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K-Medoids Clustering of Data Sequences With
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Abstract—This paper studies clustering of data sequences using
the k-medoids algorithm. All the data sequences are assumed to
be generated from unknown continuous distributions, which form
clusters with each cluster containing a composite set of closely lo-
cated distributions (based on a certain distance metric between
distributions). The maximum intracluster distance is assumed to
be smaller than the minimum intercluster distance, and both values
are assumed to be known. The goal is to group the data sequences
together if their underlying generative distributions (which are un-
known) belong to one cluster. Distribution distance metrics based
k-medoids algorithms are proposed for known and unknown num-
ber of distribution clusters. Upper bounds on the error probability
and convergence results in the large sample regime are also pro-
vided. It is shown that the error probability decays exponentially
fast as the number of samples in each data sequence goes to infinity.
The error exponent has a simple form regardless of the distance
metric applied when certain conditions are satisfied. In particular,
the error exponent is characterized when either the Kolmogrov—
Smirnov distance or the maximum mean discrepancy are used as
the distance metric. Simulation results are provided to validate the
analysis.

Index Terms—Kolmogorov—-Smirnov distance, maximum mean
discrepancy, unsupervised learning, error probability, k-medoids
clustering, composite distributions.

1. INTRODUCTION

HIS paper aims to cluster sequences generated by unknown
continuous distributions into classes so that each class con-
tains all the sequences generated from the same (composite)
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distribution cluster. By sequence, we mean a set of feature ob-
servations generated by an underlying probability distribution.
Here each distribution cluster contains a set of distributions that
are close to each other, whereas different clusters are assumed to
be far away from each other based on a certain distance metric
between distributions. To be more concrete, we assume that the
maximum intra-cluster distance (or its upper bound) is smaller
than the minimum inter-cluster distance (or its lower bound).
This assumption is necessary for the clustering problem to be
meaningful. It should be emphasized that the assumption is for
distribution clusters containing underlying distributions rather
than the empirical distributions corresponding to the data se-
quences. The problem of clustering empirical distributions is of
interest in market segmentation [1], image clustering [2], [3],
and meteorological parameters characterization [4]-[6], among
others.

Such unsupervised learning problems have been widely stud-
ied [7], [8]. The problem is typically solved by applying either
centroid-based clustering algorithms, e.g., k-means clustering
[9]-[11] and k-medoids clustering [12]-[14], or connectivity-
based clustering algorithms, e.g., single-linkage clustering al-
gorithm [15], and complete-linkage clustering algorithm [16],
where the data sequences are viewed as multivariate data with
Euclidean distance as the distance metric. The partitions of
centroid-based clustering algorithms depend on the distances
between sequences and the center of each cluster, whereas the
connectivity-based ones assign a sequence to a cluster based on
the distances between every existing sequence in the cluster and
the one to be assigned.

The centroid-based clustering algorithms usually require the
knowledge of the number of clusters and they differ in how the
initial centers are determined. One reasonable way is to choose
a data sequence as a center if it has the largest minimum dis-
tances to all the existing centers [17]-[19]. Alternatively, all the
initial centers can be randomly chosen [6]. With the number of
clusters unknown, there are typically two alternative approaches
for clustering. One starts with a small number of clusters, e.g.,
1, which is an underestimate of the true number, and proceed
to split the existing clusters until convergence [19], [20]. The
authors in [20] assumed a maximum number of clusters and
the threshold for clustering depended on a pre-determined sig-
nificance level of the two sample Kolmogorov-Smirnov (KS)
test whereas the algorithm proposed in [19] did not assume a
maximum number of clusters and the threshold for clustering
was a function of the intra-cluster and inter-cluster distances.
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Alternatively, one may start with an overestimated the number
of clusters, e.g., every sequence is treated as a cluster, and pro-
ceed to merge clusters that are deemed close to each other [19].
The algorithms in [6], [17], [20] were all validated by simulation
results without carrying out an analysis of the error probability.

There are some key differences between the k-means algo-
rithm and the k-medoids algorithm. The k-means algorithm min-
imizes a sum of squared Euclidean distances. Meanwhile, the
k-medoids algorithm assigns data sequences as centers and min-
imizes a sum of arbitrary distances, which makes it more robust
to outliers and noise [21], [22]. Moreover, the k-means algo-
rithm requires updating the distances between data sequences
and the corresponding centroids in every iteration whereas the
k-medoids algorithm only requires the pairwise distances of
the data sequences, which can be computed before hand. Thus,
the k-medoids algorithm outperforms the k-means algorithm in
terms of computational complexity as the number of sequences
increases [23].

Most prior research focused on computational complexity
analysis, whereas the error probability and the performance
comparison of different clustering algorithms were typically
studied through simulations, e.g., [13], [14], [23], [24]. This pa-
per attempts to theoretically analyze the error probability for the
k-medoids algorithm especially in the asymptotic region. Fur-
thermore, in contrast to previous studies, which frequently used
vector norms as the distance metric, e.g., Euclidean distance,
our study adopts the distance metrics between distributions for
clustering in order to capture the statistical models of data se-
quences considered in this paper. This formulation based on a
distributional distance metric is uniquely suited to the proposed
clustering problem, where each data point, i.e., each data se-
quence, represents a probability distribution and each cluster
is a collection of closely related distributions, i.e., composite
hypotheses.

Various distance metrics that take the distribution properties
into account can be reasonable choices, e.g., KS distance [6],
[18]-[20] and maximum mean discrepancy (MMD) [25]. Our
previous work [18], [19] has shown that the KS distance based
k-medoids algorithms are exponentially consistent for both
known and unknown number of clusters. Exponential consis-
tency, whose definition will be formally given in Section II, im-
plies that the error probability of clustering algorithms decays at
least exponentially fast as the sample size becomes large enough.
In this paper, we consider a much more general framework and
instead of focusing on a specific distance metric such as KS
distance in our prior work [18], [19], we consider clustering se-
quences generated from distributions satisfying (3a) and under
any distance metric that satisfies (3c)—(3d) in Assumption 1.
The rationale is the following: with any distance metric that
captures the statistical model of data sequences, one is likely
to observe that, for a large sample size, 1) sequences generated
from the same distribution cluster are statistically close to each
other, and 2) sequences generated from different distribution
clusters are statistically far away from each other. Thus, if the
minimum distance of different distribution clusters is greater
than the maximum diameter of all the distribution clusters de-
fined in Section II, then it becomes unlikely to make a clustering
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error as the sample size increases. In this paper, we develop k-
mediods distribution clustering algorithms where the distances
between distributions are selected to capture the underlying sta-
tistical model of the data. We analyze the error probability of
the proposed algorithms, which takes the form of exponential
decay as the sample size increases under Assumption 1. Both
the KS distance and the MMD are examined in the present work
and we show that they both satisfy Assumption 1 so that the er-
ror probability of the proposed algorithms decays exponentially
fast if the KS distance or MMD is used as the distance metrics.

We note that recent studies [26]-[30] of anomaly detection
problems and classification also took into account the statistical
model of the data sequences. Our focus here is on the clus-
tering problem, leading to error performance analysis that is
substantially different from that in [26]-[30].

The rest of the paper is organized as follows. In Section 1I,
the system model of the clustering problem, the preliminaries of
the KS distance and MMD, and notations are introduced. The
clustering algorithm given the number of clusters and the corre-
sponding upper bound on the error probability are provided in
Section III, followed by the results of the clustering algorithms
with an unknown number of clusters in Section IV. The simula-
tion results for the KS and MMD based algorithms are provided
in Section V. Section VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES
A. Clustering Problem

Suppose there are K distribution clusters denoted by Pj. for
k=1,...,K, where K is fixed. Define the intra-cluster dis-
tance of P, and the inter-cluster distance between P, and Py
for k # k' respectively as

d(Pk) = Sup72 d(pivpi’)v
iPil€
Pi,p . k (1)
d(Pk7 ,Pk,) - Di Epkvlflllf/epkr d(pi’pi,)’

where d (-, -) is a distance metric between distributions, e.g., the
KS distance or MMD defined later in (5) and (6) respectively.
Then d (Py) and d (Py, Py) represent the diameter of Pj; and
the distance between P, and Py, respectively. In the following
discussion, d (-, ) is also used to denote the distance between
data sequences if no ambiguity exists, e.g., the MMD statistic
defined in (7). Define
dp = —HllaXK d(Pk;),

dy = min d(Py, Py,
# = min (Pi, Pr) .
Y =dy +dyp,

A =dg —dr.

Table I summarizes the notations of the generalized form of dis-
tances defined in (1) and (2) which will be used in the following
discussion.

Suppose M), data sequences are generated from the dis-
tributions in Pj, and hence a total of Zf;l M, = M se-
quences are to be clustered, where M < +oo. Without loss of
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TABLE I
NOTATIONS
general KS MMD
d(Py) dx s (Pr) MMD (Py)
d(Pr,Pi) | dxs (P, Pys) | MMD (Py, Py)
dL dL,ks dL,m'md
dH dH,ks dH,m'md
A Aks A'rn’rnd
Y st E'rn’md

generality, assume that each sequence xy, ;, = [xxj, [1],- ..,
Xy, j, [n]] consists of n independently identically distributed
(i.i.d.) samples generated from p ;, € P, for k=1,... . K
and j; € {1,..., M} }. The i-th observation in X}, j, 1s denoted
by xy, ;, [i] € R™, where m < coandi € {1,...,n}. Note that
for any fixed £, p;, ;. ’s are not necessarily distinct. Namely, for
a fixed k, some x;, j, ’s can be generated from the same distri-
bution. Although the following discussion assumes that all the
data sequences have the same length, our analysis can be easily
extended to the case with different sequence lengths by replac-
ing n with the minimum sequence length. In order to analyze
the error probability of the clustering algorithm, we introduce an
assumption relating to the concentration property of the distance
metrics:

Assumption 1: For any distribution clusters {P;, ..., Px },
any sequences X j, ~ Dkj,, Xpj ~ Dgj; and Xpj, ~
Pirj,.» Where k # k', and sufficiently large n, the following
inequalities hold:

dp <dg, (3a)

P(d(xk,j, %015, ) < dg) < are " Vdy € (dr,dg), (3b)
P(d(xg j, , %pj) > do) < ase™" Vdy € (dp,dy), (3c)

P(d(xp jy  Xnj1 ) = d(Xp g, X0 j,,)) < aze™", (3d)

where a;’s are some constants independent of distributions, b
(>0) is a function of d; and n is the sample size. O

Here (3a) guarantees that the lower bound of inter-cluster dis-
tances is greater than the upper bound of intra-cluster distances.
(3b) guarantees that the probability that the distance between
two sequences generated from different distribution clusters is
smaller than dy decays exponentially fast. (3c) guarantees that
the probability that the distance between two sequences gener-
ated from the same distribution cluster is greater than d;, decays
exponentially fast. (3d) guarantees that given two sequences
generated from the same cluster and a third sequence gener-
ated from another distribution cluster, the probability that the
first sequence is actually closer to the third sequence decays
exponentially fast.

A clustering output is said to be incorrect if the sequences
generated by different distribution clusters are assigned to the
same cluster, or sequences generated by the same distribution
cluster are assigned to more than one cluster. Let a trial be the
event of applying a clustering algorithm to M data sequences
generatedby py 1,...,P1,0m,,---,PK, M, - The error probability
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of the clustering algorithm is defined as

where N is the number of trials of which N, trials result in
incorrect clustering outputs. The error probability of a clustering
algorithm given Py, ..., Pk is defined as

Pep = sup

Pijy €Pc i k=1, K, jr=1,....M;
The error probability of a clustering algorithm given d, and dg
is defined as

P.(dp,dg) = sup

{Pl ooy Prc }CPK dy,dy

Pe,’Pv

where P is the set of all the continuous distributions on R".
In the following discussion, the notation P,(dy,dy) will be
replaced by P, for simplicity if it does not cause any ambiguity.
We also note that P, is a function of the sample size n.
A clustering algorithm is said to be consistent if for any
0<d;, <dy,
lim P, =0.

n—0o0

The algorithm is said to be exponentially consistent if for any
0< d L < d H>

1
B = lim —~log P, > 0.
n

n—00
For the case where a clustering algorithm is exponentially con-
sistent, we are also interested in characterizing the error expo-
nent B.

B. Preliminaries of KS Distance

Suppose x is generated by the distribution p, where x[i] €
R. Then the empirical cumulative distribution function (c.d.f.)
induced by x is given by

Fe(@) = 3 1 (60, @

where 1/_ . (-) is the indicator function. Let the c.d.f. of p
evaluated at a be F}, (a). The KS distance is defined as

dKS (pvQ):Suﬂg'Fp (a)_Fq (a’)|7 (5)
ac

where F), (a) and F}, (a) can be either c.d.f’s of distributions or
empirical c.d.f.’s induced by sequences.

Proposition 1: The KS distance satisfies (3b)—(3d) if
dL,k‘s < dH,ks~

Proof: See Lemmas A.5, A.3, and A.7 in Appendix A. W

C. Preliminaries of MMD

Suppose P includes a class of probability distributions, and
suppose H is the reproducing kernel Hilbert space (RKHS)
associated with a kernel g (-, -). Define a mapping from P to H
such that each distribution p € P is mapped into an element in
'H as follows

iy () = Bylg (- 2)] = / g(x)dp(x),
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where (i, (+) is referred to as the mean embedding of the dis-
tribution p into the Hilbert space H. Due to the reproducing
property of H, it is clear that E,[f] = (u,, f)# forall f € H.

It has been shown in [31]-[34] that for many RKHSs such as
those associated with Gaussian and Laplace kernels, the mean
embedding is injective, i.e., each p € P is mapped to a unique
element y1, € H. In this way, many machine learning problems
with unknown distributions can be solved by studying mean
embeddings of probability distributions without actually esti-
mating the distributions, e.g., [28], [29], [35], [36]. In order
to distinguish between two distributions p and ¢, the authors
in [37] introduced the following notion of MMD based on the
mean embeddings 1, and ji, of p and g, respectively:

— Haln- (6)

A biased estimator of MIMID (p, ¢) based on x and y of sample
lengths n and m, respectively, is given by

MMD (p, q) = |11

n n

PPIC

i=1j=1

MMD (x,y) [

‘fni;z i)

i )
where g(x,y) is the kernel function which is assumed to be
bounded, i.e., 0 < g (z,y) <G < +o0.

Proposition 2: The MMD statistic satisfies (3b)—(3d) if

dL,mmd < deLmd-
Proof: See Lemmas A.6, A.4, and A.8 in Appendix A. [J

D. Additional Notations

The following notations are used in the algorithms and the
corresponding proofs. Let Cj be the [-th cluster obtained at
the t-th cluster update step and let c¢;*, ¢, and c;"* be the
centers of the [-th cluster obtained by the center update step,
merge step and split step of the ¢-th iteration respectively for
t > 1. Let CZ0 be the [-th cluster obtained at the initialization
step and c?"“ be the corresponding center. Let K' (t > 1) be the
number of centers before the ¢-th cluster update step and the ¢-th
split step. Moreover, use K to denote the number of centers
obtained at the center initialization step. For simplicity, all the
superscripts are omitted in the following discussion when there
is no ambiguity.

To further simplify the notation in the algorithms and
the proofs, let {y;}}2, denote the data sequence set
{xkj, }é‘:ﬁ}: .. However, the one-to-one mapping from
{yi}M, onto {xy }AK:q[;:l is not fixed, i.e., given a fixed
i, y; can be any sequence in {x, j, }szyA/k _, unless other con-
straints are imposed. Denote by y; ~ P if y; is generated from
a distribution p € Pj.. Furthermore, we define the following in-
dex set

I ={ki,... ks },

where k1, ko € Z7 and by < ko.
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Algorithm 1: Initialization With Known K.

1: Input: Data sequences {y; }*Z,, number of clusters K.
Output: Partitions {C; }£_,.

{Center initialization}

Arbitrarily choose one y; as c;.
for k = 2to K do

Cj «— argmaxy, (min - d(yi, c;))

end for

{Cluster initialization}

9: SetCp, «— Oforl <k < K.
10: for i = 1to M do

11: Ci < C U {yi}, where | = argmin;¢;x d(yi, ¢1)
12: end for
13: Return {C;, }_,

Algorithm 2: Clustering With Known K.

1: Input: Data sequences {y; }* e L., number of clusters K.
2: Output: Partition set {Cj, }1_,.

: Initialize {C; }£_, by Algorithm 1.

4: while not converge do

2

5 {Center update}

6: for k =1to K do

7: Ccj «— argminy. cc, ZereCk d(yi,yj)

8: end for

9: {Cluster update }
10: for:=1to M do
11: ify; € Ci and d (y;,cx) < d(yi,cp) then
12: Cr «— Crp U {yi} and Cpr < Cyps \ {y;}.
13: end if
14: end for

15: end while
16: Return {C; }£_|

III. KNOWN NUMBER OF CLUSTERS

In this section, we study the clustering algorithm for known
K, the number of clusters. The method proposed in [17] is used
for center initialization, as described in Algorithm 1. The initial
K centers are chosen sequentially such that the center of the k-
th cluster is the sequence that has the largest minimum distance
to the previous k& — 1 centers. The clustering algorithm itself is
presented in Algorithm 2. Given the centers, each sequence is
assigned to the cluster for which the sequence has the minimum
distance to the center. For a given cluster, a sequence is assigned
as the center subsequently if the sum of its distances to all the
sequences in the cluster is the smallest. The algorithm continues
until the clustering result converges.

The following theorem provides the convergence guarantee
for Algorithm 2 via an upper bound on the error probability.

Theorem II1.1: Algorithm 2 converges after at most
(]]L(I)K (M=K) jterations. Moreover, under Assumption 1, the
error probability of Algorithm 2 after 7T iterations is upper
bounded as follows

P, < M?(ay +ay + (T +1)ag)e ™™,
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where a1, as, as and b are as defined in Assumption 1 and
M .
T < KWM-K),
< (x)

Proof: The idea of proving the upper bound on the error
probability is as follows. We first prove that the error probability
atthe initialization step decays exponentially. Note that the event
that an error occurs during the first 7" iterations is the union of the
event that an error occurs at the ¢-th step and the previous ¢ — 1
iterations are correct fort = 1, ..., 7. Thus, if we prove that the
error probability at the ¢-th step given correct updates from the
previous iterations decays exponentially, then so does the error
probability of the algorithm by the union bound argument. See
Appendix B1 for details. (]

Theorem III.1 shows that for any given K, any distance metric
satisfying Assumption 1 yields an exponentially consistent k-
medoids clustering algorithm with the error exponent b.

Corollary II1.1.1: Suppose the KS distance and the MMD
statistic are used for Algorithms 1 and 2, then for n sufficiently
large,

A2
PES < M? (6T 4 14) exp <—n8’”) ,

nA?n md
64G '

Proof: By Propositions 1 and 2, the upper bound on the error
probability of Algorithm 2 in Theorem III.1 applies to the KS
distance and the MMD statistic. Thus, the corollary is obtained
by substituting the values specified in Lemmas A.3—A.8 in the
upper bound. (]

Corollary III.1.1, combined with the fact that T" is finitely
bounded for finite M and K, implies that Algorithm 2 is ex-
ponentially consistent under both the KS and MMD distance

A 5

2 A2
ks m m _d
s+ and =gt

RyMD<AFmT+aem<—

metrics with an error exponent no smaller than
respectively.

IV. UNKNOWN NUMBER OF CLUSTERS

In this section, we propose the merge- and split-based algo-
rithms for estimating the number of clusters as well as grouping
the sequences.

A. Merge Step

If a distance metric satisfies (3¢) and two sequences generated
by distributions within the same cluster are assigned as centers,
then, with high probability, the distance between the two centers
is small. This is the premise of the clustering algorithm based
on merging centers that are close to each other.

The proposed approach is summarized in Algorithms 3 and
4. There are two major differences between Algorithms 3 and
4 and Algorithms 1 and 2. First, the center initialization step of
Algorithm 3 keeps generating an increasing number of centers
until all the sequences are close to one of the existing centers.
Second, an additional Merge Step in Algorithm 4 helps to com-
bine clusters if the corresponding centers have small distances
between each other.
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Algorithm  3: Initialization =~ With

Unknown K.

Merge-Based

1: Input: Data sequences {y; }£, and threshold dy,.

2: Output: Partitions {Cj, }1*_,.

3: {Center initialization } R

4: Arbitrarily choose one y; as c¢; and set K = 1.

5: while max; ;v (minkdk d(yq;,ck)) > dyj, do
1 1

6: Cj . < argmaxy, (minke[{g d(yi,ck)>

7. K« K+1

8: end while

9:

Clustering initialization specified in Algorithm 1.
Return {C; }£_|

_
e

Algorithm 4: Merge-Based Clustering With Unknown K.

1: Input: Data sequences {y; f‘il and threshold d;,.

2: Output: Partition set {C; }=*_,.
3: Initialize {C; }£_, by Algorithm 3.
4: while not converge do
5: Center update specified in Algorithm 2.
6: {Merge Step}
7: for ki, ko € {1,..., K} and ky # ky do
8: if d (ci,,cr,) < dy, then
9: if Zy, €Cr, d(ckz ) Yi) < Zy, €C, d(ck| 7y7?)
then
10: Cr, <+ Ci, UCy, and delete c;, and Cy, .
11: else
12: Cy, < Ci, UC, and delete ¢, and Cy, .
13: end if
14: K« K-1
15: end if
16: end for

17: Cluster update specified in Algorithm 2.
18: end while
19: Return {C; }*_,

Theorem IV.1: Algorithm 4 converges after at most 7}, it-
erations, where

M
T = " (MK
> (%)

K=1

Moreover, under Assumption 1,if dy, € (dy,, dp), then the error
probability of Algorithm 4 after 7" iterations is upper bounded
as follows

P, <M?>((T41)a; +ay + (T +1)az) e,

where a;, as, a3 and b are as defined in Assumption 1 and
T S Tmax-

Proof: The proof shares the same idea as that of Theorem
III.1. See Appendix VI-B2 for details. ]
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Algorithm 5: Split-Based Clustering With Unknown K.
1: Input: Data sequences {y; }*£, and threshold dy,.
2: Output: Partition set {Cp H_,.

3: ¢ ={y:}M,, K = 1 and find ¢, by center update

specified in Algorithm 2.

4: while not converge do

3 {Split Step}

6: if Max, ;i o oce, d(ck,y;) > dyy, then

7 K — K+1.

8 k = arg max; i (maxy, ec, d(ck,¥i))
9: Ci < argmaxy,ec, d(ck,yi)
10: end if

11: Cluster update specified in Algorithm 2.
12: end while
13: Return {Cj, }_,

Theorem IV.1 shows that the merge-based algorithm is ex-
ponentially consistent under any distance metric satisfying As-
sumption 1 with the error exponent b.

Corollary IV.1.1: Suppose the KS distance and the MMD
statistic are used with d;;, = 22’? = and dy), = % Then for n
sufficiently large, the error probability of Algorithm 4 after 7'
iterations is upper bounded as follows

- A2
PKS < M? (10T + 14) exp (—” = >

A?n md
64G )’

Proof: By Propositions 1 and 2, the upper bound on the error
probability of Algorithm 4 in Theorem IV.1 applies to the KS
distance and the MMD statistic. Thus, the corollary is obtained
by substituting the values specified in Lemmas A.3—A.8 in the
upper bound. g

Corollary IV.1.1, combined with the fact that 7" is finitely
bounded for finite M and K, implies that Algorithm 4 is ex-
ponentially consistent under both the KS and MMD distance

PMMDP < N2 (6T 4 8) exp <

m md

and et

metrics with an error exponent no smaller than “
respectively.

B. Split Step

Suppose a cluster contains sequences generated by different
distributions and the center is generated from p € Py. Then if
the distance metric satisfies (3b), the probability that the dis-
tances between sequences generated from distribution clusters
other than P}, and the center is small decays as the sample size
increases. Therefore, it is reasonable to begin with one cluster
and then split a cluster if there exists a sequence in the clus-
ter that has a large distance to the center. The corresponding
algorithm is summarized in Algorithm 5.

Definition IV.1.1: Suppose Algorithm 5 obtains K clusters
at the ¢-th iteration, where K < K and K =t or ¢ + 1. Then
the correct clustering update result is that each cluster contains
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all the sequences generated from the distribution cluster that
generates the center.

Theorem IV.2: Algorithm 5 converges after at most M iter-
ations. Moreover, under Assumption 1, if d;;, € (dr,dy ), then
the error probability of Algorithm 5 after 7 iterations is upper
bounded as follows

P, < M*T (a; + as + a3) et

where a;, as, a3 and b are as defined in Assumption 1 and
T<M.

Proof: An error occurs at the ¢-th iteration if and only if the
K-th center is generated from distribution clusters that gener-
ated the previous centers or the clustering result is incorrect.
Note that the error event of the first T’ iterations is the union
of the events that an error occurs at the ¢-th iteration while the
clustering results in the previous ¢ — 1 iterations are correct for
t=1,...,T. Similar to the proof of Theorem III.1, the error
probability is bounded by the union bound. See Appendix VI-B3
for more details. O

Theorem IV.2 shows that the split-based algorithm is expo-
nentially consistent under any distance metric satisfying As-
sumption 1 with the error exponent b.

Corollary IV.2.1: Suppose the KS distance and the MMD
statistic are used with d;;, = == and d;;, = "’2’" < Then for n
sufficiently large, the error probab111ty of Algorithm 5 after T'
iterations is upper bounded as follows

) A2
PKS < 14M2T exp (—”8k>

nAgnmd
)

Proof: By Propositions 1 and 2, the upper bound on the error
probability of Algorithm 5 in Theorem IV.2 applies to the KS
distance and the MMD statistic. Thus, the corollary is obtained
by substituting the values specified in Lemmas A.3—A.8 in the
upper bound. O

Corollary IV.2.1, combined with the fact that 7" is finitely
bounded for finite M, implies that Algorithm 5 is exponentially
consistent under both the KS and MMD with an error exponent

PMMD < §MT exp (—

m m d

no smaller than T and

, respectively.

V. NUMERICAL RESULTS

In this section, we provide some simulation results given K =
5and M}, = 3fork =1,...,5,andxy, ;, [i] € R. Gaussian dis-
tributions A (444 j, , o) and Gamma distributions I' (ay, j, , b)
are used in the simulations. The probability density function
(p.d.f.) of T'(a, b) is defined as

501“1( )x“*l exp (—Z) (x> 0),

where & >0, >0 and T'(-) is the Gamma function, re-
spectively. Specifically, the parameters of the distributions
are pgj, € {k—06,kk+6}, o>=1, ayj, € {25k+1—
0,2.5k +1,2.5k+ 1+ 0} and 8 =1, where 6 =0 and 0.1.
Note that when § = 0, all the sequences generated from the

[z a,8) =
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KS, 5=0
HKS, 6=0.1
&)= MMD, §=0
“©MMD, §=0.1

:%:::_-:t

~——
————

log(P,)

30 35 40 45 50 55 60 65 70
sample size per sequence

(a) Gaussian distributions

(S, 5=0
HKS, 5=0.1
A= MMD, 5=0
“€:MMD, §=0.1

30 35 40 45 50 55 60 65 70
sample size per sequence

(b) Gamma distributions

Fig. 1. Performance of Algorithm 2.

same distribution cluster are generated from a single distribu-
tion. The squared exponential kernel function is used in the
simulations for the MMD distance, i.e.,
(z —y )2
T ®)
The simulation for a given sample size keeps running until the

number of trials that provide incorrect clustering output reaches
1000.

g(w,y):e

A. Known Number of Clusters

Simulation results for a known number of clusters are shown
in Fig. 1. One can observe from the figures that by using both
the KS distance and MMD, log P. is a linear function of the
sample size, i.e., P. is exponentially consistent. Moreover, the
logarithmic slope of P. with respect to n, i.e., the quantity
—%, increases as d becomes smaller, which, in the current
simulation setting, implies a larger A.

Furthermore, a good distance metric for Algorithm 2 depends
on the underlying distributions. The kernel function in (8) is a
good choice given symmetric p.d.f.s whereas the KS distance
which relates to the order statistics becomes a better choice
when the p.d.f.s are skewed.

B. Unknown Number of Clusters

With an unknown number of distribution clusters, the thresh-
old dy;, specified in Corollaries IV.1.1 and IV.2.1 are used in
the simulation. The performance of Algorithms 4 and 5 for the
KS distance and MMD are shown in Figs. 2 and 3, respectively.
Given the KS distance and MMD, log P.’s are linear functions
of the sample size when the sample size is large and larger A
implies a larger slope of log P,. Furthermore, given the same
value of §, Algorithms 4 and 5 have similar performance under
both the KS distance and MMD.
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M=KS, merge, §=0
-3 oK, merge, 6=0.1
Ak, split, 5=0
35 @S, spiit, 5=0.1

7120 125 130 135 140 145 150 155 160 165 170
Sample size per sequence

(a) Gaussian distributions

M=KS, merge, §=0
KS, merge, §=0.1

Ak, split, §=0

“©-Ks, split, 6=0.1

>
5 2
ke

-3

4

100 120 140 160 180 200 220 240 260

sample size per sequence
(b) Gamma distributions

Fig. 2. Performance of Algorithms 4 and 5 for the KS distance.

- MMD, merge, =0
MMD, merge, 5=0.1

=9=MMD, spit, 5=0

“©MMD, split, 0.1

log(P,)

40 50 60 70 80 90 100
sample size per sequence

(a) Gaussian distributions

- MMD, merge, 5=0
MMD, merge, 4=0.1

9= MMD, split, =0

=0+ MMD, split, 5=0.1

P
Yo P,
3
150 200 250 300
sample size per sequence
(b) Gamma distributions
Fig. 3. Performance of Algorithms 4 and 5 for MMD.

Intuitively, smaller § implies larger A in the current
simulation setting, thereby should result in better clustering
performance for a given sample size. Figs. 2(b) and 3(b) indi-
cates that Algorithms 4 and 5 with the KS distance and MMD
performs better with 6 = 0.1 than that with 6 = 0 when the
sample size is small. This is likely due to the fact that 1) the KS
distance between the two sequences is always lower bounded
by %, 2) the MMD estimator in (7) always has a positive bias, 3)
the Gaussan kernel in (8) may not be a good choice for skewed
p.d.f.s. Thus, with small sample sizes, Algorithms 4 and 5 are
likely to overestimate the number of clusters. As the sample
size increases, PP, with 6 = 0 indeed becomes smaller than that
with 6 = 0.1 in Fig. 2(b). Meanwhile, since log P. with § =0
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 TABLET
min K / max K IN FIG. 2(A)

Merge Split
n 0=01]6d=01|6=0] =01
120 5/8 5/9 5/9 5/9
125 5/8 5/8 5/8 5/9
130 5/8 5/9 5/8 5/9
135 5/8 5/8 5/8 5/9
140 5/8 5/9 5/8 5/9
145 517 5/9 517 5/9
150 517 5/9 5/7 5/8
155 517 5/9 5/7 5/8
160 517 5/8 5/7 5/9
165 517 5/8 5/7 5/9
170 517 5/8 5/7 5/9
TABLE III

min K/ max K IN FIG. 2(B)

Merge Split
n 0=01]6d=01]6=0] =01
100 | 5/10 5/9 5/10 5/9
120 5/9 5/9 5/9 5/8
140 5/9 5/8 5/9 5/8
160 518 5/8 5/8 5/8
180 5/8 517 517 517
200 5/8 517 5/9 517
220 517 5/8 5/8 517
240 517 517 517 517
260 517 517 517 517
TABLE 1V

min K / max K IN FIG. 3(A)

Merge Split
n 0=01]6d=01|6=0] =01
40 4/9 4/10 5/10 5/10
50 5/10 4/9 5/10 5/10
60 5/8 4/9 5/8 5/9
70 4/8 4/8 5/8 5/8
80 517 5/8 4/8 5/8
90 517 5/8 5/8 5/9
100 517 5/8 5/7 5/8
TABLE V

min K/ max K IN FIG. 3(B)

Merge Split
n 0=01]6d=01]6=0] =01
150 | 5/10 4/8 5/9 5/8
165 518 4/9 5/9 5/8
180 5/8 4/7 5/9 4/7
195 5/9 4/8 5/8 5/8
210 5/8 4/7 5/8 5/8
225 5/8 477 5/8 517
240 5/8 477 517 5/8
255 518 477 517 517
270 517 477 5/8 517
285 517 517 517 517
300 517 4/7 517 517

has a larger slope in Fig. 3(b), it should eventually become
less than log P, with § = 0.1. In Tables II-V, the maximum
and minimum estimated number of clusters by Algorithms 4
and 5 corresponding to Figs. 2 and 3 are provided. Tables II
and III show that under the KS distance the algorithms tend
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B- Gaussian, merge, 4=0
k Gaussian, merge, 5=0.1
- Gaussian, spl
D" Gaussian, split, §=0.1

b3k

A
P g
Pog merge, 6=0
R  merge,
ok Gamma, merge, §=0.1

o 9= Gamma, split, =0
3 Gamma, split, 4=0.1

v

=B Gaussian, merge, 6=0
i Gaussian, merge, 5=0.1
=9=Gaussian, split, 6=0
“©: Gaussian, split, $=0.1

=

=i Gamma, merge, 4=0
=k Gamma, merge, 1=0.1
6 Gamma, splt, 5=0
9 Gamma, spit, 4=0.1

0.1 02 0.3 04 0.5 0.6 07 0.8 09
(d) MMD (n = 80, Gamma)
Fig. 4. Performance of Algorithms 4 and 5 given different w.

X _ TABLE VI
K < K/K = K/K > K INFIG. 3(A)

Merge Split

n 0=0 6=0.1 6=0 0=0.1
40 | 0/0.36/0.64 | 0/0.25/0.77 | 0/0.35/0.65 | 0/0.25/0.75
50 | 0/0.56/0.44 | 0/0.42/0.58 | 0/0.57/0.43 | 0/0.41/0.59
60 | 0/0.72/0.28 | 0/0.53/0.47 | 0/0.72/0.28 | 0/0.52/0.48
70 | 0/0.83/0.17 | 0/0.64/0.36 | 0/0.83/0.16 | 0/0.65/0.35
80 | 0/0.90/0.10 | 0/0.71/0.29 | 0/0.90/0.10 | 0/0.73/0.27
90 | 0/0.94/0.06 | 0/0.77/0.23 | 0/0.94/0.06 | 0/0.78/0.22
100 | 0/0.96/0.04 | 0/0.83/0.17 | 0/0.96/0.04 | 0/0.83/0.16

to overestimate the number of clusters given K = 5. This
can be mitigated by the increased threshold d,; to control
merging/splitting of cluster centers, which is verified by Fig. 4.
The frequencies of the cases where K <K s K =K and
K>K corresponding to Fig. 3 are provided in Tables VI
and VII. Those frequencies that are smaller than 0.005 are set
to zero. Combining Tables IV and V , we can conclude that
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X ~ TABLE VII
K < K/K = K/K > K INFIG. 3(B)

Merge Split

n 0=0 0=0.1 0=0 6=0.1

150 | 0/0.42/0.58 | 0/0.78/0.22 | 0/0.39/0.61 | 0/0.78/0.22
165 | 0/0.51/0.49 | 0/0.83/0.17 | 0/0.54/0.46 | 0/0.83/0.17
180 | 0/0.63/0.37 | 0/0.87/0.18 | 0/0.61/0.39 | 0/0.87/0.13
195 | 0/0.71/0.29 | 0/0.90/0.10 | 0/0.70/0.30 | 0/0.89/0.11
210 | 0/0.78/0.22 | 0/0.92/0.08 | 0/0.77/0.23 | 0/0.92/0.08
225 | 0/0.83/0.17 | 0/0.93/0.07 | 0/0.83/0.17 | 0/0.93/0.07
240 | 0/0.88/0.12 | 0/0.95/0.05 | 0/0.87/0.13 | 0/0.94/0.06
255 | 0/0.91/0.09 | 0/0.96/0.04 | 0/0.91/0.09 | 0/0.95/0.05
270 | 0/0.93/0.07 | 0/0.96/0.04 | 0/0.94/0.06 | 0/0.96/0.04
285 | 0/0.95/0.05 | 0/0.97/0.03 | 0/0.95/0.05 | 0/0.96/0.04
300 | 0/0.96/0.04 | 0/0.97/0.03 | 0/0.96/0.04 | 0/0.97/0.03

under MMD, the proposed algorithms also tend to overestimate
the number of clusters. However, unlike the KS distance, the
overestimation may not be mitigated by simply increasing d;;,,
which is verified by Fig. 4(c).

C. Choice of dy,

Note that in general d;;, = wdy, 4+ (1 —w) dy, where w €
(0,1). Theorems IV.1 and IV.2 only establish the exponential
consistency of Algorithms 4 and 5, respectively. We now in-
vestigate the impact on performance given different w’s. One
can observe from Fig. 4 that the choice of d;;, has a significant
impact on the performance of Algorithms 4 and 5. The optimal
dyj, depends on both the value of § and the underlying distribu-
tions. Moreover, from Figs. 4(a)-(b), we can see that a smaller
w which implies larger d;;, results in better performance for
KS distance and the two algorithms always have similar per-
formance. Similarly, from Figs. 4(c)-(d), smaller w also results
in better performance for MMD except the case of Gaussian
distributions with § = 0.

D. Computational Complexity

Assume that the complexity of the sum and point-wise
max/min operations is linear in the argument cardinality. The
complexity of other operations is assumed to be O(1). The
computational complexities of the center initialization step and
the cluster initialization step in Algorithm 1 are O(K? M) and
O(K M), respectively. The computational complexity of the
center update step and cluster update step in Algorithm 2 are
O(K M?) and O(K M). Thus, the computational complexity of
Algorithm 2 is O((j¢ ) KM ~K+D 7?)

Similarly, one can verify that the computational complexities
of the center initialization step and the cluster initialization step
in Algorithm 3 are O(M?) and O(M?), respectively. The com-
putational complexity of the center update step, the merge step
and the cluster update step in Algorithm 4 are O(M?), O(M?)
and O(M?). Thus, the computational complexity of Algorithm
4is O(M3Tmaa:)~

The computational complexities of the finding ci, the split
step and the cluster update step in Algorithm 5 are O(M?),
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O(M) and O(M?), respectively. Thus, the computational com-
plexity of Algorithm 5 is O(M?).

VI. CONCLUSION

This paper studied the k-medoids algorithm for clustering data
sequences generated from composite distributions. The conver-
gence of the proposed algorithms and the upper bound on the
error probability were analyzed for both known and unknown
number of clusters. The exponential decay of error probabilities
of the proposed algorithms was established for distance met-
rics satisfying certain properties. In particular, the KS distance
and MMD were shown to satisfy the required condition, and
hence the corresponding algorithms were exponentially consis-
tent. Note that the assumption of knowing d; and dy (or their
bounds) can be justified because the empirical KS distance and
MMD can be constructed, which converge to the true KS dis-
tance and MMD. Thus these thresholds or their bounds can be
obtained from historical data.

One possible generalization of the current work is to investi-
gate the exponential consistency of other clustering algorithms
given distributional distance metrics that satisfy the properties
similar to that in Assumption 1.

APPENDIX
A. Technical Lemmas

The following technical lemmas are used to prove Corollaries
IIL.1.1, IV.1.1 and IV.2.1. All the data sequences in Lemmas
A.3—A.8 are assumed to consist of n i.i.d. samples.

Lemma A.1 [Dvoretzky-Kiefer-Wolfowitz Inequality [38]]:
Suppose x consists of n i.i.d. samples generated from p. Then

P(ng (x,p) > e) < 2exp (*27162) )

Theorem A.2 [Theorem 7 in [37]]: Suppose x ~ p, ¥ ~ ¢,
where x and y have m and n samples, respectively. Given
0 < g(z,y) < G, the following inequality holds:

P (IMMD (x,y) — MMD (p, q)| > f(G,m,n) +¢€)
~ (_e%m)
=2OP\ TG (m+n))’

where f(G,m,n) = 2(\/§+ \/g)

Lemmas A.3—A.8 establish that the KS distance and the MMD
statistic obtained by (7) satisfy Assumption 1. Moreover, the
lemmas provided in [18] are special cases of Lemmas A.3, A.5
and A.7 with d;, = 0.

Lemma A.3: Suppose x; ~ p; for j = 1,2, where p; € P
and dx s (P) < dr is. Then for any dy > dp, x5,

_ 2
P(dgs (x1,%2) > dy) < 4exp (_M)

2
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Proof: Consider

P<dKS(X17X2) > dy)
P(dgs(x1,p) + dis(pr,p2) + dics(x2,p2) > dy)
P(dgs(x1,p1) + dpjs + dics(x2,p2) > do)

d d
< P(dKS(Xlapl) > 2) +P(dKS(X27p2) > 2)

where d = dp — dy, is. The first inequality is due to the triangle
inequality of the L;-norm and the property of the supremum,
and the last inequality is due to Lemma A.1. Therefore, we have

n(dy — dy, ys)?
P(dKS(Xl,XQ) > d(]) < 4exp (— (02Lk)>

O
Lemma A.3 implies that the KS distance satisfies (3c) for

d > dkas.
Lemma A.4: Suppose x; ~ p; for j = 1,2, where p; € P
and MIMID(P) < d, imma- Then for any dy > dr, ;1 ¢ and suf-

ficiently large n,
0 — dL.mmd)2
16G '

Proof: Since MM (p1, ps) < dr imma, We have

P(MMD(Xl,Xg) > do) < QQXP <_n(d

P (MMD(x;,x2) > dy)
<P (MMD(X17X2) - MMD(p17p2) > dy — dL,mmd)

S P (‘MMD(XMXZ) - MMD(plap2)| > d[) - dL,mmd) .

dy—d
Choose € = 0 L,mmd

f(Ganan)+€<d0 -

and n sufficiently large such that
dr, mma- By Theorem A.2, we have,

n(dO —dr, mmd)2
P (MMD(x1,x2) > dp) < 2exp | — 16G - .

O
Lemma A.4 implies that the MMD statistc satisfies (3c) for
d > dLmL7rLd~
Lemma A.5: Suppose two distribution clusters P; and Ps
satisfy (3a) under the KS distance. Assume that for j = 1,2,
x; ~ p; where p; € P;. Then for any dy < dg 15,

(dH ks

n ks —d0)2
—2 .

P(dKS(Xth) < do) < 4exp (—
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Proof: Similar to the proof of theorem A.3, we have
P(dgs(x1,%2) < dy)
—dis(x2,p2) < do)

—ds(x2,p2) < do)

P(—dgs(x1,p1) + dis(p1,p2)
< P(—dgs(x1,p1) +ds

d d
< P(dKS(Xlapl) > 2) +P<d1<5(x27p2) > 2)

where dy < dy < dpy s, d= dy —dp and hmdﬂdn.ks =
dg s — do. The last inequality is due to Lemma A.1. There-
fore, by the continuity of the exponential function, we have

2
P(dgs(x1,%x2) < dy) < 4dexp ( - W)
O
Lemma A.5 implies that the KS distance satisfies (3b) for

d > dHA,ks-
Lemma A.6: Suppose two distribution clusters P; and Ps
satisfy (3a) under MMD. Assume that for j = 1,2, x; ~ p;,
where p; € P;. Then for any dy < dg ;mma and sufficiently

large n,
—dy)’? )

Proof: Similar to the proof of Lemma A.4, we have

P(MMD(Xl,Xz) S d())

d mm
P(MMD(x,x2) < dy) < 2exp (n( - 16&

< P (MMD(p1,p2) — MMD(x1,%2) > dimma — do)
<p <|MMID)(X1,XZ) — MMD(py, p2)| > d)
where d = dy — dy and dy < d3 < d7 4. Choose ¢ = ¢ and

n sufficiently large such that f(G,n,n) + € < d. By Theorem
A.2, we have

nd’
P (MMD(x;,x2) >dy) <2exp | ——= | -

Let limg, 14, ,, = dp rs — do. Then by the continuity of the
exponential function, we have for n sufficiently large,

- do)2>

O
Lemma A.6 implies that MMD satisfies (3b) for d > dg ymd-
Lemma A.7: [39] Suppose two distribution clusters P; and
Py satisfy (3a) under the KS distance. Assume that for j = 1, 2,
x; ~ p; with length n where p; € P;. Then for any x3 ~ p3
with length n where p3 € Py,
nAz, )
5 )

n (dH,mmd
16G

P (MMD (x1,x2) < dy) < 2exp (—

P(dgs(x1,%3) > dis(x2,x3)) < 6exp ( -
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Lemma A.7 implies that the KS distance satisfies (3d) for
d e (dr ks, dm ks)-

Lemma A.8: Suppose two distribution clusters P; and Ps
satisfy (3a) under MMD. Assume that for j = 1,2, x; ~ p;
where p; € P;. Then for any x3 ~ p3 where p3 € P;, where n
is sufficiently large,

TLA% md
64G

Proof: Let Ae (0, Ay a)- Similar to the proof of Lemmas
A.4 and A.6, we have

P(MMD(xth) > MMD(XQ,Xg)) < 4dexp (—

P (MMD (x1,x3) > MMD(x2,x3))
< P(MMD(x1,x3) — MMD(py, p3) + MMD (p, p3)
— MMD (x2,%3) > Apma)

< P(|MMD(x;,%3) — MMD (py, p3)| + [MMD(p2, p3)

— MMD (x2,x3)| > A)

<P <|MMD(X1,X3) — MMD(py, p3)| > )

A
2 )

where the last inequality is due to the union bound. Choose

€= % and n sufficiently large such that f(G,n,n) +¢e < %.

By Theorem A.2, we have

+P (’MMD(XQ,X?,) — MMD(py, p3)| >

A 2
P(MMD(Xl,Xg) Z MMD(X27X3)) S 4exp <_nA>

Let A T A,ma- By the continuity of the exponential function,
we have for n sufficiently large,

nA?nmd
64G '
O
Lemma A.8 implies that MMD satisfies (3d) for d €
(dL,m7r1,d7 dH,mmd)~

P (MMD(x1,x3) > MMD(x3,x3)) < 4exp (—

B. Proof of Main Results

Define the following three events:

S dt/l {Elk k/ Ell 7]€7é]€/ j elj\fk j eI]\[k/
S.t. d(XkJ’Xk/]/) S dth}’
SQ(d“I> = {Hk S IlK’ j’j’ € If\f[’“ S.t. d(xk_’j’xk’]‘/) > dth,}7

Sy = {3k, K eI, k#K, ji,jo e ", j e ™,
s.tod(Xp g, Xp g, ) > d(Xp, Xe )}

where dy, € (dr, dg). Assume that the sequences x;, ;s and the
corresponding distribution clusters Py, ’s satisfy Assumption 1.
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By (3b)—(3d) and the union bound, we have

M A[]‘r

Sl (din)) Z Z Z Z are " < M?aje b,
k=1k'=1j,=1j=1
k'#k
(%a)
K M, M,
P(Sg dth Z Z Z age*b” < M2a2€7b”', (9b)
k=1jr=1j.=1
K My
Z Z Z ase™" < M?aze™™.  (9¢)
k=1jp=1jp=1

The main idea of the proofs of Theorems III.1, IV.1 and IV.2
is to show that the error event at each iteration is a subset of
Si(din) U Sy (dip) U Ss.

1) Proof of Theorem IIl.1: The convergence of Algorithm 2
results from the design of the algorithm. Consider the (¢ — 1)-
th clustering step and the ¢-th center update step. We have for
t>1,

K
SN =Y Y de)

k= ly,GCf_ 1.a ]"Zly,EC; l.a

(10)

Moreover, for the ¢-th center update and the ¢-th cluster update,
we have for ¢t > 1,

K
Z Z d(}’i,ci

k=1 Yi 662‘71

(1)

K

=1y, €C£

The equalities in (10) and (11) hold if and only if lefl =Cp
andcj " =c" fork = 1,.
the convergence of the algorlthm.
Suppose there are K sequences assigned as cluster centers,
and as a result M — K remaining sequences are to be assigned
to cluster centers. The order in which cluster centers are chosen
does not matter, so there are a total of () permutations of
them. Since each of the remaining M — K sequences can be
assigned to one and only one cluster center, there are a total of
KM =K) possible assignments. Therefore the total number of
valid partitions is () K*/~%). By (10) and (11), Algorithm
2 is guaranteed to visit each possible partition at most once
except the one coinciding with the clustering output. Hence
the maximum number of algorithm iterations is always upper

bounded as
M ;
T < KWM-K)

Define for ¢t > 1,

, K respectively which implies

E' = {After t-th iteration, there are K centers generated
from K distribution clusters}.
where

if Ky = K,

K, > Ky .
if Ky < K.

> K,
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Similarly, define
E° = {The center initialization obtains K centers
generated from K> distribution clusters}.

Then E! for t > 0 denotes the error event that centers are incor-
rectly chosen at the center initialization or the ¢-th center update.
We first consider the error occurs at the initialization step. For
Algorithm 2,

E" = {The center initialization results in /& centers gene-
rated from K, ( < K) distribution clusters centers. }
= (3, 1,1 e TE 1 #TUst.c)" e ~ Py}
Moreover, define
E)=FE'n{3,l e {1,....,K}std(c" c)") <du},
EY=E'n{3,l' e {1,...,K}std(c) " c)") >dy}.

Then E° = EY U EY. Without loss of generality, assume that
e, c?{’“ are chosen sequentially at the center initialization

step and [ < [’. Then EY implies that for all the sequences
YAS {yt}i\il \ {Cs]r.ia in:l’

min  d(c
me{l,...,I'-1}

Thus, EY C S;(dyy,). Then by (9a), we have
P(EY) < P(Si(dw)) < M*aje™"".

Moreover, since EY C Sy (dy,), by (9b), we have
P(EY) < P(So(dsy)) < M*aze ™.

0t 2) < dy.

m

Thus, the error probability at the center initialization step is
bounded as follows

P(E") < M?*(a; + ax)e . (12)
We now consider the assignment step. Define for ¢t > 1,
H' = {The clustering result after the ¢-th cluster update
is incorrect},
Moreover, define

H" = {The clustering initialization is incorrect}.

Since E' ¢ H'™! for t > 1, it is sufficient to obtain an upper
bound on P(H") which serves as the upper bound of P(H' U
E'). Define

o [HO\E
H) = {Ht \ (EU U (U}’:[l) (HZ)))

fort =0,
fort > 1.
Then E° U (U], H') = E° U (UL, H}), which is the event
that Algorithm 2 makes an error before the first 7" iterations
complete. Moreover, H{ implies the event that an error occurs

at the ¢-th cluster update step given correct center update in the
same iteration which is denoted by

H = {3k, KLU €I, kK, jr € ' st.d(xpj, .

) 2 s i) 4~ P ~ P
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Then P(H}) < P(H}). Moreover, since | C S3, we have

13)

Therefore, by (12), (13) and the union bound, the error proba-
bility of Algorithm 2 after 7 iterations is bounded by

P(H!) < P(H!) < P(S;3) < M?age™"".

P, =P(E'uU (U, A!
(0 (VL 1) »
§M2(a1+a2+(T+1)a3)e’b”‘

_2) Proof of Theorem IV.1: If no merge step is executed and
K clusters are found by Algorithm 3, then similar to the proof of
Theorem III.1 Algorithm 4 converges after at most 7§, iterations,

where
M N N
7 o= (" gM-K)
= (i)

If the merge step is executed, the valid partitions before and
after the merge step are mutually exclusive since the number of
clusters is strictly decreasing. Therefore, Algorithm 4 converges
after at most 1}, iterations, where

M
M\ ~ oy f
Thax = Z <K)K(A[ K).
K=1

In conclusion, Algorithm 4 converges after at most 7.« itera-
tions since Ty < Tiax.

We then analyze the error probability of Algorithm 4. We first
consider the initialization step. Define

EY =E'n{K, < K},
E} = E'n{K, = K}.
Then E° = EY U EY. Moreover, since
ES C {3k, K e I, jr e M, jooe 1" st
d(Xp jy» Xnr g, ) < dun b,

Ey c {3k eI, ji,ji € ™, stod(x ., Xpj;) > din },
then EY C Sy (di,) and EJ C Sy(dyy). Thus, by (9a), (9b), we
have

P(EY) < P(Si(dw)) < M*are™"",
P(EY) < P(So(d)) < M?aze ™.

Therefore, by the union bound, the probability that an error
occurs at the center initialization step is bounded by

P(E") < P(EY) + P(E]) < M?aje™"" + M?aze™"".
5)
We now consider the error that occurs during iterations.
E' ¢ H'™' for t > 1 still holds. Furthermore, define an in-
correct merge as the event that the distance between two centers
generated from different distribution clusters is smaller than
ds,. Let D' be the event that incorrect merges occur at the ¢-th
(t > 1) merge step. Thus we only need to bound P(H') and
P(D').Let By, 4, = (UL, D) U (U2, H') fort; > 1 and
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ty > 1. Define
b — D! fort =1
Dt \ (EU U Btfl’tfl) for ¢t > ].’
At HY\ E° fort =0
H, = .
Ht \ (EO U Bt‘t_l) for ¢ Z 1
Then
E°U (UL, D) u (U, H)
=E'U (UL, D) u (U, i),

which denotes the event that an error occurs before 71" iterations
complete. Note that Dt implies the event that an error occurs
at the ¢-th merge step given correct center update in the same
iteration, which is denoted by

— {3k, K e IF, k£ K, 1IN stdc, i)

t,e t,e
<dy i ¢ ~Pr,c ~ P}

Then P(Df) < P(D') and D' C Sy (dyy,). Thus, by (9a), we
have

P(D') < P(D') < P(Si(d)) < M*are™™.  (16)

Moreover, we have P(ﬁ;) < P(H}), where
Hy = {3k K e IF, k#£K, jren™, LI e I

d(XA Ik’cl ) > d(Xk’]k ,Cl/ ) N ;76 ~ Pk) C?,’e ~ Pk’}~

Note that P(H}) has the same upper bound as P(H!) in (13).
Therefore, by (15), (13) and (16), the error probability after T’
iterations is bounded by

P, =P u (UL, #)u (U, D)
<M?*((T + 1)ay +as + (T + 1)ag)e .

3) Proof of Theorem IV.2: Note that in the extreme case,
splitting results in each cluster containing only one sequence,
i.e., splitting can happen at most M — 1 times. Therefore, Al-
gorithm 5 converges after at most M iterations. Furthermore, if
K does not change from the (¢ — 1)-th to the ¢-th iteration, then
Ci'=Clandc) ' =c| fork=1,... . K, which implies the
convergence of the algorithm.

Let A’ be the event that the error occurs at the ¢-th split step.
Then A" = A} U A, where

a7

Al = {The algorithm fails to split any cluster containing seq-
uences generated by diffierent distribution clusters at
the t-th iteration},

Al = {The algorithm splits a cluster containing sequences
generated by one distribution clusters at the ¢-th itera-
tion}.

Let V' denote the event that the clustering result at the ¢-th
cluster update is incorrect. Then A” U V' denotes the event that
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an error occurs at the ¢-th iteration. Define A’ = At U Al where

it Al fort =1,
4; = t—1 7l o171
AN\ ((UZtAY U UZEVD)  fort > 1,
for i = 1, 2. Moreover, define
o JViN A for t = 1
VO (UZIVH U (U AY) fort > 1
Then (UL, A')U (UL, V1) = (U 4% U (UL, 7).

Since A} C S)(dy,) and A} € Sy(dyy), then we have for
t=1,...,T,

P(4}) <
P(4y) <P
(4

Moreover, since P

P(Si(dw)) < MPaye"",

/\

(SQ dth)) < M2a2€7b77'.
") = P(A U A}), by the union bound

P(At) < M?are ™ + M?age . (18)

Furthermore, by Definition IV.1.1, v implies the following
event

— (3,0 e IN kK e IE K £k, jr € 1M st

d(xp j, ,cf’s) > d(xk‘,jk,c;,"s) : cf 5~ Py,

C;,’s ~ Pkf}
Then, P(Vt) < P(Vt) and V* C S5. Thus, we have

P(V') < P(V') < M?aze™"". (19)

Therefore, by (18), (19) and the union bound, the error proba-
bility of Algorithm 5 after 7" iterations is bounded by

P, =P((Uf, At) U (U, Vf))

(20)
< MQT(al +as + ag)e_b”.
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