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ABSTRACT
Vehicle flow estimation has many potential smart cities and
transportation applications. Many cities have existing cam-
era networks which broadcast image feeds; however, the res-
olution and frame-rate are too low for existing computer vi-
sion algorithms to accurately estimate flow. In this work, we
present a computer vision and deep learning framework for
vehicle tracking. We demonstrate a novel tracking pipeline
which enables accurate flow estimates in a range of envi-
ronments under low resolution and frame-rate constraints.
We demonstrate that our system is able to track vehicles in
New York City’s traffic camera video feeds at 1 Hz or lower
frame-rate, and produces higher traffic flow accuracy than
popular open source tracking frameworks.

CCS CONCEPTS
• Computing methodologies → Tracking; • Software
and its engineering→ Real-time systems software.
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1 INTRODUCTION
Vehicle tracking and traffic flow estimation are important
problems which have many applications in smart transporta-
tion and smart cities. Most notably, vehicle flow plays key
roles in intelligent transportation systems (ITS), including
providing real-time traffic information for analysis and/or
intervention, congestion avoidance, route planning, and long-
term historical information for urban planning. Additionally,
vehicle tracking can be used for novel real-time city-wide
applications such as pedestrian [5, 24] and vehicular safety.
Many cities have deployed camera networks at intersec-

tions for the purpose of monitoring and analyzing traffic, and
to provide data for interested groups (such as developers).
However, due to bandwidth and storage limitations, real-
time full resolution video streams are often unavailable. For
example, New York City’s Department of Transportation has
made video feeds from all 752 traffic cameras available to the
public [19]. However, videos are transmitted at extremely
low frame-rate (e.g. 1 image per second or even longer), and
at a resolution of 352x240. Since many current methods for
tracking vehicles rely on high frame-rate and high resolution
images, these data sources lead to high error rates for current
methods, and are not usable.
We present a real-time vehicle tracking and traffic flow

system LFTSys (Low Frame-rate Tracking System) for low
frame-rate videos that utilizes existing traffic cameras and
can be readily deployed at scale to provide immediate bene-
fits for cities, pedestrians, and drivers. LFTSys is adaptable
to different environments and camera perspectives to be
flexible to different parts of the city. Finally, LFTSys can be
deployed immediately in cities with low frame-rate camera
networks such as New York City, Los Angeles, and Austin.
The contributions of this work are as follows:

(1) We present the architecture, design and implementa-
tion of a real-time video analytics pipeline for vehicle
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(a) Two consecutive frames from two low frame-rate cam-
eras, demonstrating the high displacements of vehicles.

(b) Different environments, perspectives, and lighting condi-
tions observed by the cameras.

Figure 1: Key challenges addressed by LFTSys.

tracking and estimating traffic flow in low frame-rate
cameras.

(2) We present novel algorithms that leverage physical
knowledge of the environment and are suited for real-
time computation and is robust to occlusion.

(3) We evaluate LFTSys onNewYorkCity’s publicly-available
network of low frame-rate traffic cameras, and demon-
strate the flexibility and adaptability of LFTSys to dif-
ferent environments and camera perspectives.

2 RELATEDWORKS
There are a number of possible solutions for estimating vehi-
cle flow. One type of solution is in-road sensors, or sensors
physically implanted in the road. Examples of in-road sen-
sors include inductive-loop detectors (ILD), which measures
changes in inductance when vehicles pass over the loop;
cement-based piezoelectric sensors [12]; and various mag-
netic sensors [4]. Studies have shown detection accuracy up
to 92% [10, 20] for ILDs and 99% for magnetic sensors [4];
however, the high cost of installation and maintenance [15]
makes this solution difficult to deploy at scale in dense city
streets.

There are a number of studies for estimating vehicle flow
via vehicle detection and tracking. Common methods first
subtract the background image, segment the vehicles in the
image, and use a combination of features to track the vehi-
cles [1, 7, 16, 17]. These studies have shown high accuracy
(90% to 96%) and can be implemented in real-time; however,
the tracking algorithms such as Kalman filtering or distance
of features have substantial difficulties with large object dis-
placements common in low frame-rate cameras.
Other methods utilize a detection line or region to count

entering and exiting vehicles [11, 13, 18]. Similarly, due to

high displacements in low frame-rate cameras, vehicles may
occasionally skip the detection line or region entirely, which
impacts the accuracy of these systems [22]. There are also
studies demonstrating high vehicle counting accuracy in
different environmental conditions [9, 27]. However, these
studies requires high frame-rate video, and are not imple-
mented in real-time.
Finally, there have been a few recent studies for vehicle

counting in low frame-rate cameras [23, 25, 26]. In [25, 26],
the authors focus on traffic density using fully connected
networks. These networks are trained to identify the density
of vehicles in the frame rather than individually identify
vehicles. This limits the system from estimating vehicle flow,
as vehicles cannot be tracked between consecutive frames.
In contrast, [23] estimates vehicle flow in low frame-rate
cameras, but is only tested on a single camera and is not
implemented as a real-time system.

3 SYSTEM REQUIREMENTS AND KEY IDEAS
There are two key requirements addressed in this work: real-
timeliness and accuracy under camera constraints. Firstly,
the system should meet real-time constraints, meaning the
processing runtime of a single frame should be completed
before the arrival of the next frame. Real-timeliness is de-
sirable because no additional memory is required to store
video for analysis at a later time. Furthermore, smart cities
applications can utilize real-time data to provide immediate
information to end users.

To meet real-time constraints, the algorithms used in the
computer vision pipeline should reliably complete within 1
second. A real-time system requires algorithms for both de-
tecting vehicles, as well as matching vehicles within frames.
While there are many existing options for performing these
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tasks, the runtimes of these algorithms are critically impor-
tant. The key idea is to incorporate algorithms that have low
runtimes and are computationally efficient. Algorithms used
in this work are designed with the aim of low computational
complexity (to accommodate both dense and light traffic),
and shallow neural network architectures are given higher
priority.
Secondly, the system should provide an accurate count

of passing vehicles within frame-rate and resolution limita-
tions. New York City’s traffic cameras provide feeds with
low resolution and low frame-rate, which is disadvantageous
for accuracy. The camera limitations provide two obstacles:
the low resolution decreases object detection accuracy, and
the low frame-rate disallows the usage of traditional optical
flow methods.
To address resolution and perspective, we examined sev-

eral object detection networks and concluded that many
modern networks are capable of detecting low resolution
vehicles with better than 80 − 90% accuracy. However, a sim-
ple count of the vehicles in each frame is not sufficient to
determine vehicle flow due to double counting in consecu-
tive frames. Since existing computer vision algorithms are
unable to accurately track objects in low frame-rate videos,
we utilize features extracted from the vehicle image and a
matching algorithm to avoid double counting.

4 SYSTEM DESIGN
As discussed in Section 3, LFTSys must meet specific design
requirements: (i) Real-time: computation on a single frame
must be completed before the arrival of the next frame. (ii)
Accuracy: the vehicle flow estimate should be highly accurate
despite low resolution and low frame-rate.

Figure 2: Architecture of the vehicle flow estimation system.

Architecture
The system architecture is shown in Figure 2. The architec-
ture consists of a detection pipeline and a tracking pipeline.
Initially, single frames are captured from an image stream,
which refreshes at a frequency of 0.3 to 1 Hz. The image is

fed into the detection pipeline, described in Section 4, which
produces a list of bounding boxes representing detected ve-
hicles. The list of candidate vehicles are compared with the
candidates from the previous frame(s), as in Section 4. Using
a combination of features and geometric constraints, can-
didate vehicles are matched between the two frames; any
vehicles that remain unmatched are added to the global ve-
hicle count.

Detection
Model Comparisons. To meet the real-time design require-
ments, we build on top of pre-trained neural networks that
are fast and relatively accurate. In particular, we evaluate two
different state-of-the-art networks: SSD-Mobilenet and Mask
R-CNN for accuracy and computation time. These networks
represent two state-of-the-art detection and segmentation
algorithms. In deciding which network to use, we evaluated
their runtime and accuracy performance on image stills taken
from various traffic cameras. Due to the faster runtime, we
chose SSD-Mobilenet as the basis for our detection pipeline.

Pipeline. The detection pipeline is composed of two parts:
background masking and object detection as shown in Fig-
ure 3. Initially, the background of the images of the video
stream are masked as in [26]. This ensures that low resolu-
tion patterns in the background will not be falsely detected
as vehicles.
The masked image is then fed to an object detection net-

work. To increase accuracy, we utilize training data from
two sources: the CityCam dataset [26], and a custom hand
labeled dataset comprising of two thousand images and ap-
proximately five thousand vehicles. We use transfer learning
to tune the pre-trained SSD-Mobilenet model to better recog-
nize vehicles at low resolution. Transfer learning is achieved
by freezing all layers except for the final layer, and retraining
the neural network.

Tracking
Vehicle tracking between frames is the most challenging part
of this work due to the low frame-rate. However, tracking is
necessary to avoid double counting vehicles between frames.
A block diagram of the tracking pipeline is shown in Figure 4.
We consider vehicles detected in the current frame, as well as
in a fixed number of previous frames. The detection pipeline
produces a new set of bounding boxes B for each incoming
frame, and the previous set of bounding boxes B′ is kept as
a reference for matching.

Feature Extraction Feature extraction is critical formatch-
ing vehicles between consecutive frames. Certain features
may have advantages in certain types of environments; thus,
multiple types of features are extracted from each vehicle to
maximize the probability of correct matching. We selected
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Figure 3: Computer vision pipeline for detecting vehicles. A) the background ismasked from the incoming video stream image,
and B) an object detection network extracts the candidate bounding boxes.

Figure 4: Pipeline for tracking vehicles with large displace-
ment. Features are extracted from two candidate vehicles
from consecutive frames.

two types of features which are complimentary, and are ro-
bust to high displacement in certain situations: VGG16’s
conv3_3 layer output, and color histogram. The first type of
feature is extracted from VGG16’s conv3_3 layer, as shown
in Figure 5. In [8], the authors propose that in the outputs

of VGG16’s higher layers, image content and overall spa-
tial structure are preserved, but localized features such as
color, texture and exact shape are not. After testing outputs
of different layers of VGG16, we chose to use the output
of layer conv3_3 as the prominent features in our tracking
pipeline. Figure 5 shows the original VGG16 architecture,
and the conv3_3 layer which outputs the vehicle representa-
tions. Using the output of this layer has the added benefit of
reducing the computational runtime, as inputs do not have
to pass through the entire VGG16 architecture.
The second type of feature, color histogram (CH), was

chosen to complement the VGG16 representation. This fea-
ture is extracted by computing a histogram of the number of
pixels in the vehicle image of a certain color. Since bounding
boxes may vary in size, the histogram is also normalized.
For each bounding box b ∈ B, a VGG16 representation

and color histogram are computed. The newly computed
features form a new setU . The VGG16 representations and
color histograms of the previous frame bounding boxes are
stored in V for later matching.

Figure 5: Original VGG16 architecture and an indication of
the conv3_3 layer used for producing vehicle feature repre-
sentations.
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Pairwise Scoring Between two consecutive frames, we
utilize pairwise scoring to help determine which candidate
pairs are likely to be the same vehicle. From the setsU and
V , we compute two correlation scores for each pair in the
Cartesian ProductU ×V , using both the VGG16 representa-
tions and the color histograms. The final matching score is
computed as a linear combination of the VGG16 and color
histogram scores. The α parameter allows for flexibility in
prioritizing the features that provide higher matching accu-
racy.

si j = (1 − α)VGG16i j + αCHi j

Once the final scores have been calculated for each pair of
features, a bipartite graph is constructed. The bipartite graph
consists of two sets,U andV representing the features of the
previous and current frame’s bounding boxes, respectively.
Edges between elements of the two sets represent the final
matching score.

EdgePruningTo reduce the chances ofmistakenlymatch-
ing two different vehicles, we first prune the edges of the
bipartite graph using two criteria. The first criteria is a score
threshold. Intuitively, two vehicles that are sufficiently dis-
similar should have a low score; thus, any edge in the bipar-
tite graph with a score below a certain threshold is pruned.
The setting of this threshold is discussed in Section 5.

The second criteria is a spatial constraint. In most cases, ve-
hicles must travel in the direction of traffic flow. Thus, edges
between bounding boxes which violate spatial constraints
are pruned. The spatial constraints are manually specified
for each environment, and is verified by checking the change
in the centroids of the bounding boxes. In Figure 6, the green
marked vehicle in the first frame has a high matching score
with the red and green boxes in the second frame. Due to
spatial constraints (centroid advances towards the camera),
the vehicle is matched correctly.

Figure 6: Example of a spatial constraint. The red dotted line
indicates a horizontal spatial constraint.

Matching
Once the bipartite graph has been constructed and pruned,

a matching must be found to best correlate the vehicles. In
graph theory, a matching is a set of edges in a graph without
common vertices. In this application, we seek a matching

such that each vehicle in frame X is matched with at most
one other vehicle in frame X + 1, and vice versa; further, we
aim to maximize the scores between the matched vehicles.

This problem is commonly referred to asmaximumweighted
bipartite matching, as well as the assignment problem. The
problem is formulated as follows. We have two sets of equal
size, U and V , and a weight function S : U ×V , which is the
matching score in our application. The goal is to maximize
the total weight, while ensuring that the matching forms
a bijection between U and V . This results in the following
linear program which can efficiently be solved in polynomial
time:

maximize
∑

(i, j)∈U×V

si jxi j

subject to
∑
i ∈U

xi j ≤ 1, ∀j ∈ V∑
j ∈V

xi j ≤ 1, ∀i ∈ U

0 ≤ xi j ≤ 1, ∀i, j ∈ U ,V

Where si j is the final pairwise score between vehicle rep-
resentations i ∈ U and j ∈ V , and xi j is the decision of match
(1) or no match (0). Since the setsU andV are not necessarily
the same size, extra "dummy" nodes are added to the smaller
set to make the sets equal. Further, any missing edges are
given weight 0 to ensure the bipartite graph is complete.
One of the challenges facing matching algorithms is oc-

clusion. Traffic cameras in dense inner-city environments
are especially susceptible to occlusion; due to the low angle
of many of the cameras, vehicles can often become partially
or completely occluded by larger vehicles.
In many scenarios, objects may no longer be detected

due to occlusion or due to the object leaving the frame. To
address this issue, we introducememory; any unmatched
vehicle representations remain in memory (setU ) for future
matching. Since more recent vehicle representations should
be prioritized in matching over representations further in
the past, we apply a discount γ to the pairwise scores for
every frame that has passed. When the discount causes the
maximum score to fall below the score threshold in edge
pruning, the representation is removed from the setU .

One final consideration for the discount is the amount of
change in the image. When the image is not significantly
changing, such as due to a stop light, the past representations
should not be discounted as heavily as when the image is
significantly changing. Thus, we set the discount equal to a
scaling factor multiplied by the correlation between frames
X and X + 1; this ensures that the discount will be sensitive
to the change in the image, while allowing for past vehicle
representations to potentially be matched again.
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An example is shown in Figure 7 of a taxi marked with
a red box. A-B) The taxi is initially tracked; C) the vehicle
is occluded by surrounding vehicles, and the vehicle’s fea-
ture representation is kept in memory; D) after a number
of frames, the vehicle is no longer occluded, and is matched
with the feature representation in memory.

Figure 7: Example tracking over multiple frames with occlu-
sion.

Figure 8: Vehiclematching in successive frames.Matched ve-
hicles are annotated with the same colored boxes.

5 IMPLEMENTATION AND EVALUATION
Setup and Data Sources
The primary source of data used in the implementation and
evaluation of LFTSys is the New York City’s Department of
Transportation traffic cameras, which is publicly available
at [19]. The camera network consists of 752 closed circuit
cameras which transmit images at a regular frequency (0.3-1
Hz). We captured image sequences from 20 representative
cameras throughout the city to vary the diversity of envi-
ronmental conditions. An example of LFTSys running on an
image sequence is shown in Figure 8.

Detection
We compared two types of object detectors (SSD-Mobilenet [14]
and Mask-RCNN [6]) for accuracy and computational run-
time, as discussed in Section 4. Their statistics are shown in
Table 1.

Model Runtime µ Runtime σ Precision Recall
SSD-Mobilenet 0.057 s 0.0048 s 0.976 0.892
Mask-RCNN 1.808 s 0.0472 s 0.862 0.803
Table 1: Comparisons of SSD-Mobilenet and Mask-RCNN.

To satisfy the real-time requirement in our implementa-
tion, we utilize SSD-Mobilenet with the faster computation
time in the detection pipeline. This part the pipeline can be
substituted with another detection network if the runtime
meets the real-time constraints.

Tracking
To evaluate our tracking methodology, we first evaluate the
matching potential of the VGG16 representations alone. We
proceed to evaluate the VGG16 representations and color
histogram features together. The image sequences described
in Section 5 are used for testing the matching accuracy.

Feature Extraction. Asmentioned in Section 4, we use the first
three convolutional blocks of VGG16 as our feature extrac-
tion network. However, instead of using original VGG16’s
input size 224 × 224 × 3, we re-size all the detected cars to
48 × 48 × 3. This is the closest size to the average size of
detected vehicles in a typical image, and is a feasible size for
the three blocks of VGG16. With the input size of 48× 48× 3,
the extracted features are flattened to produce a 9216 length
vector representation for each vehicle.

Correlation. Initially, we evaluated the potential of corre-
lation for matching vehicles. We constructed a dataset of
vehicle bounding boxes from the detection pipeline, and
used the vector representations to test correlation. As shown
in Figure 9, the correlation scores of same vehicles and dif-
ferent vehicles are plotted as histograms in a) and b). The
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(a) Histogram of correlation
scores of pairs of same vehicle
images.

(b) Histogram of correlation
scores of pairs of different ve-
hicle images.

(c) Distribution approximations and threshold
computation.

Figure 9: Method for computing correlation threshold from
a dataset of vehicle images.

distributions of the two histograms produce a best threshold
for the separation of same vehicles and different vehicles, as
shown in c). Using the correlation method, we achieved an
89% matching accuracy on the image sequences.

System Evaluation
To demonstrate the advantages of LFTSys, we evaluate against
state-of-the-art methods and against ground truth. To evalu-
ate counting accuracy, we compiled images in five minute
sequences from 20 different cameras. Ground truth is ob-
tained manually; each image is compared with the previous
and annotated with the number of new vehicles. The image
sequences are obtained at 1 Hz on average, and contain about
100 unique vehicles for each sequence. Each method is tested
on the sequence and compared to ground truth to determine
accuracy.

We compare against three representative state-of-the-art
techniques: 1) Mosse Tracking [2], a type of correlation fil-
tering tracker; 2) Deepgaze [21], using particle filters; and 3)
optical flow, which we implement using OpenCV [3].

Total Accuracy. For ground truth, the vehicle count for each
frame is manually labeled. In Table 2, we show the mean
absolute error (MAE) and root mean squared error (RMSE) of
each method on the test videos. LFTSys runs with the lowest
MAE and RMSE. Table 2 displays the overall improvement
of LFTSys over the other state-of-the-art algorithms.

Algorithm MAE RMSE
LFTSys 5.80 2.53
Mosse Tracking 43.69 73.90
Deepgaze 70.25 114.89
Optical Flow 41.05 75.41

Table 2: Total system evaluation against state-of-the-art al-
gorithms for various cameras.

Runtime. We timed each part of the system to test whether
LFTSys can be implemented in real-time. Experiments were
run on a 3.2 GHz Intel Core i5. Table 3 shows the mean,
minimum and maximum runtime of each component and
for the whole system on the test video sequences. The main
runtime bottleneck is the SSD-Mobilenet detector; in the
worst case, LFTSys can only run in real-time on image feeds
with less than 0.7 Hz frequency. However, we conclude that
the system is able to run in real-time for greater than 99%
of the frames. Further, the system can achieve true real-
timeliness with a faster processor or GPU.

Component Mean Min Max Avg Runs
SSD-Mobilenet 51.3 ms 42.3 ms 1.46 s 1
Feature Extraction 78.9 ms 8.2 ms 166.7 ms 1
Pairwise Scoring 1.66 ms 1.41 ms 5.87 ms 16
Edge Pruning 11.6 µs 10.3 ns 701 µs 32
Matching 71.7 µs 5.0 µs 3.7 ms 1
Total Runtime 51.8 ms 42.6 ms 1.519 s 1

Table 3: Mean, minimum, and maximum runtime of each
component in the system and the total system.

Different environments. LFTSys is also tested on various cam-
eras throughout New York City to demonstrate adaptability
to different environments, lighting conditions, and perspec-
tives. As shown in Figure 10, LFTSys is able to maintain
accuracy in different environments and perspectives. Table 4
presents the mean absolute error and root mean squared
error for video feeds taken from urban, rural and highway
environments. Although Deepgaze performs better in the
rural videos, LFTSys has comparable performance, and has
significantly better performance in urban and highway envi-
ronments than the other algorithms.

6 CONCLUSION
In this work, we present a real-time system using computer
vision and deep learning pipeline to accurately track vehicles
and estimate traffic flow using existing traffic cameras with
low frame-rate and low resolution videos. We adopt a two
part system consisting of a detection pipeline and a tracking
pipeline. Detection is achieved using SSD-Mobilenet to de-
tect bounding boxes; the bounding boxes are then tracked
using features extracted from VGG16 and color histograms
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Figure 10: Vehicle matching in urban, rural, and highway environmental conditions.

Algorithm Urban Rural Highway
MAE RMSE MAE RMSE MAE RMSE

LFTSys 5.36 6.21 2.77 3.159 9.65 10.46
Deepgaze 21.4 24.46 1.7 2.25 129.12 143.16
MOSSE 39.8 46.7 6.99 8.31 192.77 219.13

Optical Flow 13.4 18.1 5.37 6.83 131.16 148.09
Table 4: Total system evaluation against state-of-the-art al-
gorithms for various cameras.

as well as an efficient linear program matching algorithm.
We demonstrate the system’s high vehicle counting accuracy
over other existing algorithms even in low frame-rate and
low resolution image feeds, and the system’s adaptability to
multiple types of environments.
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