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Robust Kullback-Leibler Divergence and Universal
Hypothesis Testing for Continuous Distributions

Pengfei Yang and Biao Chen

Abstract— Universal hypothesis testing (UHT) refers to the
problem of deciding whether samples come from a nominal
distribution or an unknown distribution that is different from
the nominal distribution. Hoeffding’s test, whose test statis-
tic is equivalent to the empirical Kullback-Leibler divergence
(KL divergence), is known to be asymptotically optimal for distri-
butions defined on finite alphabets. With continuous observations,
however, the discontinuity of the KL divergence in the distribu-
tion functions results in significant complications for UHT. This
paper introduces a robust version of the classical KL divergence,
defined as the KL divergence from a distribution to the Lévy ball
of a known distribution. This robust KL divergence is shown to be
continuous in the underlying distribution function with respect
to the weak convergence. The continuity property enables the
development of an asymptotically optimal test for the university
hypothesis testing problem with continuous observations. The
optimality is in the same sense as that of the Hoeffding’s
test and stronger than that of Zeitouni and Gutman. Perhaps
more importantly, the developed test statistic can be computed
through convex programs, making it much more meaningful in
practice. Numerical experiments are also conducted to evaluate
its performance as compared with some kernel based goodness
of fit test that has been proposed recently.

Index Terms— Kullback-Leibler divergence, universal hypoth-
esis testing, Lévy metric.

I. INTRODUCTION

HE Kullback-Leibler divergence (KL divergence), also

known as the relative entropy, is one of the most funda-
mental measures in information theory and statistics [1], [2].
The KL divergence has a number of operational meanings
and has found applications in a diverse range of research
problems. For example, the mutual information, which is a
special case of the KL divergence, is a fundamental quantity in
both channel coding and data compression [2]. In hypothesis
testing, the KL divergence is known to be the optimal decay
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rates of error probabilities (e.g., see Stein’s lemma [2] and
Sanov’s theorem [3]).

An important application of the KL divergence is in the so-
called universal hypothesis testing (UHT): given a nominal
distribution Py, the objective is to decide, upon observing
a sample sequence, whether the underlying distribution that
generates the sequence is Py or a distribution different from Py.
This problem was first formulated by Hoeffding [4]; with
finite alphabet, Hoeffding developed a detector that is shown
to be optimal according to the generalized Neyman-Pearson
(NP) criterion, i.e., it achieves optimal type II error decay rate
subject to a constraint on the type-I error decay rate [4]. The
test statistic of Hoeffding’s detector is equivalent to the KL
divergence between the empirical distribution and Py (see 8).

Hoeffding’s result, however, does not generalize to the
UHT with continuous alphabet. Clearly, computing empirical
KL divergence for continuous distributions is meaningless as
the empirical distribution, which is discrete, and the nominal
distribution Pp, which is continuous, have different support
sets. Additionally, the asymptotic optimality of Hoeffding’s
test was established using a combinatorial argument [4] and
thus is inapplicable to the continuous case. Attempts to recon-
struct a similar decision rule for continuous observations have
been largely fruitless with the only exception of the work
by Zeitouni and Gutman [5] where large deviation bounds
were used in lieu of combinatorial bounds. The results in [5],
however, are obtained at the cost of weakened optimality with
a rather complicated detector.

The difficulty in dealing with continuous observations for
UHT stems from the subtle but important distinction on the
continuity property of the KL divergence with respect to
the underlying distributions. With finite alphabet distributions,
the KL divergence defined between two distributions is known
to be continuous in the distribution functions. This is not the
case for the KL divergence defined between two distributions
on the real line, i.e., those with continuous observations [6].
Specifically, weak convergence (i.e., convergence of distri-
bution functions) does not imply convergence of the KL
divergence. As such, even when two distributions are arbi-
trarily close in terms of distribution functions, the KL diver-
gence between them can be arbitrarily large, making the KL
divergence unsuitable for the UHT problem with continuous
observations.

This paper introduces a robust version of the classical KL
divergence that utilizes the Lévy metric which, unlike the KL
divergence, is a true distance metric for distributions. The
robust KL divergence, defined as the KL divergence from a
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distribution to a Lévy ball of a second distribution, is shown
to be continuous in the first distribution - the involvement of
the Lévy ball around the second distribution has a smoothing
effect that ensures the continuity of the robust KL divergence.
This continuity property is crucial in developing a test for the
UHT that is similar in its form to Hoeffding’s detector while
attaining the desired asymptotic NP optimality. Not only is the
optimality stronger than that of [5], but the test statistic is also
much more intuitive and amenable to numerical evaluation.
The rest of the paper is organized as follows. Section II
defines the KL divergence between two (sets of) distributions;
introduces the concepts of weak convergence and the Lévy
metric along with their connections; and reviews the UHT
for the finite alphabet case. Section III defines the robust
KL divergence and establishes the continuity property with
respect to weak convergence. In Section IV, the large deviation
approach by Zeitouni and Gutman [5] to the UHT for
continuous distributions is first reviewed; a robust version of
the UHT problem is then introduced and the asymptotically
NP optimal test using the robust KL divergence is derived.
Section V shows how the empirical robust KL divergence
can be computed via convex programming and compares
the performance with a most recently proposed kernel based
goodness of fit test developed in [7], namely the kernel Stein
discrepancy test. Section VI concludes this paper.

II. PRELIMINARIES
A. The KL Divergence

The KL divergence was first introduced in [8] to quantify
the divergence between two probability distributions. For
finite alphabets, the KL divergence between a probability
distribution 4 = (u1, t2,- -+, ity) and another distribution
P = (p1, p2, -+, pn) is defined as

n
”
D(u||P) =Zmlogp—f. ()
i=1 !

For distributions defined on the real line R, the KL divergence
between u and P is defined as

du
D(ul|P) =/Rdu log . @)

In the above definition, we have implicitly assumed that the
two distributions are absolutely continuous with each other,
leading to a bounded KL divergence. The KL divergence
D(u||P) is jointly convex for both discrete and continuous
distributions [9]. For two sets of probability distributions, say
I'1 and T'5, defined on the same probability space, the KL
divergence between the two sets is defined to be the infimum
of the KL divergence of all possible pairs of distributions, i.e.,

D(I'||[T2) == inf _ D(y1lly2). (3)
71€l,72€ln

B. Weak Convergence and the Lévy Metric

Denote the space of probability distributions on (R, F)
as P, where R is the real line and F is the sigma-algebra that
contains all the Borel sets of R. For P € P, P(S) is defined
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Fig. 1. The Lévy ball centered at standard normal distribution with
radius 0.045.

for the set § € F. A clear and simple notation commonly
used is P(t) := P((—o00,1]), since P and its corresponding
cumulative distribution function (CDF) are equivalent, i.e., one
is uniquely determined by the other [10].

Weak convergence is defined to be the convergence of the
distribution functions as given below.

Definition 1 (Weak Convergence [10], [11]): For P,,
P € P, we say P, weakly converges to P and write P, = p,
if P,(x) — P(x) for all x such that P is continuous at x.

Definition 2 (Lévy Metric [10], [11]): The Lévy metric dj,
between distributions F € P and G € P is denoted as
dp(F,G) :=infle : Fx —¢) —€ < G(x) < F(x + ¢) + ¢,
Vx € R}.

The Lévy metric makes (P, dr) a metric space [3], i.e., we
have, for u, P, Q € P,

dr(u, P)=0& u=P"P,
dL(/u’P) = dL(P’ ILt),
dp(p, P) < dp(u, Q) +di(Q, P).

Definition 3: The Lévy ball centered at Py € P with
radius 0 is denoted as

Br(Py,0) ={P € P :dr(P, Py) <9}. 4)

Fig. 1 plots the CDF of the standard normal distribution and
its Lévy ball with radius 0.045. A distribution falls inside the
shaded area if and only if its distance to the standard normal
distribution, as measured by the Lévy metric dy, is less than
or equal to 0.045.

The Lévy metric is strongly related to the concept of the
weak convergence of probability measures.

Lemma 4 [10], [11]: For sequences in P whose limit in
weak convergence is also in P, the weak convergence and
convergence in the Lévy metric are equivalent, i.e., if (P, €
P) is a sequence in ‘P and P € P, then P, S0P iff
dp(P,, P) — O.

C. Universal Hypothesis Testing

Let a sequence of independent and identically distributed
(i.i.d.) observations (xg, - ,x,—1) = x" be the output of a
source u. Consider the following hypothesis test

Ho:u=Py, Hi:nu=20, (5)
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where Py is a known distribution while Q # Py is defined on
the same probability space as Py but is otherwise unknown.
The fact that Q can be an arbitrary gives rise to the name UHT.
Clearly, while any decision rule will be independent of Q, the
type II error rate of the decision rule depends on Q.

In this paper, our main goal is to find an optimal detector
under the generalized asymptotical Neyman-Pearson (NP)
criterion [5]. Under this criterion, the optimal detector seeks
the best trade-off between first and second type error decay
rates. Specifically, let ¢ be the sequence of detectors {¢" (x"),
n > 1}. Define the error decay rates for the two types of error
probabilities respectively as follows,

19() = liminf - log 0" (") = 0),

JP0($) = liminf — log Po(" (")) = 1)

Zeitouni and Gutman [5] have shown that to achieve the
best trade-off between 1€ and J 70, the test can depend on x"
only through the empirical measure [i,, defined to be

> i<y
=

fin(t) = (6)

Clearly, i, belongs to P. A consequence of the above
result is that, any detector (which is a partition of the sample
space R") can now be equivalently characterized through a
partition of the probability space P [5]. As such, a sequence
of detectors can be equivalently expressed using €2, which
is a sequence of partitions (Qo(n), Q1 (n)) (n = 1,2,---),
of which Qy(n) N Qi(n) = @ and P = Qp(n) U Qi(n). The
decision rule is made in favor of H; if u, € Q;(n), i =0, 1.
Throughout the paper, we will use Q instead of ¢ to denote a
sequence of detectors, which enables the use of the general
Sanov’s Theorem (Theorem 7) in proving our main result
(Theorem 13).

Therefore 12 (¢4) and J0(¢) can be written as

1

12(Q) = liminf —— log Q(f1, € Qo(n)),
n—o00 n
1

JP(Q) = liminf — = log Po(fi,, € Q1 (n)).
n—o00 n

The generalized NP criterion maximizes the decay rate of
type II probability of error under a constraint on the minimal
decay rate for the type I probability of error:

max 12(Q) st JO@Q) =7 (7

The UHT was originally studied by Hoeffding [4] who con-
sidered distributions with finite alphabet. Hoeffding’s detector
is equivalent to the following threshold test of the empirical
KL divergence:

A Hl
D(itnl||Po) 2 1.
Hy

(®)

Hoeffding successfully established the asymptotical NP opti-
mality of the above test. However, for continuous sample
space such as R, Hoeffding’s detector (8) becomes degenerate
since computing KL divergence between empirical distribution
[ty to continuous distribution Py is meaningless. In addition,
Hoeffding resorted to combinatorial bounds in establishing the
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asymptotic optimality which is not applicable to continuous
observations. Zeitouni and Gutman [5] addressed the UHT
with continuous observations via a large deviation approach;
the obtained test, however, only achieves weakened optimality
compared with Hoaffding’s test and is numerically challenging
to evaluate (see our review in Section IV-A). In the following,
we give a formal definition of the robust KL. divergence, and
establish its continuous property. This allows us to tackle the
UHT from a different perspective as described in Section IV-B.

III. RoBUST KL DIVERGENCE
A. Continuity Property of the KL Divergence

Let the nominal distribution be Pp. Let x and u,,
n=1,2,---, be distributions with the same sample space as
Py. Suppose the sequence of distributions u, converge weakly
to u. It is of interest to study whether the corresponding
KL divergence between pu, and Py also converge to the KL
divergence between u and Py. That is, does u, 5 & imply
D(unllPo) = D(ullPo)?

The statement is true if the distributions involved are defined
on a finite alphabet. With finite elements in the sample
space of Py, D(u||Py) is continuous in y that has the same
sample support as Pp. Convergence in distribution implies
convergence in the corresponding KL divergence.

This, however, is not the case for Py € P. Indeed,
it was established in [6] that the KL divergence is only lower
semicontinuous with respect to the weak convergence for the
continuous case, i.e.,

D(ul| Po) < Tim inf D(ual| Po).

However, the KL divergence is not upper semicontinuous,
i.e., the following result is not necessarily true:

D(u||Po) > lim sup D (uy]| Po).
n—oo

Thus the KL divergence is not continuous in x for continuous
observations. To see this, let © = Py thus D(u||Py) = 0.
Choose a distribution, say P, that is not absolutely continuous
with respect to Py. Let

1 1
wn=(1-7) m+
n n

Clearly u, is also not absolutely continuous with respect
to Py, thus D(u,||Py) is unbounded for any given n > 0.
However, u, weakly converges to Py as n — oo. While
this construction takes advantage of distributions that are not
absolutely continuous with respect to Py, the same is true
even if one is constrained to a sequence of distributions that
is absolutely continuous with respect to Py (see arguments in
proof of Theorem II.3 [12]).

This lack of continuity for the KL divergence for the
continuous case is the primary reason for the difficulty in
generalizing Hoeffding’s result to continuous observations.
A direct consequence of the lack of continuity is that the
superlevel set defined by the KL divergence is not closed as
observed in [5]. The superlevel set is given by

{n € P D(ullPo) = m}. ©)
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The fact that the KL divergence is not continuous in u
leads to the unexpected property that the closure of the above
set encompasses the entire probability space, i.e., any P that
does not belong to the above superlevel set has a sequence
of distributions in the set that weakly converge to P. In other
words, while the sequence of distributions may be arbitrarily
close to the nominal distribution (in the weak convergence
sense), their KL divergence to the nominal distribution is
bounded away from 0. As such, a test in a form similar to (8)
can not be used for continuous distributions.

B. Robust KL Divergence and Its Continuity Property
Definition 5: The robust KL divergence between u and Py
with the radius parameter dy > 0 is denoted as

inf

D B P’é =
(u1BL(Po, d0)) PeBL(Py,d0)

D(ul|P), (10)

where Br(Po,d0) is the Lévy ball centered at Py with
radius o.

The following theorem establishes its continuity property
in « under some mild assumptions.

Theorem 6: For a distribution Py € P, if Py(t) is continu-
ous in t, then for any dy > 0, D(u||Br(Po, d9)) is continuous
in u with respect to the weak convergence.

The complete proof is lengthy and deferred to Appendix A.
The non-trivial part of the proof is to show that
D(u||BL(Py, dp)) is upper semicontinuous in x (Lemma 25).
Lemma 26 proves D(u||Br(Po, dp)) is lower semicontinuous
in u. Therefore, D(u||Br(Py, dp)) is continuous in x. Impor-
tant intermediate steps are summarized below.

1) We first partition (quantize) the real line into a set of
finite intervals. The robust KL divergence corresponding
to the quantized distributions converge to the true robust
KL divergence as the quantization becomes finer. The
proof is in essence proving that a max-min inequality is
in fact an equality (Lemma 20).

2) The infimum defined in (10) is attained by a distrib-
ution either inside or on the surface of the Lévy ball
(see Eq. (27) Lemma 20).

3) The robust KL divergence is continuous in the radius of
the Lévy ball (Lemma 21).

4) The robust KL divergence and the quantized robust
KL divergence are convex functions of the respective
distributions (Lemma 22).

5) The supremum of the robust KL divergence over a
Lévy ball centered at the first distribution x is achieved
by a distribution whose distribution function consists
of two parts with a single transition point: the first
part (i.e., prior to the transition point) corresponds to
the lower bound of the Lévy ball and the second part
(i.e., after the transition point) corresponds to the upper
bound of the Lévy ball. Thus the class of distributions
so defined is determined by the transition point given the
Lévy ball. As such, the problem of finding an optimal
distribution is reduced to finding an optimal transition
point (Lemma 23).
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6) The robust KL divergence is upper bounded by
(Lemma 24)

upD(ullBy (P, 30)) =og +
w,PheP 0
7) The supremum of the robust KL divergence over a Lévy
ball around u converges to the robust KL divergence as
the Lévy ball diminishes, i.e., as its radius goes to 0.
Therefore, the robust KL divergence is upper semicon-
tinuous in x (Lemma 25).
8) The robust KL divergence is lower semicontinuous
(Lemma 26).

The intuition of the continuity property of the robust KL
divergence is as follows. The classical KL divergence is a
function of two distributions, and its value may vary arbitrarily
large with small perturbation in one of the distributions with
respect to the Lévy metric. The reason is because the Lévy
metric is strictly weaker than the KL divergence, i.e., conver-
gence in the KL divergence necessarily implies convergence in
the Lévy metric but not the other way around. For the robust
KL divergence where the KL divergence is defined between
the first distribution and a Lévy ball centered around the sec-
ond distribution, small perturbations in the first distribution
can now be tolerated by the Lévy ball around the second
distribution, thanks again to the fact that the Lévy metric is
strictly weaker than the KL divergence.

The continuity property in Theorem 6 does not hold if
the distribution ball is constructed using some other mea-
sures, including the total variation and the KL divergence
(see [14, Sec. 2.2]). The assumption that Py(¢) is continuous
in ¢ is also necessary for the continuous property of the robust
KL divergence to hold. We construct the following example to
illustrate this point. Let Py be the distribution that Py(¢) = 0
fort < 0 and Py(t) = 1 for t > O, i.e., it is a degenerate
random variable that equals to 0 with probability 1. Let u,
be the distribution such that u,(t) = 0 for t < 0.5 4 % and
() =1 fort>0.5+ % Thus up 5 i as n — 0o, where
u(@)=0fort <0.5and u(r) = 1 forzr > 0.5. We can see that
D(u||BL(Py,0.5)) = 0 since u € Br(Py,0.5). As i — i,

. ) 1
lim D(un||BL(Po,0.5))= lim log ~—>D(u||BL(Fo,0.5)),
n— oo n—oo 0.5

and the distribution in B (P, 0.5) achieving the KL diver-
gence value of log 2 is a degenerate one: it takes values of the
two points 0.5 and 0.5 + 1/n with equal probability.

The proof of Theorem 6 sheds some light on the dynamics
of the KL divergence of continuous distributions. Furthermore,
the established continuity property of the robust KL divergence
is key to solving the robust version of the UHT problem for
the continuous case.

IV. ROBUST UNIVERSAL HYPOTHESIS TESTING
A. Review of the Large Deviation Approach

Motivated by the fact that Hoeffding’s test does
not apply to distributions with continuous observations,
Zeitouni and Gutman [5] developed a universal hypothesis
test for distributions defined on the real line under a strictly
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weaker notion of optimality. Their approach relies on the large
deviation theory, specifically, the general Sanov’s theorem. For
a given set [' C P, denote the closure and interior sets of I’
as cIT" and intT, respectively.

Theorem 7 (General Sanov’s Theorem [3, Th. 6.2.10]):
Given a probability set I C ‘P, for a probability measure

O¢l,
1
inf D(P||Q) < liminf ——log Q({x" : it,, € T})
PeciT n—oo n
1
< limsup——1log Q({x" : i, € T})

n—00 n

inf D(P
Pgilmr (P11O),

IA

where [i,, is the empirical distribution defined in (6).

The general Sanov’s Theorem illustrates the large deviation
principle for the empirical measures and was used extensively
in the proof of Theorems 8 [5]. For any set ' € P, define its
Jo—smooth set to be

I = Uper{u € P :dr(u, P) < 9.

It is apparent that a J-smoothed set is an open set. The major
contribution of [5] is summarized in the Theorem below.
Theorem 8 [5]: Define A as,

A1 = {p: D(BL(u, 20)||Po) = n)°,
Ao =P\ Ay

(1)
12)

A is d—optimal, i.e.,
1) JP(A) = 1.
2) If Q is a test such that JP(Q%) > 5, then for any
0 # P,

12(Q%) < 19(A). (13)

The detector in Theorem 8 has weakened optimality com-
pared to Hoeffding’s test; it is also numerically challenging to
construct such a test. See our detailed remarks below.

Remark 9: Theorem 8 applies to both discrete and
R-valued random variables. However, for the finite alphabet
case, the corresponding detector in (11) yields a weaker result
than Hoeffding’s detector [4], a price paid for its generality.

Remark 10: In addition to weakened optimality, perhaps the
most important drawback in Theorem 8 is the complexity of
the detector. Computing D(u||Py) is meaningless if u is an
empirical distribution (hence discrete) and Py a continuous
distribution, Theorem 8 works around this issue by computing
the KL divergence from By (u,20) to Py where the Lévy
ball around the empirical distribution include continuous dis-
tributions when make the computation meaningful. However,
finding a continuous distribution within the Lévy ball around
4 that minimizes the KL divergence to Py is an infinite dimen-
sion minimization problem that is numerically prohibitive to
evaluate. This is illustrated in Fig. 2 where one needs to find
a continuous u* inside the shaded region such that

D(u*||Po) = inf _ D(ul|Po).
HEBL (,un,
Remark 11: Even if evaluating (or approximating)

the detector

D(Br(fty,20)||Py) can be accomplished,
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Fig. 2. The shaded region is By (i, 20) and the solid line is P.

described in Theorem &8 may still encounter more
complications. In particular, in the case when
D(Br(fty,20)||Py) < #, one needs to further check if i,
belongs to the d-smooth set of {u : D(Br(u,2d)||Po) > n},
which is also computationally challenging.

Remark 12: For a test Q defined by the partition of the
probability space (Qj, ), either Q; or Q,, may consist
of only empirical distributions (the optimal test can depend
on the observations only through the empirical distributions).
Suppose € consists of only empirical distributions. Then
intQq is empty and cIQ; equals to P. It is also possible that
the interior set and closure are too abstract or complicated
to describe. In these cases, one can not take advantage of the
general Sanov’s Theorem to analyze the error decay rates. That
is why in Theorem 8, for an arbitrary test 2, we need to first
perform d—smooth operation on it before comparing its error
decay rates to those of the test A.

One of the difficulties in generalizing the discrete case to
the continuous case, as first pointed out in [5], is that the
superlevel set {u € P : D(ul||Py) > n} is not closed in P.
This has been discussed in detail in Section III-A. In the
following, instead of implementing the “d—smooth” operation
on the detector as in (11), we generalize the original hypothesis
test by considering a robust version of it. Specifically, H,
the single distribution Py is replaced by a small Lévy ball
centered around Py, i.e., Bz (Py, dy). The introduction of the
Lévy ball in place of the single distribution Py is itself an
arguably more meaningful version for UHT: in practice, it is
probably more important to tell if the sequence significantly
departs from the nominal distribution Py and the radius dy of
the Lévy ball can be used to quantify the significance level.
With this formulation of the UHT, we show in the following
that the empirical likelihood ratio is asymptotically optimal
under the minimax criterion.

B. Robust Universal Hypothesis Testing

The robust UHT problem is defined as followings. Givens

samples drawn from a distribution x, consider two hypotheses,

Ho:pnePo, Hi:p=20, (14)

where Py := B (P, dy), Po is a known continuous distribu-
tion, dgp > 0, and Q ¢ Py but is otherwise unknown.
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The goal is to find the optimal detector under the asymptotic
NP criterion:

max 12(Q) st JPO(Q) > 7, (15)

where
JP(Q) = inf JP(Q).
PePy

Therefore, the goal is to maximize the decay rate of type II
error probability when the worst case type I error probability
has a decay rate that is bounded below by 7.

The reason that the Lévy metric is used to define Py is that
the Lévy metric is the weakest hence also the most general
one [13]. In another word, By, (P, do) contains all distributions
that are close enough to Py as measured using any other
metrics. An additional advantage is that the resulting optimal
detector is rather intuitive and straightforward to implement,
which might not be the case if Py is constructed using other
metrics. Theorem 13 below describes the optimal solution
to the robust UHT, the proof of which can be found in
Appendix B.

Theorem 13: For the robust UHT problem in (15). The
detector A = {Ao, A1} defined by,

Ay = {p : D(ullPo)) > n},

satisfies the following properties:
1) J7N) = 1.
2) 1°(A) = D(Aol|Q).
3) For any detector Q with Q(n) = Q with Q| open, if

Ao =P\ A1, (16)

JPQ) > g, (17)
then for any Q ¢ B (Py, d),
12(Q) < 19(n). (18)

Remark 14: Theorem 13 states that the empirical likelihood
ratio test,

H\
D(@,||BL(Po, do) 2 1,
Hy

19)

achieves the optimal type II error decay rate among all
detectors Q = {Qq(n), Qi(n)} that have the same worst case
type I error decay rate as A. In particular, the optimal type II
error decay rate is precisely D(Ag||Q) when Q is the true
distribution under Hj.

Remark 15: Computing D(ii,||Br(Po,dp)) is a finite
dimension optimization problem, which is in essence finding a
step function inside the shaded area that achieves the minimum
KL divergence to /i, (see Fig. 3). This can be shown to
be a convex optimization problem with linear constraints in
Section V-A, thus can be readily solved via standard convex
programs. This contrasts with that of Theorem 8 where the
detector involves an infinite dimension optimization problem
(see Remark 2).

Remark 16: From Theorem 8, the detector developed
in [5] can not be compared directly to an arbitrary detector
Q; instead, Q° is used in establishing the optimality of the
proposed detector. This ensures that Qf is open and Qg is

2365

-3 0 1 2 3
Fig. 3. The shaded region is a Lévy ball of the normal distribution and the
step function is an example of the empirical distribution /i,,.

closed yet this leads to a weaker sense of optimality, i.e.,
oJ-optimality.

In Theorem 13, by restricting € to be independent of n and
assuming € is open, asymptotic NP optimality is established
which is stronger than J—optimality.

Remark 17: Theorem 8 only provides lower bounds for
error decay rates, while Theorem 13 characterizes the exact
values of error decay rates. Furthermore, while the error decay
rates [ and J are defined using limit infimum, from the proof
it can be seen that / and J remain unchanged if one uses limit
to define error decay rates. Therefore, Theorem 13 gives an
exact characterization of error decay rates.

Summarizing, by considering the UHT in the robust set-
ting, the generalized empirical likelihood ratio test becomes
optimal, and the construction of the detector and the proof of
optimality are much simplified. In the following, we address
the computation of the developed test statistic and compares
its performance to a recently proposed kernel based goodness
of fit test.

V. NUMERICAL EXPERIMENTS AND
PERFORMANCE COMPARISON

Theorem 13 established that the empirical robust KL diver-
gence D(ii,||BL(Po, dp)) is the optimal statistic for the robust
UHT under the asymptotic minimax NP criterion. The robust
KL divergence between the empirical distribution and the Lévy
ball around the nominal distribution is a finite dimension opti-
mization problem (see Remark 6). We further establish in this
section that this can be reformulated as a convex optimization
problem hence can be readily solved using a convex program.
Subsequently, we conduct numerical experiments to compare
the proposed test with a recently proposed kernel based test
in the context of the goodness of fit test.

A. Computing the Empirical Robust KL Divergence

Denote by (xq, x1, - - - , X,—1) the length-n sequence of sam-
ples, and without loss of generality, these samples are arranged
in ascending order. As such, computing D(ii,||BL(Py, dp)) is
equivalent to the following optimization problem,

1/
Pi

n—1
inimi E —1 20
mlmgmze 2 og (20a)
1=

s.t. P € Br(Poy, o), (20b)
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where p; = P.(X = x;) = P(x;) — P(x;—), i.e., the point
mass at x; for the discrete distribution P that is within the Lévy
ball By (Py, dp). Denote by y; = P(x;) and y_; = 0. Since P
is non-decreasing and bounded below by the lower bound of
B (Py, dp) at all value of x;, P(x;—) must be greater than or
equal to max(y;—1,l;), where [; = max(Py(x; — do) — o, 0),
i.e., it is the lower boundary point of the Lévy ball at x;. Thus
we can rewrite the above optimization problem (20) as the
following,

= 1/n
minimize Z —log (21a)
y.p ‘o n Di
st. forO0<i<n-—1,
li <yi <u, (21b)
0 < pi < yi —max(yi—1, 1), (21¢)

where u; = min(Py(x; + do) + do, 1), i.e., the upper boundary
point of the Lévy ball at x;. Unfolding condition (21c) to
linear constraints, we have the following convex optimization
problem,

minimize Z —log L/n (22a)
Y i—0 " pi
st.forO0<i<n-—1,
li <yi <ui, (22b)
Yi —pi —Yi-1=0, (22¢)
yi—pi—1i >0, (224d)
pi > 0. (22¢)

Therefore, problem (20) of searching distribution P within
B (P, do), is reduced to a 2n dimensional convex optimiza-
tion problem with separable convex objective functions and
linear constraints, of which numerical solutions can be readily
obtained via standard convex programs.

B. Goodness of Fit Test

The UHT described in (5) is also known to be the goodness
of fit test which aims to determine whether the observed data
samples are consistent with a nominal distribution Py. The
goodness of fit test has broad applications in various statistical
data analysis, e.g., in regression analysis.

Notice that the our proposed test is derived for the robust
version of the UHT where the null hypothesis is replaced by
a Lévy ball centered at the nominal distribution. Nevertheless,
the test statistic can be directly applied to the original UHT
where dp becomes a tuning parameter. The fact that this test
statistic is still applicable to the original UHT problem is
made clear by the following Lemma, whose proof is given
in Appendix C.

Corollary 18: Given Py € P, if Po(t) is continuous in t,
D(fn||BL(Po, 60)) == D(ul|BL(Po, o)) as n — c.

Therefore, if 1 = Py, D(fin||BL(Po, &) —> 0. On the
other hand, if © = Q & Br(Po,8), D(fnllBL(Po, )
converges almost surely to D(Q||Br(Po, dp)). Note that for
the goodness of fit test (or the original UHT), we do not have
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Fig. 4. Type II error rates. (a) Gaussian vs. Laplace. (b) t-distribution vs.
t-distribution.

prior knowledge on Q. Thus dy needs to be chosen to be
sufficiently small such that Q ¢ Bp(Po, dp)-

While there exists many classical tests for goodness of
fit, there has been much recent effort in constructing kernel
based test from the machine learning community. In the
following, we compare the performance of the proposed test
with one of the most recently proposed test, the kernel Stein
discrepancy (KSD) test [7] that has been shown to exhibit
superior performance.

KSD test is based on Stein transformed Reproducing Kernel
Hilbert Space (RKHS) functions. The squared KSD is the
norm of the smoothness-constrained function with largest
expectation under the distribution of samples, which is defined
as Ex~yEy~,hp(x,x"), where h, is a function dependent on
the kernel of RKHS and probability density function of Py.
The squared KSD has zero expectation if and only if u = P,
under some conditions.

For the following two experiments, we control the type I
error probability to be 0.1 for all tests and evaluate type II
error probabilities using 1000 trials. Notice that we are not
examining the error decay rate but rather demonstrate the
practicality of the developed test with only finite sample test.
For the proposed robust KL divergence method, the thresh-
old is estimated by drawing samples under the model Py,
i.e., using the Monte Carlo method. For the KSD method,
the threshold is chosen using the wild bootstrap procedure
as in the original paper [7]. The corresponding type II errors
are shown in Fig. 4, where red lines represent robust KL
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divergence method and blue lines represent KSD method with
Gaussian kernels.

1) Gaussian vs. Laplace. We consider a problem in which
Py ~ N(0,2+/2) and Q ~ Laplace(0,2). Py and Q
have the same mean and variance. We choose Jy to be
0.02 or 0.03 for the robust KL divergence method, and
set Gaussian kernel width w, to be 1 or 2 for the KSD
method.

2) t-distribution vs. t-distribution. In this experiment Py
is t-distribution with zero mean and degree of freedom
2, and Q is t-distribution with zero mean and degree
of freedom 3. Jp is chosen to be 0.01 or 0.02, while
Gaussian kernel width wy is set to be 1 or 2.

As evident from the first experiment, the KSD method
performs favorably compared to the proposed method when
the selected kernel matches the distribution Py. However, for
the second example, the type II error probability of the KSD
method decays in a much slower speed compared with the
robust KLLD based test (we also used Laplace kernels for KSD
but the resulting type II errors are close to 1). One reason of the
underperformance of the KSD method could be that there does
not exist a natural choice of kernels for 7-distributions. Indeed,
extensive experiments showed that KSD is quite sensitive to
the kernel choice whereas the proposed scheme exhibits rather
robust performance.

VI. CONCLUSION

The KL divergence between a pair of distributions is
only lower semicontinuous in the distribution functions for
continuous observations. This is in contrast to the case with
finite alphabet in which the KL divergence is known to be
continuous. As such, while simple and optimal solution may
exist for some hypothesis testing problems involving finite
alphabet observations, these results often do not generalize to
the continuous case as the continuity of KL divergence plays
a crucial role in obtaining the optimal test.

The problem considered in the present paper is the universal
hypothesis testing where the null hypothesis is specified by
a nominal distribution whereas the alternative hypothesis is
specified by a different but otherwise unknown distribution.
With finite alphabet, Hoeffding’s test, which is in essence a
threshold test of the empirical KL divergence, is known to
be asymptotically NP optimal. For continuous observations,
however, existing results have to resort to a weaker notion of
optimality with a much more complicated detector compared
with Hoeffding’s detector.

This paper introduced the robust KL divergence, defined as
the KL divergence between a distribution to the Lévy ball of a
second distribution. In contrast to the classical KL divergence,
this robust KL divergence was shown to be continuous in
the first distribution function. Subsequently, by formulating
a robust version of the universal hypothesis testing where the
null hypothesis is specified by a perturbation of the nominal
distribution using a Lévy ball, it was established that the
generalized empirical likelihood ratio test is optimal under the
asymptotic minimax NP criterion whose error decay rates were
characterized precisely. The developed test is also much easier
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to evaluate and exhibits robust performance when compared
with some recently proposed kernel based tests.

APPENDIX A
PROOF OF THEOREM 6

It is straightforward to prove D(u||Br(Po,d)) is lower
semicontinuous in x (Lemma 26); proving that it is also
upper semicontinuous is more involved (Lemma 25). Before
we can prove the upper semicontinuity, we will need several
properties of the robust KL divergence (Lemmas 20 to 24).

We first introduce another widely used definition of KL
divergence through partitions. This alternative definition is
equivalent to the classical definition using the Radon-Nikodym
derivative (see, e.g., [15 and 16, Sec. 2.4]).

A partition A = (Ay,---, Aj4) of R divides the real line
into a finite number of sets A;. The set of all finite partitions
of R is denoted by II. For a given partition .4, denote by PA
the quantized (discrete) probability over 4 of a probability
distribution P € P. Thus PA is a |A| dimensional vector
(P(A1), P(A2), -+, P(A4)) € RMI.

Definition 19: The KL divergence between P € P and
Q € P is defined as,

D(P||Q) = sup D(PA[|07), (23)
Aell
where
D(PAIIQA)—iP(A-)lo P
TV

This definition will be used together with the classical
Radon-Nikodym derivative throughout the appendix.

Eq. (23) states that the quantized KL divergence converges
to the true KL divergence as the quantization becomes finer.
The following lemma generalizes (23) from the classical
KL divergence to the robust KL divergence. The proof is
in essence proving that a max-min inequality is in fact an
equality. For set I' € P, we define .= {PA :Pel}.

Lemma 20: For u, Py € P and & > 0,
D(u||BL(Po, %)) = sup gy D(u|| B (Po, ).

Proof: Let M denote the space of finitely additive' and
non-negative set functions on (R, F) with M(R) = 1 for
M € M. Define M(t) := M((—o0,t]), then as with P(r)
and P € P, M(t) and M € M are equivalent since one
is uniquely determined by the other. Clearly, P C M. The
difference between P and M is that, for P € P we have
P(—00) = 0 and P(4o00) = 1, while for M € M we have
M (—00) > 0 and M (400) < 1. Another important difference
is that M is compact with respect to the topology of weak
convergence [10] (pg. 179), while P is not (a sequence of
normal distributions with mean n and variance 1 does not
converge weakly to any P € P).

For F € M and G € M, Lévy metric d; and the
KL divergence are defined in exactly the same way as in
Definition 2 and Definition 19.

IThis contrasts with the probability function which requires countable
additivity.
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The following three steps constitute the proof of the lemma,

D(ul|BL(Po, 8)) = D(ul|Br(Po, &), (24)
D(u||BL(Po. dy)) = sup DB (Po, &), (25)

sup D(u[|B7\(Po, %)) = sup D(u[|B7 (Po, &), (26)
Aell Aell
where By (P, do) = {P e M :dL(P, Py) < do}. We first
prove (24). Note that By (Py, dg) is closed with respect to
the weak convergence, thus is compact since M is compact.
Let

arg min
(PeBL(Py,6))

Py = D(u||P),

the existence of P, is guaranteed since D(ul||P) is lower
semicontinuous and lower semicontinuous function attains its
infimum on a compact set. Assume P, € M \ P, then there
exists a 0 > 0 such that P,(—o0) > J or P,(+00) < 1 —.
We can assume P,(—o0) = ¢ and P,(+00) = 1, as other
cases can be proved in a similar manner. Let s denote the
minimum ¢ such that Py(t — dy) > dp, we construct Q, as
follows.

o If Py(s) =0, let

0 ifr <s,
1) =
Qu(®) [Pﬂ(t) ift>s.

Since inf; Q,(t) = 0 and sup, Q,(t) =1, Q, € P.
In addition, it can be easily verified that dz(Q, Po)
do. Therefore, Q, € Br(Po,d) and D(ul|Qu)
D(ul|Py).
o If Py(s) > 0, let
(Py(t) = 0)Pyu(s)
P,(s) =0
P, (1)
Again, since inf, Q, () = 0 and sup, Q,(t) = 1, Q,
P.Fort < s,
(P,u (1) — 0) Py (s)
Py(s)—0o
then d; (Qy, Po) < dp because
Po(t —d0) — do <0 <Q (1) < Pu(t) < Po(t + do) + Jo.

Therefore, we have Q, € B (P, dp). Also Q, achieves
the infimum since,

1A

ifr <s,
Q,u(t)z

if t > 5.

m

= P,u(t) < P,u(t) = P,u(s);

D(,“HQ,M)
5= d o0 d
:/ d,u(t)long'u(Z) +/ d'u(t)logidQﬂ(Z)
—o0 u s i
B Py(s)—o 5= du(t)
= nolog TS [ dutyoe o
0 d
+/ du(t)log dI/j((tt))
s 1z
. Py(s)—0o
= ,u(s—)logW + D(ul|Py)
< D(ullPy).
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Therefore in either case, there exists Q, € Br(Py, dp) such
that

Q,u:

arg min
(PeBL(Py,6))

D(ul||P). (27)
To prove (25), note that [17, eq. (2.5), Lemma 2.4] implies
that

D(BL(Po.d0)l|u) = sup D(BE(Po, do)l[u™).
Aell
Using parallel proofs as in Lemma 2.3 and Lemma 2.4 in [17],
one can establish that

D(u||BL(Py, %)) = sup DB (Po, &),
cll

i.e., (25) holds. B
Finally, (26) holds since for any A € II, Bil(Po,&o) =
B{A(Py, dv). O

The robust KL divergence is continuous in the radius of the
Lévy ball under a mild assumption. This property will be used
towards proving Lemma 25.

Lemma 21: Given u,Py € P and o9 > 0, if Po(t) is
continuous in t, then D(u||Br(Py, do)) is continuous in dy.

Proof: Let 0 € (0,0d0). D(ul|BL(Po, dp)) is left con-
tinuous in Jg if D(u||{P € P : dp(P,Py) < d}) =
D(u||BL(Py, dp)). Clearly, {P € P : dp(P, Py) < oo} C
B1.(Po, do) implies

D(u|l{P € P :dL(P, Py) < do}) = D(ullBL(Po, d)).

Thus we only need to show the other direction. Denote

Py = arginf  D(ul|P),
{PEBL(P.0)}
Ps, = arginf  D(ul|P).

{PeBL(Po.do)}

The existence of Ps and Pg, is guaranteed by (27). For any
0<i<l,

dr(APs + (1 — 2)Ps,, Po) < do,
which may not hold if Py(¢) is not continuous in ¢. Then,
D(ul{P € P :dr(P, Py) < do})
Jim D(ul2P5 + (1 = D) Psy)
AlirgjL/lD(#IIPa) + (1 =) D(ul|Psy)

D(ul| Psy)
= D(ul|BL(Po, d)).

Therefore D(u||Br(Py, do)) is left continuous in dy.

The rest is to show D(u||Br(Po, dp)) is right continuous in
do- Since D(u||Br(Py, do)) is decreasing in dy, we only need
to show:

IN A

) 1
Jim D (me (P0,50 + ;)) > D(ul|BL(Po, %)), (28)

From (27), there exists P, € Bp(Py,dy + %) such that
D(ul|P) =D (,u||BL(P0,50 + %))_. M is compact, P, con-
verges to P* € M. Since P* € Bp(Py,d + %) for any n,



YANG AND CHEN: ROBUST KL DIVERGENCE AND UNIVERSAL HYPOTHESIS TESTING

P* € B1(Py, d). We have,

1
lim D (ﬂIIBL (Po, do + —))
n— 00 n

Jim D (el Pr)
D(ul|P*)
D(ul|BL(Po, 6))
D(u||BL(Po, ),

where (29) comes from the fact that the KL divergence is
lower semicontinuous and the last equality was proved in (24).
Therefore D(u||Br(Po, dp)) is right continuous in dy. O

The KL divergence is convex [9], so are the robust KL
divergence and the quantized robust KL divergence. This is
stated in the following lemma.

Lemma 22: For u, Py € P and oy > 0, D(u||BL(Po, o))
is a convex function of u. In addition, for any partition A of
the real line, D(,uA||Bz4(P0, 00)) is convex in ,uA.

Proof: Let P; = argmin pep, (p, 5 P(willP), i = 1,2.
Forany 0 < A <1, AP; + (1 — A)P>» € Br(Py, dp), thus,

D(Apr + (1 = ADu2l|BL(Po, do))

D(Auy + (1 = Dp2||APr + (1 — ) Py)
AD(u1||P1) + (1 = 2) D (w2l P2)

= AD(u111BL(Po, 00)) + (1 — A)D(u2||BL(Po, d0))-

Therefore, D(ul||Br(Po,dp)) is a convex function of u.
That D(,uA||Bz4(P0, do)) is convex in ,uA follows a similar
argument. U

To prove the upper semicontinuity of the robust KL diver-
gence at up, we need to characterize the supremum of
D(u||BL(Py, o)) over u € Br(uog,0). The lemma below
finds out that the supremum is achieved by a distribution
whose distribution function consists of two parts with a single
transition point: the first part (i.e., prior to the transition point)
corresponds to the lower bound of the Lévy ball and the second
part (i.e., after the transition point) corresponds to the upper
bound of the Lévy ball. Thus the class of distributions so
defined is determined by the transition point given the Lévy
ball. As such, the problem of finding an optimal distribution
is reduced to finding an optimal transition point.

Lemma 23: Given uo, Py € P and 6,9 > 0, we have

D(u||BL(Po, ) = sup D(uS||BL(Po, 6)),

IV 1V

(29)

=
=

sup
ueBL(10,9) xeR
where

min(l, uo(t +9) +90)) ift > x.
Proof: We have

D(ul|Br(Py, do))

) = {max(O, 1ot —9) —9) ift <x,

sup
HEBL(10,9)

= sup  sup D(u||BF(Po, &) (30)
HeBL(1o,0) Aell

_ A A

=sup sup  D(u||Bf\(Po, &)
Aell ueByr (uo,9o)

= sup  sup  Du|Bf(Po,d)). (1)

Aell pAe B (1o,0)

Equality (30) comes from Lemma 20.
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Fix a finite partition A of the real line. Without loss of
generality we can assume |A| = n and

A = {(_OO, al]) (al, az]a ) (anfl, OO)}

The partition A4 over the probability space P can be
represented as an n-dimensional polytope. Denote the
n—dimensional point X = (x1, x2, -+ , X,),

PA={xeR": > xi=1,0=<x; < 1forl<i<n).
i

Similarly, the partition A over the set Br(uo,0) is also an
n-dimensional polytope inside P,

J
Bfl(,uo,é) ={xe PA : Lj < ZX,- < Uj for 1 < j <n-1},
i=1
where L, = max(0, uola; — 9) — 9), U, = min(1, uo(a; +
0) + J). We can assume for any 1 < j <n — 2, Uj > Lj+1,
otherwise we can make A finer such that the new partition
(denoted as A again) has the property that a; | < a; + 0 for
1 < j <n—2.1It can be verified that foreach 1 < j <n —2,
U ;> L. The reason that such an A can be finite is that
1o(t) is a bounded non-decreasing function. .

A point x is a vertex of 324(/10, 0) if and only if Z{zl X
equals L; or U; forany 1 < j <n—1, 3/ ;x =1 and
0 < x; < 1. 1If §is a vertex of Bz‘l(,uo,é), then for some

. j .
1 <j <n—2 we have Zi:lxi =U;.Since U; > L,
any 1 <j<n-2,if >/  xi = U, for a vertex x and some
1 <j<n-—2, then forany k > j, >5_ x; = Up.

Therefore there are n vertices xh, oo, x" of_Bz4(/10, 0). And
for each x*, 37| xF = L; for j <k, S xk = U; for
J = k. Or equivalently, if we denote L, =0 and U, = 1, for
1 <k<n,

for

L,—Li ifi <k,
=0, —Liy ifi=k,
Uy —Ui—1 ifi >k
From Lemma 22, D(o||B;f‘(P0, do)) is a convex function, thus

the supremum on the polytope Bz“(,uo, 0) is achieved at its
vertices. Let

o) = max (0, po(t —6) — o)) if r <x,
= Y min(1, ot +0) +0) if £ > x.

Then any x* is a quantization of ,uﬁ over the partition A for
some Xx.

sup  D(ul|BAA(Po, %))

pAeBi (no,0)

= m]?x D(kuIBI“fl(PO, d0))
sup D((12)? | BAA(Po, 60))
X

sup sup D((u) B (Po, %)),
Aell xeR

sup sup D((12)™||Bf(Po, &0)),
xeR Aell

sup D(ul[|BL(Po, d)).

xeR

IA

IA

(32)
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The last equality comes from Lemma 20. From (31) and (32),
we have

D(u||BL(Po, o)) < sup D(ul||BL(Po, d))-
xeR

sup
HEBL(10,9)

For the other direction, since ,ug € Br(uo,9),

sup  D(ul|BL(Po, d)) = sup D(u2||BL(Po, d)).
HEBL(1o,0) x€R
Therefore,
sup  D(ul|BL(Po, do)) = sup D(ul||BL(Po, d))-
1eB(120,0) xeR

O

A direct result of the above lemma is the boundedness of
the robust KL. divergence, which is stated below.

Lemma 24: The robust KL divergence is bounded above,
and its maximum is log %, iLe.,

1
sup  D(ul||BL(Po, do)) = log 5
1w, PheP (U

Proof: We construct a distribution So € P such that
So(t) = 0 for t < 0, and Sp(r) = 1 for t > O, then
P = Br(Sp, 1) since d is bounded by 1. According to
Lemma 23,

D(u|IBL(Po, &) = sup D(u31|BL(Po, 60)),

xeR

sup
ueBL(So,1)
where ,u}c(t) =0 fort < x, and ,u}c(t) =1 for t > x. Denote
P{(x) = min(1, Py(x + o) + o) and P} (x) = max(0, Po(x —
do) — dp), we have

sup D(12||BL(Po, do)) = sup log

xeR xeR P(St(x) - Pé(x)

= log —,
g %
where the last equality comes from the fact that
P§(x) = Py(x) = do
and
lim (PY(x) — Pi(x)) = d.
X—> 00

This means a finitely additive measure that belongs to M \ P
can always achieve the supremum for any Py. U

The intuition behind the proof of the following upper semi-
continuity property is the following. For a fixed Py, with small
perturbation on u, D(u||Pg) may vary in an arbitrary manner,
thus D(u||Py) is not upper semicontinuous. The Lévy ball
B (Py, dp) provides the necessary tolerance to the perturbation
on u, since the Lévy metric is the weakest among other
metrics. For all perturbations on u that are within By (u, 9),
the largest variation of D(u||Br(Py,dp)) is achieved by a
distribution whose CDF is on the edge of By (u, J). Such shifts
can be tolerated by Br(Py, dp), so that the level of perturbation
on u decreases to 0, and the corresponding variation in
D(u||BL(Py, dp)) diminishes.

Lemma 25: Given Py € P and dy > 0, if Py(t) is contin-
uous in t, then D(u||Br(Py, do)) is upper semicontinuous in
1 with respect to the weak convergence.
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shaded region represents By (1, o).

Proof: For any fixed uo € P, the statement is equivalent
to proving that when 6 — 0,

lim D(ul|BL(Po, d0)) = D(uollBL(Po, ).

su
0—0 P

ueBL(uo,0)
From Lemma 23, it is equivalent to proving

lim sup D(x2||BL(Po, d0)) < D(uol|BL(Po, d)).
5—>OXER

Denote u_s as the left boundary of support set of distribution
w(t + J) and u‘ié as the infimum x such that u(x + J) =
1 —¢. Similarly, denote us as the left boundary of distribution
u(t—0)) and ug as the infimum x such that ¢ (x—dJ) = 1. Fig. 5
illustrates these locations. Note that these boundary points may
not be finite. We will first prove that for any d; € (0, dp),

lim sup D(u3]|BL(Po, 90)) < D(uol|BL(Po, d — 61)). (33)

aHOXER

Now fix J;, we then establish that D(,uiHBL (Po, dp)) can be

uniformly bounded as x varies. Denote
inf

{PeBL(Py,00—01)}

For a fixed 0 < dy, let
Pyt s (6) = (1= 01) Pay o, (t +0) + 01,

P50*5| = arg D(,uOHP)

and
Pyl (1) = (1= 01) Pay—s, (1 — 0).

To get Pg)’f 51 (t), we first shift Ps,_s, (¢) to the left by o, then
scale it by (1 — d1) and shift it up by Jj; similarly to get
P(%l_ 51 (t), we shift Ps,_s, (¢) to the right by J, then scale it by
(1 —01). Clearly

dL(PY" 5. Pay-s) <01, dL(PYLs . Pay_s) <.

X . . . 5
For any x, construct P(;O_ 5, Ina similar manner as u¢,

. Py (1) ift <x,
Pas =1 %%
Py s (1) if 1 > x.
P5x0*51 € Br (P, dp) since

dr(Ps,_s,> Po) < di(Ps, s> Psy—5,) +dr(Psy—s,, Po)
< d1 + (d — I1) = do,
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where the first inequality holds because (P, dy) is a metric
space (i.e., dy satisfies the triangle inequality); the second
inequality comes from (34) and the definition of Ps,—_s, .

From Lemma 24, D(uollPsy—s,) = D(uollBr(Po,d0 —
01)) < oo. Therefore u is absolutely contlnuous with respect
to Ps,—s,. From the construction of ,ux and ng 5> We can
see that ,ux is absolutely continuous with respect to Pg‘o 5 a8
well. Therefore, we have

hm sup D( ||BL(P0,50 = hm su || P
im, sup Dixy )) = lim xeg{PeBL(PO o) D(u2||P)
= lgn sup D(ﬂx||P5075,),

establishing (33). We now prove D(,uxll 51) can be uni-
formly bounded as x varies. Inequalities appear in cases 1)-3)
are due to the log sum inequality (see [2, Ch. 2.7]) unless
otherwise stated.

1). For x < u_yg,

J
D(luxllpé)i)—él)

J
5 u? s

< 510ga+/ d(uo(t + 6) + 0)
u_y

d(po(t + ) +0)
d((1=01) oy, 1 +0) + 01)

0 Us
= Jlog 5 +/ d(uo(t+9))log
1 U_gy

x log

d(po(t +9))
(1 — 61)d (Psy—5, (t + )

0 uls 1
=dlo —+/ d(uo(t +9)) log ———
&5, . (o(t + 0)) log a—on

d(uo(t +9))
d(P(;O_gl (t 4+ 9))

(; ¢

4 / d (ol +0)) log

0 1
=olog — + (1 —9)lo
g3, ( ) g(l_él)

d(uo(?))
d(P(SO*(Sl (1)) ’

when J — 0, the above converges to

u‘ir;+6
+ / d(uo (1)) log (34)

_s+0

log + D(pol| Psy—s,)-

1
(1—01)
2)Foru_s < x < uy,

DSIIPE _5)
= (uo(x + 6) + &) log
J

Uy
)
x+

0
< dlog 5 + (up(x + 9)) log
1

(up(x +0) 4+ 9)
(1- 51)P50,5| (x 4+0)+ 0
d(po(t +9) +0)
d((1 = 61) Psy—s, (¢ +0) + 01)
(uo(x +9))
(1 = 01)Psy—s,(x +0)
d(po(t +9))
1 —61)d (Psy—5,(t + 9))
d(po(t +9))
(1 = 01)d(Psy—s, (t +9))
d(po(t +9))
— 01)d (P, (t + 9))

d(uo(t+0)+0)log

(; <

+ / o+ o tog

5 X
< dlog 5 +/ d(uo(t +0))log
u_g

d(uo(t + 0)) log

U_s
g/
x+ (1
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d(uo(t +9))
(1=01)d(Psy—5, (t +9))
(35)

0 uly
= 510g—+/ d(uo(t + o)) log
d1 u_s

which degenerates to the case of x < u_s since (35) is the
same as (34).
3) Forus <x < u‘ié,

D(311Py_s)
d(uo(t — 8) = 6)

_ / =) o)log O
T (o(x +8) + 6 — (uo(x — 8) — )
(0 + ) + 0 — (to(x — 8) — )

*x lo
& = 01) P33, +0) + 01 — (1 — 01) sy, (t — )

uly d(uo(t + 0) + 6)
+/x+ d(polt0)0) log s S o)

e d(uo(t — 9))
_ /  dluo o log g
+ 20+ po(x +8) — olx — 9))

20 + po(x +0) — po(x —9)
61+ (1= 00)(Pay—or ( +0) — Psy—s, (1 — 0))
d(po(t + 9))
+/x+ T O T N
d(po(t — 9))
1 —01)d Psy—s, (t — 0)
d o (1)
(I = 01)d Psy—5,(t)
d(po(t +9))
1 —61)d Psy—5, (t + 0)
d o (1)
1 —61)d Psy—s, (1)

* lo

< / " Aot — 9) log (

1

25 x+0
+20log — + / duo(t)log
51 x—0

+ / + At + ) log

26 0510
= 20log — +/ duo(t)log
51 U5—o (

26 1
= 25log5— + (1 —20) log 1
| _

“oto duo(t)
n / d o) log —H0)
Uus—0o a & dPé‘()fé‘l (t)

which, as 6 — 0, converges to

log +D(/~‘0||P507(51)'

1
1 -0
Other symmetric cases can be solved similarly. From the
above arguments, we have

hm sup D(,uXIIBL(P(), 40))
OxE'R

1
< log— 5t D(uol|BL(Po, do — d1)).

Notice that this is true for any J;. Letting 6; — 0, we have

llrr(l) sup D(ul||BL(Po, %))

XeR

I A

1
Jim (10g — +D(/10||BL(PO,5O—51)))
511mOD(/10||BL(P0, do — 1))
|*)

D(uol|Br(Po, 60)),
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the last equality comes from Lemma 21: D(uo||BL(Po, d9))
is left continuous in dy if Py(¢) is continuous in 7. O

Lemma 26: Given Py € P and oy > 0, D(u||Br(Po, o))
is lower semicontinuous in p with respect to the weak con-
vergence.

Proof:  Assume u, 5 uo. From (27), we know
there exists P, € Bp(Py,dp) such that D(u,l||P,) =
D(un||BL(Po, d)). Since Br(Py,dy) is compact, there
exists a subsequence of P, (which we again denote by
P,) that converge to P,, € Br(Py,d). D(ul|Py) <
liminf, o0 D(un||Pn) because (sn, Pr) — (ro, Pu,) and the
KL divergence is lower semi-continuous. Therefore we have

D(uol|BL(Po, %)) = D(uol|BL(Po, 60))

= D(ﬂOHP,uo)
< liminf D(pn||Ppn)
n—o0
— liminf D(ux||BL(Po, %)) (36)
n—o0
where (36) comes from (24). [
As D(ul||BL(Py,d)) is both upper semicontinuous

(Lemma 25) and lower semicontinuous (Lemma 26), it is
continuous in u with respect to the weak convergence.

APPENDIX B
PROOF OF THEOREM 13

Proof:
below.

The three parts of the Theorem 13 are proved
1) From the general Sanov’s theorem, we have

1
inf liminf —— log P({x"

inf JP(A) = U, € A
PePy ( ) PePy n—>o0 i 1})
> inf inf D P
T PePy peclAg (,u|| )
= f D P
ﬂeuclm] (u1Po)

The last equality holds since D(u||Pp) is continuous in
w thus cIAy € {u : D(u||Po) > n}. On the other hand,

inf JP(A) (37)
PePy
1
< inf lim sup——logP({x D g € A1)
PEP) n—oo

< inf f D(ul|lP

- PlgPouelﬁxAl (w11P)

= 1. (38)

The last equality holds since int A1 = Aj.

2) Again from the general Sanov’s theorem, we have

1
12(A) = liminf ——log Q({x" : fiy € Ag))
n—o00 n
inf D
= (u11Q)

D(AollQ).

v
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The last equality holds since c/Ag = Ag. On the other
hand, {x : D(u||Po) < n} C intAy, thus,

1
< limsup —— log o({x"

n—0o0

inf D(HHQ)

HEINt
D(ul1Q)

1°(A) < fin € Ag})

IA

inf
puefuw:D(ul|Pr)<n}

D(Aol1 Q).

Inequality (39) holds because of the following. There
exists a distribution P € Py such that D(P||Q) < oc.
For any P. € Ay and 0 < A < 1, we have (1 — )P, +
AP € {u : D(ul||Po) < n} since

IA

IA

(39)

D((1 — A)P. + AP||Po)

< (1 =) D(P:|[Po) + AD(P||Po)) (40)
<(1-X4Hn+0 (41)
< ’]’

where (40) comes from the fact that D(u||Po) is convex
in x while inequality (41) is due to the fact P € Py.
Thus,

inf D
/tE{/tiDl(Ilillpl)w} o)
Alir{)1+ D((1 = A)P. + AP||Q)
Alirgh(l — A)D(P||Q) + AD(P||Q)
D(P:|10),

the last inequality holds since D(P||Q) < oco. The above
inequalities hold for any P, € Ay, thus we have

D(ullQ) = D(A11Q).

AN IA

IA

inf
e{u:D(ulPo) <n}

3) We have
inf D(Qi]|P)
PePy
= inf D(intQ||P)
PePy

1
inf liminf —— log P({x"

PeP, n—oo

> 7.

v

Dfin € Q})
(42)

Therefore, Q1 € A1, or equivalently, Ag € Qp. Next,

1
12(Q) = liminf —— log Q({x" : fi, € Qy))
n—o0 n
1
< liminf ——log Q({x" : fi, € Ao})
n—00 n
= I2(A).
O
APPENDIX C

PROOF OF COROLLARY 18

Proof: Denote C,, € R as the continuity set of 4 (). From
Theorem 6, D(u||Br(Py, do)) is continuous in u. If u, =@ i,
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then lim,— o D(iin||BL(Po, 0)) = D(u||BL(Po, d)). There-
fore,

Py (Jim_ DGl IBL(Po, 30)) = D(aul| BL.(Po, o))
> P (/Qn = :“)
— P ( lim jin(r) = (1), forall 1 € cﬂ)
n—0o0
1— P ( lim fi,,(¢) # w(t), for some ¢t € C#)
n—0o0

= 1= " P (Jim () # 1))

teCy
=1
The last equality comes from the fact that for any t+ € Cp,
a.s.
tn(t) — p(0). O
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