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Abstract. In order for a mobile robot to be able to effectively operate
in complex, dynamic environments it must be capable of understanding
both where and what the objects around them are. In this paper we in-
troduce the semantic probability hypothesis density (SPHD) filter, which
allows robots to simultaneously track multiple classes of targets despite
measurement uncertainty, including false positive detections, false neg-
ative detections, measurement noise, and target misclassification. The
SPHD filter is capable of incorporating a different motion model for
each type of target and of functioning in situations where the number
of targets is unknown and time-varying. We demonstrate the efficacy
of the SPHD filter via simulations with multiple target types containing
both static and dynamic targets. We show that the SPHD filter performs
better than a collection of PHD filters running in parallel, one for each
target class.
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1 Introduction

Multi-target tracking is a fundamental problem in robotics, wherein a robot
simultaneously estimates the states of a potentially large number of individual
objects. These objects can be either static or dynamic, and may leave or enter
the area over time. In addition to tracking the kinematic or dynamic state of each
target, as is standard, we believe that it is important for robots to be capable
of tracking the semantic state, i.e., what type of object is it? For example, if a
household robot is tasked with setting the table, it must be able to recognize
many different objects (e.g., napkins, plates, forks, spoons, knives, cups, tables,
drawers, and cabinets), the locations of each object, and the affordances of each
object (e.g., drawers slide open while cabinets swing open), which could be stored
in a reference database. Achieving this requires a robot to be equipped with a
sensor capable of measuring both position and the semantic label, such as an
RGB-D camera. While real-time machine vision algorithms are reaching high
levels of object classification accuracy [22–24, 32], there may still be significant
uncertainty in the semantic label and it is often at the expense of high false
positive rates.
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Note in this paper we consider the task of mapping as a subset of multi-target
tracking wherein all targets are stationary. Most existing approaches to robot
localization and mapping collect low-level geometric features such as points,
lines and planes [28]. However, by doing this robots only have the ability to
plan paths and navigate through a geometrical map, which is different from
apprehending the environment the way a human does and navigating from place
to place [13]. Recently some work introduced methods of semantic localization [1]
and semantic SLAM [2,3,5,12,25]. However, these works assume that all objects
in the map are stationary, which is often not the case in complex, real-world
environments.

Multi-target tracking (MTT) algorithms were originally developed to track
dynamic objects. The MTT task is challenging due to the difficulty of solving the
data association problem (i.e., matching measurements to targets), which is fur-
ther exacerbated by the possibility of false positive or false negative detections.
Stone et al. [27] discuss in their book a number of probabilistic, multi-target
tracking approaches, including the Multiple Hypothesis Tracker (MHT) [4], Joint
Probabilistic Data Association (JPDA) [11], and the Probability Hypothesis
Density (PHD) filter [17]. All of these approaches simultaneously solve the data
association and tracking problems in different ways. The MHT makes hard asso-
ciations and maintains a tree over the history of these associations. This results
in unique tracks for each target. However, the number of branches in the tree
grows quickly, requiring aggressive pruning algorithms that can lead to subopti-
mal performance. The JPDA makes soft associations and uses multiple measure-
ments to update each target at each time step, which does not scale well with
the number of targets. Finally, the PHD does not require any explicit choice for
data association. As a result, the PHD does not actually distinguish between
individual objects but rather represents the spatial density of objects. We argue
that this is sufficient for a great amount of tasks, where it is only important to
know what and where objects are but not to distinguish between objects of the
same type. For example, navigating through an office environment does not re-
quire the robot to know which chair it is passing by, only that a chair is nearby.
However, currently none of these existing trackers are able to utilize semantic
measurements to track multiple types.

A number of methods have been provided for labeled tracking with the PHD
filter, i.e., uniquely identifying each individual object. Lin et al. [16] proposed
a track labeling method by extracting peaks from the estimated PHD and cor-
relating these over time. Vo et al. [30, 31] proposed a multi-target tracking fil-
ter using multi-object conjugate priors constructed by labeled RFSs, which is
the first RFS-based multi-target filter that produces track-valued estimate in a
principled manner. While these methods successfully solved the data association
problem and thus realized multi-target labeled tracking, the huge computational
load for each target to match its label may not be necessary in many scenarios
where targets are classified by labels and labeling within a class is not important.

The PHD filter has been used in other contexts within robotics in the past.
Mullane et al. [20] proposed an integrated Bayesian frame-work for SLAM in
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the general case of uncertain feature number and data association. This ap-
proach was then extended to track two types of objects, one static and one
dynamic [15,19], however this lacks the ability to differentiate between different
types of static and/or dynamic objects. Dames et al. [7] enabled a decentralized
team of robot to autonomously explore an environment to detect and localize an
unknown number of targets using the PHD filter. Dames [10] later introduced a
distributed algorithm for multiple robots to search and track multiple targets in
a coordinated manner using the PHD filter.

In this paper, we introduce the semantic probability hypothesis density (SPHD)
filter, a modified version of the PHD filter that allows a robot to track any num-
ber of target classes. We demonstrate the efficacy of this method through a series
of search and track tasks with multiple classes of either static or dynamic targets,
and evaluate the results it achieved. The SPHD filter can be easily generalized
to multiple robots using the approaches from the authors’ past work [7, 10].

2 The Semantic PHD (SPHD) Filter

A robot is tasked with exploring an environment E ⊂ R2. Its pose at time t is
qt ∈ SO(2). There are multiple targets of multiple types within the environment
E and there may be multiple targets of each type, so not every target is uniquely
identifiable. The number of targets of each class of targets is unknown and may
change over time due to the motion of targets into and out of the environment.
The key to defining the SPHD filter is to augment the dynamic state of a target
with a discrete class label, e.g., x ∈ X = R2 × C, where C = {c1, ..., ck} is a set
of discrete class labels. We differentiate these two parts of the state space as the
metric part xm ∈ Xm (e.g., Xm = R2) and the semantic part xs ∈ X s = C.

At each time step, the robot collects a set of local measurements, Zt =
{zt1, . . . , ztm}. The number of measurements changes over time due to false posi-
tive and false negative detections as well as motion of the robot and targets caus-
ing target to enter and leave the sensor field of view (FoV). Each measurement
zt contains both metric information zm (e.g., range and bearing) and a detected
class zs ∈ C. The robot seeks to find all targets in the set Xt = {xt1, . . . , xtn},
where each xti ∈ E. Note that this set encodes both the number of targets (i.e.,
the cardinality of the set |Xt|) and the state of each target (i.e., the elements of
the set xti), which includes both metric and semantic information.

2.1 Random Finite Sets

The sets X and Z from above are realizations of random finite sets (RFSs). An
RFS is a set containing a random number of random elements, e.g., each of the
n elements xi in the set X = {x1, . . . , xn} is a vector indicating the state of a
single target. See Mahler [18] for a more thorough treatment of the mathematics
presented in this section. In deriving the PHD filter, Mahler [17] assumes that:
1) the clutter and true measurement RFSs are independent and 2) the clutter,
target, and birth RFSs are Poisson. The first assumption is standard for target
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localization tasks. The second assumption is a result of assuming that the number
of points in each finite region is independent if the regions do not overlap [6].
A Poisson RFS is one that has independently and identically distributed (i.i.d.)
elements and where the number of elements follows a Poisson distribution. The
likelihood of such an RFS X is

p(X) = e−λ
∏
x∈X

v(x), (1)

where v(·) is the Probability Hypothesis Density (PHD), λ =
∫
E
v(x) dx, and

p(∅) = e−λ. The PHD is a density function over the state space of the targets,
with the unique property that the integral of the PHD over a region S ⊆ E is
the expected cardinality of an RFS X in that region. The PHD is also the first
statistical moment of a distribution over RFSs. Note that it is not a probability
density function, but it may be turned into one by normalizing by the expected
cardinality,

p(x) = λ−1v(x). (2)

2.2 SPHD Models

The (S)PHD filter recursively updates the PHD using models of target motion
and the measurement sets collected by the robots. Targets may move about
within the environment, may appear in the environment, or may disappear from
the environment. Each of these phenomena is explained by a target model. The
target motion model, f(x | ξ), describes the probability of a target transi-
tioning from an initial state ξ to a new state x. While this may, in theory, allow
targets to transition between different classes (e.g., sitting person, standing per-
son, and walking person could be different classes), we ignore this possibility in
this paper. Instead, we assume there is a collection of class-dependent metric
motion models, f(xm | ξm, ξs = c), ∀c ∈ C. The birth model, b(x), is a PHD
that describes both the number and states (including classes) of the new targets
entering the environment. For many situations the birth PHD will only be non-
zero near the boundaries of the environment, where new targets can enter the
area of interest, and only for dynamic objects. Finally, the survival probabil-
ity, ps(x), models the survival (and conversely the disappearance) of a target
with state x. The birth and survival models also typically take the form of a col-
lection of class dependent models, i.e., the birth and survival process is different
for each class type.

Each robot is equipped with a sensor to detect targets. This sensor may
experience false negative detections, return noisy measurements to true targets,
or receive false positive detections. Each of these phenomena is covered by a
different sensor model. The detection model, pd(x | q), of a robot with state
q detecting a target with state x characterizes the true (and false negative)
detections. Note that the probability of detection is identically zero for all x
outside the sensor field of view (FoV). In principal the detection likelihood could
be different for each class, but in this paper we assume that it is independent of
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class, i.e., pd(x | q) = pd(x
m | q). The observation model, g(z | x, q), returns

a measurement z for a target with state x that is detected by a robot with state
q. Like the target state space, the measurement also contains two separate parts:
the metric part zm and the semantic part zs ∈ C. We assume that these two
parts are independent conditioned on the target state, so that the observation
model becomes:

g(z | x, q) = gs(zs | xs)gm(zm | xm, q). (3)

An example of a metric part could be the range and bearing to a target, equiva-
lent to the measurement models in standard non-semantic mapping and tracking
tasks. The class part is represented by a confusion matrix which describes the
probability of detecting class zc conditioned on the true class xs. This takes the
form of a confusion matrix where each row matrix represents the instances of the
true class while each column represents the instances of the measured class. For
example, the entry in row 2 column 4 represent the probability of measuring class
4 given that the true target is of class 2. Mathematically, this is a right stochastic
matrix. Finally, the false positive (or clutter) measurements are modeled by
the clutter PHD, γ(z | q), which describes both the number and locations (in
measurement space) of the clutter measurements. As with the detection model,
in this paper we assume that this is independent of the class, though nothing
about the theory of the SPHD filter requires this to be the case.

These three target models and three sensor models are all necessary to utilize
the (S)PHD filter In practice, the user can either specify the models based on
experience/intuition or learn models in a data-driven manner, as we have done
numerous times in the past [7–9]. We have found that obtaining accurate de-
tection and clutter models is essential to obtaining a correct target estimate. If
these models do not accurately reflect the true behavior of the sensor then often
the PHD will contain the correct number of peaks but the weight in each peak
will not be close to 1. As a result, in practice we have found that counting the
number of peaks in the final PHD to be a more reliable estimate of the target
number than integrating the PHD.

2.3 SPHD Prediction and Update Steps

Using these target and sensor models from above, the SPHD filter prediction
and update equations are:

v̄t(x) = b(x) +

∫
E

f(x | ξ)ps(ξ)vt−1(ξ) dξ (4)

vt(x) =
(
1− pd(x | q)

)
v̄t(x) +

∑
z∈Zt

ψz,q(x)v̄t(x)

ηz(v̄t)
(5)

ηz(v) = γ(z | q) +

∫
E

ψz,q(x)v(x) dx (6)

ψz,q(x) = g(z | x, q)pd(x | q), (7)
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where ψz,q(x) is the probability of a sensor at q receiving measurement z from
a target with state x. Note that these take the equivalent form to those of the
standard PHD filter, except that in our case both the target state space and
measurement space include a discrete class label from the set C. The SPHD
filter recursively applies (4) and (5) to track the first order statistical moment
of RFS for each target.

The addition of the discrete label space offers advantages beyond simply
providing a mechanism to track the type of object. Due to the mathematical
form of the PHD, the standard PHD filter does not perform well when targets
are densely clustered. When a group of targets are close (compared to the sensor
noise), all of the targets would appear as one combined peak in the density
function rather than being separate discrete peaks. However, the SPHD filter
provides a way to separate targets out based on the class label. For example, a
person seated on a chair next to a desk in front of a computer could show up as
4 distinct targets with separate class labels in the SPHD filter instead of a single
peak of size 4 in the standard PHD filter. Adding in the semantic information
will help because it provides a way to separate out targets of different types.

While we do not consider it in this paper, one could consider the possibility
of switching between classes using the transition model. For example, a person
could switch from being seated to walking, if someone wants to consider those
as two separate classes.

2.4 The Parallel PHD Filters Method

As a point of comparison, we will test the SPHD filter against the standard PHD
filter. In the latter case, we will have multiple PHD filters running in parallel,
one for each target class. Each of these separate PHD filters will use the target
models for their respective classes. The measured class will be used to funnel
the measurements to their respective PHD filters, which will use class-agnostic
sensor models. In particular, the observation model g of the standard PHD filter
only contains the metric portion gm. This implies that the filters completely
trust the observed class, which is a reasonable assumption when the confusion
matrix is close to the identity. Most of the semantic mapping work makes the
same assumption. We will later on compare the parallel PHD filters method with
our proposed SPHD filter method.

3 Simulations

We demonstrate the results by a series of simulations using ROS Kinetic running
on Ubuntu 16.04. All these simulations are using only one robot for simplicity,
though multiple robots can also work together for target search [10]. For sim-
plicity, in each simulation we use only one robot to search for a small number
of (static and/or dynamic) targets. There is no impediment to using the SPHD
with multiple robots, which we have previously shown with the standard PHD
filter [10]. The number of target types is similarly not constrained in theory so
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long as the robot is equipped with a classification algorithm to detect each class.
For example, instead of simply using the class “person,” as we do in our experi-
ments, a robot could distinguish between people in different states, e.g., “person
sitting,” “person standing,” “person walking,” and others.

The robot model we use is a differential drive robot with a maximum linear
velocity of 0.4 m/s and a maximum angular velocity of 1.2 rad/s. The PHD is
represented by a uniform grid of particles [29] with a resolution of 0.2 m. The
initial weight of each particle is identical, meaning that the targets are uniformly
likely to be appear in the environment.

3.1 OSPA Error

We measure the error between the estimated target set and the true target
set using the Optimal SubPattern Assignment (OSPA) metric [26]. The error
between two sets X,Y , where |X| = m ≤ |Y | = n without loss of generality, is

d(X,Y ) =

(
1

n
min
π∈Πn

m∑
i=1

dα(xi, yπ(i))
p + αp(n−m)

)1/p

, (8)

where c is a cutoff distance, dα(x, y) = min(α, ‖x − y‖), and Πn is the set of
all permutations of the set {1, 2, . . . , n}. OSPA finds the lowest cost assignment,
where elements x ∈ X and y ∈ Y can be matched only if they are within
distance α of each other. This can be efficiently computed using the Hungarian
algorithm [14,21]. We use α = 10 m and p = 1.

The OSPA error describes the average error in the target positions with a
maximum per target error of α (which is 10 in this work). Given that, when a
target is found there is typically a drop in the OSPA of around 10/n (if there
are n targets), indicating that the error for that target went from 10 to around
0. Targets are precisely tracked when the OSPA error is getting closed to zero.

To extract an estimated target set, we take advantage of the grid structure
of the PHD. We use a convolution operation to identify the local maxima over
a 5× 5 grid of particles (1× 1 m area) for each type. We then discard any local
maxima that do not have a sufficiently high weight.

3.2 Stationary targets

Our first scenario will test the SPHD filter’s ability to track multiple types of
stationary targets. We conduct stationary target simulations in a 40×30 m map
with 6 rooms and one corridor, as Fig. 1 shows. The robot follows a predefined
route through the environment, traversing this route twice during each trial (for
a total approximate travel time of 1900 s). This path ensures that the robot see
the entire environment twice to observe the differences between first seeing an
object and re-observing it later.
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Fig. 1. The 40 × 30 m environment for stationary target search. Markers show an
example of target distribution of 3 classes: person (red), chair (green) and table (blue).

Target Models There are three classes of targets: person, chair, and table, with
30 targets of each type. Targets are randomly distributed in the environment.
Chairs and tables are static targets. When searching for static targets, the target
motion model is the identity map, the survival probability is unity, and the birth
PHD is zero. This was true for both the ground truth motion of the targets and
the models used by the robots in the PHD prediction equation (4).

In general, people may enter or leave the environment and may move about
within the environment. However, in this first test all people remain stationary
so the ground truth model is the same as for chairs and tables. This does not
match the motion model used in the PHD filter, which was a truncated Gaussian
random walk with spherical covariance matrix with standard deviation 0.01 m
per time step (0.1 s). The probability of survival and the birth PHD were

ps(x) =

{
‖x− ∂E‖ ‖x− ∂E‖ ≤ 1 m

1 else
(9)

b(x) = 1.0 · 10−4 (10)

where ∂E is the boundary of the environment. When analyzing the results we
will examine the effects of the mismatch in the true target models and those
used in the SPHD filter.
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True
Observed

Person Chair Table

Person 0.9 0.05 0.05

Chair 0.1 0.8 0.1

Table 0.15 0.15 0.7

(a) Confusion matrix 1

True
Observed

Person Chair Table

Person 0.8 0.15 0.05

Chair 0.2 0.7 0.1

Table 0.2 0.25 0.55

(b) Confusion matrix 2

True
Observed

Person Chair Table

Person 0.7 0.15 0.15

Chair 0.15 0.6 0.25

Table 0.25 0.25 0.5

(c) Confusion matrix 3

True
Observed

Person Chair

Person 0.9 0.1

Chair 0.1 0.9

(d) Confusion matrix 4

Table 1. Confusion matrices for different trials.

Sensor Models We assume that the robot carries an RGB-D camera with a
forward-facing 120.0◦ field of view (FoV) and 5 m maximum detection range.
This sensor returns the range and bearing to each detected target (the metric
part zm) and a class label for each target (the semantic part, zs). The detection
model and clutter of the sensor is shown as

pd(x | q) =

{
1− 0.02‖x− q‖ x in FoV

0 else
(11)

γ(z | q) = 1.5 · 10−3 (12)

The total expected number of clutter detections per measurement set, found
by integrating the clutter PHD over the sensor FoV, is

∫
γ(z | q) dz = 0.04.

We assume that the range-bearing (metric) measurement model gm(zm | xm, q)
follows a multivariate Gaussian distribution with mean µ(x, q) (the position
of the target in the robot’s sensor frame) and diagonal covariance Σ (so that
the noise of range and bearing measurements are independent). The standard
deviation of the range and bearing noise are 0.02 m and 2.0 degrees respectively.
We assume that the confusion matrix, gs(zs | xs), of the sensor detecting these
three classes in this environment is described in Table 1a.

Results As we previously mentioned, we compare the SPHD filter, which simul-
taneously tracks all classes, to a set of parallel PHD filters method, which each
track a single target type. For each method we use three different confusion ma-
trices (CM), shown in Tables 1a–1c. We conduct 5 trials for each configuration
(SPHD vs. parallel PHD and each confusion matrix). Each trial has a different
target distributions. However, the target distributions are the same across dif-
ferent configurations, so, for example, trial 1 using the SPHD filter with CM1
has the same target configuration as trial 1 using parallel PHD filters with CM3.
Figure 2 show the average OSPA errors for each class over all 5 trials.
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(a) SPHD Filter with CM1 (b) Multiple PHD Filters with CM1

(c) SPHD Filter with CM2 (d) Multiple PHD Filters with CM2

(e) SPHD Filter with CM3 (f) Multiple PHD Filters with CM3

Fig. 2. Results of the two methods for stationary target tracking with different con-
fusion matrices (CM) to classify targets. Each figure shows the average OSPA errors
over 5 runs of tracking each of the three classes: person, chair and table. We also plot
the class-agnostic OSPA error in the case of the SPHD filter. This is not available for
the case of multiple PHD filters since there is no single PHD filter for all targets.
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Figure 2a shows the results of using the SPHD filter with confusion matrix 1
(Table 1a), which has the highest classification accuracy. We see that the OSPA
errors decrease in the first half of time since the robot keeps exploring new area
in the environment. In the second half of time the robot passes through the
environment for the second time, during which time the OSPA error fluctuates
slightly due to the appearance of new clutter/missed detections, the correction
of previous clutter/missed detections, and classification errors. We can see that
all of the classes have a similar OSPA error throughout and that each of these
is approximately the same as the class-agnostic OSPA error (All Classes label),
which uses only metric information. This indicates that the tracking performance
is not limited by classification error, but rather by other phenomena, such as
clutter/missed detections or sensor noise. This is despite the fact that each class
has only a 70–90% chance of being correctly identified on a per-frame basis.

Figure 2b shows the results of the same scenario using the parallel PHD
filters. We can see that the OSPA error follows a similar trend, decreasing steadily
during the first pass and then leveling out after that. However, the final OSPA
error is significantly higher than with the SPHD. From these results we can
see that the parallel PHD filters have a much more difficult time dealing with
misclassifications.

Figures 2c–2f show the results with the other confusion matrices (Tables 1b
and Table 1c), which have significantly higher rates of misclassification. We can
see that the class-agnostic OSPA is very similar between all three SPHD tests.
This indicates that all of the differences between the class-dependent OSPA lines
are likely due to the differences in the confusion matrix. We can see that the
SPHD filter follows a similar trend during the first 500 s in every case. After
this, we see that the confusion matrix with a higher chance of misclassification
has a higher OSPA, a very intuitive result. Despite this, the OSPA continues
to steadily, if slowly, decrease (eventually reaching the class-agnostic levels in
Figure 2c). This indicates that the SPHD filter is able to perform well even with
high error rates, provided that it receives sufficient data. On the other hand,
the parallel PHD filters do not show this trend. Instead, the OSPA error simply
levels out and does not increase or decrease by a significant amount after about
750 s. Finally, the OSPA error in the case of the parallel PHD filters fluctuates
more wildly than in the case of the SPHD filter. This is likely due to the SPHD
filter’s superior ability to handle uncertainty in the class of targets.

3.3 Moving targets

We also want to test the SPHD filter’s ability to track a combination of static and
mobile targets. In this case, the robot monitors an open 20× 20 m environment.
There are originally 10 people and 10 chairs. Just like the last test, chairs are
stationary in both their ground truth motion and in their SPHD filter motion
model. The robot uses the same motion model for people in the SPHD filter as in
the static target case. However, instead of standing still, people are continuously
moving at 0.3 m/s towards random waypoints, uniformly sampled from a 22 ×
22 m area. This leaves 1 m outside of the environment for each boundary so that
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Fig. 3. Example of the 20×20 m environment (gray square) with markers showing the
distribution of 2 classes: people (black) and chairs (red). Note that people may move
anywhere within the 22 × 22 m area (white square), allowing them to enter and leave
the observed environment.

people may occasionally leave or enter the robot’s area. When a person reaches
their destination, they select a new waypoint and repeat this process. Note that
again there is a discrepancy between the true and modeled motion of the people.
In particular, the true velocity of the people is 3 standard deviations from the
mean, making this a very challenging tracking task.

The robot is placed statically in the middle of the environment with a sensor
FoV that covers the whole environment. We make this choice because the focus
of this work is to demonstrate the capabilities of the SPHD filter, not to develop
a control strategy for target search and tracking. This will be left as future work,
perhaps using some of the authors’ previous work on target tracking controllers
[7, 10]. The detection probability is 0.99 in the entire environment. The clutter
model, γ, and the metric observation model, gm, are identical to those from the
static target case. Table 1d shows the confusion matrix assumption of the sensor
classifying these four classes in this environment.

Figure 4a shows the resulting OSPA error from our trials. During the 350 s of
searching, both static and dynamic targets are well tracked most of time. Com-
pared with the stationary target tracking test using CM1 (Table 1a), where the
probability of a person being classified correctly is also 0.9, the OSPA error fluc-
tuates more and the overall OSPA error is a little higher. This is not surprising
given that the targets are now moving and there is a larger difference between
the true and assumed motion model for the people.
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Fig. 4. Result of the SPHD filter tracking both dynamic and static targets. Figure 4a
shows the OSPA errors of person and chair class over 350 s. Figure 4b shows boxplots
of OSPA errors of both classes as well as all targets.

Figure 4b shows boxplots of the OSPA errors, providing a clearer view of
the steady-state behavior. We can see that the chair class has a lower standard
deviation compared to the person class, which is not surprising given that the
true and assumed motion models for the chair match. Also, the median OSPA
error is lower for the person that it is for the chair class, though not significantly.
Both of these medians are higher (by about 1) than the class-agnostic OSPA.
Given the definition of the OSPA error and the fact that there are 10 targets of
each type, this means that the SPHD filter is misclassifying one target of each
type.

3.4 Computation time

We conducted our simulations on a workstation equipped with a 3.7 GHz Intel
Xeon E3-1240 v6 and 16 GB of RAM and we implemented the SPHD filter in
C++ using ROS libraries. In our trials, each recursion of both the PHD filter
and the SPHD filter took approximately 5–10 ms per class, depending on the
number of particles within the sensor field of view, the number of measurements
received, and also on the other processes concurrently running on the computer.
We did not see any significant difference between the time per class using the
parallel PHD filters versus the single SPHD filter.

Extrapolating from these results, we could expect real-time operation in these
scenarios using sensors that receive data at 30–50 Hz. This is at or above the
frame rate of most image-based sensors. However, in practice, most processors
available onboard mobile robots are less capable than the Xeon that we used.
To address this, there are two easy avenues to improve the efficiency of our code
which we will explore as we work towards validating the SPHD filter in hardware.
First, we could use the CMAKE BUILD TYPE=Release option when compiling our
code to create a more optimized executable compared to the standard Debug

option that we used when developing and testing our code. Second, the PHD
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update step is highly parallelizable, so one could use multi-threading or GPU-
based computation to significantly decrease run time. Finally, deploying our
system in hardware will likely require the use of an image-based classification
algorithm. These tend to run more slowly than the SPHD filter updates, and
thus we do not expect the SPHD filter to be the computational bottleneck in
the perception and estimation pipeline.

4 Conclusion

In this paper we propose the semantic PHD filter algorithm, a RFS-based multi-
target tracking algorithm which uses both metric and semantic information to
simultaneously track multiple classes of targets. Mathematically, the key to defin-
ing the SPHD filter is to augment both the target state space and the measure-
ment space with a discrete set of class labels. The various target and sensor
models within the standard PHD filter framework utilize this additional label
state to differentiate between target types. Some models, like the target motion
model, are defined separately for each individual class while others, like the ob-
servation model, must contain a single model for all target types. Using these
models, the SPHD filter can then iteratively propagate the PHD and handle
uncertainty, such as the possibility of target misclassification, in a theoretically
principled manner.

We conduct a series of simulations using multiple target types, including a
mixture of static and dynamic targets, to demonstrate the performance of the
SPHD filter. In all cases, the SPHD filter outperforms a system that utilizes
multiple standard PHD filters (one for each class) in parallel. In particular, the
SPHD filter demonstrates an ability to recover from prior misclassifications, even
when the probability of correct classification is barely over 50%. Given this, we
expect the SPHD filter to perform well in real-world experiments, which is one
direction of future work. Other directions include using multiple robots to search
for and track multi-class targets in a coordinated manner and applying an active
control algorithm to enable one or more robots to search for and track dynamic
targets.
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