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Resilient Active Target Tracking
with Multiple Robots

Lifeng Zhou,1 Vasileios Tzoumas,2 George J. Pappas,3 Pratap Tokekar1

Abstract—The problem of target tracking with multiple robots
consists of actively planning the motion of the robots to track
the targets. A major challenge for practical deployments is to
make the robots resilient to failures. In particular, robots may
be attacked in adversarial scenarios, or their sensors may fail or
get occluded. In this paper, we introduce planning algorithms for
multi-target tracking that are resilient to such failures. In general,
resilient target tracking is computationally hard. Contrary to
the case where there are no failures, no scalable approximation
algorithms are known for resilient target tracking when the
targets are indistinguishable, or unknown in number, or with
unknown motion model. In this paper we provide the first such
algorithm, that also has the following properties: First, it achieves
maximal resiliency, since the algorithm is valid for any number of
failures. Second, it is scalable, as our algorithm terminates with
the same running time as state-of-the-art algorithms for (non-
resilient) target tracking. Third, it provides provable approxima-
tion bounds on the tracking performance, since our algorithm
guarantees a solution that is guaranteed to be close to the optimal.
We quantify our algorithm’s approximation performance using
a novel notion of curvature for monotone set functions subject
to matroid constraints. Finally, we demonstrate the efficacy of
our algorithm through MATLAB and Gazebo simulations, and a
sensitivity analysis; we focus on scenarios that involve a known
number of distinguishable targets.

Index Terms—Multi-Robot Systems; Planning, Scheduling and
Coordination; Robust/Adaptive Control of Robotic Systems.

I. INTRODUCTION

TASKS such as surveillance, exploration, and security
often require the capability to detect, localize, and track

targets within a prescribed area. For example, consider the
tasks:
• (Surveillance) Detect and localize invasive fish in an

ecosystem; [1]
• (Area monitoring) Detect and localize trapped people in

a burning building; [2]
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Fig. 1. Aerial robots mounted with down-facing cameras to track multiple
targets —depicted as dots— on the ground. The targets may be mobile;
distinguishable or indistinguishable; known or unknown in number; or even
with only partially known motion model. If a robot is under attack, its camera
will be blocked.

• (Patrolling) Detect and localize adversarial agents that
move in an urban environment. [3]

These tasks can greatly benefit by the use of robots that
act as mobile sensors. Indeed, advancements in robotic mo-
bility, sensing, and communication envision the deployment
of collaborative robots to support target tracking [4]. The
problem of planning the (joint) motion of robots for target
tracking is known as multi-robot active target tracking in the
literature [5]. This is a challenging problem due to the fact
that the targets may be mobile and whose motion model may
only be partially known. The targets may even be moving
adversarially. There may be a large number of targets (more
than the number of robots), even unknown in number, and may
be indistinguishable from each other. Nevertheless, a number
of algorithms have been designed that ensure near-optimal
tracking for all of the aforementioned scenarios [5]–[12].

In this paper, we focus on scenarios where the robots
operate in failure-prone or adversarial environments. In such
environments, the robots may be subject to attacks leading
to robotic failures [13], or the robots’ fields-of-view may
become obstructed due to environmental hazards [14], or their
sensors may fail completely [15] (see also Fig. 1). In particular,
we consider failures and attacks that render robots unable to
detect targets. Our goal is to provide planning and coordination
algorithms that are resilient to such failures.

In this paper, we introduce a problem of resilient target
tracking that guards against worst-case failures even when the
targets are indistinguishable, unknown in number, or even with
unknown motion model By worst-case failures, we refer to
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scenarios where at most α robots may fail, where α is known.
Resilient target tracking is a computationally challenging
problem since it needs to account for all possible failures, a
problem of combinatorial complexity; and even in the presence
of no failures, the problem is NP-hard [11]. This computational
challenge motivates the main goal in this paper: to provide
a scalable and provably close-to-optimal approximation algo-
rithm. To this end, we capitalize on recent algorithmic results
on resilient optimization subject to matroids [16], and present
an approximation algorithm for resilient target tracking.

The algorithm runs in 2 steps: first, it approximates the
worst-case subset of robots that could fail, and chooses
their trajectories; and second, assuming that the approximated
worst-case robots will actually fail, it jointly plans greedily
the trajectories for the rest of the robots.

Contributions. In this paper, we make the contributions:
• (Problem) We formalize the problem of resilient active

target tracking against worst-case failures even in the
presence of targets that are (possibly) indistinguishable,
unknown in number, or even of partially unknown motion
model. This is the first work to formalize this problem.

• (Solution) We develop the first algorithm for the problem,
and prove it has the following properties:
– maximal resiliency: the algorithm is valid for any

number of robot and/or sensor failures;
– minimal running time: the algorithm terminates with

the same running time as state-of-the-art algorithms
for non-resilient target tracking;

– provable approximation performance: the algorithm
ensures a close-to-optimal solution for any target track-
ing objective function that is monotone and submodular
(submodularity is a diminishing returns property [17]).
Examples of such functions are the expected number
of detected targets at a prescribed time and the mutual
information between the predicted targets’ location and
the robots’ sensor measurements [12].

• (Empirical Evaluation) We demonstrate with MATLAB
and Gazebo simulations both the necessity for resilient
target tracking against robot failures, and the efficacy
and robustness of our approach. To this end, we focus
on scenarios that involve distinguishable targets (known
in number), and also conduct sensitivity analysis against
non-worst-case attacks (random and greedy attacks).

Overall, in this paper we go beyond non-resilient target
tracking [5]–[12] by proposing resilient target tracking; and
beyond resilient tracking with distinguishable and known
targets [18] by proposing resilient tracking with targets that
are (possibly) indistinguishable, and/or unknown.

Organization of rest of the paper. Section II formulates re-
silient target tracking (Problem 1). Section III presents the first
scalable algorithm for Problem 1. Section IV presents the main
result in this paper: the scalability and performance guarantees
of the proposed algorithm. Section V presents MATLAB and
Gazebo simulations. Section VI concludes the paper.

Notation. Calligraphic fonts denote sets (e.g., A). Given a
set A, then 2A denotes the power set of A; |A| denotes A’s

cardinality; given another set B, the set A\B denotes the set of
elements in A that are not in B. Given a set V , a set function
f : 2V 7→ R, and an element x ∈ V , f(x) is a shorthand that
denotes f({x}).

II. PROBLEM FORMULATION

We formalize the problem of resilient multi-target tracking.
In particular, the problem consists of planning the motion
of the robots to optimally track targets despite robotic/sensor
failures. The optimality of tracking is captured by an objective
function such as the expected number of detected targets or
the reduction in the uncertainty of the targets’ positions.

A. Framework

Attacks: We assume that the maximum number of
robotic/sensor failures are known, and denote it by α.1 At any
time at most α robots/sensor may fail. In addition, without loss
of generality, the set of robots that fail may vary over time. A
robot that fails at time t may be active at another time t′.

The rest of our problem formulation, e.g., assumptions about
the targets, robots, and the objective function, follows the
standard in the target tracking literature; see [12] and the
references therein. Specifically:

Targets: Targets exists in an area of interest (environ-
ment). The targets can be ground or aerial vehicles, and can
be mobile or immobile. They can be distinguishable [11] or
indistinguishable [12]. Their number can be known [11] or
unknown [12], fixed [11] or time-varying [12]. The target
motion model can be known (e.g., a single integrator with
known maximal speed [19]) or partially known; in the latter
case, data-driven learning techniques may be employed [12].

Robots/sensors: We consider a team of mobile robots,
and denote it by R. The team is tasked to track targets
in an area of interest. The robots can be ground or aerial
vehicles (e.g., quad-rotors). We assume that the robots can
communicate with each other at all times.

The robots carry onboard sensors (e.g., cameras or lidars),
which enable the team’s tracking capability. In particular, each
robot r ∈ R, at every time t, receives measurements from
targets detected in the field-of-view of its sensors. Additional
measurements may be obtained from off-board sensors in the
environment. Given the measurements and a target model, each
robot employs a detector and trajectory estimator. If the targets
are distinguishable and their number is known, a Kalman or
particle filter can be employed [20], whereas, if the targets
are indistinguishable and their number is unknown, a Random
Finite Sets (RFS) filter can be employed [12]. In both cases,
the robots have only an estimate of the targets’ true positions.
The estimate is represented by a set of possible target locations
in the environment. Given a target model, the robots propagate
this set to obtain a predicted target position, by employing one
of the above techniques.

The robots can also move in the environment, and detect
multiple targets per motion step (Fig. 2). The robot trajectory
generation framework is as follows: We assume that the robots

1Henceforth, we refer to robotic and sensor failures interchangeably.
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Fig. 2. Available robotic trajectories (denoted by τ ji for robot ri) and their
coverage region (denoted by C(τ ji ) for robot ri that chooses trajectory τ ji ,
and depicted as shaded regions).

have perfect localization (e.g., using GPS).2 Time is divided
into rounds of finite duration denoted by T (without loss of
generality, we assume it fixed). At the beginning of each round,
each robot generates a set of candidate trajectories, one of
which will be followed in the current round. The trajectories
can be generated by employing, for example, motion-space
discretization [12] or spatial-sampling methods [21]. We de-
note the set of valid trajectories, for a round that starts at a
time t, and for a robot r ∈ R, by Tr,t. We denote by TR,t,
the set of all robots’ valid trajectories, i.e., TR,t , ∪r∈RTr,t.
Each trajectory in TR,t is interpolated to yield a sequence of
robot poses where the robot will take a measurement. That
is, each trajectory corresponds to a sequence of robot poses.
Without loss of generality, we assume the number of poses to
be fixed across rounds, robots, and trajectories.

Target tracking objective function: Given a round that
starts at a time t, the utility of each trajectory in TR,t is
captured by an objective function f. Two examples of f are the
following [12]: the expected number of detected targets in the
current round (time interval from t to t+ T ); and the mutual
information between the predicted location of the targets at
time t+T and the collected measurements in the current round.
Notably, both functions are monotone and submodular in the
choice of the robots’ trajectories [12, Lemma 1 and Lemma 2].
Submodularity is a diminishing returns property [17]; we
provide its definition in Appendix A of the full version of this
paper, which is found at the authors’ websites. We henceforth
focus on functions that satisfy these two properties.

B. Problem definition

Problem 1 (Resilient Multi-Target Tracking with Multiple
Robots). In reference to Section II-A’s framework, consider:
a set of targets; a set R of mobile robots/sensors; a division
of time into rounds of finite duration. Moreover, consider the
beginning of a round, and the corresponding set of valid
robot trajectories TR , ∪r∈RTr, where Tr is the set of valid
trajectories for the robot r. Finally, consider a target tracking
objective function f that is monotone and submodular (e.g.,
the expected number of detected targets in the current round).

2The uncertainty in the robot’s position can be incorporated in the uncer-
tainty in the targets’ estimates [11].

The problem of resilient multi-target tracking with mobile
robots is to achieve a maximal value for f, by selecting the
robot trajectories throughout the round, despite a worst-case
failure of at most α robots/sensors. Formally:

max
S⊆TR

min
A⊆S

f(S \ A) :

|S ∩ Tr|= 1, r ∈ R;
|A|≤ α,

(1)

where: S is the set of selected trajectories for all robots; the
constraint |S ∩ Tr|≤ 1 for each robot r ∈ R represents the
natural constraint that each robot r can follow one trajectory;3

and the constraint |A|≤ α captures the problem assumption
that at most α robots/sensors can fail.

Problem 1 may be interpreted as a 2-stage perfect infor-
mation sequential game between two players [22, Chapter 4],
namely, a “maximization” player (who aims for optimal target
tracking performance), and a “minimization” player (who aims
to compromise the target tracking performance). In particular,
the “maximization” player plays first by selecting the set S ,
and, then, the “minimization” player observes S, and plays
second by selecting a worst-case attack/removal A from S .
Evidently, this is a stricter (worse) version of the problem
where the “minimization” player cannot observe S.

Problem 1 goes beyond the traditional objective of target
tracking with mobile robots, by protecting (in a receding
horizon fashion) the robots’ motion plan against failures.

III. ALGORITHM FOR PROBLEM 1
We present the first scalable algorithm for Problem 1, by

capitalizing on the algorithmic results in [16]. The pseudo-
code of the algorithm is described in Algorithm 1.

A. Intuition behind Algorithm 1

Problem 1 selects trajectories for all robots, denoted by the
set S in eq. (1), so to maximize the value of the objective
function f despite that S can incur a removal A of α elements
due to robotic failures. In this context, Algorithm 1 aims to
maximize f by constructing S as the union of two sets, the
S1 and S2 (line 16), whose role we describe below.

Set S1 approximates a worst-case set removal from S:
Algorithm 1 aims with the trajectory set S1 to capture a
worst-case removal of α trajectories among the trajectories
Algorithm 1 will select in S. Equivalently, S1 is aimed to
act as a “bait” to an attacker that selects to remove the
best α trajectories from S (best with respect to the trajectories’
contribution towards maximizing the function f ). However, the
problem of selecting the best trajectories in TR per Problem 1
is combinatorial and, in general, intractable [23]. For this
reason, Algorithm 1 aims to approximate the best set of α
trajectories, by letting S1 be the trajectories with the largest
contributions to the value of f (lines 3). In addition, since S
needs to satisfy the constraint that each robot r ∈ R can be
assigned one trajectory, Algorithm 1 constructs S1 so that not
only |S1|≤ α but also |S1 ∩ Tr|≤ 1 for all r ∈ R (lines 4-6).

3This type of constraint is called a partition matroid in the literature of
combinatorial optimization [17].
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Algorithm 1 Scalable algorithm for Problem 1.
Input: Per Problem 1, Algorithm 1 receives the inputs:

• set of robots R;
• robot trajectories Tr, for all robot r ∈ R;
• target tracking objective function f ;
• maximum number of failures α.

Output: Robots’ trajectories S.

1: S1 ← ∅; M1 ← ∅; S2 ← ∅; M2 ← ∅;
2: while M1 6= TR do
3: s ∈ argmaxy∈TR\M1

f(y);
4: if for all r ∈ R it is |(S1∪{s})∩Tr|≤ 1, and |S1∪{s}|≤
α then

5: S1 ← S1 ∪ {s};
6: end if
7: M1 ←M1 ∪ {s};
8: end while
9: while M2 6= TR \ S1 do

10: s ∈ argmaxy∈TR\(S1∪M2) f(S2 ∪ {y})− f(S2);
11: if for all r ∈ R it is |(S1 ∪ S2 ∪ {s}) ∩ Tr|≤ 1 then
12: S2 ← S2 ∪ {s};
13: end if
14: M2 ←M2 ∪ {s};
15: end while
16: S ← S1 ∪ S2;

Set S2 is such that the set S1 ∪S2 approximates solution
to Problem 1: Assuming S1 is the set to be removed from
Algorithm 1’s selection S, Algorithm 1 needs to select a
trajectory set S2 to complete the construction of S. In par-
ticular, for S = S1 ∪ S2 to be a solution to Problem 1,
Algorithm 1 needs to select S2 as a best set of trajectories from
TR \ S1 subject to the natural constraint that one trajectory
is assigned to each robot (lines 11-13). Nevertheless, the
problem of selecting a best set of elements subject to such
a constraint is combinatorial and, in general, intractable [23].
Hence, Algorithm 1 aims to approximate such a best set, using
the greedy procedure in lines 9-15.

Overall, Algorithm 1 constructs the sets S1 and S2 to ap-
proximate with their union S an optimal solution to Problem 1.

We next describe the steps in Algorithm 1 in more detail.

B. Description of steps in Algorithm 1

Algorithm 1 executes four steps:
a) Initialization (line 1): Algorithm 1 defines 4 sets, the

S1, M1, S2, and M2, and initializes each of them with the
empty set (line 1). The purpose of S1 and S2 is to construct
the set S. Specifically, the union of S1 and S2 constructs S
by the end of Algorithm 1 (line 16). The purpose of M1 and
ofM2 is to support the construction of S1 and S2. During the
construction of S1, Algorithm 1 stores in M1 the trajectories
in TR that have either been included already or cannot be
included in S1 (line 7); that way, Algorithm 1 keeps track of
which trajectories remain to be checked if they could be added
in S1 (line 5). During the construction of S2, Algorithm 1
stores in M2 the trajectories of TR \ S1 that have either been
included already or cannot be included in S2 (line 14); that

way, Algorithm 1 keeps track of which trajectories remain to
be checked if they could be added in S2 (line 12).

b) Construction of set S1 (lines 2-8): Algorithm 1 con-
structs S1 sequentially by adding one trajectory at a time from
TR to S1. Specifically, S1, being the “bait” set, is constructed
such that it satisfies both the trajectory assignment constraint
(one trajectory per robot) and the failures cardinality constraint
(line 4). Also, S1 is constructed such that each trajectory
s ∈ TR added in S1 achieves the highest value of f(s) among
all the trajectories in TR that have not been yet added in S1
and can be added in S1 (line 5).

c) Construction of set S2 (lines 9-15): Algorithm 1 con-
structs the set S2 sequentially, by picking greedily trajectories
from the set TR \ S1 such that S1 ∪ S2 satisfies the trajectory
assignment constraint in Problem 1 (one trajectory per robot).
Specifically, the greedy procedure in Algorithm 1’s “while
loop” (lines 9-15) selects a trajectory y ∈ TR \ (S1 ∪M2) to
add in S2 only if y maximizes the value of f(S2∪{y})−f(S2),
where the set M2 stores the trajectories that either have
already been added to S2 or have been considered to be added
to S2 but they were not since the resultant set S1 ∪ S2 would
not satisfy the trajectory assignment constraint.

d) Construction of set S (line 16): Algorithm 1 con-
structs the set S as the union of the previously constructed
sets S1 and S2 (lines 16).

In summary, Algorithm 1 proposes a trajectory assign-
ment S as solution to Problem 1. In particular, Algorithm 1
constructs S to withstand any compromising robotic/sensor
failure.

IV. PERFORMANCE ANALYSIS OF ALGORITHM 1

We quantify the performance of Algorithm 1, by bounding
its running time, and its approximation performance. To this
end, we use the following notion of curvature for set functions.

A. Constrained curvature of monotone submodular functions

Definition 1 (Constrained curvature). Consider a set T , and
a non-decreasing submodular set function f : 2T 7→ R such
that (without loss of generality) for any element s ∈ T , it is
f(s) 6= 0. Moreover, consider a collection of subsets of T ,
denoted by I; e.g., I represents admissible sets where f can
be evaluated at. Then, the constrained curvature of f over I is:

νf (I) , 1−min
S∈I

min
s∈S

f(S)− f(S \ {s})
f(s)

. (2)

The curvature νf measures how far f is from being additive.
In particular, Definition 1 implies 0 ≤ νf ≤ 1: If νf = 0, then
for all sets S ∈ I it holds f(S) =

∑
s∈S f(s). In contrast, if

νf = 1, then there exist a set S ∈ I and an element s ∈ T
such that f(S) = f(S\{s}); that is, in the presence of S\{s},
the element s loses all its contribution to the value of f(S).
Notably, Definition 1 adapts the notion of curvature discussed
in [24] to the case where the set S is constrained in an I,
instead of S being able to be any subset of T .

For example, in reference to the target tracking framework
of Section II, consider the expected number of detected targets
as a function of the robot trajectories. Then, this function has
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Fig. 3. Given a natural number n, plot of h(n, α) versus α. Given a
finite n, then h(n, α) is always non-zero, with minimum value 2/(n + 2),
and maximum value 1.

curvature zero if each robot detects different targets from the
rest of the robots. In contrast, it has curvature one if, for
example, at least two robots by following their trajectories
receive the exact same measurements.

B. Performance Analysis for Algorithm 1
Theorem 1 (Performance of Algorithm 1). Consider an
instance of Problem 1, the notation therein, the notation in
Algorithm 1, and the definitions:
• let the number f? be the (optimal) value to Problem 1;
• given a set S as solution to Problem 1, let A?(S) be a

worst-case set removal from S, per Problem 1, that is:
A?(S) ∈ arg min

A⊆S,|A|≤α
f(S \A). Evidently, a removal

from S corresponds to a set of robot/sensor failures;
• define h(|R|, α) , max[1/(1 + α), 1/(|R|−α)].4

Finally, without loss of generality, consider that f(∅) = 0.
The performance of Algorithm 1 is bounded as follows:

1) (Approximation performance) Algorithm 1 returns a tra-
jectory set S such that each robot is assigned a single
trajectory, and:

f(S \ A?(S))
f?

≥ max [1− νf (I), h(|R|, α)]
2

, (3)

where I is the collection of valid trajectory assignments
to robots per Problem 1 (one trajectory per robot), that is:
I , {S : S ⊆ TR, |S ∩ Tr|= 1 for all r ∈ R}.

2) (Running time) Algorithm 1 constructs the trajectory set S
as a solution to Problem 1 with O(|TR|2) evaluations of f.

The proof of Theorem 1 is the same as the proof of [16,
eq. (7) in Theorem 1].

Provable approximation performance. Theorem 1 implies
on the approximation performance of Algorithm 1:

Near-optimality: Algorithm 1 guarantees a value finitely
close to the optimal, for any monotone submodular objective
function f : per ineq. (3), Algorithm 1’s approximation factor
is bounded by h(|R|, α)/2, which is non-zero for any finite
number of robots |R| (see also Fig. 3). Similarly, the approx-
imation factor is also bounded by (1 − νf )/2, which is also
non-zero for any monotone submodular f with νf < 1.

4A plot of h(|R|, α) is found in Fig. 3.

Fig. 4. MATLAB simulation setup: Each robot ri has 4 possible trajectories
(forward, backward, left, and right, denoted by τ ji for j = 1, 2, 3, 4,
respectively). The tracking region of each trajectory is rectangular, is denoted
by C(τ ji ) for the trajectory τ ji , and has the same dimensions across all 4
trajectories; in particular, the lengths lt and lo define the dimension of each
rectangular region for each trajectory; and lf defines the fly length for the
robot. We set lt = lf + lo.

Approximation performance for no failures: When the
number of failures is zero (α = 0), Algorithm 1’s approxima-
tion performance is the same as that of the state-of-the-art al-
gorithms for (non-resilient) target tracking. In particular, these
algorithms have approximation performance at least 1/2 [11],
[12]; at the same time, Algorithm 1 also has performance at
least 1/2 for α = 0, since h(|R|, 0) = 1 per ineq. (3).

Minimal running time. Theorem 1 implies that Algo-
rithm 1, even though it goes beyond the objective of (non-
resilient) target tracking, has the same order of running time
as state-of-the-art algorithms for (non-resilient) target track-
ing. In particular, these algorithms terminate with O(|TR|2)
evaluations of the function f [11], [12], and Algorithm 1 also
terminates with the same time.

V. NUMERICAL EVALUATION

We present MATLAB and Gazebo evaluations of our al-
gorithm (Algorithm 1) that demonstrate both the necessity
for resilient target tracking and the benefits of our approach.
In particular, both evaluations demonstrate: (i) the near-optimal
performance of Algorithm 1, since it performs close to the
brute-force algorithm (which is viable only in small-scale
scenarios); also, it is superior to the greedy and random
heuristics; and (ii) the superior robustness of Algorithm 1 to
scenarios where non-worst-case or even no attacks occur. Our
MATLAB and Gazebo implementations are available online.5

Compared algorithms. We compare Algorithm 1 with
three other algorithms. The algorithms differ in how they
select the robot trajectories. The first algorithm is an optimal,
brute-force algorithm, and it attains the optimal value for
Problem 1. Evidently, the brute-force approach is viable only
when the number of available robots is small. We refer to this
algorithm by “brute-force.” The second algorithm is a greedy
algorithm that ignores the possibility of robotic/sensor attacks,
and picks greedily the robot trajectories per the algorithm

5https://github.com/raaslab/resilient_target_tracking.git

https://github.com/raaslab/resilient_target_tracking.git
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(a) Optimal attack of α = 3 robots (b) Optimal attack of α = 4 robots (c) Greedy attack of α = 3 robots (d) Random attack of α = 3 robots

Fig. 5. MATLAB evaluation results: Performance comparison (average and standard deviation over 30 trials) of Algorithm 1 (called “resilient” in this figure)
with the “brute-force” algorithm; the “greedy” algorithm; and the “random” algorithm. Performance is measured as the number of tracked targets, and is
compared across 3 settings that differ on how an attacker would select to attack α robots so to minimize the number of tracked targets given the selected
robot trajectories: in Fig. 5(a) and Fig. 5(b), the attacker uses a brute-force algorithm to find an optimal robot attack; in Fig. 5(c), the attacker uses the greedy
algorithm in [17]; and in Fig. 5(d), the attacker chooses randomly (uniformly across all robots).

proposed in [17]; we refer to this algorithm by “greedy.” The
third algorithm is a random algorithm that picks randomly
(uniformly) the robot trajectories; we refer to this algorithm
by “random.” Finally, we refer to Algorithm 1 by “resilient.”

Scalability of our algorithm. Since we compare our
algorithm with the optimal brute-force algorithm (which is
viable for only small-scale instances of Problem 1), in the
following numerical evaluations we focus on small-scale prob-
lem instances of up to 6 robots and 60 targets. However,
the MATLAB implementation of our algorithm runs within
1 second even for up to 100 robots with 10 failures. Our code
is available online (see Footnote 5).

A. MATLAB evaluation over one step with static targets

We study the effect of the number of targets and of the attack
strategy by running the algorithms over random instances of
Problem 1 for a single round (one-step time horizon).

Simulation setup. We consider 6 robots and a number of
targets m that varies from 30 to 60. We set the number of
attacks α equal to 3 and 4. A top view of the robots and
targets is shown in Fig. 4. We assume that each robot ri ∈ R
flies on a fixed plane and has 4 trajectories: forward, backward,
left, and right, denoted by τ ji for j = 1, 2, 3, 4, respectively.
Each robot ri has a square field-of-view, centered at the planar
position of robot ri, and is illustrated in Fig. 4 by the darker
blue square of dimension lo × lo. Once each robot selects a
trajectory, it flies a distance lf along that trajectory. Thus, each
trajectory τ ji has a rectangular tracking region with length lt ,
lf + lo and width lo; we set lt = 10 and lo = 3 for all robots.
For each number of targets m = 30, 31, . . . , 60, the planar
positions of the robots and targets are randomly generated
in the 2D space [0, 10] × [0, 10] ∈ R2, across 30 trials. We
consider that the robots have already available an estimate of
the targets position. For each trial, all algorithms are executed
with the same initialization, i.e., the same positions of targets
and robots. All algorithms are executed for one round.

The algorithms’ performance is captured as the number
of tracked targets given the selected robot trajectories. We
examine the performance across 3 settings that differ on how
an attacker would select to attack α robots so to minimize

the performance of the remaining robots: we first consider an
attacker that uses a brute-force algorithm to find an optimal
robot attack; this scenario is in agreement with the definition
of Problem 1, where the attacks are indeed worst-case attacks.
Then, we consider an attacker that uses the greedy algorithm
in [17] to approximate an optimal robot attack; and finally,
we consider an attacker that chooses randomly a robot attack
(uniformly across all robots). We examine the last two cases
(Fig. 5(c) and Fig. 5(d)) as part of a sensitivity analysis of
Algorithm 1’s performance against non-worst-case attacks.

Results. The comparison results are reported in Fig. 5. The
following observations from Fig. 5 are due:

a) Close-to-optimality of Algorithm 1: Algorithm 1 is
designed to guarantee superior performance in the presence of
worst-case attacks; indeed, per Fig. 5(a) (and per Fig. 5(b)),
Algorithm 1 —colored blue in Fig. 5— has on average
superior performance to the greedy and random heuristics. In
particular, Algorithm 1’s performance is close to the optimal
achieved by the brute force algorithm (red in Fig. 5).

b) Robustness of Algorithm 1’s performance to non-worst-
case attacks: Although Algorithm 1 is designed to guarantee
superior performance for worst-case attacks, in practice, the
attack of robots may not necessarily be the worst-case one.
For example, from the perspective of an attacker, finding the
optimal robot attack is also an NP-hard problem, since it
constitutes a cardinality constrained submodular minimization
problem [25]. It is therefore relevant to ask whether Algo-
rithm 1, being an approximation algorithm, will indeed have
a better target tracking performance when the attacks are non-
worst-case. By comparing Fig. 5(a) with both Fig. 5(c) and
Fig. 5(d), we observe that for each given number of targets
(horizontal axes in each plot in Fig. 5) the performance of
Algorithm 1 increases for non-worst-case attacks. For exam-
ple, for 30 targets, when the attack is worst-case (Fig. 5(a))
Algorithm 1 achieves 14 tracked targets, whereas: when the
attack is greedy the performance increases to 17 (Fig. 5(c)).
When the attacks are random, the performance increases to 18
(Fig. 5(d)). Overall, since Algorithm 1 is designed to protect
against worst-case attacks, it also protects at least equally
well against non-worst-case attacks (as it would be expected).
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(a) Gazebo environment (b) Rviz environment

Fig. 6. Gazebo simulation setup: 4 aerial robots and 30 ground mobile targets:
(a) setup in Gazebo environment; and (b) setup in Rviz environment, where:
each aerial robot is color-coded, and its coverage region is depicted with the
same color. The targets are depicted as white cylindrical markers.

Importantly, that way an attacker is forced by Algorithm 1
to deploy a worst-case attack, which is exactly the scenario
that Algorithm 1 guarantees protection from. That conclusion
makes also irrelevant the observation that, for example, in
the case of random attacks (Fig. 5(d)) both Algorithm 1 and
the greedy heuristic perform similarly. Notably, in the case
of greedy attacks (Fig. 5(c)), Algorithm 1 is again superior
to both the greedy and the random heuristics. In general, in
the above simulation setup, Algorithm 1 achieves a superior
and close-to-optimal performance, and remains superior even
against non-worst-case attacks.

B. Gazebo evaluation over multiple steps with mobile targets

We study the effect of the number of targets and of the attack
strategy by running the algorithms across multiple rounds
(multi-step time horizon). That way, we take into account
the kinematics and dynamics of the robots, as well as the
fact that the kinematics and dynamics of the robot, the actual
trajectories of the targets, and the sensing noise may force the
robots to track fewer targets than expected.

Simulation setup. We consider a scenario of 4 aerial robots
tasked to track 30 ground mobile targets (Fig. 6(a)). We set the
number of attacks α equal to 2. We also visualize the robots,
their field-of-view, and the targets using the Rviz environment
(Fig. 6(b)): in particular, we visualize the robots as spherical
markers, their field-of-views as colored areas with the same
color as their corresponding robot, and the targets as white
cylindrical markers. Similarly to the MATLAB simulation
setup above, each robot has 4 trajectories (forward, backward,
left, and right), and flies on a different fixed plane (to avoid
collision with other robots). Moreover, we set the tracking
length lt = 6 and width lo = 3 for all robots. We assume each
target has the single integrator motion model

pjt (k + 1) = pjt (k) + vjt (k),

where pjt and vjt denote the position and the velocity of target
j = 1, . . . , 30, respectively. The robots obtain noisy position
measurements of all targets. They use a Kalman filter for
updating the estimated position of the target at the next round.
The targets’ velocity is initialized to zero and is updated by
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(a) Performance comparison against worst-case attacks
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(b) Attack rate comparison

Fig. 7. Gazebo evaluation results: Comparison (average and standard devi-
ation across the 50 rounds) of Algorithm 1 (called “resilient” in this figure)
with the “brute-force” algorithm; the “greedy” algorithm; and the “random”
algorithm. Performance is measured as the expected number of tracked targets.
Fig. 7(b) compares the sensitivity of the algorithms’ performance against the
case where no attacks are present per the definition of the attack rate in eq. (4)
—that is, the smaller the attack rate, the better.

using two consecutive measurements and the time interval of
these two measurements, as follows:

vjt (k
′) = (p̃jt (k

′)− p̃jt (k))/(k′ − k).

where p̃jt (k
′) and p̃jt (k) are two consecutive position measure-

ments of target j at round k′ and round k with k′ > k.
For each algorithm (see “Compared algorithms” at the

beginning of the section), at each round each robot selects one
of its 4 trajectories. Then, the robots fly a lf = 3 distance along
their selected trajectory. When an attack happens, we assume
that the attacked robot’s camera is turned-off; nevertheless, we
assume that it can be active again at the next round, so that at
each round the worst-case set of α robots is considered failed.
We repeat this process for 50 rounds.

At each round, we capture the performance of each al-
gorithm with the expected number of targets tracked. We
first compare the algorithms with respect to the average and
the standard deviation of the expected number of targets
tracked. Moreover, we compare the sensitivity of the algo-
rithms’ performance against the case where no attacks are
present: specifically, we compare the average and the standard
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deviation of their attack rate per round, which is defined —for
an algorithm that selects a set of trajectories S— by

f(S)− f(S \ A?(S))
f(S)

, (4)

where f(S) is the expected number of targets tracked in the
presence of no attacks, and f(S \ A?(S)) is the expected
number of targets tracked in the presence of an optimal attack
A?(S). All in all, the above definition of attack rate captures
how much worse is the performance of an algorithm in the
presence of attacks than in the absence of attacks. A video for
this implementation is available online.6

Results. The comparison results are reported Fig. 7. The
following observations from Fig. 7 are due:

a) Close-to-optimality of Algorithm 1: Fig. 7(a) suggests
that Algorithm 1 has on average superior performance than the
current heuristics (the greedy and the random). In particular,
Algorithm 1’s performance is close to the optimal, as it is
achieved by a brute force algorithm.

b) Robustness of Algorithm 1’s performance to no-attacks:
Per Fig. 7(b), Algorithm 1 exhibits superior attack rate than
the greedy and random heuristics, and as a result, when for
example the scenario “at most α attacks per round” and the
scenario “no attacks per round” happen with equal probability,
Algorithm 1 still guarantees superior average performance.

All in all, in the above simulation setup, Algorithm 1
achieves a superior and close-to-optimal performance, and
remains superior even when no-attacks happen.

VI. CONCLUDING REMARKS & FUTURE WORK

We take the first steps to protect critical target tracking tasks
from robot failures (Problem 1). In particular, we provide the
first algorithm for Problem 1, and proved its guaranteed per-
formance against any number of failures, and even for targets
that are indistinguishable and/or unknown. We demonstrate
the need for resilient target tracking and the robustness of our
algorithm with MATLAB and Gazebo evaluations. Notably,
the results of this paper extend to any active information
gathering problem where the goal is to choose from a set of
admissible trajectories for each robot (at each motion step),
similar to [12], [21].

This work opens a number of avenues for future research,
both theoretical and experimental. Future theoretical work
in theory includes the decentralized design of the robots’
motion plan. Moreover, online extensions of Algorithm 1,
that guarantee near-optimality across multiple rounds, are
natural next steps. Future experimental work includes real-
world testing of our resilient target tracking framework in the
context of practical applications of surveillance and patrolling.
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