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Robust Kullback-Leibler Divergence and Universal
Hypothesis Testing for Continuous Distributions

Pengfei Yang and Biao Chen

Abstract— Universal hypothesis testing (UHT) refers to the
problem of deciding whether samples come from a nominal
distribution or an unknown distribution that is different from
the nominal distribution. Hoeffding’s test, whose test statis-
tic is equivalent to the empirical Kullback–Leibler divergence
(KL divergence), is known to be asymptotically optimal for distri-
butions defined on finite alphabets. With continuous observations,
however, the discontinuity of the KL divergence in the distribu-
tion functions results in significant complications for UHT. This
paper introduces a robust version of the classical KL divergence,
defined as the KL divergence from a distribution to the Lévy ball
of a known distribution. This robust KL divergence is shown to be
continuous in the underlying distribution function with respect
to the weak convergence. The continuity property enables the
development of an asymptotically optimal test for the university
hypothesis testing problem with continuous observations. The
optimality is in the same sense as that of the Hoeffding’s
test and stronger than that of Zeitouni and Gutman. Perhaps
more importantly, the developed test statistic can be computed
through convex programs, making it much more meaningful in
practice. Numerical experiments are also conducted to evaluate
its performance as compared with some kernel based goodness
of fit test that has been proposed recently.

Index Terms— Kullback-Leibler divergence, universal hypoth-
esis testing, Lévy metric.

I. INTRODUCTION

THE Kullback-Leibler divergence (KL divergence), also
known as the relative entropy, is one of the most funda-

mental measures in information theory and statistics [1], [2].

The KL divergence has a number of operational meanings
and has found applications in a diverse range of research

problems. For example, the mutual information, which is a

special case of the KL divergence, is a fundamental quantity in
both channel coding and data compression [2]. In hypothesis

testing, the KL divergence is known to be the optimal decay
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rates of error probabilities (e.g., see Stein’s lemma [2] and
Sanov’s theorem [3]).

An important application of the KL divergence is in the so-

called universal hypothesis testing (UHT): given a nominal
distribution P0, the objective is to decide, upon observing

a sample sequence, whether the underlying distribution that

generates the sequence is P0 or a distribution different from P0.
This problem was first formulated by Hoeffding [4]; with

finite alphabet, Hoeffding developed a detector that is shown
to be optimal according to the generalized Neyman-Pearson

(NP) criterion, i.e., it achieves optimal type II error decay rate

subject to a constraint on the type-I error decay rate [4]. The
test statistic of Hoeffding’s detector is equivalent to the KL

divergence between the empirical distribution and P0 (see 8).

Hoeffding’s result, however, does not generalize to the
UHT with continuous alphabet. Clearly, computing empirical

KL divergence for continuous distributions is meaningless as
the empirical distribution, which is discrete, and the nominal

distribution P0, which is continuous, have different support

sets. Additionally, the asymptotic optimality of Hoeffding’s
test was established using a combinatorial argument [4] and

thus is inapplicable to the continuous case. Attempts to recon-

struct a similar decision rule for continuous observations have
been largely fruitless with the only exception of the work

by Zeitouni and Gutman [5] where large deviation bounds
were used in lieu of combinatorial bounds. The results in [5],

however, are obtained at the cost of weakened optimality with

a rather complicated detector.
The difficulty in dealing with continuous observations for

UHT stems from the subtle but important distinction on the

continuity property of the KL divergence with respect to
the underlying distributions. With finite alphabet distributions,

the KL divergence defined between two distributions is known
to be continuous in the distribution functions. This is not the

case for the KL divergence defined between two distributions

on the real line, i.e., those with continuous observations [6].
Specifically, weak convergence (i.e., convergence of distri-

bution functions) does not imply convergence of the KL

divergence. As such, even when two distributions are arbi-
trarily close in terms of distribution functions, the KL diver-

gence between them can be arbitrarily large, making the KL
divergence unsuitable for the UHT problem with continuous

observations.

This paper introduces a robust version of the classical KL
divergence that utilizes the Lévy metric which, unlike the KL

divergence, is a true distance metric for distributions. The

robust KL divergence, defined as the KL divergence from a
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distribution to a Lévy ball of a second distribution, is shown

to be continuous in the first distribution - the involvement of
the Lévy ball around the second distribution has a smoothing

effect that ensures the continuity of the robust KL divergence.

This continuity property is crucial in developing a test for the
UHT that is similar in its form to Hoeffding’s detector while

attaining the desired asymptotic NP optimality. Not only is the

optimality stronger than that of [5], but the test statistic is also
much more intuitive and amenable to numerical evaluation.

The rest of the paper is organized as follows. Section II
defines the KL divergence between two (sets of) distributions;

introduces the concepts of weak convergence and the Lévy

metric along with their connections; and reviews the UHT
for the finite alphabet case. Section III defines the robust

KL divergence and establishes the continuity property with

respect to weak convergence. In Section IV, the large deviation
approach by Zeitouni and Gutman [5] to the UHT for

continuous distributions is first reviewed; a robust version of
the UHT problem is then introduced and the asymptotically

NP optimal test using the robust KL divergence is derived.

Section V shows how the empirical robust KL divergence
can be computed via convex programming and compares

the performance with a most recently proposed kernel based

goodness of fit test developed in [7], namely the kernel Stein
discrepancy test. Section VI concludes this paper.

II. PRELIMINARIES

A. The KL Divergence

The KL divergence was first introduced in [8] to quantify
the divergence between two probability distributions. For

finite alphabets, the KL divergence between a probability
distribution μ = (μ1, μ2, · · · , μn) and another distribution

P = (p1, p2, · · · , pn) is defined as

D(μ||P) =
n∑

i=1

μi log
μi

pi
. (1)

For distributions defined on the real line R, the KL divergence

between μ and P is defined as

D(μ||P) =
∫
R

dμ log
dμ

d P
. (2)

In the above definition, we have implicitly assumed that the

two distributions are absolutely continuous with each other,

leading to a bounded KL divergence. The KL divergence
D(μ||P) is jointly convex for both discrete and continuous

distributions [9]. For two sets of probability distributions, say

�1 and �2, defined on the same probability space, the KL
divergence between the two sets is defined to be the infimum

of the KL divergence of all possible pairs of distributions, i.e.,

D(�1||�2) := inf
γ1∈�1,γ2∈�2

D(γ1||γ2). (3)

B. Weak Convergence and the Lévy Metric

Denote the space of probability distributions on (R,F)
as P , where R is the real line and F is the sigma-algebra that

contains all the Borel sets of R. For P ∈ P , P(S) is defined

Fig. 1. The Lévy ball centered at standard normal distribution with
radius 0.045.

for the set S ∈ F . A clear and simple notation commonly

used is P(t) := P((−∞, t]), since P and its corresponding
cumulative distribution function (CDF) are equivalent, i.e., one

is uniquely determined by the other [10].

Weak convergence is defined to be the convergence of the
distribution functions as given below.

Definition 1 (Weak Convergence [10], [11]): For Pn,
P ∈ P , we say Pn weakly converges to P and write Pn

w−→ P,
if Pn(x) → P(x) for all x such that P is continuous at x.

Definition 2 (Lévy Metric [10], [11]): The Lévy metric dL

between distributions F ∈ P and G ∈ P is denoted as
dL(F, G) := inf{ε : F(x − ε) − ε ≤ G(x) ≤ F(x + ε) + ε,
∀x ∈ R}.

The Lévy metric makes (P, dL) a metric space [3], i.e., we
have, for μ, P, Q ∈ P ,

dL(μ, P) = 0 ⇔ μ = P,

dL(μ, P) = dL(P, μ),

dL(μ, P) ≤ dL(μ, Q) + dL(Q, P).

Definition 3: The Lévy ball centered at P0 ∈ P with
radius δ is denoted as

BL(P0, δ) = {P ∈ P : dL(P, P0) ≤ δ}. (4)

Fig. 1 plots the CDF of the standard normal distribution and

its Lévy ball with radius 0.045. A distribution falls inside the

shaded area if and only if its distance to the standard normal
distribution, as measured by the Lévy metric dL , is less than

or equal to 0.045.
The Lévy metric is strongly related to the concept of the

weak convergence of probability measures.

Lemma 4 [10], [11]: For sequences in P whose limit in
weak convergence is also in P , the weak convergence and
convergence in the Lévy metric are equivalent, i.e., if (Pn ∈
P) is a sequence in P and P ∈ P , then Pn

w−→ P iff
dL(Pn, P) → 0.

C. Universal Hypothesis Testing

Let a sequence of independent and identically distributed

(i.i.d.) observations (x0, · · · , xn−1) = xn be the output of a
source μ. Consider the following hypothesis test

H0 : μ = P0, H1 : μ = Q, (5)
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where P0 is a known distribution while Q �= P0 is defined on

the same probability space as P0 but is otherwise unknown.
The fact that Q can be an arbitrary gives rise to the name UHT.

Clearly, while any decision rule will be independent of Q, the

type II error rate of the decision rule depends on Q.
In this paper, our main goal is to find an optimal detector

under the generalized asymptotical Neyman-Pearson (NP)

criterion [5]. Under this criterion, the optimal detector seeks
the best trade-off between first and second type error decay

rates. Specifically, let φ be the sequence of detectors {φn(xn),
n ≥ 1}. Define the error decay rates for the two types of error

probabilities respectively as follows,

I Q(φ) := lim inf
n→∞ − 1

n
log Q(φn(xn)) = 0),

J P0(φ) := lim inf
n→∞ − 1

n
log P0(φ

n(xn)) = 1).

Zeitouni and Gutman [5] have shown that to achieve the

best trade-off between I Q and J P0 , the test can depend on xn

only through the empirical measure μ̂n , defined to be

μ̂n(t) =
∑

i I{xi≤t}
n

. (6)

Clearly, μ̂n belongs to P . A consequence of the above

result is that, any detector (which is a partition of the sample

space Rn) can now be equivalently characterized through a
partition of the probability space P [5]. As such, a sequence

of detectors can be equivalently expressed using �, which
is a sequence of partitions (�0(n),�1(n)) (n = 1, 2, · · · ),
of which �0(n) ∩ �1(n) = ∅ and P = �0(n) ∪ �1(n). The

decision rule is made in favor of Hi if μ̂n ∈ �i (n), i = 0, 1.
Throughout the paper, we will use � instead of φ to denote a

sequence of detectors, which enables the use of the general

Sanov’s Theorem (Theorem 7) in proving our main result
(Theorem 13).

Therefore I Q(φ) and J P0(φ) can be written as

I Q(�) = lim inf
n→∞ − 1

n
log Q(μ̂n ∈ �0(n)),

J P0(�) = lim inf
n→∞ − 1

n
log P0(μ̂n ∈ �1(n)).

The generalized NP criterion maximizes the decay rate of

type II probability of error under a constraint on the minimal

decay rate for the type I probability of error:

max
�

I Q (�) s.t. J P0(�) ≥ η. (7)

The UHT was originally studied by Hoeffding [4] who con-

sidered distributions with finite alphabet. Hoeffding’s detector
is equivalent to the following threshold test of the empirical

KL divergence:

D(μ̂n ||P0)
H1

≷
H0

η. (8)

Hoeffding successfully established the asymptotical NP opti-
mality of the above test. However, for continuous sample

space such as R, Hoeffding’s detector (8) becomes degenerate

since computing KL divergence between empirical distribution
μ̂n to continuous distribution P0 is meaningless. In addition,

Hoeffding resorted to combinatorial bounds in establishing the

asymptotic optimality which is not applicable to continuous

observations. Zeitouni and Gutman [5] addressed the UHT
with continuous observations via a large deviation approach;

the obtained test, however, only achieves weakened optimality

compared with Hoaffding’s test and is numerically challenging
to evaluate (see our review in Section IV-A). In the following,

we give a formal definition of the robust KL divergence, and

establish its continuous property. This allows us to tackle the
UHT from a different perspective as described in Section IV-B.

III. ROBUST KL DIVERGENCE

A. Contin ity Property of the KL Divergence

Let the nominal distribution be P0. Let μ and μn ,
n = 1, 2, · · · , be distributions with the same sample space as

P0. Suppose the sequence of distributions μn converge weakly
to μ. It is of interest to study whether the corresponding

KL divergence between μn and P0 also converge to the KL

divergence between μ and P0. That is, does μn
w−→ μ imply

D(μn ||P0) → D(μ||P0)?
The statement is true if the distributions involved are defined

on a finite alphabet. With finite elements in the sample

space of P0, D(μ||P0) is continuous in μ that has the same
sample support as P0. Convergence in distribution implies

convergence in the corresponding KL divergence.

This, however, is not the case for P0 ∈ P . Indeed,
it was established in [6] that the KL divergence is only lower

semicontinuous with respect to the weak convergence for the

continuous case, i.e.,

D(μ||P0) ≤ lim inf
n→∞ D(μn ||P0).

However, the KL divergence is not upper semicontinuous,
i.e., the following result is not necessarily true:

D(μ||P0) ≥ lim sup
n→∞

D(μn ||P0).

Thus the KL divergence is not continuous in μ for continuous

observations. To see this, let μ = P0 thus D(μ||P0) = 0.

Choose a distribution, say P , that is not absolutely continuous
with respect to P0. Let

μn =
(

1 − 1

n

)
P0 + 1

n
P.

Clearly μn is also not absolutely continuous with respect

to P0, thus D(μn ||P0) is unbounded for any given n > 0.
However, μn weakly converges to P0 as n → ∞. While

this construction takes advantage of distributions that are not
absolutely continuous with respect to P0, the same is true

even if one is constrained to a sequence of distributions that

is absolutely continuous with respect to P0 (see arguments in
proof of Theorem II.3 [12]).

This lack of continuity for the KL divergence for the

continuous case is the primary reason for the difficulty in
generalizing Hoeffding’s result to continuous observations.

A direct consequence of the lack of continuity is that the
superlevel set defined by the KL divergence is not closed as

observed in [5]. The superlevel set is given by

{μ ∈ P : D(μ||P0) ≥ η1}. (9)
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The fact that the KL divergence is not continuous in μ
leads to the unexpected property that the closure of the above
set encompasses the entire probability space, i.e., any P that

does not belong to the above superlevel set has a sequence

of distributions in the set that weakly converge to P . In other
words, while the sequence of distributions may be arbitrarily

close to the nominal distribution (in the weak convergence

sense), their KL divergence to the nominal distribution is
bounded away from 0. As such, a test in a form similar to (8)

can not be used for continuous distributions.

B. Robust KL Divergence and Its Continuity Property

Definition 5: The robust KL divergence between μ and P0

with the radius parameter δ0 > 0 is denoted as

D(μ||BL(P0, δ0)) := inf
P∈BL (P0,δ0)

D(μ||P), (10)

where BL(P0, δ0) is the Lévy ball centered at P0 with
radius δ0.

The following theorem establishes its continuity property

in μ under some mild assumptions.
Theorem 6: For a distribution P0 ∈ P , if P0(t) is continu-

ous in t, then for any δ0 > 0, D(μ||BL(P0, δ0)) is continuous
in μ with respect to the weak convergence.

The complete proof is lengthy and deferred to Appendix A.

The non-trivial part of the proof is to show that
D(μ||BL(P0, δ0)) is upper semicontinuous in μ (Lemma 25).

Lemma 26 proves D(μ||BL(P0, δ0)) is lower semicontinuous

in μ. Therefore, D(μ||BL(P0, δ0)) is continuous in μ. Impor-
tant intermediate steps are summarized below.

1) We first partition (quantize) the real line into a set of

finite intervals. The robust KL divergence corresponding
to the quantized distributions converge to the true robust

KL divergence as the quantization becomes finer. The

proof is in essence proving that a max-min inequality is
in fact an equality (Lemma 20).

2) The infimum defined in (10) is attained by a distrib-

ution either inside or on the surface of the Lévy ball
(see Eq. (27) Lemma 20).

3) The robust KL divergence is continuous in the radius of
the Lévy ball (Lemma 21).

4) The robust KL divergence and the quantized robust

KL divergence are convex functions of the respective
distributions (Lemma 22).

5) The supremum of the robust KL divergence over a

Lévy ball centered at the first distribution μ is achieved
by a distribution whose distribution function consists

of two parts with a single transition point: the first

part (i.e., prior to the transition point) corresponds to
the lower bound of the Lévy ball and the second part

(i.e., after the transition point) corresponds to the upper
bound of the Lévy ball. Thus the class of distributions

so defined is determined by the transition point given the

Lévy ball. As such, the problem of finding an optimal
distribution is reduced to finding an optimal transition

point (Lemma 23).

6) The robust KL divergence is upper bounded by

(Lemma 24)

sup
μ,P0∈P

D(μ||BL(P0, δ0)) = log
1

δ0
.

7) The supremum of the robust KL divergence over a Lévy
ball around μ converges to the robust KL divergence as

the Lévy ball diminishes, i.e., as its radius goes to 0.
Therefore, the robust KL divergence is upper semicon-

tinuous in μ (Lemma 25).

8) The robust KL divergence is lower semicontinuous
(Lemma 26).

The intuition of the continuity property of the robust KL
divergence is as follows. The classical KL divergence is a

function of two distributions, and its value may vary arbitrarily

large with small perturbation in one of the distributions with
respect to the Lévy metric. The reason is because the Lévy

metric is strictly weaker than the KL divergence, i.e., conver-

gence in the KL divergence necessarily implies convergence in
the Lévy metric but not the other way around. For the robust

KL divergence where the KL divergence is defined between
the first distribution and a Lévy ball centered around the sec-

ond distribution, small perturbations in the first distribution

can now be tolerated by the Lévy ball around the second
distribution, thanks again to the fact that the Lévy metric is

strictly weaker than the KL divergence.

The continuity property in Theorem 6 does not hold if
the distribution ball is constructed using some other mea-

sures, including the total variation and the KL divergence
(see [14, Sec. 2.2]). The assumption that P0(t) is continuous

in t is also necessary for the continuous property of the robust

KL divergence to hold. We construct the following example to
illustrate this point. Let P0 be the distribution that P0(t) = 0

for t < 0 and P0(t) = 1 for t ≥ 0, i.e., it is a degenerate

random variable that equals to 0 with probability 1. Let μn

be the distribution such that μn(t) = 0 for t < 0.5 + 1
n and

μn(t) = 1 for t ≥ 0.5 + 1
n . Thus μn

w−→ μ as n → ∞, where
μ(t) = 0 for t < 0.5 and μ(t) = 1 for t ≥ 0.5. We can see that

D(μ||BL(P0, 0.5)) = 0 since μ ∈ BL(P0, 0.5). As μi
w−→ μ,

lim
n→∞D(μn ||BL(P0, 0.5))= lim

n→∞ log
1

0.5
>D(μ||BL(P0, 0.5)),

and the distribution in BL(P0, 0.5) achieving the KL diver-
gence value of log 2 is a degenerate one: it takes values of the

two points 0.5 and 0.5 + 1/n with equal probability.

The proof of Theorem 6 sheds some light on the dynamics
of the KL divergence of continuous distributions. Furthermore,

the established continuity property of the robust KL divergence

is key to solving the robust version of the UHT problem for
the continuous case.

IV. ROBUST UNIVERSAL HYPOTHESIS TESTING

A. Review of the Large Deviation Approach

Motivated by the fact that Hoeffding’s test does

not apply to distributions with continuous observations,
Zeitouni and Gutman [5] developed a universal hypothesis

test for distributions defined on the real line under a strictly
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weaker notion of optimality. Their approach relies on the large

deviation theory, specifically, the general Sanov’s theorem. For
a given set � ⊂ P , denote the closure and interior sets of �
as cl� and int�, respectively.

Theorem 7 (General Sanov’s Theorem [3, Th. 6.2.10]):
Given a probability set � ⊆ P , for a probability measure
Q /∈ �,

inf
P∈cl�

D(P||Q) ≤ lim inf
n→∞ − 1

n
log Q({xn : μ̂n ∈ �})

≤ lim sup
n→∞

− 1

n
log Q({xn : μ̂n ∈ �})

≤ inf
P∈int�

D(P||Q),

where μ̂n is the empirical distribution defined in (6).
The general Sanov’s Theorem illustrates the large deviation

principle for the empirical measures and was used extensively

in the proof of Theorems 8 [5]. For any set � ⊆ P , define its

δ−smooth set to be

�δ := ∪P∈�{μ ∈ P : dL(μ, P) < δ}.
It is apparent that a δ-smoothed set is an open set. The major

contribution of [5] is summarized in the Theorem below.
Theorem 8 [5]: Define � as,

�1 = {μ : D(BL(μ, 2δ)||P0) ≥ η}δ, (11)

�0 = P \ �1. (12)

� is δ−optimal, i.e.,

1) J P0(�) ≥ η.
2) If � is a test such that J P0(�6δ) ≥ η, then for any

Q 
= P0,

I Q(�δ) ≤ I Q(�). (13)

The detector in Theorem 8 has weakened optimality com-
pared to Hoeffding’s test; it is also numerically challenging to

construct such a test. See our detailed remarks below.
Remark 9: Theorem 8 applies to both discrete and

R-valued random variables. However, for the finite alphabet

case, the corresponding detector in (11) yields a weaker result
than Hoeffding’s detector [4], a price paid for its generality.

Remark 10: In addition to weakened optimality, perhaps the

most important drawback in Theorem 8 is the complexity of
the detector. Computing D(μ||P0) is meaningless if μ is an

empirical distribution (hence discrete) and P0 a continuous
distribution, Theorem 8 works around this issue by computing

the KL divergence from BL(μ, 2δ) to P0 where the Lévy

ball around the empirical distribution include continuous dis-
tributions when make the computation meaningful. However,

finding a continuous distribution within the Lévy ball around

μ that minimizes the KL divergence to P0 is an infinite dimen-
sion minimization problem that is numerically prohibitive to

evaluate. This is illustrated in Fig. 2 where one needs to find
a continuous μ∗ inside the shaded region such that

D(μ∗||P0) = inf
μ∈BL (μ̂n,2δ)

D(μ||P0).

Remark 11: Even if evaluating (or approximating)

D(BL(μ̂n, 2δ)||P0) can be accomplished, the detector

Fig. 2. The shaded region is BL (μ̂n, 2δ) and the solid line is P0.

described in Theorem 8 may still encounter more

complications. In particular, in the case when
D(BL(μ̂n, 2δ)||P0) < η, one needs to further check if μ̂n

belongs to the δ-smooth set of {μ : D(BL(μ, 2δ)||P0) ≥ η},
which is also computationally challenging.

Remark 12: For a test � defined by the partition of the

probability space (�1, �2), either �1 or �2, may consist

of only empirical distributions (the optimal test can depend
on the observations only through the empirical distributions).

Suppose �1 consists of only empirical distributions. Then
int�1 is empty and cl�2 equals to P . It is also possible that

the interior set and closure are too abstract or complicated

to describe. In these cases, one can not take advantage of the
general Sanov’s Theorem to analyze the error decay rates. That

is why in Theorem 8, for an arbitrary test �, we need to first

perform δ−smooth operation on it before comparing its error
decay rates to those of the test �.

One of the difficulties in generalizing the discrete case to
the continuous case, as first pointed out in [5], is that the

superlevel set {μ ∈ P : D(μ||P0) ≥ η} is not closed in P .

This has been discussed in detail in Section III-A. In the
following, instead of implementing the “δ−smooth” operation

on the detector as in (11), we generalize the original hypothesis

test by considering a robust version of it. Specifically, H0,
the single distribution P0 is replaced by a small Lévy ball

centered around P0, i.e., BL(P0, δ0). The introduction of the
Lévy ball in place of the single distribution P0 is itself an

arguably more meaningful version for UHT: in practice, it is

probably more important to tell if the sequence significantly
departs from the nominal distribution P0 and the radius δ0 of

the Lévy ball can be used to quantify the significance level.

With this formulation of the UHT, we show in the following
that the empirical likelihood ratio is asymptotically optimal

under the minimax criterion.

B. Robust Universal Hypothesis Testing

The robust UHT problem is defined as followings. Givens

samples drawn from a distribution μ, consider two hypotheses,

H0 : μ ∈ P0, H1 : μ = Q, (14)

where P0 := BL(P0, δ0), P0 is a known continuous distribu-

tion, δ0 > 0, and Q /∈ P0 but is otherwise unknown.
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The goal is to find the optimal detector under the asymptotic

NP criterion:

max
�

I Q(�) s.t. JP0(�) ≥ η, (15)

where

JP0(�) := inf
P∈P0

J P(�).

Therefore, the goal is to maximize the decay rate of type II
error probability when the worst case type I error probability

has a decay rate that is bounded below by η.

The reason that the Lévy metric is used to define P0 is that
the Lévy metric is the weakest hence also the most general

one [13]. In another word, BL(P0, δ0) contains all distributions
that are close enough to P0 as measured using any other

metrics. An additional advantage is that the resulting optimal

detector is rather intuitive and straightforward to implement,
which might not be the case if P0 is constructed using other

metrics. Theorem 13 below describes the optimal solution

to the robust UHT, the proof of which can be found in
Appendix B.

Theorem 13: For the robust UHT problem in (15). The
detector � = {�0,�1} defined by,

�1 = {μ : D(μ||P0)) > η}, �0 = P \ �1, (16)

satisfies the following properties:

1) JP0(�) = η.
2) I Q(�) = D(�0||Q).
3) For any detector � with �1(n) = �1 with �1 open, if

JP0(�) > η, (17)

then for any Q /∈ BL(P0, δ0),

I Q(�) ≤ I Q(�). (18)

Remark 14: Theorem 13 states that the empirical likelihood

ratio test,

D(μ̂n ||BL(P0, δ0)
H1

≷
H0

η, (19)

achieves the optimal type II error decay rate among all

detectors � = {�0(n),�1(n)} that have the same worst case
type I error decay rate as �. In particular, the optimal type II

error decay rate is precisely D(�0||Q) when Q is the true

distribution under H1.
Remark 15: Computing D(μ̂n ||BL(P0, δ0)) is a finite

dimension optimization problem, which is in essence finding a

step function inside the shaded area that achieves the minimum
KL divergence to μ̂n (see Fig. 3). This can be shown to

be a convex optimization problem with linear constraints in

Section V-A, thus can be readily solved via standard convex
programs. This contrasts with that of Theorem 8 where the

detector involves an infinite dimension optimization problem
(see Remark 2).

Remark 16: From Theorem 8, the detector developed

in [5] can not be compared directly to an arbitrary detector
�; instead, �δ is used in establishing the optimality of the

proposed detector. This ensures that �δ
1 is open and �δ

0 is

Fig. 3. The shaded region is a Lévy ball of the normal distribution and the
step function is an example of the empirical distribution μ̂n .

closed yet this leads to a weaker sense of optimality, i.e.,

δ-optimality.

In Theorem 13, by restricting �1 to be independent of n and
assuming �1 is open, asymptotic NP optimality is established

which is stronger than δ−optimality.

Remark 17: Theorem 8 only provides lower bounds for
error decay rates, while Theorem 13 characterizes the exact

values of error decay rates. Furthermore, while the error decay
rates I and J are defined using limit infimum, from the proof

it can be seen that I and J remain unchanged if one uses limit

to define error decay rates. Therefore, Theorem 13 gives an
exact characterization of error decay rates.

Summarizing, by considering the UHT in the robust set-

ting, the generalized empirical likelihood ratio test becomes
optimal, and the construction of the detector and the proof of

optimality are much simplified. In the following, we address
the computation of the developed test statistic and compares

its performance to a recently proposed kernel based goodness

of fit test.

V. NUMERICAL EXPERIMENTS AND

PERFORMANCE COMPARISON

Theorem 13 established that the empirical robust KL diver-

gence D(μ̂n ||BL(P0, δ0)) is the optimal statistic for the robust

UHT under the asymptotic minimax NP criterion. The robust
KL divergence between the empirical distribution and the Lévy

ball around the nominal distribution is a finite dimension opti-
mization problem (see Remark 6). We further establish in this

section that this can be reformulated as a convex optimization

problem hence can be readily solved using a convex program.
Subsequently, we conduct numerical experiments to compare

the proposed test with a recently proposed kernel based test

in the context of the goodness of fit test.

A. Computing the Empirical Robust KL Divergence

Denote by (x0, x1, · · · , xn−1) the length-n sequence of sam-
ples, and without loss of generality, these samples are arranged

in ascending order. As such, computing D(μ̂n ||BL(P0, δ0)) is
equivalent to the following optimization problem,

minimize
P

n−1∑
i=0

1

n
log

1/n

pi
(20a)

s.t. P ∈ BL(P0, δ0), (20b)
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where pi = Pr (X = xi ) = P(xi ) − P(xi−), i.e., the point

mass at xi for the discrete distribution P that is within the Lévy
ball BL(P0, δ0). Denote by yi = P(xi ) and y−1 = 0. Since P
is non-decreasing and bounded below by the lower bound of

BL(P0, δ0) at all value of xi , P(xi−) must be greater than or
equal to max(yi−1, li ), where li = max(P0(xi − δ0) − δ0, 0),
i.e., it is the lower boundary point of the Lévy ball at xi . Thus

we can rewrite the above optimization problem (20) as the
following,

minimize
y,p

n−1∑
i=0

1

n
log

1/n

pi
(21a)

s.t. for 0 ≤ i ≤ n − 1,

li ≤ yi ≤ ui , (21b)

0 ≤ pi ≤ yi − max(yi−1, li ), (21c)

where ui = min(P0(xi + δ0) + δ0, 1), i.e., the upper boundary

point of the Lévy ball at xi . Unfolding condition (21c) to
linear constraints, we have the following convex optimization

problem,

minimize
y,p

n−1∑
i=0

1

n
log

1/n

pi
(22a)

s.t. for 0 ≤ i ≤ n − 1,

li ≤ yi ≤ ui , (22b)

yi − pi − yi−1 ≥ 0, (22c)

yi − pi − li ≥ 0, (22d)

pi ≥ 0. (22e)

Therefore, problem (20) of searching distribution P within
BL(P0, δ0), is reduced to a 2n dimensional convex optimiza-

tion problem with separable convex objective functions and
linear constraints, of which numerical solutions can be readily

obtained via standard convex programs.

B. Goodness of Fit Test

The UHT described in (5) is also known to be the goodness
of fit test which aims to determine whether the observed data

samples are consistent with a nominal distribution P0. The

goodness of fit test has broad applications in various statistical
data analysis, e.g., in regression analysis.

Notice that the our proposed test is derived for the robust
version of the UHT where the null hypothesis is replaced by

a Lévy ball centered at the nominal distribution. Nevertheless,

the test statistic can be directly applied to the original UHT
where δ0 becomes a tuning parameter. The fact that this test

statistic is still applicable to the original UHT problem is

made clear by the following Lemma, whose proof is given
in Appendix C.

Corollary 18: Given P0 ∈ P , if P0(t) is continuous in t,
D(μ̂n ||BL(P0, δ0))

a.s.−−→ D(μ||BL(P0, δ0)) as n → ∞.
Therefore, if μ = P0, D(μ̂n ||BL(P0, δ0))

a.s.−−→ 0. On the

other hand, if μ = Q /∈ BL(P0, δ0), D(μ̂n ||BL(P0, δ0))
converges almost surely to D(Q||BL(P0, δ0)). Note that for

the goodness of fit test (or the original UHT), we do not have

Fig. 4. Type II error rates. (a) Gaussian vs. Laplace. (b) t-distribution vs.
t-distribution.

prior knowledge on Q. Thus δ0 needs to be chosen to be

sufficiently small such that Q /∈ BL(P0, δ0).
While there exists many classical tests for goodness of

fit, there has been much recent effort in constructing kernel
based test from the machine learning community. In the

following, we compare the performance of the proposed test

with one of the most recently proposed test, the kernel Stein
discrepancy (KSD) test [7] that has been shown to exhibit

superior performance.

KSD test is based on Stein transformed Reproducing Kernel
Hilbert Space (RKHS) functions. The squared KSD is the

norm of the smoothness-constrained function with largest
expectation under the distribution of samples, which is defined

as Ex∼μEx ′∼μh p(x, x ′), where h p is a function dependent on

the kernel of RKHS and probability density function of P0.
The squared KSD has zero expectation if and only if μ = P0,

under some conditions.

For the following two experiments, we control the type I
error probability to be 0.1 for all tests and evaluate type II

error probabilities using 1000 trials. Notice that we are not

examining the error decay rate but rather demonstrate the
practicality of the developed test with only finite sample test.

For the proposed robust KL divergence method, the thresh-
old is estimated by drawing samples under the model P0,

i.e., using the Monte Carlo method. For the KSD method,

the threshold is chosen using the wild bootstrap procedure
as in the original paper [7]. The corresponding type II errors

are shown in Fig. 4, where red lines represent robust KL
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divergence method and blue lines represent KSD method with

Gaussian kernels.

1) Gaussian vs. Laplace. We consider a problem in which

P0 ∼ N (0, 2
√

2) and Q ∼ Laplace(0, 2). P0 and Q
have the same mean and variance. We choose δ0 to be

0.02 or 0.03 for the robust KL divergence method, and

set Gaussian kernel width wg to be 1 or 2 for the KSD
method.

2) t-distribution vs. t-distribution. In this experiment P0

is t-distribution with zero mean and degree of freedom
2, and Q is t-distribution with zero mean and degree

of freedom 3. δ0 is chosen to be 0.01 or 0.02, while
Gaussian kernel width wg is set to be 1 or 2.

As evident from the first experiment, the KSD method
performs favorably compared to the proposed method when

the selected kernel matches the distribution P0. However, for

the second example, the type II error probability of the KSD
method decays in a much slower speed compared with the

robust KLD based test (we also used Laplace kernels for KSD
but the resulting type II errors are close to 1). One reason of the

underperformance of the KSD method could be that there does

not exist a natural choice of kernels for t-distributions. Indeed,
extensive experiments showed that KSD is quite sensitive to

the kernel choice whereas the proposed scheme exhibits rather

robust performance.

VI. CONCLUSION

The KL divergence between a pair of distributions is
only lower semicontinuous in the distribution functions for

continuous observations. This is in contrast to the case with

finite alphabet in which the KL divergence is known to be
continuous. As such, while simple and optimal solution may

exist for some hypothesis testing problems involving finite
alphabet observations, these results often do not generalize to

the continuous case as the continuity of KL divergence plays

a crucial role in obtaining the optimal test.
The problem considered in the present paper is the universal

hypothesis testing where the null hypothesis is specified by

a nominal distribution whereas the alternative hypothesis is
specified by a different but otherwise unknown distribution.

With finite alphabet, Hoeffding’s test, which is in essence a
threshold test of the empirical KL divergence, is known to

be asymptotically NP optimal. For continuous observations,

however, existing results have to resort to a weaker notion of
optimality with a much more complicated detector compared

with Hoeffding’s detector.

This paper introduced the robust KL divergence, defined as
the KL divergence between a distribution to the Lévy ball of a

second distribution. In contrast to the classical KL divergence,

this robust KL divergence was shown to be continuous in
the first distribution function. Subsequently, by formulating

a robust version of the universal hypothesis testing where the
null hypothesis is specified by a perturbation of the nominal

distribution using a Lévy ball, it was established that the

generalized empirical likelihood ratio test is optimal under the
asymptotic minimax NP criterion whose error decay rates were

characterized precisely. The developed test is also much easier

to evaluate and exhibits robust performance when compared

with some recently proposed kernel based tests.

APPENDIX A

PROOF OF THEOREM 6

It is straightforward to prove D(μ||BL(P0, δ0)) is lower

semicontinuous in μ (Lemma 26); proving that it is also
upper semicontinuous is more involved (Lemma 25). Before

we can prove the upper semicontinuity, we will need several

properties of the robust KL divergence (Lemmas 20 to 24).
We first introduce another widely used definition of KL

divergence through partitions. This alternative definition is
equivalent to the classical definition using the Radon-Nikodym

derivative (see, e.g., [15 and 16, Sec. 2.4]).

A partition A = (A1, · · · , A|A|) of R divides the real line
into a finite number of sets Ai . The set of all finite partitions

of R is denoted by �. For a given partition A, denote by PA
the quantized (discrete) probability over A of a probability
distribution P ∈ P . Thus PA is a |A| dimensional vector

(P(A1), P(A2), · · · , P(A|A|)) ∈ R|A|.
Definition 19: The KL divergence between P ∈ P and

Q ∈ P is defined as,

D(P||Q) = sup
A∈�

D(PA||QA), (23)

where

D(PA||QA) =
|A|∑
i=1

P(Ai ) log
P(Ai )

Q(Ai )
.

This definition will be used together with the classical

Radon-Nikodym derivative throughout the appendix.
Eq. (23) states that the quantized KL divergence converges

to the true KL divergence as the quantization becomes finer.

The following lemma generalizes (23) from the classical
KL divergence to the robust KL divergence. The proof is

in essence proving that a max-min inequality is in fact an

equality. For set � ⊆ P , we define �A := {PA : P ∈ �}.
Lemma 20: For μ, P0 ∈ P and δ0 > 0,

D(μ||BL(P0, δ0)) = supA∈� D(μA||BA
L (P0, δ0)).

Proof: Let M denote the space of finitely additive1 and
non-negative set functions on (R,F) with M(R) = 1 for

M ∈ M. Define M(t) := M((−∞, t]), then as with P(t)
and P ∈ P , M(t) and M ∈ M are equivalent since one
is uniquely determined by the other. Clearly, P ⊂ M. The

difference between P and M is that, for P ∈ P we have
P(−∞) = 0 and P(+∞) = 1, while for M ∈ M we have

M(−∞) ≥ 0 and M(+∞) ≤ 1. Another important difference

is that M is compact with respect to the topology of weak
convergence [10] (pg. 179), while P is not (a sequence of

normal distributions with mean n and variance 1 does not

converge weakly to any P ∈ P).
For F ∈ M and G ∈ M, Lévy metric dL and the

KL divergence are defined in exactly the same way as in
Definition 2 and Definition 19.

1This contrasts with the probability function which requires countable
additivity.
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The following three steps constitute the proof of the lemma,

D(μ||BL(P0, δ0)) = D(μ||B̄L(P0, δ0)), (24)

D(μ||B̄L(P0, δ0)) = sup
A∈�

D(μA||B̄A
L (P0, δ0)), (25)

sup
A∈�

D(μA||B̄A
L (P0, δ0)) = sup

A∈�

D(μA||BA
L (P0, δ0)), (26)

where B̄L(P0, δ0) := {P ∈ M : dL(P, P0) ≤ δ0}. We first
prove (24). Note that B̄L(P0, δ0) is closed with respect to

the weak convergence, thus is compact since M is compact.

Let

Pμ := arg min
{P∈B̄L (P0,δ0)}

D(μ||P),

the existence of Pμ is guaranteed since D(μ||P) is lower

semicontinuous and lower semicontinuous function attains its
infimum on a compact set. Assume Pμ ∈ M \ P , then there

exists a δ > 0 such that Pμ(−∞) ≥ δ or Pμ(+∞) ≤ 1 − δ.

We can assume Pμ(−∞) = δ and Pμ(+∞) = 1, as other
cases can be proved in a similar manner. Let s denote the

minimum t such that P0(t − δ0) ≥ δ0, we construct Qμ as

follows.

• If Pμ(s) = δ, let

Qμ(t) =
{

0 if t < s,

Pμ(t) if t ≥ s.

Since inf t Qμ(t) = 0 and supt Qμ(t) = 1, Qμ ∈ P .

In addition, it can be easily verified that dL(Qμ, P0) ≤
δ0. Therefore, Qμ ∈ BL(P0, δ0) and D(μ||Qμ) =
D(μ||Pμ).

• If Pμ(s) > δ, let

Qμ(t) =
⎧⎨
⎩

(Pμ(t) − δ)Pμ(s)

Pμ(s) − δ
if t < s,

Pμ(t) if t ≥ s.

Again, since inf t Qμ(t) = 0 and supt Qμ(t) = 1, Qμ ∈
P . For t < s,

(Pμ(t) − δ)Pμ(s)

Pμ(s) − δ
≤ Pμ(t) ⇔ Pμ(t) ≤ Pμ(s),

then dL(Qμ, P0) ≤ δ0 because

P0(t − δ0) − δ0 <0 ≤Qμ(t)≤ Pμ(t)≤ P0(t + δ0) + δ0.

Therefore, we have Qμ ∈ BL(P0, δ0). Also Qμ achieves
the infimum since,

D(μ||Qμ)

=
∫ s−

−∞
dμ(t) log

dμ(t)

dQμ(t)
+

∫ ∞

s
dμ(t) log

dμ(t)

dQμ(t)

= μ(s−) log
Pμ(s) − δ

Pμ(s)
+

∫ s−

−∞
dμ(t) log

dμ(t)

dPμ(t)

+
∫ ∞

s
dμ(t) log

dμ(t)

dPμ(t)

= μ(s−) log
Pμ(s) − δ

Pμ(s)
+ D(μ||Pμ)

≤ D(μ||Pμ).

Therefore in either case, there exists Qμ ∈ BL(P0, δ0) such

that

Qμ = arg min
{P∈B̄L(P0,δ0)}

D(μ||P). (27)

To prove (25), note that [17, eq. (2.5), Lemma 2.4] implies

that

D(BL(P0, δ0)||μ) = sup
A∈�

D(BA
L (P0, δ0)||μA).

Using parallel proofs as in Lemma 2.3 and Lemma 2.4 in [17],
one can establish that

D(μ||B̄L(P0, δ0)) = sup
A∈�

D(μA||B̄A
L (P0, δ0)),

i.e., (25) holds.

Finally, (26) holds since for any A ∈ �, B̄A
L (P0, δ0) =

BA
L (P0, δ0). �
The robust KL divergence is continuous in the radius of the

Lévy ball under a mild assumption. This property will be used

towards proving Lemma 25.

Lemma 21: Given μ, P0 ∈ P and δ0 > 0, if P0(t) is
contin o s in t, then D(μ||BL(P0, δ0)) is contin o s in δ0.

Proof: Let δ ∈ (0, δ0). D(μ||BL(P0, δ0)) is left con-
tinuous in δ0 if D(μ||{P ∈ P : dL(P, P0) < δ0}) =
D(μ||BL(P0, δ0)). Clearly, {P ∈ P : dL(P, P0) < δ0} ⊂
BL(P0, δ0) implies

D(μ||{P ∈ P : dL(P, P0) < δ0}) ≥ D(μ||BL(P0, δ0)).

Thus we only need to show the other direction. Denote

Pδ = arg inf
{P∈BL (P0,δ)}

D(μ||P),

Pδ0 = arg inf
{P∈BL (P0,δ0)}

D(μ||P).

The existence of Pδ and Pδ0 is guaranteed by (27). For any
0 < λ < 1,

dL(λPδ + (1 − λ)Pδ0 , P0) < δ0,

which may not hold if P0(t) is not continuous in t . Then,

D(μ||{P ∈ P : dL(P, P0) < δ0})
≤ lim

λ→0+ D(μ||λPδ + (1 − λ)Pδ0)

≤ lim
λ→0+ λD(μ||Pδ) + (1 − λ)D(μ||Pδ0 )

= D(μ||Pδ0)

= D(μ||BL(P0, δ0)).

Therefore D(μ||BL(P0, δ0)) is left continuous in δ0.

The rest is to show D(μ||BL(P0, δ0)) is right continuous in
δ0. Since D(μ||BL(P0, δ0)) is decreasing in δ0, we only need

to show:

lim
n→∞ D

(
μ||BL

(
P0, δ0 + 1

n

))
≥ D(μ||BL(P0, δ0)). (28)

From (27), there exists Pn ∈ BL(P0, δ0 + 1
n ) such that

D(μ||Pn) = D
(
μ||BL(P0, δ0 + 1

n )
)
. M is compact, Pn con-

verges to P∗ ∈ M. Since P∗ ∈ B̄L(P0, δ0 + 1
n ) for any n,
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P∗ ∈ B̄L(P0, δ0). We have,

lim
n→∞ D

(
μ||BL

(
P0, δ0 + 1

n

))
= lim

n→∞ D(μ||Pn)
≥ D(μ||P∗)
≥ D(μ||B̄L(P0, δ0))

= D(μ||BL(P0, δ0)), (29)

where (29) comes from the fact that the KL divergence is

lower semicontinuous and the last equality was proved in (24).
Therefore D(μ||BL(P0, δ0)) is right continuous in δ0. �

The KL divergence is convex [9], so are the robust KL

divergence and the quantized robust KL divergence. This is
stated in the following lemma.

Lemma 22: For μ, P0 ∈ P and δ0 > 0, D(μ||BL(P0, δ0))
is a convex f nction of μ. In addition, for any partition A of
the real line, D(μA||BA

L (P0, δ0)) is convex in μA.
Proof: Let Pi = arg min{P∈BL(P0,δ0)} D(μi ||P), i = 1, 2.

For any 0 < λ < 1, λP1 + (1 − λ)P2 ∈ BL(P0, δ0), thus,

D(λμ1 + (1 − λ)μ2||BL(P0, δ0))

≤ D(λμ1 + (1 − λ)μ2||λP1 + (1 − λ)P2)

≤ λD(μ1||P1) + (1 − λ)D(μ2||P2)

= λD(μ1||BL(P0, δ0)) + (1 − λ)D(μ2||BL(P0, δ0)).

Therefore, D(μ||BL(P0, δ0)) is a convex function of μ.

That D(μA||BA
L (P0, δ0)) is convex in μA follows a similar

argument. �
To prove the upper semicontinuity of the robust KL diver-

gence at μ0, we need to characterize the supremum of
D(μ||BL(P0, δ0)) over μ ∈ BL(μ0, δ). The lemma below

finds out that the supremum is achieved by a distribution

whose distribution function consists of two parts with a single
transition point: the first part (i.e., prior to the transition point)

corresponds to the lower bound of the Lévy ball and the second

part (i.e., after the transition point) corresponds to the upper
bound of the Lévy ball. Thus the class of distributions so

defined is determined by the transition point given the Lévy
ball. As such, the problem of finding an optimal distribution

is reduced to finding an optimal transition point.

Lemma 23: Given μ0, P0 ∈ P and δ, δ0 > 0, we have

sup
μ∈BL (μ0,δ)

D(μ||BL(P0, δ0)) = sup
x∈R

D(μδ
x ||BL(P0, δ0)),

where

μδ
x (t) =

{
max(0, μ0(t − δ) − δ)) if t < x,

min(1, μ0(t + δ) + δ)) if t ≥ x .

Proof: We have

sup
μ∈BL(μ0,δ)

D(μ||BL(P0, δ0))

= sup
μ∈BL(μ0,δ)

sup
A∈�

D(μA||BA
L (P0, δ0)) (30)

= sup
A∈�

sup
μ∈BL (μ0,δ)

D(μA||BA
L (P0, δ0))

= sup
A∈�

sup
μA∈BA

L (μ0,δ)

D(μA||BA
L (P0, δ0)). (31)

Equality (30) comes from Lemma 20.

Fix a finite partition A of the real line. Without loss of

generality we can assume |A| = n and

A = {(−∞, a1], (a1, a2], · · · , (an−1,∞)}.
The partition A over the probability space P can be
represented as an n-dimensional polytope. Denote the

n−dimensional point x = (x1, x2, · · · , xn),

PA = {x ∈ Rn :
∑
i

xi = 1, 0 ≤ xi ≤ 1 for 1 ≤ i ≤ n}.

Similarly, the partition A over the set BL(μ0, δ) is also an

n-dimensional polytope inside PA,

BA
L (μ0, δ) = {x ∈ PA : L j ≤

j∑
i=1

xi ≤ Uj for 1 ≤ j ≤ n-1},

where L j = max(0, μ0(a j − δ) − δ),Uj = min(1, μ0(a j +
δ) + δ). We can assume for any 1 ≤ j ≤ n − 2, Uj > L j+1,

otherwise we can make A finer such that the new partition
(denoted as A again) has the property that a j+1 ≤ a j + δ for

1 ≤ j ≤ n − 2. It can be verified that for each 1 ≤ j ≤ n − 2,
Uj > L j+1. The reason that such an A can be finite is that

μ0(t) is a bounded non-decreasing function.

A point x is a vertex of BA
L (μ0, δ) if and only if

∑ j
i=1 xi

equals L j or Uj for any 1 ≤ j ≤ n − 1,
∑n

i=1 xi = 1 and

0 ≤ xi ≤ 1. If § is a vertex of BA
L (μ0, δ), then for some

1 ≤ j ≤ n − 2 we have
∑ j

i=1 xi = Uj . Since Uj > L j+1 for

any 1 ≤ j ≤ n − 2, if
∑ j

i=1 xi = Uj for a vertex x and some

1 ≤ j ≤ n − 2, then for any k > j ,
∑k

i=1 xi = Uk .

Therefore there are n vertices x1, · · · , xn of BA
L (μ0, δ). And

for each xk ,
∑ j

i=1 x
k
i = L j for j < k,

∑ j
i=1 x

k
i = Uj for

j ≥ k. Or equivalently, if we denote L0 = 0 and Un = 1, for
1 ≤ k ≤ n,

xki =

⎧⎪⎨
⎪⎩
Li − Li−1 if i < k,

Ui − Li−1 if i = k,

Ui −Ui−1 if i > k.

From Lemma 22, D(·||BA
L (P0, δ0)) is a convex function, thus

the supremum on the polytope BA
L (μ0, δ) is achieved at its

vertices. Let

μδ
x(t) =

{
max(0, μ0(t − δ) − δ)) if t < x,

min(1, μ0(t + δ) + δ)) if t ≥ x .

Then any xk is a quantization of μδ
x over the partition A for

some x .

sup
μA∈BA

L (μ0,δ)

D(μA||BA
L (P0, δ0))

= max
k

D(xk ||BA
L (P0, δ0))

≤ sup
x

D((μδ
x )

A||BA
L (P0, δ0))

≤ sup
A∈�

sup
x∈R

D((μδ
x )

A||BA
L (P0, δ0)),

= sup
x∈R

sup
A∈�

D((μδ
x )

A||BA
L (P0, δ0)),

= sup
x∈R

D(μδ
x ||BL(P0, δ0)). (32)
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The last equality comes from Lemma 20. From (31) and (32),

we have

sup
μ∈BL(μ0,δ)

D(μ||BL(P0, δ0)) ≤ sup
x∈R

D(μδ
x ||BL(P0, δ0)).

For the other direction, since μδ
x ∈ BL(μ0, δ),

sup
μ∈BL(μ0,δ)

D(μ||BL(P0, δ0)) ≥ sup
x∈R

D(μδ
x ||BL(P0, δ0)).

Therefore,

sup
μ∈BL(μ0,δ)

D(μ||BL(P0, δ0)) = sup
x∈R

D(μδ
x ||BL(P0, δ0)).

�
A direct result of the above lemma is the boundedness of

the robust KL divergence, which is stated below.

Lemma 24: The rob st KL divergence is bo nded above,
and its maxim m is log 1

δ0
, i.e.,

sup
μ,P0∈P

D(μ||BL(P0, δ0)) = log
1

δ0
.

Proof: We construct a distribution S0 ∈ P such that

S0(t) = 0 for t < 0, and S0(t) = 1 for t ≥ 0, then

P = BL(S0, 1) since dL is bounded by 1. According to
Lemma 23,

sup
μ∈BL(S0,1)

D(μ||BL(P0, δ0)) = sup
x∈R

D(μδ
x ||BL(P0, δ0)),

where μ1
x (t) = 0 for t < x , and μ1

x (t) = 1 for t ≥ x . Denote
P 

0 (x) = min(1, P0(x + δ0)+ δ0) and Pl
0(x) = max(0, P0(x −

δ0) − δ0), we have

sup
x∈R

D(μδ
x ||BL(P0, δ0)) = sup

x∈R
log

1

P 
0 (x) − Pl

0(x)

= log
1

δ0
,

where the last equality comes from the fact that

P 
0 (x) − Pl

0(x) ≥ δ0

and

lim
x→∞(P 

0 (x) − Pl
0(x)) = δ0.

This means a finitely additive measure that belongs to M \P
can always achieve the supremum for any P0. �

The intuition behind the proof of the following upper semi-

continuity property is the following. For a fixed P0, with small
perturbation on μ, D(μ||P0) may vary in an arbitrary manner,

thus D(μ||P0) is not upper semicontinuous. The Lévy ball

BL(P0, δ0) provides the necessary tolerance to the perturbation
on μ, since the Lévy metric is the weakest among other

metrics. For all perturbations on μ that are within BL(μ, δ),
the largest variation of D(μ||BL(P0, δ0)) is achieved by a
distribution whose CDF is on the edge of BL(μ, δ). Such shifts

can be tolerated by BL(P0, δ0), so that the level of perturbation
on μ decreases to 0, and the corresponding variation in

D(μ||BL(P0, δ0)) diminishes.

Lemma 25: Given P0 ∈ P and δ0 > 0, if P0(t) is contin-
 o s in t, then D(μ||BL(P0, δ0)) is  pper semicontin o s in
μ with respect to the weak convergence.

Fig. 5. Illustration of  −δ,  δ,  
δ−δ and  δ

δ . The solid line represents μ0 and
shaded region represents BL (μ0, δ).

Proof: For any fixed μ0 ∈ P , the statement is equivalent

to proving that when δ → 0,

lim
δ→0

sup
μ∈BL(μ0,δ)

D(μ||BL(P0, δ0)) ≤ D(μ0||BL(P0, δ0)).

From Lemma 23, it is equivalent to proving

lim
δ→0

sup
x∈R

D(μδ
x ||BL(P0, δ0)) ≤ D(μ0||BL(P0, δ0)).

Denote  −δ as the left boundary of support set of distribution

μ(t + δ) and  δ−δ as the infimum x such that μ(x + δ) =
1 − δ. Similarly, denote  δ as the left boundary of distribution

μ(t−δ)) and  δ
δ as the infimum x such that μ(x−δ) = 1. Fig. 5

illustrates these locations. Note that these boundary points may
not be finite. We will first prove that for any δ1 ∈ (0, δ0),

lim
δ→0

sup
x∈R

D(μδ
x ||BL(P0, δ0)) ≤ D(μ0||BL(P0, δ0 − δ1)). (33)

Now fix δ1, we then establish that D(μδ
x ||BL(P0, δ0)) can be

uniformly bounded as x varies. Denote

Pδ0−δ1 := arg inf{P∈BL (P0,δ0−δ1)}
D(μ0||P).

For a fixed δ < δ1, let

Pδ, 
δ0−δ1

(t) = (1 − δ1)Pδ0−δ1(t + δ) + δ1,

and

Pδ,l
δ0−δ1

(t) = (1 − δ1)Pδ0−δ1(t − δ).

To get Pδ, 
δ0−δ1

(t), we first shift Pδ0−δ1(t) to the left by δ, then

scale it by (1 − δ1) and shift it up by δ1; similarly to get

Pδ,l
δ0−δ1

(t), we shift Pδ0−δ1(t) to the right by δ, then scale it by
(1 − δ1). Clearly

dL(Pδ, 
δ0−δ1

, Pδ0−δ1) ≤ δ1, dL(Pδ,l
δ0−δ1

, Pδ0−δ1) ≤ δ1.

For any x , construct Px
δ0−δ1

in a similar manner as μδ
x ,

Px
δ0−δ1

(t) =
{
Pδ,l

δ0−δ1
(t) if t < x,

Pδ, 
δ0−δ1

(t) if t ≥ x .

Px
δ0−δ1

∈ BL(P0, δ0) since

dL(Px
δ0−δ1

, P0) ≤ dL(Px
δ0−δ1

, Pδ0−δ1) + dL(Pδ0−δ1 , P0)

≤ δ1 + (δ0 − δ1) = δ0,
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where the first inequality holds because (P, dL) is a metric

space (i.e., dL satisfies the triangle inequality); the second
inequality comes from (34) and the definition of Pδ0−δ1 .

From Lemma 24, D(μ0||Pδ0−δ1) = D(μ0||BL(P0, δ0 −
δ1)) < ∞. Therefore μ0 is absolutely continuous with respect
to Pδ0−δ1 . From the construction of μδ

x and Px
δ0−δ1

, we can

see that μδ
x is absolutely continuous with respect to Px

δ0−δ1
as

well. Therefore, we have

lim
δ→0

sup
x∈R

D(μδ
x ||BL(P0, δ0)) = lim

δ→0
sup
x∈R

inf{P∈BL(P0,δ0)}D(μδ
x ||P)

≤ lim
δ→0

sup
x∈R

D(μδ
x ||Px

δ0−δ1
),

establishing (33). We now prove D(μδ
x ||Px

δ0−δ1
) can be uni-

formly bounded as x varies. Inequalities appear in cases 1)-3)
are due to the log sum inequality (see [2, Ch. 2.7]) unless

otherwise stated.

1). For x <  −δ ,

D(μδ
x ||Px

δ0−δ1
)

≤ δ log
δ

δ1
+

∫  δ−δ

 −δ

d(μ0(t + δ) + δ)

× log
d(μ0(t + δ) + δ)

d((1 − δ1)Pδ0−δ1(t + δ) + δ1)

= δ log
δ

δ1
+

∫  δ−δ

 −δ

d(μ0(t+δ)) log
d(μ0(t + δ))

(1 − δ1)d(Pδ0−δ1(t + δ))

= δ log
δ

δ1
+

∫  δ−δ

 −δ

d(μ0(t + δ)) log
1

(1 − δ1)

+
∫  δ−δ

 −δ

d(μ0(t + δ)) log
d(μ0(t + δ))

d(Pδ0−δ1(t + δ))

= δ log
δ

δ1
+ (1 − δ) log

1

(1 − δ1)

+
∫  δ−δ+δ

 −δ+δ
d(μ0(t)) log

d(μ0(t))

d(Pδ0−δ1(t))
, (34)

when δ → 0, the above converges to

log
1

(1 − δ1)
+ D(μ0||Pδ0−δ1).

2.) For  −δ ≤ x ≤  δ ,

D(μδ
x ||Px

δ0−δ1
)

= ( 0(x + δ) + δ) log
( 0(x + δ) + δ)

(1 − δ1)Pδ0−δ1(x + δ) + δ1

+
∫  δ−δ

x+
d(μ0(t+δ)+δ) log

d(μ0(t + δ) + δ)

d((1 − δ1)Pδ0−δ1(t + δ) + δ1)

≤ δ log
δ

δ1
+ ( 0(x + δ)) log

( 0(x + δ))

(1 − δ1)Pδ0−δ1(x + δ)

+
∫  δ−δ

x+
d(μ0(t + δ)) log

d(μ0(t + δ))

(1 − δ1)d(Pδ0−δ1(t + δ))

≤ δ log
δ

δ1
+

∫ x

 −δ

d(μ0(t + δ)) log
d(μ0(t + δ))

(1 − δ1)d(Pδ0−δ1(t + δ))

+
∫  δ−δ

x+
d(μ0(t + δ)) log

d(μ0(t + δ))

(1 − δ1)d(Pδ0−δ1(t + δ))

= δ log
δ

δ1
+

∫  δ−δ

 −δ

d(μ0(t + δ)) log
d(μ0(t + δ))

(1−δ1)d(Pδ0−δ1(t + δ))
,

(35)

which degenerates to the case of x <  −δ since (35) is the

same as (34).

3.) For  δ < x ≤  δ−δ ,

D(μδ
x ||Px

δ0−δ1
)

=
∫ x−

 δ

d(μ0(t − δ) − δ) log
d(μ0(t − δ) − δ)

d((1 − δ1)Pδ0−δ1(t − δ))

+ (μ0(x + δ) + δ − (μ0(x − δ) − δ))

∗ log
(μ0(x + δ) + δ − (μ0(x − δ) − δ))

(1 − δ1)Pδ0−δ1(t + δ) + δ1 − (1 − δ1)Pδ0−δ1(t − δ)

+
∫  δ−δ

x+
d(μ0(t+δ)+δ) log

d(μ0(t + δ) + δ)

d((1 − δ1)Pδ0−δ1(t + δ) + δ1)

=
∫ x−

 δ

d(μ0(t − δ)) log
d(μ0(t − δ))

(1 − δ1)dPδ0−δ1(t − δ)

+ (2δ + μ0(x + δ) − μ0(x − δ))

∗ log
2δ + μ0(x + δ) − μ0(x − δ)

δ1 + (1 − δ1)(Pδ0−δ1(t + δ) − Pδ0−δ1(t − δ))

+
∫  δ−δ

x+
d(μ0(t + δ)) log

d(μ0(t + δ))

(1 − δ1)dPδ0−δ1(t + δ)

≤
∫ x−

 δ

d(μ0(t − δ)) log
d(μ0(t − δ))

(1 − δ1)dPδ0−δ1(t − δ)

+ 2δ log
2δ

δ1
+

∫ x+δ

x−δ
dμ0(t) log

dμ0(t)

(1 − δ1)dPδ0−δ1(t)

+
∫  δ−δ

x+
d(μ0(t + δ)) log

d(μ0(t + δ))

(1 − δ1)dPδ0−δ1(t + δ)

= 2δ log
2δ

δ1
+

∫  δ−δ+δ

 δ−δ
dμ0(t) log

dμ0(t)

(1 − δ1)dPδ0−δ1(t)

= 2δ log
2δ

δ1
+ (1 − 2δ) log

1

1 − δ1

+
∫  δ−δ+δ

 δ−δ
dμ0(t) log

dμ0(t)

dPδ0−δ1(t)
,

which, as δ → 0, converges to

log
1

1 − δ1
+ D(μ0||Pδ0−δ1).

Other symmetric cases can be solved similarly. From the

above arguments, we have

lim
δ→0

sup
x∈R

D(μδ
x ||BL(P0, δ0))

≤ log
1

1 − δ1
+ D(μ0||BL(P0, δ0 − δ1)).

Notice that this is true for any δ1. Letting δ1 → 0, we have

lim
δ→0

sup
x∈R

D(μδ
x ||BL(P0, δ0))

≤ lim
δ1→0

(
log

1

1 − δ1
+ D(μ0||BL(P0, δ0 − δ1))

)

= lim
δ1→0

D(μ0||BL(P0, δ0 − δ1))

= D(μ0||BL(P0, δ0)),



2372 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

the last equality comes from Lemma 21: D(μ0||BL(P0, δ0))
is left continuous in δ0 if P0(t) is continuous in t . �

Lemma 26: Given P0 ∈ P and δ0 > 0, D(μ||BL(P0, δ0))
is lower semicontinuous in μ with respect to the weak con-
vergence.

Proof: Assume μn
w−→ μ0. From (27), we know

there exists Pn ∈ BL(P0, δ0) such that D(μn ||Pn) =
D(μn ||BL(P0, δ0)). Since B̄L(P0, δ0) is compact, there

exists a subsequence of Pn (which we again denote by
Pn) that converge to Pμ0 ∈ B̄L(P0, δ0). D(μ||Pμ0) ≤
lim infn→∞ D(μn ||Pn) because (μn, Pn) → (μ0, Pμ0 ) and the

KL divergence is lower semi-continuous. Therefore we have

D(μ0||BL(P0, δ0)) = D(μ0||B̄L(P0, δ0))

≤ D(μ0||Pμ0)

≤ lim inf
n→∞ D(μn ||Pn)

= lim inf
n→∞ D(μn ||BL(P0, δ0)) (36)

where (36) comes from (24). �
As D(μ||BL(P0, δ0)) is both upper semicontinuous

(Lemma 25) and lower semicontinuous (Lemma 26), it is

continuous in μ with respect to the weak convergence.

APPENDIX B

PROOF OF THEOREM 13

Proof: The three parts of the Theorem 13 are proved

below.

1) From the general Sanov’s theorem, we have

inf
P∈P0

J P(�) = inf
P∈P0

lim inf
n→∞ − 1

n
log P({xn : μ̂n ∈ �1})

≥ inf
P∈P0

inf
μ∈cl�1

D(μ||P)

= inf
μ∈cl�1

D(μ||P0)

= η.

The last equality holds since D(μ||P0) is continuous in
μ thus cl�1 ⊆ {μ : D(μ||P0) ≥ η}. On the other hand,

inf
P∈P0

J P(�) (37)

≤ inf
P∈P0

lim sup
n→∞

− 1

n
log P({xn : μ̂n ∈ �1})

≤ inf
P∈P0

inf
μ∈int�1

D(μ||P)

= η. (38)

The last equality holds since int�1 = �1.

2) Again from the general Sanov’s theorem, we have

I Q(�) = lim inf
n→∞ − 1

n
log Q({xn : μ̂n ∈ �0})

≥ inf
μ∈cl�0

D(μ||Q)

= D(�0||Q).

The last equality holds since cl�0 = �0. On the other

hand, {μ : D(μ||P0) < η} ⊆ int�0, thus,

I Q (�) ≤ lim sup
n→∞

− 1

n
log Q({xn : μ̂n ∈ �0})

≤ inf
μ∈int�0

D(μ||Q)

≤ inf
μ∈{μ:D(μ||P1)<η}

D(μ||Q)

≤ D(�0||Q). (39)

Inequality (39) holds because of the following. There

exists a distribution P ∈ P0 such that D(P||Q) < ∞.

For any Pc ∈ �0 and 0 < λ < 1, we have (1 − λ)Pc +
λP ∈ {μ : D(μ||P0) < η} since

D((1 − λ)Pc + λP||P0)

≤ (1 − λ)D(Pc||P0) + λD(P||P0)) (40)

< (1 − λ)η + 0 (41)

< η,

where (40) comes from the fact that D(μ||P0) is convex

in μ while inequality (41) is due to the fact P ∈ P0.

Thus,

inf
μ∈{μ:D(μ||P1)<η}

D(μ||Q)

≤ lim
λ→0+ D((1 − λ)Pc + λP||Q)

≤ lim
λ→0+(1 − λ)D(Pc||Q) + λD(P||Q)

≤ D(Pc||Q),

the last inequality holds since D(P||Q) < ∞. The above

inequalities hold for any Pc ∈ �0, thus we have

inf
μ∈{μ:D(μ||P0)<η}

D(μ||Q) ≤ D(�1||Q).

3) We have

inf
P∈P0

D(�1||P)

= inf
P∈P0

D(int�1||P)

≥ inf
P∈P0

lim inf
n→∞ − 1

n
log P({xn : μ̂n ∈ �1})

> η. (42)

Therefore, �1 ⊆ �1, or equivalently, �0 ⊆ �0. Next,

I Q(�) = lim inf
n→∞ − 1

n
log Q({xn : μ̂n ∈ �0})

≤ lim inf
n→∞ − 1

n
log Q({xn : μ̂n ∈ �0})

= I Q(�).

�

APPENDIX C

PROOF OF COROLLARY 18

Proof: Denote Cμ ⊆ R as the continuity set of μ(t). From

Theorem 6, D(μ||BL(P0, δ0)) is continuous in μ. If μn
w−→ μ,
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then limn→∞ D(μ̂n ||BL(P0, δ0)) = D(μ||BL(P0, δ0)). There-

fore,

Pr

(
lim

n→∞ D(μ̂n ||BL(P0, δ0)) = D(μ||BL(P0, δ0))
)

≥ Pr

(
μ̂n

w−→ μ
)

= Pr

(
lim

n→∞ μ̂n(t) = μ(t), for all t ∈ Cμ

)

= 1 − Pr

(
lim

n→∞ μ̂n(t) �= μ(t), for some t ∈ Cμ

)

≥ 1 −
∑
t∈Cμ

Pr

(
lim

n→∞ μ̂n(t) �= μ(t)
)

= 1.

The last equality comes from the fact that for any t ∈ Cμ,

μn(t)
a.s.−−→ μ(t). �
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