell
in CALG

in contributes two cells that are in the EXCESS set
(one above and one below) in addition to three more cells
on either end point. This is shown in Figure 5. Therefore,
the size of EXCESS set is equal to 2CALG

in + 6.
If the width of the rectangle is more than 1, then each cell

will contribute at most one addition cell in the EXCESS set.
Therefore, the size of the EXCESS set is less than or equal
to CALG

in + 8.
The width of the rectangle cannot be less than 1; it

violates the fat condition for the polygon. Therefore, the
maximum possible value for the size of the EXCESS set
is 2CALG

in + 6. By substituting EXCESS with CALG
out − CALG

in ,
we have Equation (8).

The grid corresponding to CALG
our and CALG

in is generated
by the proposed algorithm. It is possible that there exists
some other grid which has fewer than CALG

in cells completely
contained within the plume. It may not be possible to gener-
ate this “best” grid due to the nature of online exploration.
Nevertheless, we analyze the relationship between CALG

in and
CBEST

in . We define CBEST
in to denote the fewest number of cells

in the inner grid approximation that is completely contained
in the plume (and adding any other cell to CBEST

in would
not allow CBEST

in to be completely inside the plume). The
relationship is given by:

Lemma 5 (Best Possible Grid-Approximation).

CALG
in ≤ 6CBEST

in . (9)

Proof. To prove this relationship, it is sufficient to consider
any grid approximation (generated by any algorithm) with
respect to the best grid approximation.

Fig. 5. A part of grid cell from any grid approximation. Unique number
is assigned to a different side of grid cells.

Figure 5 shows a part of grid cells generated by any grid
approximation. Each number in the figure corresponds to a
different side of grid cells. Let cBEST

in be a single grid cell



generated from the best grid approximation that overlaps
with the central cell (4, 6, 7, 9) without loss of generality.
Our observation is that the number of crossings is equal to
the number of cells in CALG

in that cBEST
in overlaps.

We prove that 7 crossings are impossible. In order to
cross more than four edges, cBEST

in has to cross all of
the (4, 6, 7, 9) edges. In addition, it must cross three
of (1, 2, 3, 5, 8, 10, 11, 12) edges. Let use consider the case
when edge (1) is crossed. The other cases are symmetric.
If edge (1) is crossed, then crossing (5, 10, 12, 11, 8) is
impossible since these edges are more than a unit distance
apart. Only (2) and (3) edges are only available edges to cross
more. However, if cBEST

in crosses both (2) and (3) edges, the
side length of cBEST

in becomes greater than 1. Therefore, cBEST
in

cannot cross more than seven edges. Therefore, CALG
in ≤

6CBEST
in .

Finally we give our main result as follows:

Theorem 2 (Competitive Ratio for Arbitrary Plume Shape).
Let OPTR be the time taken by the optimal algorithm over

any arbitrary plume shape using R robots.

ALG ≤2(Sr + Sp)(18R+ blogRc)
(Sr − Sp)(1 + blogRc)

OPTR

+
48

(Sr − Sp)(1 + blogRc)
.

(10)

Proof. Although OPTR is the cost for any arbitrary plume
shape, we can still lower bound this using CBEST

in (similar to
Lemma 3) as:

OPTR ≥ CBEST
in − 1

(Sr + Sp)R
. (11)

Let (Sr − Sp)(1 + blogRc) be M. We can obtain the
following inequalities from Lemmas 2, 4, and 5 as follows.

ALG ≤ αCALG
out + a ≤ βCALG

in + b ≤ γCBEST
in + b, (12)

where α = 2
M , a = 2dmaxblogRc

M , β = 6
M , b =

12+2dmaxblogRc
M , and γ = 36

M .
Substituting Equation (11) into the last inequality of

Equation (12) and using dmax

Sr+Sp
≤ OPTR, we have:

ALG ≤ 36(Sr + Sp)R

M
OPTR +

48 + 2dmaxblogRc
M

,

≤ 2(Sr + Sp)(18R+ blogRc)
M

OPTR +
48

M
.

(13)

IV. SIMULATION

We empirically evaluated our algorithm using MATLAB
simulations. Specifically, we verify the performance of the
proposed recursive DFS for the grid map approximation of
the plume (Theorem 1).

We randomly generated a set of plume grid maps. Figure 6
(a) shows an example of the generated plume that consists
of 200 cells. We measured the cost of our algorithm as well
as the upper and lower bounds by changing the number
of plume cells, the number of robots, and the speed ratio

X-axis

Y
-a

x
is

Generated plume over grid polygon

(a) Example of the randomly
generated plume over grid cells.
The red dot represents the start-
ing vertex for robots.
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(b) Plot of the cost when
changing the number of
plume cells.
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Fig. 6. Simulation results. We fixed the number of plume cells, the
number of robots, the speed ratio as 120, 20, 2.5, respectively, when the
corresponding variable was not a subject to be changed. We ran 100 trials
for each case. Each case is plotted as mean, maximum and minimum values
from 100 trials.

between the robot and the plume. Each case was obtained
from 100 trials (see Figures 6 (b–d)).

Figure 6 (b) shows that the expected exploration time
for all cases is proportional to the number of plume cells.
The difference between the maximum and minimum costs
also becomes larger as more plume cells are to be explored.
Figure 6 (c) plots the exploration time when changing the
number of robots. The exploration time of our algorithm and
the lower bound decrease as the number of robots increases.
Unlike these, the upper bound does not show a steady
decreasing tendency because randomly generated plume cells
affect dmax. Figure 6 (d) shows the exploration time when
changing the speed ratio between the robot and the plume,
i.e., Sr

Sp
. The exploration time for our algorithm and the upper

bound decrease as the speed ratio increases. The simulation
results verify the theoretical upper and lower bounds deter-
mined by our analysis. In addition, they demonstrate that
the practical performance of our algorithm is better than that
indicated by the upper bounds.

V. CONCLUSION

We propose a recursive DFS algorithm for a team of aerial
robots to explore a translating plume without knowing its
shape and size. We present two approaches for the given
problem where the first approximates the plume to map to
the grid whereas the second considers any arbitrary shape of
plume as long as it is fat. Both approaches are competitive
with respect to the optimal algorithm. Immediate future work
would be to verify the performance of our algorithm to the
plume having any arbitrary shapes.
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APPENDIX

A. Proofs of Lemma 2

ALG can be upper bounded as follows:

ALG ≤ tlast +
dmax

Sr − Sp
, (14)

where tlast is the time that finishes visiting all vertices in the
tree and dmax

Sr−Sp
is the time that traverses the longest length of

the backbone when robot and plume moves away from each
other. By substituting Equation (1) into the above equation,
we have:

≤ 2L+ (blogRc − 1)dmax

(Sr − Sp)(1 + blogRc)
+

dmax

Sr − Sp
. (15)

Using Lemma 1, it becomes:

=
2(C − 1 + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

. (16)

Removing a negative term completes the proof as:

≤ 2(C + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

. (17)

B. Proof of Corollaries

The upper bound for MRSP can simply be obtained by
plugging Sp = 0 into Equation (2) of Lemma 2.

The upper bound for SRTP can be derived from the upper
bound of MRSP by having R = 0. However, we can even
tighten the bound by using the following observation: if the
robot and the plume move toward each other in one direction,
they must move away from each other in order to return to
the starting location, and vice versa. Therefore, ALG can be
upper bounded as:

ALG ≤ C − 1

Sr + Sp
+

C − 1

Sr − Sp
. (18)

Taking out negative terms from the above equation be-
comes:

≤ 2SrC

(Sr + Sp)(Sr − Sp)
, (19)

which is a tighter bound than 2C
Sr−Sp

. Note that the difference
between these bounds is Sr

Sr+Sp
that satisfies 1

2 <
Sr

Sr+Sp
≤ 1

because Sr > Sp.



The upper bound for SRSP can be derived by plugging
either R = 1 and Sp = 0 into the upper bound for MRSP or
Sp = 0 into the upper bound for SRTP.

C. Proof of Lemma 3

We claim the following inequalities.

OPTR ≤ OPT1, (20)

This can be obtained from the fact that the more number of
robots are deployed, the shorter time will be taken to explore
the entire tree.

Consider a tree consisting of R branches. Then, we claim
the following inequality:

OPT1 ≤ ROPTR, (21)

Since OPTR is the time for a robot to explore the longest
branch in the tree, ROPTR must be no less than OPT1.

Combining these inequalities and Equation (3), we prove
Lemma 3.


