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Abstract—This paper studies clustering of data sequences using
the k-medoids algorithm. All the data sequences are assumed to
be generated from unknown continuous distributions, which form
clusters with each cluster containing a composite set of closely lo-
cated distributions (based on a certain distance metric between
distributions). The maximum intracluster distance is assumed to
be smaller than the minimum intercluster distance, and both values
are assumed to be known. The goal is to group the data sequences
together if their underlying generative distributions (which are un-
known) belong to one cluster. Distribution distance metrics based
k-medoids algorithms are proposed for known and unknown num-
ber of distribution clusters. Upper bounds on the error probability
and convergence results in the large sample regime are also pro-
vided. It is shown that the error probability decays exponentially
fast as the number of samples in each data sequence goes to infinity.
The error exponent has a simple form regardless of the distance
metric applied when certain conditions are satisfied. In particular,
the error exponent is characterized when either the Kolmogrov–
Smirnov distance or the maximum mean discrepancy are used as
the distance metric. Simulation results are provided to validate the
analysis.

Index Terms—Kolmogorov–Smirnov distance, maximum mean
discrepancy, unsupervised learning, error probability, k-medoids
clustering, composite distributions.

I. INTRODUCTION

THIS paper aims to cluster sequences generated by unknown
continuous distributions into classes so that each class con-

tains all the sequences generated from the same (composite)
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distribution cluster. By sequence, we mean a set of feature ob-

servations generated by an underlying probability distribution.

Here each distribution cluster contains a set of distributions that

are close to each other, whereas different clusters are assumed to

be far away from each other based on a certain distance metric

between distributions. To be more concrete, we assume that the

maximum intra-cluster distance (or its upper bound) is smaller

than the minimum inter-cluster distance (or its lower bound).

This assumption is necessary for the clustering problem to be

meaningful. It should be emphasized that the assumption is for

distribution clusters containing underlying distributions rather

than the empirical distributions corresponding to the data se-

quences. The problem of clustering empirical distributions is of

interest in market segmentation [1], image clustering [2], [3],

and meteorological parameters characterization [4]–[6], among

others.

Such unsupervised learning problems have been widely stud-

ied [7], [8]. The problem is typically solved by applying either

centroid-based clustering algorithms, e.g., k-means clustering

[9]–[11] and k-medoids clustering [12]–[14], or connectivity-

based clustering algorithms, e.g., single-linkage clustering al-

gorithm [15], and complete-linkage clustering algorithm [16],

where the data sequences are viewed as multivariate data with

Euclidean distance as the distance metric. The partitions of

centroid-based clustering algorithms depend on the distances

between sequences and the center of each cluster, whereas the

connectivity-based ones assign a sequence to a cluster based on

the distances between every existing sequence in the cluster and

the one to be assigned.

The centroid-based clustering algorithms usually require the

knowledge of the number of clusters and they differ in how the

initial centers are determined. One reasonable way is to choose

a data sequence as a center if it has the largest minimum dis-

tances to all the existing centers [17]–[19]. Alternatively, all the

initial centers can be randomly chosen [6]. With the number of

clusters unknown, there are typically two alternative approaches

for clustering. One starts with a small number of clusters, e.g.,

1, which is an underestimate of the true number, and proceed

to split the existing clusters until convergence [19], [20]. The

authors in [20] assumed a maximum number of clusters and

the threshold for clustering depended on a pre-determined sig-

nificance level of the two sample Kolmogorov-Smirnov (KS)

test whereas the algorithm proposed in [19] did not assume a

maximum number of clusters and the threshold for clustering

was a function of the intra-cluster and inter-cluster distances.
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Alternatively, one may start with an overestimated the number

of clusters, e.g., every sequence is treated as a cluster, and pro-

ceed to merge clusters that are deemed close to each other [19].

The algorithms in [6], [17], [20] were all validated by simulation

results without carrying out an analysis of the error probability.

There are some key differences between the k-means algo-

rithm and the k-medoids algorithm. The k-means algorithm min-

imizes a sum of squared Euclidean distances. Meanwhile, the

k-medoids algorithm assigns data sequences as centers and min-

imizes a sum of arbitrary distances, which makes it more robust

to outliers and noise [21], [22]. Moreover, the k-means algo-

rithm requires updating the distances between data sequences

and the corresponding centroids in every iteration whereas the

k-medoids algorithm only requires the pairwise distances of

the data sequences, which can be computed before hand. Thus,

the k-medoids algorithm outperforms the k-means algorithm in

terms of computational complexity as the number of sequences

increases [23].

Most prior research focused on computational complexity

analysis, whereas the error probability and the performance

comparison of different clustering algorithms were typically

studied through simulations, e.g., [13], [14], [23], [24]. This pa-

per attempts to theoretically analyze the error probability for the

k-medoids algorithm especially in the asymptotic region. Fur-

thermore, in contrast to previous studies, which frequently used

vector norms as the distance metric, e.g., Euclidean distance,

our study adopts the distance metrics between distributions for

clustering in order to capture the statistical models of data se-

quences considered in this paper. This formulation based on a

distributional distance metric is uniquely suited to the proposed

clustering problem, where each data point, i.e., each data se-

quence, represents a probability distribution and each cluster

is a collection of closely related distributions, i.e., composite

hypotheses.

Various distance metrics that take the distribution properties

into account can be reasonable choices, e.g., KS distance [6],

[18]–[20] and maximum mean discrepancy (MMD) [25]. Our

previous work [18], [19] has shown that the KS distance based

k-medoids algorithms are exponentially consistent for both

known and unknown number of clusters. Exponential consis-

tency, whose definition will be formally given in Section II, im-

plies that the error probability of clustering algorithms decays at

least exponentially fast as the sample size becomes large enough.

In this paper, we consider a much more general framework and

instead of focusing on a specific distance metric such as KS

distance in our prior work [18], [19], we consider clustering se-

quences generated from distributions satisfying (3a) and under

any distance metric that satisfies (3c)–(3d) in Assumption 1.

The rationale is the following: with any distance metric that

captures the statistical model of data sequences, one is likely

to observe that, for a large sample size, 1) sequences generated

from the same distribution cluster are statistically close to each

other, and 2) sequences generated from different distribution

clusters are statistically far away from each other. Thus, if the

minimum distance of different distribution clusters is greater

than the maximum diameter of all the distribution clusters de-

fined in Section II, then it becomes unlikely to make a clustering

error as the sample size increases. In this paper, we develop k-

mediods distribution clustering algorithms where the distances

between distributions are selected to capture the underlying sta-

tistical model of the data. We analyze the error probability of

the proposed algorithms, which takes the form of exponential

decay as the sample size increases under Assumption 1. Both

the KS distance and the MMD are examined in the present work

and we show that they both satisfy Assumption 1 so that the er-

ror probability of the proposed algorithms decays exponentially

fast if the KS distance or MMD is used as the distance metrics.

We note that recent studies [26]–[30] of anomaly detection

problems and classification also took into account the statistical

model of the data sequences. Our focus here is on the clus-

tering problem, leading to error performance analysis that is

substantially different from that in [26]–[30].

The rest of the paper is organized as follows. In Section II,

the system model of the clustering problem, the preliminaries of

the KS distance and MMD, and notations are introduced. The

clustering algorithm given the number of clusters and the corre-

sponding upper bound on the error probability are provided in

Section III, followed by the results of the clustering algorithms

with an unknown number of clusters in Section IV. The simula-

tion results for the KS and MMD based algorithms are provided

in Section V. Section VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

A. Clustering Problem

Suppose there are K distribution clusters denoted by Pk for

k = 1, . . . , K, where K is fixed. Define the intra-cluster dis-

tance of Pk and the inter-cluster distance between Pk and Pk ′

for k �= k′ respectively as

d
(Pk

)
= sup

pi ,pi ′ ∈Pk

d
(
pi, pi ′

)
,

d
(Pk ,Pk ′

)
= inf

pi ∈Pk ,pi ′ ∈Pk ′
d
(
pi, pi ′

)
,

(1)

where d (·, ·) is a distance metric between distributions, e.g., the

KS distance or MMD defined later in (5) and (6) respectively.

Then d (Pk ) and d (Pk ,Pk ′) represent the diameter of Pk and

the distance between Pk and Pk ′ , respectively. In the following

discussion, d (·, ·) is also used to denote the distance between

data sequences if no ambiguity exists, e.g., the MMD statistic

defined in (7). Define

dL = max
k=1,...,K

d
(Pk

)
,

dH = min
k �=k ′

d
(Pk ,Pk ′

)
,

Σ = dH + dL ,

Δ = dH − dL .

(2)

Table I summarizes the notations of the generalized form of dis-

tances defined in (1) and (2) which will be used in the following

discussion.

Suppose Mk data sequences are generated from the dis-

tributions in Pk , and hence a total of
∑K

k=1 Mk = M se-

quences are to be clustered, where M < +∞. Without loss of
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TABLE I
NOTATIONS

generality, assume that each sequence xk,jk
= [xk,jk

[1], . . . ,
xk,jk

[n]] consists of n independently identically distributed

(i.i.d.) samples generated from pk,jk
∈ Pk for k = 1, . . . , K

and jk ∈ {1, . . . , Mk}. The i-th observation in xk,jk
is denoted

by xk,jk
[i] ∈ Rm , where m < ∞ and i ∈ {1, . . . , n}. Note that

for any fixed k, pk,jk
’s are not necessarily distinct. Namely, for

a fixed k, some xk,jk
’s can be generated from the same distri-

bution. Although the following discussion assumes that all the

data sequences have the same length, our analysis can be easily

extended to the case with different sequence lengths by replac-

ing n with the minimum sequence length. In order to analyze

the error probability of the clustering algorithm, we introduce an

assumption relating to the concentration property of the distance

metrics:

Assumption 1: For any distribution clusters {P1 , . . . ,PK },

any sequences xk,jk
∼ pk,jk

, xk,j ′k ∼ pk,j ′k and xk ′,jk ′ ∼
pk ′,jk ′ , where k �= k′, and sufficiently large n, the following

inequalities hold:

dL < dH , (3a)

P
(
d(xk,jk

,xk ′,jk ′ ) ≤ d0
) ≤ a1e

−bn ∀d0 ∈ (dL , dH ) , (3b)

P
(
d(xk,jk

,xk,j ′k ) > d0
) ≤ a2e

−bn ∀d0 ∈ (dL , dH ) , (3c)

P
(
d(xk,jk

,xk,j ′k ) ≥ d(xk,jk
,xk ′,jk ′ )

) ≤ a3e
−bn , (3d)

where ai’s are some constants independent of distributions, b
(>0) is a function of d0 and n is the sample size. �

Here (3a) guarantees that the lower bound of inter-cluster dis-

tances is greater than the upper bound of intra-cluster distances.

(3b) guarantees that the probability that the distance between

two sequences generated from different distribution clusters is

smaller than dH decays exponentially fast. (3c) guarantees that

the probability that the distance between two sequences gener-

ated from the same distribution cluster is greater than dL decays

exponentially fast. (3d) guarantees that given two sequences

generated from the same cluster and a third sequence gener-

ated from another distribution cluster, the probability that the

first sequence is actually closer to the third sequence decays

exponentially fast.

A clustering output is said to be incorrect if the sequences

generated by different distribution clusters are assigned to the

same cluster, or sequences generated by the same distribution

cluster are assigned to more than one cluster. Let a trial be the

event of applying a clustering algorithm to M data sequences

generated by p1,1 , . . . , p1,M 1 , . . . , pK,MK
. The error probability

of the clustering algorithm is defined as

Pe,p = lim
N →+∞

Ne

N
,

where N is the number of trials of which Ne trials result in

incorrect clustering outputs. The error probability of a clustering

algorithm given P1 , . . . ,PK is defined as

Pe,P = sup
pk , j k

∈Pk : k=1,...,K, jk =1,...,Mk

Pe,p .

The error probability of a clustering algorithm given dL and dH

is defined as

Pe(dL , dH ) = sup
{P1 ,...,PK }⊂PK :dL , dH

Pe,P ,

where P is the set of all the continuous distributions on Rm .

In the following discussion, the notation Pe(dL , dH ) will be

replaced by Pe for simplicity if it does not cause any ambiguity.

We also note that Pe is a function of the sample size n.

A clustering algorithm is said to be consistent if for any

0 ≤ dL < dH ,

lim
n→∞Pe = 0.

The algorithm is said to be exponentially consistent if for any

0 ≤ dL < dH ,

B = lim
n→∞− 1

n
log Pe > 0.

For the case where a clustering algorithm is exponentially con-

sistent, we are also interested in characterizing the error expo-

nent B.

B. Preliminaries of KS Distance

Suppose x is generated by the distribution p, where x[i] ∈
R. Then the empirical cumulative distribution function (c.d.f.)

induced by x is given by

Fx (a) =
1
n

n∑

i=1

1[−∞,a ] (x[i]) , (4)

where 1[−∞,x] (·) is the indicator function. Let the c.d.f. of p
evaluated at a be Fp (a). The KS distance is defined as

dK S (p, q) = sup
a∈R

|Fp (a) − Fq (a) |, (5)

where Fp (a) and Fq (a) can be either c.d.f’s of distributions or

empirical c.d.f.’s induced by sequences.

Proposition 1: The KS distance satisfies (3b)–(3d) if

dL,ks < dH,ks .

Proof: See Lemmas A.5, A.3, and A.7 in Appendix A. �

C. Preliminaries of MMD

Suppose P includes a class of probability distributions, and

suppose H is the reproducing kernel Hilbert space (RKHS)

associated with a kernel g (·, ·). Define a mapping from P to H
such that each distribution p ∈ P is mapped into an element in

H as follows

μp (·) = Ep [g (·, x)] =
∫

g (·, x) dp (x) ,
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where μp (·) is referred to as the mean embedding of the dis-

tribution p into the Hilbert space H. Due to the reproducing

property of H, it is clear that Ep [f ] = 〈μp, f〉H for all f ∈ H.

It has been shown in [31]–[34] that for many RKHSs such as

those associated with Gaussian and Laplace kernels, the mean

embedding is injective, i.e., each p ∈ P is mapped to a unique

element μp ∈ H. In this way, many machine learning problems

with unknown distributions can be solved by studying mean

embeddings of probability distributions without actually esti-

mating the distributions, e.g., [28], [29], [35], [36]. In order

to distinguish between two distributions p and q, the authors

in [37] introduced the following notion of MMD based on the

mean embeddings μp and μq of p and q, respectively:

MMD (p, q) := ‖μp − μq‖H. (6)

A biased estimator of MMD (p, q) based on x and  of sample

lengths n and m, respectively, is given by

MMD (x, ) =
[

1
n2

n∑

i=1

n∑

j=1

g (x[i],x[j])

+
1

m2

m∑

i=1

m∑

j=1

g ( [i], [j]) − 2
nm

n∑

i=1

m∑

j=1

g (x[i], [j])
] 1

2

,

(7)

where g(x, y) is the kernel function which is assumed to be

bounded, i.e., 0 ≤ g (x, y) ≤ G < +∞.

Proposition 2: The MMD statistic satisfies (3b)–(3d) if

dL,mmd < dH,mmd .

Proof: See Lemmas A.6, A.4, and A.8 in Appendix A. �

D. Additional Notations

The following notations are used in the algorithms and the

corresponding proofs. Let Ct
l be the l-th cluster obtained at

the t-th cluster update step and let ct,a
l , ct,e

l and ct,s
l be the

centers of the l-th cluster obtained by the center update step,

merge step and split step of the t-th iteration respectively for

t ≥ 1. Let C0
l be the l-th cluster obtained at the initialization

step and c0,a
l be the corresponding center. Let K̂t (t ≥ 1) be the

number of centers before the t-th cluster update step and the t-th
split step. Moreover, use K̂0 to denote the number of centers

obtained at the center initialization step. For simplicity, all the

superscripts are omitted in the following discussion when there

is no ambiguity.

To further simplify the notation in the algorithms and

the proofs, let { i}M
i=1 denote the data sequence set

{xk,jk
}K,Mk

k=1,jk =1 . However, the one-to-one mapping from

{ i}M
i=1 onto {xk,jk

}K,Mk

k=1,jk =1 is not fixed, i.e., given a fixed

i,  i can be any sequence in {xk,jk
}K,Mk

k=1,jk =1 unless other con-

straints are imposed. Denote by  i ∼ Pk if  i is generated from

a distribution p ∈ Pk . Furthermore, we define the following in-

dex set

Ik2
k1

= {k1 , . . . , k2},

where k1 , k2 ∈ Z+ and k1 < k2 .

Algorithm 1: Initialization With Known K.

1: Input: Data sequences { i}M
i=1 , number of clusters K.

2: Output: Partitions {Ck}K
k=1 .

3: {Center initialization}
4: Arbitrarily choose one  i as c1 .

5: for k = 2 to K do
6: ck ← arg max i

(
minl∈I k −1

1
d ( i , cl)

)

7: end for
8: {Cluster initialization}
9: Set Ck ← ∅ for 1 ≤ k ≤ K.

10: for i = 1 to M do
11: Cl ← Cl ∪ { i}, where l = arg minl∈I K

1
d ( i , cl)

12: end for
13: Return {Ck}K

k=1

Algorithm 2: Clustering With Known K.

1: Input: Data sequences { i}M
i=1 , number of clusters K.

2: Output: Partition set {Ck}K
k=1 .

3: Initialize {Ck}K
k=1 by Algorithm 1.

4: while not converge do
5: {Center update}
6: for k = 1 to K do
7: ck ← arg min i ∈Ck

∑
 j ′ ∈Ck

d ( i , j ′)
8: end for
9: {Cluster update}

10: for i = 1 to M do
11: if  i ∈ Ck ′ and d ( i , ck ) < d ( i , ck ′) then
12: Ck ← Ck ∪ { i} and Ck ′ ← Ck ′ \ { i}.

13: end if
14: end for
15: end while
16: Return {Ck}K

k=1

III. KNOWN NUMBER OF CLUSTERS

In this section, we study the clustering algorithm for known

K, the number of clusters. The method proposed in [17] is used

for center initialization, as described in Algorithm 1. The initial

K centers are chosen sequentially such that the center of the k-

th cluster is the sequence that has the largest minimum distance

to the previous k − 1 centers. The clustering algorithm itself is

presented in Algorithm 2. Given the centers, each sequence is

assigned to the cluster for which the sequence has the minimum

distance to the center. For a given cluster, a sequence is assigned

as the center subsequently if the sum of its distances to all the

sequences in the cluster is the smallest. The algorithm continues

until the clustering result converges.

The following theorem provides the convergence guarantee

for Algorithm 2 via an upper bound on the error probability.

Theorem III.1: Algorithm 2 converges after at most(
M
K

)
K(M −K ) iterations. Moreover, under Assumption 1, the

error probability of Algorithm 2 after T iterations is upper

bounded as follows

Pe ≤ M 2 (a1 + a2 + (T + 1) a3) e−bn ,
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where a1 , a2 , a3 and b are as defined in Assumption 1 and

T ≤
(

M

K

)
K(M −K ) .

Proof: The idea of proving the upper bound on the error

probability is as follows. We first prove that the error probability

at the initialization step decays exponentially. Note that the event

that an error occurs during the first T iterations is the union of the

event that an error occurs at the t-th step and the previous t − 1
iterations are correct for t = 1, . . . , T . Thus, if we prove that the

error probability at the t-th step gi en correct updates from the

previous iterations decays exponentially, then so does the error

probability of the algorithm by the union bound argument. See

Appendix B1 for details. �
Theorem III.1 shows that for any given K, any distance metric

satisfying Assumption 1 yields an exponentially consistent k-

medoids clustering algorithm with the error exponent b.

Corollary III.1.1: Suppose the KS distance and the MMD

statistic are used for Algorithms 1 and 2, then for n sufficiently

large,

PK S
e ≤ M 2 (6T + 14) exp

(
−nΔ2

ks

8

)
,

PM M D
e ≤ M 2 (4T + 8) exp

(
−nΔ2

mmd

64G

)
.

Proof: By Propositions 1 and 2, the upper bound on the error

probability of Algorithm 2 in Theorem III.1 applies to the KS

distance and the MMD statistic. Thus, the corollary is obtained

by substituting the values specified in Lemmas A.3–A.8 in the

upper bound. �
Corollary III.1.1, combined with the fact that T is finitely

bounded for finite M and K, implies that Algorithm 2 is ex-

ponentially consistent under both the KS and MMD distance

metrics with an error exponent no smaller than
Δ2

k s

8 and
Δ2

m m d

64G ,

respectively.

IV. UNKNOWN NUMBER OF CLUSTERS

In this section, we propose the merge- and split-based algo-

rithms for estimating the number of clusters as well as grouping

the sequences.

A. Merge Step

If a distance metric satisfies (3c) and two sequences generated

by distributions within the same cluster are assigned as centers,

then, with high probability, the distance between the two centers

is small. This is the premise of the clustering algorithm based

on merging centers that are close to each other.

The proposed approach is summarized in Algorithms 3 and

4. There are two major differences between Algorithms 3 and

4 and Algorithms 1 and 2. First, the center initialization step of

Algorithm 3 keeps generating an increasing number of centers

until all the sequences are close to one of the existing centers.

Second, an additional Merge Step in Algorithm 4 helps to com-

bine clusters if the corresponding centers have small distances

between each other.

Algorithm 3: Merge-Based Initialization With

Unknown K.

1: Input: Data sequences { i}M
i=1 and threshold dth .

2: Output: Partitions {Ck}K̂
k=1 .

3: {Center initialization}
4: Arbitrarily choose one  i as c1 and set K̂ = 1.

5: while maxi∈I M
1

(
min

k∈I K̂
1

d ( i , ck )
)

> dth do

6: cK̂ +1 ← arg max i

(
min

k∈I K̂
1

d ( i , ck )
)

7: K̂ ← K̂ + 1
8: end while
9: Clustering initialization specified in Algorithm 1.

10: Return {Ck}K̂
k=1

Algorithm 4: Merge-Based Clustering With Unknown K.

1: Input: Data sequences { i}M
i=1 and threshold dth .

2: Output: Partition set {Ck}K̂
k=1 .

3: Initialize {Ck}K̂
k=1 by Algorithm 3.

4: while not converge do
5: Center update specified in Algorithm 2.

6: {Merge Step}
7: for k1 , k2 ∈ {1, . . . , K̂} and k1 �= k2 do
8: if d (ck1 , ck2 ) ≤ dth then
9: if

∑
 i ∈Ck 1

d(ck2 , i) <
∑

 i ∈Ck 2
d(ck1 , i)

then
10: Ck2 ← Ck1 ∪ Ck2 and delete ck1 and Ck1 .

11: else
12: Ck1 ← Ck1 ∪ Ck2 and delete ck2 and Ck2 .

13: end if
14: K̂ ← K̂ − 1.

15: end if
16: end for
17: Cluster update specified in Algorithm 2.

18: end while
19: Return {Ck}K̂

k=1

Theorem IV.1: Algorithm 4 converges after at most Tmax it-

erations, where

Tmax =
M∑

K̂ =1

(
M

K̂

)
K̂(M −K̂ ) .

Moreover, under Assumption 1, if dth ∈ (dL , dH ), then the error

probability of Algorithm 4 after T iterations is upper bounded

as follows

Pe ≤ M 2 ((T + 1) a1 + a2 + (T + 1) a3) e−bn ,

where a1 , a2 , a3 and b are as defined in Assumption 1 and

T ≤ Tmax.

Proof: The proof shares the same idea as that of Theorem

III.1. See Appendix VI-B2 for details. �
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Algorithm 5: Split-Based Clustering With Unknown K.

1: Input: Data sequences { i}M
i=1 and threshold dth .

2: Output: Partition set {Ck}K̂
k=1 .

3: C1 = { i}M
i=1 , K̂ = 1 and find c1 by center update

specified in Algorithm 2.

4: while not converge do
5: {Split Step}
6: if max

k∈I K̂
1 ,  i ∈Ck

d (ck , i) > dth then

7: K̂ ← K̂ + 1.

8: k = arg max
k∈I K̂

1
(max i ∈Ck

d (ck , i))
9: cK̂ ← arg max i ∈Ck

d (ck , i)
10: end if
11: Cluster update specified in Algorithm 2.

12: end while
13: Return {Ck}K̂

k=1

Theorem IV.1 shows that the merge-based algorithm is ex-

ponentially consistent under any distance metric satisfying As-

sumption 1 with the error exponent b.

Corollary IV.1.1: Suppose the KS distance and the MMD

statistic are used with dth = Σk s

2 and dth = Σm m d

2 . Then for n
sufficiently large, the error probability of Algorithm 4 after T
iterations is upper bounded as follows

PK S
e ≤ M 2 (10T + 14) exp

(
−nΔ2

ks

8

)
,

PM M D
e ≤ M 2 (6T + 8) exp

(
−nΔ2

mmd

64G

)
.

Proof: By Propositions 1 and 2, the upper bound on the error

probability of Algorithm 4 in Theorem IV.1 applies to the KS

distance and the MMD statistic. Thus, the corollary is obtained

by substituting the values specified in Lemmas A.3–A.8 in the

upper bound. �
Corollary IV.1.1, combined with the fact that T is finitely

bounded for finite M and K, implies that Algorithm 4 is ex-

ponentially consistent under both the KS and MMD distance

metrics with an error exponent no smaller than
Δ2

k s

8 and
Δ2

m m d

64G ,

respectively.

B. Split Step

Suppose a cluster contains sequences generated by different

distributions and the center is generated from p ∈ Pk . Then if

the distance metric satisfies (3b), the probability that the dis-

tances between sequences generated from distribution clusters

other than Pk and the center is small decays as the sample size

increases. Therefore, it is reasonable to begin with one cluster

and then split a cluster if there exists a sequence in the clus-

ter that has a large distance to the center. The corresponding

algorithm is summarized in Algorithm 5.

Definition IV.1.1: Suppose Algorithm 5 obtains K̂ clusters

at the t-th iteration, where K̂ < K and K̂ = t or t + 1. Then

the correct clustering update result is that each cluster contains

all the sequences generated from the distribution cluster that

generates the center.

Theorem IV.2: Algorithm 5 converges after at most M iter-

ations. Moreover, under Assumption 1, if dth ∈ (dL , dH ), then

the error probability of Algorithm 5 after T iterations is upper

bounded as follows

Pe ≤ M 2T (a1 + a2 + a3) e−bn ,

where a1 , a2 , a3 and b are as defined in Assumption 1 and

T ≤ M .

Proof: An error occurs at the t-th iteration if and only if the

K̂-th center is generated from distribution clusters that gener-

ated the previous centers or the clustering result is incorrect.

Note that the error event of the first T iterations is the union

of the events that an error occurs at the t-th iteration while the

clustering results in the previous t − 1 iterations are correct for

t = 1, . . . , T . Similar to the proof of Theorem III.1, the error

probability is bounded by the union bound. See Appendix VI-B3

for more details. �
Theorem IV.2 shows that the split-based algorithm is expo-

nentially consistent under any distance metric satisfying As-

sumption 1 with the error exponent b.

Corollary IV.2.1: Suppose the KS distance and the MMD

statistic are used with dth = Σk s

2 and dth = Σm m d

2 . Then for n
sufficiently large, the error probability of Algorithm 5 after T
iterations is upper bounded as follows

PK S
e ≤ 14M 2T exp

(
−nΔ2

ks

8

)
,

PM M D
e ≤ 8M 2T exp

(
−nΔ2

mmd

64G

)
.

Proof: By Propositions 1 and 2, the upper bound on the error

probability of Algorithm 5 in Theorem IV.2 applies to the KS

distance and the MMD statistic. Thus, the corollary is obtained

by substituting the values specified in Lemmas A.3–A.8 in the

upper bound. �
Corollary IV.2.1, combined with the fact that T is finitely

bounded for finite M , implies that Algorithm 5 is exponentially

consistent under both the KS and MMD with an error exponent

no smaller than
Δ2

k s

8 and
Δ2

m m d

64G , respectively.

V. NUMERICAL RESULTS

In this section, we provide some simulation results given K =
5 and Mk = 3 for k = 1, . . . , 5, and xk,jk

[i] ∈ R. Gaussian dis-

tributions N (
μk,jk

, σ2
)

and Gamma distributions Γ (ak,jk
, b)

are used in the simulations. The probability density function

(p.d.f.) of Γ(a, b) is defined as

f (x;α, β) =
1

βαΓ (α)
xα−1 exp

(
−x

β

)
(x > 0) ,

where α > 0, β > 0 and Γ (·) is the Gamma function, re-

spectively. Specifically, the parameters of the distributions

are μk,jk
∈ {k − δ, k, k + δ}, σ2 = 1, αk,jk

∈ {2.5k + 1 −
δ, 2.5k + 1, 2.5k + 1 + δ} and β = 1, where δ = 0 and 0.1.

Note that when δ = 0, all the sequences generated from the
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Fig. 1. Performance of Algorithm 2.

same distribution cluster are generated from a single distribu-

tion. The squared exponential kernel function is used in the

simulations for the MMD distance, i.e.,

g (x, y) = e−
(x −y ) 2

2 . (8)

The simulation for a given sample size keeps running until the

number of trials that provide incorrect clustering output reaches

1000.

A. Known Number of Clusters

Simulation results for a known number of clusters are shown

in Fig. 1. One can observe from the figures that by using both

the KS distance and MMD, log Pe is a linear function of the

sample size, i.e., Pe is exponentially consistent. Moreover, the

logarithmic slope of Pe with respect to n, i.e., the quantity

− log Pe

n , increases as δ becomes smaller, which, in the current

simulation setting, implies a larger Δ.

Furthermore, a good distance metric for Algorithm 2 depends

on the underlying distributions. The kernel function in (8) is a

good choice given symmetric p.d.f.s whereas the KS distance

which relates to the order statistics becomes a better choice

when the p.d.f.s are skewed.

B. Unknown Number of Clusters

With an unknown number of distribution clusters, the thresh-

old dth specified in Corollaries IV.1.1 and IV.2.1 are used in

the simulation. The performance of Algorithms 4 and 5 for the

KS distance and MMD are shown in Figs. 2 and 3, respectively.

Given the KS distance and MMD, log Pe ’s are linear functions

of the sample size when the sample size is large and larger Δ
implies a larger slope of log Pe . Furthermore, given the same

value of δ, Algorithms 4 and 5 have similar performance under

both the KS distance and MMD.

Fig. 2. Performance of Algorithms 4 and 5 for the KS distance.

Fig. 3. Performance of Algorithms 4 and 5 for MMD.

Intuitively, smaller δ implies larger Δ in the current

simulation setting, thereby should result in better clustering

performance for a given sample size. Figs. 2(b) and 3(b) indi-

cates that Algorithms 4 and 5 with the KS distance and MMD

performs better with δ = 0.1 than that with δ = 0 when the

sample size is small. This is likely due to the fact that 1) the KS

distance between the two sequences is always lower bounded

by 1
n , 2) the MMD estimator in (7) always has a positive bias, 3)

the Gaussan kernel in (8) may not be a good choice for skewed

p.d.f.s. Thus, with small sample sizes, Algorithms 4 and 5 are

likely to overestimate the number of clusters. As the sample

size increases, Pe with δ = 0 indeed becomes smaller than that

with δ = 0.1 in Fig. 2(b). Meanwhile, since log Pe with δ = 0
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TABLE II
min K̂/ max K̂ IN FIG. 2(A)

TABLE III
min K̂/ max K̂ IN FIG. 2(B)

TABLE IV
min K̂/ max K̂ IN FIG. 3(A)

TABLE V
min K̂/ max K̂ IN FIG. 3(B)

has a larger slope in Fig. 3(b), it should eventually become

less than log Pe with δ = 0.1. In Tables II–V, the maximum

and minimum estimated number of clusters by Algorithms 4

and 5 corresponding to Figs. 2 and 3 are provided. Tables II

and III show that under the KS distance the algorithms tend

Fig. 4. Performance of Algorithms 4 and 5 given different ω.

TABLE VI
K̂ < K/K̂ = K/K̂ > K IN FIG. 3(A)

to overestimate the number of clusters given K = 5. This

can be mitigated by the increased threshold dth to control

merging/splitting of cluster centers, which is verified by Fig. 4.

The frequencies of the cases where K̂ < K, K̂ = K and

K̂ > K corresponding to Fig. 3 are provided in Tables VI

and VII. Those frequencies that are smaller than 0.005 are set

to zero. Combining Tables IV and V , we can conclude that
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TABLE VII
K̂ < K/K̂ = K/K̂ > K IN FIG. 3(B)

under MMD, the proposed algorithms also tend to overestimate

the number of clusters. However, unlike the KS distance, the

overestimation may not be mitigated by simply increasing dth ,

which is verified by Fig. 4(c).

C. Choice of dth

Note that in general dth = ωdL + (1 − ω) dH , where ω ∈
(0, 1). Theorems IV.1 and IV.2 only establish the exponential

consistency of Algorithms 4 and 5, respectively. We now in-

vestigate the impact on performance given different ω’s. One

can observe from Fig. 4 that the choice of dth has a significant

impact on the performance of Algorithms 4 and 5. The optimal

dth depends on both the value of δ and the underlying distribu-

tions. Moreover, from Figs. 4(a)-(b), we can see that a smaller

ω which implies larger dth results in better performance for

KS distance and the two algorithms always have similar per-

formance. Similarly, from Figs. 4(c)-(d), smaller ω also results

in better performance for MMD except the case of Gaussian

distributions with δ = 0.

D. Computational Complexity

Assume that the complexity of the sum and point-wise

max/min operations is linear in the argument cardinality. The

complexity of other operations is assumed to be O(1). The

computational complexities of the center initialization step and

the cluster initialization step in Algorithm 1 are O(K2M) and

O(KM), respectively. The computational complexity of the

center update step and cluster update step in Algorithm 2 are

O(KM 2) and O(KM). Thus, the computational complexity of

Algorithm 2 is O(
(
M
K

)
K(M −K +1)M 2)

Similarly, one can verify that the computational complexities

of the center initialization step and the cluster initialization step

in Algorithm 3 are O(M 3) and O(M 2), respectively. The com-

putational complexity of the center update step, the merge step

and the cluster update step in Algorithm 4 are O(M 3), O(M 3)
and O(M 2). Thus, the computational complexity of Algorithm

4 is O(M 3Tmax).
The computational complexities of the finding c1

1 , the split

step and the cluster update step in Algorithm 5 are O(M 2),

O(M) and O(M 2), respectively. Thus, the computational com-

plexity of Algorithm 5 is O(M 3).

VI. CONCLUSION

This paper studied the k-medoids algorithm for clustering data

sequences generated from composite distributions. The conver-

gence of the proposed algorithms and the upper bound on the

error probability were analyzed for both known and unknown

number of clusters. The exponential decay of error probabilities

of the proposed algorithms was established for distance met-

rics satisfying certain properties. In particular, the KS distance

and MMD were shown to satisfy the required condition, and

hence the corresponding algorithms were exponentially consis-

tent. Note that the assumption of knowing dL and dH (or their

bounds) can be justified because the empirical KS distance and

MMD can be constructed, which converge to the true KS dis-

tance and MMD. Thus these thresholds or their bounds can be

obtained from historical data.

One possible generalization of the current work is to investi-

gate the exponential consistency of other clustering algorithms

given distributional distance metrics that satisfy the properties

similar to that in Assumption 1.

APPENDIX

A. Technical Lemmas

The following technical lemmas are used to prove Corollaries

III.1.1, IV.1.1 and IV.2.1. All the data sequences in Lemmas

A.3–A.8 are assumed to consist of n i.i.d. samples.

Lemma A.1 [D oretzky-Kiefer-Wolfowitz Inequality [38]]:
Suppose x consists of n i.i.d. samples generated from p. Then

P
(
dK S (x, p) > ε

) ≤ 2 exp
(−2nε2) .

Theorem A.2 [Theorem 7 in [37]]: Suppose x ∼ p,  ∼ q,

where x and  have m and n samples, respectively. Given

0 ≤ g(x, y) ≤ G, the following inequality holds:

P (|MMD(x, ) − MMD(p, q)| > f(G,m, n) + ε)

≤ 2 exp
(
− ε2mn

2G (m + n)

)
.

where f(G,m, n) = 2(
√

G
m +

√
G
n ).

Lemmas A.3–A.8 establish that the KS distance and the MMD

statistic obtained by (7) satisfy Assumption 1. Moreover, the

lemmas provided in [18] are special cases of Lemmas A.3, A.5

and A.7 with dL = 0.

Lemma A.3: Suppose xj ∼ pj for j = 1, 2, where pj ∈ P
and dK S (P) ≤ dL,ks . Then for any d0 > dL,ks ,

P
(
dK S (x1 ,x2) > d0

) ≤ 4 exp
(
−n(d0 − dL,ks)2

2

)
.
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Proof: Consider

P
(
dK S (x1 ,x2) > d0

)

≤ P
(
dK S (x1 , p1) + dK S (p1 , p2) + dK S (x2 , p2) > d0

)

≤ P
(
dK S (x1 , p1) + dL,ks + dK S (x2 , p2) > d0

)

≤ P

(
dK S (x1 , p1) >

d̂

2

)
+ P

(
dK S (x2 , p2) >

d̂

2

)

≤ 4 exp

(

−nd̂2

2

)

,

where d̂ = d0 − dL,ks . The first inequality is due to the triangle

inequality of the L1-norm and the property of the supremum,

and the last inequality is due to Lemma A.1. Therefore, we have

P
(
dK S (x1 ,x2) > d0

) ≤ 4 exp
(
− n(d0 − dL,ks)2

2

)
.

�
Lemma A.3 implies that the KS distance satisfies (3c) for

d > dL,ks .

Lemma A.4: Suppose xj ∼ pj for j = 1, 2, where pj ∈ P
and MMD(P) ≤ dL,mmd . Then for any d0 > dL,mmd and suf-

ficiently large n,

P
(
MMD(x1 ,x2) > d0

) ≤ 2 exp

(

−n (d0 − dL,mmd)
2

16G

)

.

Proof: Since MMD(p1 , p2) ≤ dL,mmd , we have

P (MMD(x1 ,x2) > d0)

≤ P (MMD(x1 ,x2) − MMD(p1 , p2) > d0 − dL,mmd)

≤ P (|MMD(x1 ,x2) − MMD(p1 , p2)| > d0 − dL,mmd) .

Choose ε = d0 −dL , m m d

2 and n sufficiently large such that

f (G, n, n) + ε < d0 − dL,mmd . By Theorem A.2, we have,

P (MMD(x1 ,x2) > d0) ≤ 2 exp

(

−n (d0 − dL,mmd)
2

16G

)

.

�
Lemma A.4 implies that the MMD statistc satisfies (3c) for

d > dL,mmd .

Lemma A.5: Suppose two distribution clusters P1 and P2
satisfy (3a) under the KS distance. Assume that for j = 1, 2,

xj ∼ pj where pj ∈ Pj . Then for any d0 < dH,ks ,

P
(
dK S (x1 ,x2) ≤ d0

) ≤ 4 exp
(
− n(dH,ks − d0)2

2

)
.

Proof: Similar to the proof of theorem A.3, we have

P
(
dK S (x1 ,x2) ≤ d0

)

≤ P
( − dK S (x1 , p1) + dK S (p1 , p2) − dK S (x2 , p2) ≤ d0

)

≤ P
( − dK S (x1 , p1) + d2 − dK S (x2 , p2) < d0

)

≤ P

(
dK S (x1 , p1) >

d̂

2

)
+ P

(
dK S (x2 , p2) >

d̂

2

)

≤ 4 exp

(

−nd̂2

2

)

,

where d0 < d2 < dH,ks , d̂ = d2 − d0 and limd2 ↑dH , k s
=

dH,ks − d0 . The last inequality is due to Lemma A.1. There-

fore, by the continuity of the exponential function, we have

P
(
dK S (x1 ,x2) ≤ d0

) ≤ 4 exp
(
− n(dH,ks − d0)2

2

)
.

�
Lemma A.5 implies that the KS distance satisfies (3b) for

d > dH,ks .

Lemma A.6: Suppose two distribution clusters P1 and P2
satisfy (3a) under MMD. Assume that for j = 1, 2, xj ∼ pj ,

where pj ∈ Pj . Then for any d0 < dH,mmd and sufficiently

large n,

P
(
MMD(x1 ,x2) ≤ d0

) ≤ 2 exp

(

−n (dH,mmd − d0)
2

16G

)

.

Proof: Similar to the proof of Lemma A.4, we have

P (MMD(x1 ,x2) ≤ d0)

≤ P (MMD(p1 , p2) − MMD(x1 ,x2) ≥ dH,mmd − d0)

≤ P
(
|MMD(x1 ,x2) − MMD(p1 , p2)| > d̂

)

where d̂ = d3 − d0 and d0 < d3 < dH,mmd . Choose ε = d̂
2 and

n sufficiently large such that f(G, n, n) + ε < d̂. By Theorem

A.2, we have

P (MMD(x1 ,x2) > d0) ≤ 2 exp

(

− nd̂2

16G

)

.

Let limd3 ↑dH , k s
= dH,ks − d0 . Then by the continuity of the

exponential function, we have for n sufficiently large,

P (MMD(x1 ,x2) ≤ d0) ≤ 2 exp

(

−n (dH,mmd − d0)
2

16G

)

.

�
Lemma A.6 implies that MMD satisfies (3b) for d > dH,mmd .

Lemma A.7: [39] Suppose two distribution clusters P1 and

P2 satisfy (3a) under the KS distance. Assume that for j = 1, 2,

xj ∼ pj with length n where pj ∈ Pj . Then for any x3 ∼ p3
with length n where p3 ∈ P1 ,

P
(
dK S (x1 ,x3) ≥ dK S (x2 ,x3)

) ≤ 6 exp
(
− nΔ2

ks

8

)
.
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Lemma A.7 implies that the KS distance satisfies (3d) for

d ∈ (dL,ks , dH,ks).
Lemma A.8: Suppose two distribution clusters P1 and P2

satisfy (3a) under MMD. Assume that for j = 1, 2, xj ∼ pj

where pj ∈ Pj . Then for any x3 ∼ p3 where p3 ∈ P1 , where n
is sufficiently large,

P
(
MMD(x1 ,x3) ≥ MMD(x2 ,x3)

) ≤ 4 exp
(
−nΔ2

mmd

64G

)

Proof: Let Δ̂ ∈ (0,Δmmd). Similar to the proof of Lemmas

A.4 and A.6, we have

P (MMD(x1 ,x3) ≥ MMD(x2 ,x3))

≤ P
(
MMD(x1 ,x3) − MMD(p1 , p3) + MMD(p2 , p3)

− MMD(x2 ,x3) ≥ Δmmd

)

≤ P
(∣∣MMD(x1 ,x3) − MMD(p1 , p3)| + |MMD(p2 , p3)

− MMD(x2 ,x3)
∣
∣ > Δ̂

)

≤ P

(
∣
∣MMD(x1 ,x3) − MMD(p1 , p3)

∣
∣ >

Δ̂
2

)

+ P

(
∣
∣MMD(x2 ,x3) − MMD(p2 , p3)

∣
∣ >

Δ̂
2

)

,

where the last inequality is due to the union bound. Choose

ε = Δ̂
4 and n sufficiently large such that f(G, n, n) + ε < Δ̂

2 .

By Theorem A.2, we have

P (MMD(x1 ,x3) ≥ MMD(x2 ,x3)) ≤ 4 exp

(

−nΔ̂2

64G

)

.

Let Δ̂ ↑ Δmmd . By the continuity of the exponential function,

we have for n sufficiently large,

P (MMD(x1 ,x3) ≥ MMD(x2 ,x3)) ≤ 4 exp
(
−nΔ2

mmd

64G

)
.

�
Lemma A.8 implies that MMD satisfies (3d) for d ∈

(dL,mmd, dH,mmd).

B. Proof of Main Results

Define the following three events:

S1(dth) =
{∃k, k′ ∈ IK

1 , k 	= k′, j ∈ IMk
1 , j′ ∈ I

Mk ′
1 ,

s.t. d(xk,j ,xk ′,j ′) ≤ dth

}
,

S2(dth) =
{∃k ∈ IK

1 , j, j′ ∈ IMk
1 s.t. d(xk,j ,xk,j ′) > dth

}
,

S3 =
{∃k, k′ ∈ IK

1 , k 	= k′, j1 , j2 ∈ IMk
1 , j′ ∈ I

Mk ′
1 ,

s.t. d(xk,j1 ,xk,j2 ) ≥ d(xk,j1 ,xk ′,j ′)
}
,

where dth ∈ (dL , dH ). Assume that the sequencesxk,j ’s and the

corresponding distribution clusters Pk ’s satisfy Assumption 1.

By (3b)–(3d) and the union bound, we have

P
(
S1(dth)) ≤

K∑

k=1

K∑

k ′=1
k ′ 	=k

Mk∑

jk =1

Mk ′∑

jk ′=1

a1e
−bn ≤ M 2a1e

−bn ,

(9a)

P
(
S2(dth)

) ≤
K∑

k=1

Mk∑

jk =1

Mk ′∑

jk ′=1

a2e
−bn ≤ M 2a2e

−bn , (9b)

P
(
S3

) ≤
K∑

k=1

Mk∑

jk =1

Mk ′∑

jk ′=1

a3e
−bn ≤ M 2a3e

−bn . (9c)

The main idea of the proofs of Theorems III.1, IV.1 and IV.2

is to show that the error event at each iteration is a subset of

S1(dth) ∪ S2(dth) ∪ S3 .

1) Proof of Theorem III.1: The convergence of Algorithm 2

results from the design of the algorithm. Consider the (t − 1)-
th clustering step and the t-th center update step. We have for

t ≥ 1,

K∑

k=1

∑

 i ∈Ct−1 , a
k

d( i , c
t−1,a
k ) ≥

K∑

k=1

∑

 i ∈Ct−1 , a
k

d( i , c
t,a
k ). (10)

Moreover, for the t-th center update and the t-th cluster update,

we have for t ≥ 1,

K∑

k=1

∑

 i ∈Ct−1
k

d( i , c
t,a
k ) ≥

K∑

l=1

∑

 i ∈Ct
k

d( i , c
t,a
k ). (11)

The equalities in (10) and (11) hold if and only if Ct−1
k = Ct

k

and ct−1,a
k = ct,a

k for k = 1, . . . , K respectively which implies

the convergence of the algorithm.

Suppose there are K sequences assigned as cluster centers,

and as a result M − K remaining sequences are to be assigned

to cluster centers. The order in which cluster centers are chosen

does not matter, so there are a total of
(
M
K

)
permutations of

them. Since each of the remaining M − K sequences can be

assigned to one and only one cluster center, there are a total of

K(M −K ) possible assignments. Therefore the total number of

valid partitions is
(
M
K

)
K(M −K ) . By (10) and (11), Algorithm

2 is guaranteed to visit each possible partition at most once

except the one coinciding with the clustering output. Hence

the maximum number of algorithm iterations is always upper

bounded as

T ≤
(

M

K

)
K(M −K ) .

Define for t ≥ 1,

Et = {After t-th iteration, there are K1 centers generated

from K2 distribution clusters}.
where

K1

{
> K2 if K2 = K,

≥ K2 if K2 < K.
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Similarly, define

E0 = {The center initialization obtains K1 centers

generated from K2 distribution clusters}.
Then Et for t ≥ 0 denotes the error event that centers are incor-

rectly chosen at the center initialization or the t-th center update.

We first consider the error occurs at the initialization step. For

Algorithm 2,

E0 = {The center initialization results in K centers gene-

rated from K2 ( < K) distribution clusters centers.}
= {∃k, l, l′ ∈ IK

1 , l �= l′ s.t. c0,a
l , c0,a

l ′ ∼ Pk}.
Moreover, define

E0
1 = E0 ∩ {∃l, l′ ∈ {1, . . . , K} s.t. d(c0,a

l , c0,a
l ′ ) ≤ dth

}
,

E0
2 = E0 ∩ {∃l, l′ ∈ {1, . . . , K} s.t. d(c0,a

l , c0,a
l ′ ) > dth

}
.

Then E0 = E0
1 ∪ E0

2 . Without loss of generality, assume that

c0,a
1 , . . . , c0,a

K are chosen sequentially at the center initialization

step and l < l′. Then E0
1 implies that for all the sequences

z ∈ { i}M
i=1 \ {c0,a

m }l ′
m=1 ,

min
m∈{1,...,l ′−1}

d(c0,a
m , z) ≤ dth .

Thus, E0
1 ⊂ S1(dth). Then by (9a), we have

P
(
E0

1
) ≤ P

(
S1(dth)

) ≤ M 2a1e
−bn .

Moreover, since E0
2 ⊂ S2(dth), by (9b), we have

P
(
E0

2
) ≤ P

(
S2(dth)

) ≤ M 2a2e
−bn .

Thus, the error probability at the center initialization step is

bounded as follows

P
(
E0) ≤ M 2(a1 + a2)e−bn . (12)

We now consider the assignment step. Define for t ≥ 1,

Ht = {The clustering result after the t-th cluster update

is incorrect},
Moreover, define

H0 = {The clustering initialization is incorrect}.
Since Et ⊂ Ht−1 for t ≥ 1, it is sufficient to obtain an upper

bound on P
(
Ht

)
which serves as the upper bound of P (Ht ∪

Et). Define

Ĥt
1 =

{
H0 \ E0 for t = 0,

Ht \ (
E0 ∪ (∪t−1

l=0

(
Hl

)))
for t ≥ 1.

Then E0 ∪ ( ∪T
t=1 Ht

)
= E0 ∪ ( ∪T

t=0 Ĥt
1
)
, which is the event

that Algorithm 2 makes an error before the first T iterations

complete. Moreover, Ĥt
1 implies the event that an error occurs

at the t-th cluster update step given correct center update in the

same iteration which is denoted by

H̄t
1 =

{∃k, k′, l, l′ ∈ IK
1 , k �= k′, jk ∈ IMk

1 s.t. d(xk,jk
,

ct,a
l ) ≥ d(xk,jk

, ct,a
l ′ ) : ct,a

l ∼ Pk , ct,a
l ′ ∼ Pk ′

}
.

Then P (Ĥt
1) ≤ P

(
H̄t

1
)
. Moreover, since H̄t

1 ⊂ S3 , we have

P (Ĥt
1) ≤ P (H̄t

1) ≤ P
(
S3

) ≤ M 2a3e
−bn . (13)

Therefore, by (12), (13) and the union bound, the error proba-

bility of Algorithm 2 after T iterations is bounded by

Pe = P
(
E0 ∪ ( ∪T

t=0 Ĥt
1
))

≤ M 2(a1 + a2 + (T + 1)a3
)
e−bn .

(14)

2) Proof of Theorem IV.1: If no merge step is executed and

K̂ clusters are found by Algorithm 3, then similar to the proof of

Theorem III.1 Algorithm 4 converges after at most T0 iterations,

where

T0 =
(

M

K̂

)
K̂(M −K̂ ) .

If the merge step is executed, the valid partitions before and

after the merge step are mutually exclusive since the number of

clusters is strictly decreasing. Therefore, Algorithm 4 converges

after at most Tmax iterations, where

Tmax =
M∑

K̂ =1

(
M

K̂

)
K̂(M −K̂ ) .

In conclusion, Algorithm 4 converges after at most Tmax itera-

tions since T0 < Tmax.

We then analyze the error probability of Algorithm 4. We first

consider the initialization step. Define

E0
3 = E0 ∩ {

K2 < K
}
,

E0
4 = E0 ∩ {

K2 = K
}
.

Then E0 = E0
3 ∪ E0

4 . Moreover, since

E0
3 ⊂ {∃k, k′ ∈ IK

1 , jk ∈ IMk
1 , jk ′ ∈ I

Mk ′
1 s.t.

d(xk,jk
,xk ′,jk ′ ) ≤ dth

}
,

E0
4 ⊂ {∃k ∈ IK

1 , jk , j′k ∈ IMk
1 , s.t. d(xk,jk

,xk,j ′k ) > dth

}
,

then E0
3 ⊂ S1(dth) and E0

4 ⊂ S2(dth). Thus, by (9a), (9b), we

have

P
(
E0

3
) ≤ P

(
S1(dth)

) ≤ M 2a1e
−bn ,

P
(
E0

4
) ≤ P

(
S2(dth)

) ≤ M 2a2e
−bn .

Therefore, by the union bound, the probability that an error

occurs at the center initialization step is bounded by

P
(
E0) ≤ P

(
E0

3
)

+ P
(
E0

4
) ≤ M 2a1e

−bn + M 2a2e
−bn .

(15)

We now consider the error that occurs during iterations.

Et ⊂ Ht−1 for t ≥ 1 still holds. Furthermore, define an in-

correct merge as the event that the distance between two centers

generated from different distribution clusters is smaller than

dth . Let Dt be the event that incorrect merges occur at the t-th
(t ≥ 1) merge step. Thus we only need to bound P

(
Ht

)
and

P
(
Dt

)
. Let Bt1 ,t2 =

( ∪t1
l=1 Dl

) ∪ ( ∪t2
l=0 Hl

)
for t1 ≥ 1 and
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t2 ≥ 1. Define

D̂t =

{
D1 for t = 1
Dt \ (

E0 ∪ Bt−1,t−1
)

for t > 1
,

Ĥt
2 =

{
H0 \ E0 for t = 0
Ht \ (

E0 ∪ Bt,t−1
)

for t ≥ 1
.

Then

E0 ∪ ( ∪T
t=1 Dt

) ∪ ( ∪T
t=0 Ht

)

= E0 ∪ ( ∪T
t=1 D̂t

) ∪ ( ∪T
t=0 Ĥt

1
)
,

which denotes the event that an error occurs before T iterations

complete. Note that D̂t implies the event that an error occurs

at the t-th merge step gi en correct center update in the same

iteration, which is denoted by

D̄t =
{∃k, k′ ∈ IK

1 , k �= k′, l ∈ IK̂ t−1

1 , s.t. d(ct,a
l , ct,a

l ′ )

≤ dth : ct,e
l ∼ Pk , ct,e

l ′ ∼ Pk ′
}
.

Then P
(
D̂t

) ≤ P
(
D̄t

)
and D̄t ⊂ S1(dth). Thus, by (9a), we

have

P
(
D̂t

) ≤ P
(
D̄t

) ≤ P
(
S1(dth)

) ≤ M 2a1e
−bn . (16)

Moreover, we have P
(
Ĥt

2
) ≤ P

(
H̄t

2
)
, where

H̄t
2 =

{∃k, k′ ∈ IK
1 , k �= k′, jk ∈ IMk

1 , l, l′ ∈ IK̂ t

1 , s.t.

d(xk,jk
, ct,e

l ) ≥ d(xk,jk
, ct,e

l ′ ) : ct,e
l ∼ Pk , ct,e

l ′ ∼ Pk ′
}
.

Note that P (H̄t
2) has the same upper bound as P (H̄t

1) in (13).

Therefore, by (15), (13) and (16), the error probability after T
iterations is bounded by

Pe = P
(
Y 0 ∪ ( ∪T

t=0 Ĥt
2
) ∪ ( ∪T

t=1 D̂t
))

≤ M 2((T + 1)a1 + a2 + (T + 1)a3
)
e−bn .

(17)

3) Proof of Theorem IV.2: Note that in the extreme case,

splitting results in each cluster containing only one sequence,

i.e., splitting can happen at most M − 1 times. Therefore, Al-

gorithm 5 converges after at most M iterations. Furthermore, if

K̂ does not change from the (t − 1)-th to the t-th iteration, then

Ct−1
k = Ct

k and ct−1
k = ct

k for k = 1, . . . , K̂, which implies the

convergence of the algorithm.

Let At be the event that the error occurs at the t-th split step.

Then At = At
1 ∪ At

2 , where

At
1 =

{
The algorithm fails to split any cluster containing seq-

uences generated by diffierent distribution clusters at

the t-th iteration
}
,

At
2 =

{
The algorithm splits a cluster containing sequences

generated by one distribution clusters at the t-th itera-

tion
}
.

Let V t denote the event that the clustering result at the t-th
cluster update is incorrect. Then At ∪ V t denotes the event that

an error occurs at the t-th iteration. Define Ât = Ât
1 ∪ Ât

2 , where

Ât
i =

{
A1 for t = 1,

At
i \

(
(∪t−1

l=1A
l) ∪ (∪t−1

l=1V
l)

)
for t > 1,

for i = 1, 2. Moreover, define

V̂ t =

{
V 1 \ A1 for t = 1
V t \ (

(∪t−1
l=1V

l) ∪ (∪t
l=1A

l)
)

for t > 1
.

Then
( ∪T

t=1 At
) ∪ ( ∪T

t=1 V t
)

=
( ∪T

t=1 Ât
) ∪ ( ∪T

t=1 V̂ t
)
.

Since Ât
1 ⊂ S1(dth) and Ât

2 ⊂ S2(dth), then we have for

t = 1, . . . , T ,

P
(
Ât

1
) ≤ P

(
S1(dth)

) ≤ M 2a1e
−bn ,

P
(
Ât

2
) ≤ P

(
S2(dth)

) ≤ M 2a2e
−bn .

Moreover, since P
(
Ât

)
= P

(
Ât

1 ∪ Ât
2
)
, by the union bound

P
(
Ât

) ≤ M 2a1e
−bn + M 2a2e

−bn . (18)

Furthermore, by Definition IV.1.1, V̂ t implies the following

event

V̄ t =
{∃l, l′ ∈ IK̂ t

1 , k, k′ ∈ IK
1 k′ �= k, jk ∈ IMk

1 s.t.

d(xk,jk
, ct,s

l ) ≥ d(xk,jk
, ct,s

l ′ ) : ct,s
l ∼ Pk ,

ct,s
l ′ ∼ Pk ′

}
.

Then, P
(
V̂ t

) ≤ P
(
V̄ t

)
and V̄ t ⊂ S3 . Thus, we have

P
(
V̂ t

) ≤ P
(
V̄ t

) ≤ M 2a3e
−bn . (19)

Therefore, by (18), (19) and the union bound, the error proba-

bility of Algorithm 5 after T iterations is bounded by

Pe = P
(( ∪T

t=1 Ât
) ∪ ( ∪T

t=1 V̂ t
))

≤ M 2T
(
a1 + a2 + a3

)
e−bn .

(20)
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