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Abstract—In this network era, not only people are connected, different networks are also coupled through various interconnections.
This kind of network of networks, or multilayer networks, has attracted research interest recently, and many beneficial features have
been discovered. However, quantitative study of information spreading in such networks is essentially lacking. Despite some existing
results in single networks, the layer heterogeneity and complicated interconnections among the layers make the study of information
spreading in this type of networks challenging. In this work, we study the information spreading time in multiplex networks, adopting the
gossip (random-walk) based information spreading model. A new metric called multiplex conductance is defined based on the multiplex
network structure and used to quantify the information spreading time in a general multiplex network in the idealized setting. Multiplex
conductance is then evaluated for some interesting multiplex networks to facilitate understanding in this new area. Finally, the tradeoff
between the information spreading efficiency improvement and the layer cost is examined to explain the user’s social behavior and
motivate effective multiplex network designs.
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1 INTRODUCTION

IN the election year, one of the most important tasks
for presidential candidates is to disseminate their words

and opinions to voters in a fast and efficient manner.
The underlying research problem on information spreading
has already received great interest and been extensively
studied in a single network. However, with the continuous
advancement of modern technology, the ways that the
candidates can exploit to promote their influence are no
longer limited to the campaign tour; radio networks, TV
networks, telephone networks, and Internet have all been
utilized for their purposes. Especially, with the phenomenal
popularity of social networks, all candidates have utilized
their Facebook and Twitter accounts to post and spread their
political agenda, through which their words can be shared
and disseminated in an unprecedented range and scale.
Therefore, with increasingly complicated interconnections
and interactions, various kinds of communication networks
and social media have formed a new network structure
that enables people to spread and receive information
simultaneously through multiple channels and platforms.
Recently, multilayer network models have been introduced
to facilitate relevant studies on emerging inter-connected
complex networks [2–5]. In this work, we take a first step
to investigate information spreading in a special type of
multilayer networks, termed multiplex networks, for which
all layers share the same set of nodes. In practice, the
same set of nodes may correspond to individuals who can
communicate through multiple networks or platforms, and
duplicates of the same node may represent different com-
munication devices or social accounts a person may have.
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Arguably, this somewhat simplified version of multilayer
networks already captures many interesting multi-scale and
multi-component features, and serves as a good starting
point for our intended study.

As a common tool for studying information spreading
in the single network, the compartmental epidemic model
(e.g., Susceptible-Infected-Removed (SIR) or Susceptible-
Infected-Susceptible (SIS) model) has been utilized to dis-
cover how the multiplex network structure affect the
information spreading process [6–11]. It can be used to
study a spreading process happening on all layers of a
multiplex network. Cozzo et al. [9] proposed a contact-based
epidemic-like information spreading model in multiplex
networks. It further demonstrated that the critical point for
the network having a constant portion of informed nodes is
determined by the layer whose contacting probability ma-
trix has the largest eigenvalue. In [7], Zhao et al. considered
a spreading process on a two-layer multiplex network with
a certain similarity between these two layers and showed
that a positive degree-degree correlation between two layers
may lead to a smaller infection size in the end. Spreading
not only exists on intra-layer links but also on inter-layer
ones. The effect of the layer-switching cost on spreading
processes have been studied in [8], where different effective
infection rates in the SIR model are considered for intra-
and inter-layer links. It is shown that when both layers
have the same average degree, a lower layer-switching cost,
which is determined by the difference between intra- and
inter-layer infection rates, can trigger the epidemics more
easily (lower the epidemic threshold) while it suppresses the
final epidemic size. Multiple spreading processes can also
be addressed simultaneously through multiplex network
modeling. In [6, 10], Granell et al. studied the coupled
processes of awareness and infection on multiplex networks.
By adopting the heterogeneous mean-field approximation,
they quantified the effect of using the information spreading
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process to stop the epidemic process, where the immunolog-
ical information spreading process in the social network will
help deter the epidemic spreading process happening in the
physical world. Wei et al. in [11] instead focused on two
cooperative spreading processes on a multiplex network
and proved that the cooperation can promote the spreading
progress.

However, the compartmental epidemic model mainly
focuses on the macroscopic network behavior. More specif-
ically, information is diffused from any informed/infected
node to its neighbors in a broadcasting-like manner; the
independent cascade model and linear threshold model
widely used in the study of social networks [12] also belong
to this category. This type of models is predominantly
used to describe group behaviors and determine the final
size of informed nodes. However, this class of models is
by no means the only one considered in literature. First,
as a tradeoff for mathematical elegance, some simplified
assumptions are made about node behaviors and the un-
derlying communication structure. In practice, broadcasting
is not always adopted for information spreading due to
various concerns including excessive resource consump-
tion and privacy. Actually, in many scenarios, one-to-one
communications happen naturally between two individuals
through phone calls, text messages, emails, and other di-
rected communications. This type of information spreading
is best captured by another popular model, random-walk
based model, or gossip model [13]. The gossip based
algorithms and designs possess many advantages: simple
in implementation, efficient in resource utilization, and
robust to network dynamics, thus becoming an appealing
architectural solution for many problems in large-scale
dynamic networks. One particular advantage of the gossip
model, as compared to the aforementioned information
diffusion models, is to allow the quantitative study of the
information spreading speed. In summary, our work adopts
the gossip (random-walk) based information spreading
model, which is considered as better capturing the personal
communications behaviors in many scenarios, reflecting
more details of the underlying communication dynamics
and network structures, and can facilitate the quantification
of the information spreading time. To the best of our
knowledge [14–18], the gossip based information spreading
model has not been explored for multiplex networks.

In this work, the gossip-based information spreading
time is found to be closely connected to a newly defined
metric, multiplex conductance. Specifically, our contributions
can be summarized as follows:
• The informed probability model is proposed to facilitate

the study of information spreading in multiplex net-
works.

• A new metric, multiplex conductance, Φmp is defined
based on the multiplex network structure, and it is
shown that Θ(Φ−1

mp · log n) is a good lower bound
for information spreading time in a general multiplex
network when the layer number is large.

• Multiplex conductance of some interesting multiplex
networks is evaluated to shed light on this burgeoning
research field.

• The tradeoff between the cost of additional layers and
the improvement of information spreading efficiency

is discussed from both the user’s and the network
designer’s aspect.

The rest of the paper is organized as follows. The system
model, the gossip algorithm, and the definition of informa-
tion spreading time for multiplex networks are introduced
in Section 2. Section 3 presents the main theoretical results
for information spreading time in multiplex networks and
the evaluation of multiplex conductance. In Section 4, some
discussion on the trade-off between the layer cost and the
improvement of information spreading efficiency is given.
Section 5 concludes the work.

2 PROBLEM FORMULATION

In this section we introduce the network and system models
as well as the definition of information spreading time.

2.1 Basic Models

1) Multiplex Network: A multilayer network is modeled by a
family of graphs {Gm , (Vm, Em)}Mm=1 that constitute the
layers of this complex system, together with the interlayer
connections represented byEαβ , for any two different layers
Gα and Gβ . In this study, we will focus on multiplex
networks, for which all layers share the same set of nodes, i.e.,
V1 = V2 = .... = V = [n], and interlayer connections exist
only between the duplicates of the same node at different
layers, i.e., Eαβ = {(vα, vβ); v ∈ V } for all α 6= β, where vα
is the duplicate of node v in layer α.

2) Synchronous Time Model: In this work, the synchronous
time model is adopted, i.e., all nodes in the network take
action simultaneously at discrete time steps. This is a
common model used for studying gossip-based information
spreading [19].

3) Gossip Algorithm in Multiplex Network: For the gossip
algorithm in the single network, in each time slot, each node
contacts one of its neighbors independently and uniformly
at random. During each meaningful contact (for which
exactly one node has the piece of information1), the message
is successfully delivered in either direction (through the
“push” or “pull” operation). Specifically, in each round, for
the push operation, every informed node randomly chooses
a neighbor and attempts to pass the information, while
for the pull operation, every uninformed node randomly
chooses a neighbor and attempts to grab the information.
There are two key differences for information spreading
in a multiplex network: First, the message can be spread
on multiple layers simultaneously. Second, when a node
gets informed at one layer, it will automatically become
informed at all other layers. While these two assumptions
are somewhat idealistic, we will use them in this study to
explore the maximum potential for information spreading
in multiplex networks. In particular, we will consider the
following gossip algorithm for a multiplex network: Before
the gossip process, it is assumed that all duplicates of the
same node are synchronized. During a gossip step, each
node and its duplicates contact one of its neighbors (not

1While that the classic single piece information spreading problem
is focused in this work, most of our results can be naturally extended
to the multi-piece information spreading scenario following existing
literature [20].
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necessarily the same in each layer) uniformly at random in
all layers simultaneously. After each gossip step, the newly
informed nodes (if exist) will broadcast the information to
all their duplicates.

2.2 Information Spreading Time
The metric commonly used to measure the efficiency of
gossip based information spreading is the information
spreading time. Denote St as the informed node set at round
t, with S0 = {s}, for some arbitrary s ∈ V . The information
spreading time in a network G of size n, Tspr(G, γ), for
some γ > 0, is defined as the stopping time by which all
nodes are informed with probability 1 − O(n−γ) [19], i.e.,
Tspr(G, γ) = sup

s∈V
inf{t : Pr(St 6= V |S0 = {s}) ≤ O(n−γ)}.

3 MAIN RESULTS

Analyzing the information spreading process is difficult
even in a single network due to the heterogeneous network
topology and random gossip processes. To the best of our
knowledge, the tightest upper bound for the information
spreading time in a general single network in literature is
O(Φ−1 · log n) [19, 21], where Φ is the corresponding graph
conductance. The multiplex network structure introduces
interconnections and interactions among layers, which fur-
ther complicate the analysis. In this study, we slightly relax
the problem and endeavor to find the information spreading
time in a general multiplex network in an idealized setting.
We are able to obtain a neat result in this setting (Theorem
2), which connects the information spreading time to a
new metric for multiplex networks, multiplex conductance
(Definition 5). In this section, the informed probability
model is first introduced to facilitate the understanding
of information spreading in multiplex networks. Then the
corresponding information spreading time will be analyzed.

3.1 Informed Probability Model
In this part, the informed probability model is presented
to offer some preliminary insights of information spreading
in a multiplex network. In order to facilitate our analysis,
the information spreading time is reformulated. First, the
informed probability is defined as:
Definition 1. The informed probability Pt,s(u), t ∈ N is

defined as the probability that node u becomes informed
by round t−1 (right before round t) given that the source
node is s.

Based on the above definition, the information spreading
time is redefined:
Definition 2. Given the informed probability sets

[Pt,s(u)]u∈V , t ∈ N defined for information spreading
in the network G = (V,E) of size n starting at node
s, the corresponding information spreading time can be
defined as

Tspr(G, γ, s) = inf{t : max
u∈V
{(1−Pt,s(u))} ≤ O(n−γ−1)},

(1)
and the information spreading time of network G can be
alternatively defined as

Tspr(G, γ) = sup
s∈V

Tspr(G, γ, s). (2)

Remark 1. Given the information spreading time
Tspr(G, γ), γ > 0, (1 − PTspr(G,γ)(u)) ≤ O(n−γ−1)
holds for any source node s ∈ V , and any other node
u ∈ V . The equivalence between this new definition of
information spreading time and the original one can be
shown by the following inequalities:

Pr(not all nodes are informed)

= Pr(
⋃
u∈V

node u is not informed)

≤
∑
u∈V

Pr(node u is not informed)

=
∑
u∈V

(1− PTspr(γ)(u)) ≤ n×O(n−γ−1) = O(n−γ),

(3)
the first inequality is by union bound.
Therefore, the probability that all nodes are informed is
at least 1−O(n−γ) after time Tspr(G, γ), i.e., Tspr(G, γ)
is the stopping time required for all nodes to be informed
with probability 1−O(n−γ).

Then, the following definition is needed for the follow-
ing analysis:
Definition 3. Given a multiplex network G = {Gm ,

(V,Em)}Mm=1, for each node u ∈ V , dm(u) and Negm(u)
are defined as the node degree and the neighbor set of
u in layer m. The maximum total node degree is then

defined as ∆max = max
u∈V

(
M∑
m=1

dm(u)). The total neighbor

set Neg(u) of node u is defined as the set of all unique
nodes connected to u in any layer, i.e., v ∈ Neg(u) if

(u, v) ∈
M⋃
m=1

Em. If v ∈ Neg(u), the link (u, v)’s existing

layer set is defined as L(u,v) = {α; (u, v) ∈ Eα},2 and the
corresponding (u, v) link at layer α is denoted as (u, v)α.

For an information spreading process in a graph G =
(E, V ) of size n with source s ∈ V , given the informed
probability set [Pt,s(u)]u∈V before round t, after gossiping at
round t the informed probability set [Pt+1,s(u)]u∈V is given
by

Pt+1,s(u) =(1− (1− Pt,pull(u))(1− Pt,push(u)))

× (1− Pt,s(u)) + Pt,s(u), ∀u ∈ V,
(4)

where Pt,pull(u) is the probability that node u pulls the
information from its neighbor nodes in round t, and
Pt,push(u) is the probability that node u gets the information
by neighbors’ push operation in round t. In the single
network, node u successfully pulls the information from one
of its neighbors when it contacts a node already informed,
therefore the pull probability is given by

Pt,s,pull(u) =
∑

v∈Neg(u)

1

d(u)
Pt,s(v), (5)

where d(u) is the degree of u.
Also, node u successfully gets pushed the information

by its neighbors when any of its neighbors already informed
contacts u, so the push probability is given by

2Link (u, v) may exist in several layers simultaneously.



4

Pt,s,push(u) = 1−
∏

v∈Neg(u)

(
1− 1

d(v)
Pt,s(v)

)
. (6)

For a multiplex network G with M layers, node u
successfully pulls the information when in any layers
it successfully pulls the information. Therefore, the pull
probability for an uninformed node u in network G is

Pt,pull(u) = 1−
M∏
m=1

(
1−

∑
v∈Negm(u)

1

dm(u)
Pt,s(v)

)
, (7)

For the push operation, in each round, node u gets
pushed the information if any of its possible neighbor nodes
already informed contacts it. For any v ∈ Neg(u), the
probability that v contacts node u is 1 −

∏
l∈L(u,v)

(1 − 1
dl(v) ).

Therefore, the push probability for an uninformed node u
in network G is

Pt,push(u) = 1−
∏

v∈Neg(u)

(
1−

(
1−

∏
l∈L(u,v)

(
1− 1

dl(v)

))
Pt,s(v)

)
.

(8)

Remark 2. Due to the gossip nature, at each layer, an
uninformed node only attempts to pull the information
from one neighbor, but may get pushed the information
from multiple neighbors. This accounts for the different
expressions in Eq. (5) and Eq. (6) when considering the
overlapping edges across the layers.

The informed probability model facilitates the demon-
stration of the beneficial effect of the multiplex network
structure qualitatively, as shown in Theorem 1 below.
Theorem 1. Consider a multiplex network G(1) =

{G(1)
1 , ..., G

(1)
M1
}, and another multiplex network G(2)

built upon G(1) by adding additional M2 −M1 layers,
i.e., G(2) = {G(1)

1 , ..., G
(1)
M1
, G

(2)
M1+1, ..., G

(2)
M2
},M2 > M1.

Let Tspr(G(1), γ) and Tspr(G
(2), γ) be the information

spreading time for G(1) and G(2), respectively, then
Tspr(G

(1), γ) ≥ Tspr(G(2), γ).

Proof: The key point is to look into the informed
probability Pt,s(u) for each node u. From Eq. (7), the pull
probability of node u in network G(1) is

P(1)
t,s,pull(u) = 1−

M1∏
m=1

(
1−

∑
v∈Neg(1)m (u)

1

dm(u)
P(1)
t,s (v)

)
.

(9)
Similarly for multiplex networkG(2), the pull probability

of node u is

P(2)
t,s,pull(u) = 1−

M2∏
m=1

(
1−

∑
v∈Neg(2)m (u)

1

dm(u)
P(2)
t,s (v)

)

= 1−
M1∏
m=1

(
1−

∑
v∈Neg(1)m (u)

1

dm(u)
P(2)
t,s (v)

)

×
M2∏

m=M1+1

(
1−

∑
v∈Neg(2)m (u)

1

dm(u)
P(2)
t,s (v)

)
.

(10)

By Eq. (8), the push probabilities of node u in network
G(1) and G(2) are

P(1)
t,s,push(u)

= 1−
∏

v∈Neg(1)(u)

(
1−

(
1−

∏
l∈L(1)

(u,v)

(
1− 1

dl(v)

))
P(1)
t,s (v)

)
,

P(2)
t,s,push(u)

= 1−
∏

v∈Neg(2)(u)

(
1−

(
1−

∏
l∈L(2)

(u,v)

(
1− 1

dl(v)

))
P(2)
t,s (v)

)
.

(11)
Next, we need to show P(1)

t,s (u) ≤ P(2)
t,s (u), ∀t ∈ Z, u, s ∈

V . By induction, first given the same starting node s,
P(1)

1,s(u) = P(2)
1,s(u), ∀u ∈ V . Then if P(1)

t,s (u) ≤ P(2)
t,s (u),

from Eq. (7), P(1)
t,pull(u) ≤ P(2)

t,pull(u) since M2 > M1.
Since G(2) is built upon G(1) by adding additional layers
G

(2)
M1+1, ..., G

(2)
M2

, then Neg(1)(u) ⊂ Neg(2)(u) and L
(1)
(u,v) ⊂

L
(2)
(u,v), ∀u, v ∈ V . Therefore, from Eq. (8), P(1)

t,push(u) ≤
P(2)
t,push(u). Finally,

P(1)
t+1,s(u)

= (1− (1− P(1)
t,s,pull(u))(1− P(1)

t,s,push(u)))(1− P(1)
t,s (u))

+ P(1)
t,s (u)

≤ (1− (1− P(1)
t,s,pull(u))(1− P(1)

t,s,push(u)))(1− P(2)
t,s (u))

+ P(2)
t,s (u)

≤ (1− (1− P(2)
t,s,pull(u))(1− P(2)

t,s,push(u)))(1− P(2)
t,s (u))

+ P(2)
t,s (u)

= P(2)
t+1,s(u), ∀u ∈ V.

(12)
Therefore, P(1)

t,s (u) ≤ P(2)
t,s (u), ∀t ∈ Z, u, s ∈ V . Then the

proof is finished up by contradiction: given source node s,
assume the information spreading times for networks G(1)

and G(2) are denoted by T1 and T2, respectively. Then by
definition max

u
{(1− P(1)

T1,s
(u))} ≤ O(n−γ−1) and max

u
{(1−

P(2)
T2,s

(u))} ≤ O(n−γ−1). Also,

max
u
{(1− P(2)

T1,s
(u))} ≤ max

u
{(1− P(1)

T1,s
(u))} ≤ O(n−γ−1).

(13)
If T2 ≥ T1, then the above conclusion max

u
{(1 −

P(2)
T1,s

(u))} ≤ O(n−β−1) contradicts the definition T2 =

inf{t : max
u
{(1− P(2)

t,s (u))} ≤ O(n−β−1)}.
Therefore, for any given source node s ∈ V ,

Tspr(G
(2), γ, s) ≤ Tspr(G

(1), γ, s). Finally, by Def. 2,
Tspr(G

(2), γ) ≤ Tspr(G(1), γ).

3.2 Idealized Information Spreading Time
Compared to the qualitative analysis above, the quantitative
analysis for information spreading in the multiplex network
is much more complicated, which is mainly caused by two
factors: overlapping edges among layers and heterogeneous
contacting probabilities at different layers. They render the
exact estimation of information spreading time in the mul-
tiplex network intractable. Therefore, an idealized setting
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is considered in the following so that the corresponding
information spreading time can be analyzed, which serves
as a good lower bound for the information spreading time
of the original multiplex network. First, to handle the
overlapping edges among layers, an aggregated multigraph
representation for a multiplex network is constructed as
follows.

Definition 4. Given a multiplex network G = {Gm ,
(V,Em)}Mm=1, the corresponding aggregated multigraph
G̃ = (Ṽ , Ẽ) is defined such that Ṽ = V and Ẽ =
]Mm=1Em , {(u, v)α;u ∈ V, v ∈ Neg(u), α ∈ L(u,v)},
where ] stands for the non-unique set union, i.e., the
same links at different layers are all kept.

Fig. 1: From Multiplex Network to Aggregated Multigraph

Remark 3. As shown in Fig. 1, an aggregated multigraph
is obtained from the corresponding multiplex network
through a condensation process where the node set
remains the same and all links in all layers from the
original multiplex network are kept. As a result, multiple
links can exist between the same pair of nodes u and
v in the aggregated multigraph if they are connected
in multiple layers of the original multiplex network
(e.g., (u, v) ∈ Eα, (u, v) ∈ Eβ , ...). In the aggregated
multigraph G̃, these links are considered different and
marked as (u, v)α, (u, v)β , ..., respectively.

To get around heterogeneous gossip at different layers,
node u’s contacting probability for each link (u, v)α is
unified as P(u) = P((u, v)α) = 1

min
m∈{1,...,M}

dm(u) (denoted

as link picking probability). This over-optimistic choice
simplifies our analysis, while still providing a good lower
bound as shown below.

The idealized setting is formed through a uniform gossip
with link picking probability P(u), ∀u ∈ V , on the ag-
gregated multigraph G̃ constructed above. The information
spreading time in this idealized setting for an arbitrary
multiplex network is quantified below.

Definition 5. The multiplex conductance Φmp of a multiplex
network {Gm , (V,Em)}Mm=1 is defined as

Φmp = min
S⊂V,volT (S)≤|E|T

M
|cutT (S, V − S)|

volT (S)
, (14)

where volT (S) =
M∑
m=1

volm(S), |E|T =
M∑
m=1
|Em|, and

|cutT (S, V −S)| =
M∑
m=1
|cutm(S, V −S)|. volm(S) is the

degree sum of all nodes in the node set S at layer m
(volume), and |cutm(S, V − S)| is the number of edges
between node set S and V − S at layer m.

Remark 4. Multiplex conductance coincides with the orig-
inal graph conductance [19] when M = 1. Note that
the factor of M is deliberately introduced to reflect
the multiple information spreading processes in the
multiplex network setting.

Theorem 2. For an M -layer multiplex network with n nodes,
the information spreading time in the idealized setting is
at most 200(γ + 2)Φ−1

mp · (log n + 1
2 logM) rounds with

probability 1 − O(n−γ), for some γ > 0, where Φmp is
the multiplex conductance of this multiplex network.

First, the following sequence of random variables solely
related to the pull operation is introduced to facilitate our
analysis. Let L1, L2, ... be a sequence of random variables
with Li (i ≥ 1) defined as follows. We distinguish two cases:
• If volT (Si−1) ≤ |E|T , then by Definition 5,
|cutT (Si−1, Ui−1)| ≥ 1

M dΦmpvolT (Si−1)e ≥
1
M dΦmpvolT (S0)e, where Ui−1 = V − Si−1 is
the set of uninformed nodes at round i − 1. Let
R = dΦmpvolT (S0)e and Ei be an arbitrary subset
of ]Mm=1cutm(Si−1, Ui−1) consisting of 1

MR edges.
Set Ei is (arbitrarily) fixed at the beginning of round
i – before the round is executed. Define the minimum
volume of a node u as M · min

m
{dm(u)}. For each

node u ∈ Ui−1, let δi,u be the 0/1 random variable
with δi,u = 1 if and only if in round i node u pulls
the information through some edge in Ei. Then,
Li =

∑
u∈Ui−1

(δi,uM ·min
m
{dm(u)}).

• If volT (Si−1) > |E|T , then Li = R.
Then, the following lemma is needed to prove Theorem

2:

Lemma 1.
(a) E[

∑
k≤i Lk] = iR and V ar(

∑
k≤i Lk) ≤ iR∆max,

where R = dΦmpvolT (S0)e.
(b) If volT (S0) < ∆max, then Pr(volT (Si) ≥ ∆max) ≥

1/2, for i ≥ 4∆max/(dΦmpvolT (S0)e).

(c) If ∆max ≤ volT (S0) ≤ |E|T then Pr(volT (Si) ≥
min{2volT (S0), |E|T + 1}) ≥ 1/2, for i ≥ 4/Φmp.

(d) If volT (S0) > |E|T then Pr(volT (Ui) ≤ volT (U0)/2) ≥
1/2, for i ≥ 6/Φmp.

Proof: The proof of Lemma 1 is provided in the
appendix, available in the online supplemental material.

Remark 5. The random variables Li are used to approximate
the increment of volT (Si) over the time. With the
expectation and variance of the sum of random variables
Li in Lemma 1(a), different increasing speeds of volT (Si)
are shown in Lemma 1(b), (c), and (d), respectively, for
three different stages ((d) actually shows the decreasing
speed of its complement volT (Ui)).
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Then, we can prove Theorem 2.
Proof for Theorem 2: When only the pull operation is

considered, it can be seen from Lemma 1 that the total
volume of the informed node set volT (Si) increases in
different ways in the three different stages. The informa-
tion spreading analysis is then divided into three stages.
In the first stage, by Lemma 1(b), if given volT (S0) <
∆max, after at most d4∆max/(dΦmvolT (S0)e)e ≤
5∆max/(dΦmvolT (S0)e) rounds, the total volume of the
informed node set becomes at least ∆max with proba-
bility at least 1/2. Now, divide the information spread-
ing process in this stage into phases each comprised
of 5∆max/(dΦmvolT (S0)e) rounds. A phase is consid-
ered successful if the total volume of the informed
node set at the end of that phase is at least ∆max.
Therefore, in the first d2β lnne phases, the probabil-
ity that none of them is successful is at most (1 −
1/2)d2β lnne ≤ e−dβ lnne = O(n−β). Therefore, with
at most d2β lnne · 5∆max/(dΦmvolT (S0)e) ≤ 3β lnn ·
5∆max/(dΦmvolT (S0)e) rounds, the total volume of the
informed node set has volT (St) ≥ ∆max with probability
at least 1−O(n−β).

In the second stage, by Lemma 1(c), if ∆max ≤
volT (S0) ≤ |E|T , then with probability at least 1/2,
it takes at most d4/Φme rounds until the total vol-
ume of the informed node set is increased to at least
min{2volT (S0), |E|T + 1}. Similarly, divide the information
spreading process in this stage into phases of d4/Φme
rounds each. A phase is successful if the total volume of
the informed node set at the end of the phase is at least
min{2volT (Si), |E|T + 1}, where Si is the set of informed
nodes at the beginning of that phase. Then, for any k, the
probability that the k-th phase is successful is at least 1/2,
regardless of the outcome of the previous k − 1 phases. Let
B(k, 1/2) denote the binomial random variable for k trials
each with success probability of 1/2. Then, by the Chernoff
bound, the probability that fewer than γ = log |E|T of the
first k = (2β + 4)γ phases are successful is at most

Pr(B(k, 1/2) ≤ γ) ≤ e−2(γ−k/2)2/k ≤ e−βγ = O(n−β),
(15)

since |E|T ≥ n − 1. And since at most γ successful phases
are required until the total volume of the informed node set
exceeds |E|T , it follows that with probability 1 − O(n−β)
the number of rounds required is at most kd4/Φme ≤ k ·
5/Φm ≤ (2β+ 4)(2 log n+ logM)(5/Φm) as |E|T ≤M ·n2.

Finally, by Lemma 1(d), if volT (Si) > |E|T then, with
probability at least 1/2, it takes at most d6/Φme rounds until
the total volume of the uninformed node set is halved. By
similar reasoning as before, we can show that once the total
volume of informed nodes has exceeded |E|T , then (2β +
4)(2 log n+logM)(7/Φm) rounds suffice to inform all nodes
with probability 1−O(n−β).

Combining all the above three cases and applying
the union bound, we obtain that, with probability 1 −
O(n−β), all nodes get informed within 50(β + 2)(log n +
1
2 logM)(Φ−1

m + ∆max/(dΦmvolT (S0)e) rounds given any
initial informed node set S0 when only the pull operation is
considered.

Then let vmax be the node of maximum total degree
∆max (see Definition 3). From above, the pull operation

distributes the information from vmax to any other nodes
in 50(β + 2)Φ−1

m · (1 + ∆max

∆max
)(log n + 1

2 logM) = 100(β +

2)Φ−1
m · (log n + 1

2 logM) rounds w.h.p. Then by Lemma
13 from [19] which shows the symmetry between the pull
and push operation, the push operation can also spread to
vmax the information started at an arbitrary source node s in
100(β+2)Φ−1

m ·(log n+ 1
2 logM) rounds with the same high

probability. Therefore, the push-pull operation can spread
the information started at s to all nodes in 200(β + 2)Φ−1

m ·
(log n+ 1

2 logM) rounds w.h.p. �

Remark 6. By Theorem 2, we have shown that Θ(Φ−1
mp ·log n)

is a good estimate for information spreading time in
a general multiplex network in the idealized setting. It
becomes a true lower bound for the actual information
spreading time when the layer number of multiplex
networks is sufficiently large, as shown below.

Theorem 3. Given an M -layer multiplex network G =
{Gm}Mm=1 with n nodes, there always exists a constant
cn > 0 such that, whenM > cn, Θ(Φ−1

mp ·log n) is a lower
bound of the actual information spreading time.

Proof: First, note that the calculated information
spreading time Θ(Φ−1

mp · log n) is a decreasing function of
M ( |cutT (S,V−S)|

volT (S) = Ω( 1
n2 ) = Θ(1) when n is fixed), and

it will go to 0 as M goes to the infinity. Further note
that the information spreading time of any scheme for any
underlying network topology is lower bounded by some
constant. Thus, there must exists a constant cn > 0 such
that when M > cn, Θ(Φ−1

mp · log n) is a lower bound of the
actual information spreading time.

While Theorem 2 is interesting in theory, in practice, M
is often a modest number. In this case, if it can be further
shown that the information spreading capability of each
layer is accurately measured (in the order sense) by the
corresponding conductance, Θ(Φ−1

mp · log n) can still be a
good lower bound for the actual information spreading time
of a multiplex network. Two special cases of special interest
are further discussed below.

Remark 7. If the single-layer bound is tight for information
spreading time in every layer of the given multiplex
network (i.e., Tspr,i = Θ(Φ−1

i · log n), where Φi is the
conductance of the ith layer), then our bound is also
tight in the corresponding aggregated multigraph G̃ (i.e.,
T̃spr = Θ(Φ−1

mp · log n)).
This is intuitively correct by the construction of the
aggregated multigraph and the derivation of Theorem
2. In single networks, the above bound is known
tight for many graph models of interest. Prominent
examples include complete graphs, random geometric
graphs (RGGs), and expander graphs (which include
Preferential Attachment (PA) graphs as a special case);
their information spreading times are TC = Θ(log n),
TRGG = Θ( logn

r ), and TEX = Θ(log n), respectively,
with the corresponding conductance given by ΦC = 1

2 ,
ΦRGG = Θ(r) (r is the radius of RGGs), and ΦEX =
Θ(1).

Remark 8. If the single-layer bound is essentially tight for
information spreading time in every layer of the given
multiplex network (i.e., Φ−1 = Θ(D(G)), where D(G) is



7

the diameter of the graph G, and Φ−1 = ω(log n)), then
our bound is also essentially tight in the corresponding
aggregated multigraph G̃.
The information spreading time Tspr = O(Φ−1 · log n)
in the single network is determined by two factors: the
inverse of graph conductance Φ−1 and the logarithm of
network size log n. It is also known that a spreading
algorithm in any graph needs at least Ω(D(G)) rounds
to finish. If Φ−1 = Θ(D(G)), it indicates that the inverse
of graph conductance is on the same order as the graph
diameter. The extra log n in the original bound is due to
the distributed nature of the gossip algorithm, therefore
it is essentially tight or gossip is essentially effective in
such graph structures. Ring graph is such an example,
for which the information spreading bound is essentially
tight, since its conductance Φring = 2

n and diameter
Dring = n

2 .

Many types of graphs as pointed out belong to the
above two categories, except for star-like graphs, for which
the conductance Φstar = 1 and the information spreading
time Tstar = 1. Therefore, we expect that a multiplex
network comprised of component layers constructed (or
well modeled) by the above graphs will admit Θ(Φ−1

mp ·log n)
as a good lower bound for information spreading time3.
In this case, the improvement in information spreading
efficiency from a single network to a multiplex network can
be orderly determined by PI =

Φmp

Φ .

3.3 Multiplex Conductance Evaluation and Perfor-
mance Improvement

Our main result above, as a generalization and advance
of the current art of the single network study, nicely
encapsulates the gossip-based information spreading per-
formance in a multiplex network into a metric, its multiplex
conductance. In this part, the multiplex conductance is eval-
uated for some interesting multiplex networks to facilitate
understanding.

As can be seen from Definition 5, the multiplex conduc-
tance is calculated through jointly minimizing the overall
cut-volume ratio of the multiplex network. Evaluation of
the single network conductance is in general a hard problem
already, and existing results are mainly obtained for graphs
with certain nice properties and usually in the order form
[20, 22]. The existence of multiple layers and interactions
among layers further complicates the evaluation. Therefore,
as a first work in this area, we will focus on evaluating some
multiplex networks with special structures like ring graphs,
which allow us to obtain some inspiring results. The study
of the multiplex conductance for multiplex networks with
other types of network topologies will be investigated in
our future work. Based on the definition of multiplex con-
ductance, two key factors contribute to higher information
spreading efficiency in multiplex networks as compared to
the single network: 1) availability of multiple channels M ,
and 2) larger contacting opportunities |cutT (S,V−S)|

volT (S) . There
may be a common misconception that the best achievable

3Note that different layers may have different structures (such as
one PA layer coupled with one RGG layer) so long as the single-layer
bound is tight in each.

improvement for information spreading in a multiplex
network formed with similar-topology layers would be
on the order of M . Our first example below dispels this
misconception through an innovative design exploiting the
second factor above.

3.3.1 Proposed Ring-Ring Multiplex Network

In this example, a novel ring-ring multiplex network struc-
ture is proposed to demonstrate the impact of increased
contacting opportunities in a multiplex network, for which
an improvement as large as Θ(

√
n) can be achieved. In this

proposed multiplex network structure (as shown in Fig. 2),
nodes are identified with the integers 1, 2, ..., n. In the first
layer, each node with ID i connects with two nodes with
IDs ((i + 1) mod n) and ((i − 1) mod n), which forms
a normal ring structure. Next, assuming without loss of
generality that n + 1 is not a prime number, find out its
factor r that is closet to

√
n. Then in the second layer, node

with ID i is connected with two nodes with IDs ((i + r)
mod n) and ((i − r) mod n) instead. Consider the right
connection of each node, then in the second layer starts from
node with ID 1, after n+1

r such connections, it will reach the
node with ID (1 + (n + 1)) mod n which is 2. The same
process repeats for n times, the right connections will reach
back to node 1, therefore the second layer is guaranteed with
a ring structure.

Fig. 2: Proposed Ring-Ring Structure r = 4

Then the multiplex conductance of this network struc-
ture is given by the following corollary:

Corollary 1. The multiplex conductance of the above
proposed ring-ring multiplex network is Φmp =
2 min{r+1,(n+1)/r+1}

n .

Proof: The proof of Corollary 1 is provided in the
appendix, available in the online supplemental material.

In the proposed ring-ring structure, nodes in two layers
maintain completely different connections, which is close to
the idealized setting in the previous discussion. Therefore,
as shown in Fig. 3, the predicted information spreading effi-
ciency improvement PI =

Φmp

Φ = min{r+ 1, (n+ 1)/r+ 1}
is quite tight in this scenario.

Remark 9. The second layer of the proposed ring-ring
structure dramatically increases the size of cut (e.g., the
size of the half-half cut is 2 in the original network but
it becomes 2r + 2 in the proposed ring-ring structure)
through the rewiring of nodes without increasing the
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set volume. This smart design leads to an informa-
tion spreading efficiency improvement on the order of
min{r + 1, (n+ 1)/r + 1}, which is close to

√
n in most

cases.

3.3.2 Different-Structure Multiplex Network
This example reveals increased contacting opportunities in
a multiplex network from a new perspective. Note that
multiplex networks don’t need to be constrained by con-
struction of similar-topology layers. Intuitively, a marriage
of different structures can lead to a dramatic improvement
in information spreading for the disadvantaged layer, as
shown by the following two cases.
• Ring-Complete Coupling: If a ring graph is coupled

with another complete graph to form a ring-complete
multiplex network, the corresponding multiplex con-
ductance may be computed as

Φmp = min
|S|≤n/2

2
2 + |S|(n− |S|)
2|S|+ |S|(n− 1)

= Θ(1). (16)

Then the performance improvement is PI = Θ(
Φmp

Φ ) =
Θ(n).

• Ring-PA Coupling: Consider a PA graph with the pa-
rameter d, i.e., a new node connects to d existing nodes
with probabilities proportional to their degrees, then
the corresponding multiplex conductance of a ring-PA
multiplex network is given by

Φmp = min
S∈V,

volT (S)≤|E|T

2
|cutr(S, V − S)|+ |cutPA(S, V − S)|

volr(S) + volPA(S)

≥ min
S∈V,

volT (S)≤|E|T

2
2 + |cutPA(S, V − S)|

2|S|+ volPA(S)

≈ min
S∈V,

volT (S)≤|E|T

2
|cutPA(S, V − S)|
2|S|+ volPA(S)

≥ min
S∈V,

volT (S)≤|E|T

2
|cutPA(S, V − S)|

2|S|+ d|S|+ |cutPA(S, V − S)|

≥ 2α

2 + d+ α
= Θ(1),

(17)
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where α is the edge expansion of the PA graph. The
last two inequalities are by the expansion properties of
PA graphs [22]. Again the performance improvement is
Θ(n). Both results are verified in Fig. 4.

3.3.3 Identical-Graph Multiplex Network

Finally, the impact of layer number M is explored, con-
sidering a special type of multiplex networks formed with
M layers of identical topology. When M identical graphs
having conductance Φ form a multiplex network, the overall
multiplex conductance can be shown as

Φmp = min
S∈V,volT (S)≤|E|T

M · M · |cut(S, V − S)|
M · vol(S)

= MΦ.

(18)

Therefore, an improvement of order M is expected for
information spreading efficiency in this setting, which is
generally an over-estimate, as the effect of link collision at
different layers is ignored. This effect is most severe for the
identical-layer structure, and can be partially corrected by
considering the average meaningful contact for each node.
For a node i with degree di in each layer, the average
number of meaningful contacts in each time slot after
eliminating duplicate contacts is di(1−(1− 1

di
)M ). Therefore,

the information spreading efficiency improvement for the
whole network is upper bounded by ∆(1−(1− 1

∆ )M ), where
∆ is the largest node degree across all layers in the network.
By dividing the single layer information spreading time by
M and ∆(1 − (1 − 1

∆ )M ), respectively, the idealized and
corrected information spreading time can be calculated as
shown by the bottom three grouped curves (with diamond
markers) and middle three grouped curves (with square
markers) in Fig. 5. When ∆ is small (like in the ring graph),
this simple correction leads to an improvement as shown in
Fig. 5. For multiplex networks constructed by independent
layers, the over-estimation error is usually not a concern.
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4 LAYER COST AND INFORMATION SPREADING
EFFICIENCY

In real life, the adoption of a new layer comes with an
additional cost. In this section, the tradeoff between the
improvement of information spreading efficiency and the
additional layer cost is discussed. In particular, we will exam
two types of cost below.4

• Network Cost for a User: The cost of additional layers
from a user u’s aspect is measured by the total degree
of this node in all layers, i.e., CML(u) =

∑M
m=1 dm(u).

Therefore, the corresponding cost increase for the user u
isCI,U (u) =

∑M
m=1 dm(u)
d(u) , where d(u) is the node degree

of u in the initial single network.
• Network Cost for the Network Designer: Different from the

user’s aspect, for a network designer, the cost of a new
layer is better measured by the number of total edges
of it. Then the cost increase for the network designer
is CI,N =

∑M
m=1 |Em|
|E| , where |E| is the number of total

edges of the initial single network.
With the cost increment CI for each multiplex network,

and the corresponding information spreading efficiency
improvement PI , the reward-cost ratio can be defined as
RC = PI

CI
. In the following, four related cases are examined

to shed some light on the tradeoff between performance
improvement and cost:

1) From a ring graph to a two-identical-ring multiplex
network: In this case, the information spreading effi-
ciency improvement is 2. The cost increments for both
the user and the network designer are CI,U = CI,N =
2. Then the reward-cost ratios are RCU = RCN = 1.

2) From a ring graph to a two-layer ring-complete mul-
tiplex network: In this case, the performance improve-
ment is PI = Θ(

Φmp

Φ ) = Θ(n) by Eq. (16). The cost
increments for both the user and the network designer
are CI,U = CI,N = n+1

2 . Then the reward-cost ratios
are RCU = RCN = Θ(1). Therefore, even though the

4The choices of cost in this paper mainly serve to facilitate relevant
discussion. In practice, other meaningful costs may also be considered.
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ring-complete coupling brings dramatic improvement
in information spreading efficiency, the associated cost
somewhat offsets its effectiveness.

3) From a ring graph to a two-layer ring-preferential-
attachment (PA) multiplex network: In this case, the
performance improvement is PI = Θ(n) by Eq. (17).
But the cost increment is now different for the user
and network designer, since the cost increments are
different for different nodes due to network irregularity.
Both the maximum cost increment CmaxI,U and average
cost increment CaveI,U are considered for the user. Since
the largest node degree in the PA network with n nodes
grows as Θ(

√
n) [23], the maximum cost increment is

CmaxI,U = Θ(
√
n). However, the average node degree for

the PA network is 2d. Then the average cost increment
is CaveI,U = d + 1. Therefore, the minimum reward-cost
ratio and average reward-cost ratio for the user are
RCminU = Θ(

√
n) and RCaveU = Θ(n), respectively.

For the network designer, the cost increment is CI,N =
d + 1, and the reward-cost ratio is RCN = Θ(n).
Clearly, the ring-PA coupling is much more effective
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as compared to the ring-complete coupling when the
layer cost is explicitly considered.

4) From a ring graph to the ring-ring structure proposed
in 3.3: It has been shown that the efficiency improve-
ment is PI = min{r + 1, (n + 1)/r + 1}. The cost
increments for both the user and the network designer
are CI,U = CI,N = 2, then the reward-cost ratios are
RCU = RCN = min{r+1,(n+1)/r+1}

2 , which is close to
Θ(
√
n) in most scenarios.

Remark 10. Figs. 6 and 7 simulate the actual reward-
cost ratios from the user’s perspective, while Figs. 8
and 9 present the results from the network designer’s
viewpoint. From both the discussion above and simula-
tions, it can be seen that, overall speaking, the ring-PA
coupling is the most effective multiplex structure as far
as information spreading is concerned. Since PA graph is
a popular model for social platforms, this result partially
reveals the beneficial impact of utilizing social networks
for information distribution.
On the other hand, the preferential attachment design is
much more complicated as compared with our proposed
ring-ring structure. Therefore, as far as the overall net-
work design is concerned (instead of utilizing existing
network structures), our proposed structure provides the
insight that a careful planning of the new layer structure
can greatly improve the overall efficiency for information
spreading without incurring much additional cost.
The goal of this section is to study the benefit of facili-
tating the information spreading in multiplex networks
through additional layers. We picked three different
topologies, ring graph, complete graph, and PA graph,
as candidates for each layer of multiplex networks.
The complete graph represents the idealized single
network structure which serves as a base line compared
to any other topologies. The PA graph, which has a
large amount of edges, a very small diameter, and is
well-connected, is chosen as an extreme but realizable
topology for a single network. In reality, it corresponds
to the social network that greatly speeds up the in-
formation spreading process on top of the traditional
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communication networks. Despite of the effectiveness
in spreading information, its existence requires a huge
amount of management and computation resource. The
ring network, which has a much smaller number of
edges, a large diameter, and is very poor-connected, is
chosen as another extreme but realizable case opposed
to the PA network. And, in reality, it can correspond to
the type of networks that a small group of people want to
build to facilitate their own information spreading with
a limited budget (small number of edges) and the real
spatial constraint (poor-connected) on top of the existing
social and communication networks.

5 CONCLUSION AND FUTURE WORK

In this work, the gossip based information spreading is
studied in multiplex networks. By defining the new metric
multiplex conductance Φmp, Θ(Φ−1

mp · log n) is found to
be a good estimate for information spreading in many
multiplex networks of interest. The multiplex conductance
is then evaluated for several interesting multiplex networks
to help understand information spreading potentials of
multiplex networks. By further taking the additional layer
cost into consideration, the tradeoff between the cost and the
information spreading efficiency improvement is discussed
from both the user’s and the network designer’s perspective
to facilitate the understanding in this burgeoning area.

Many interesting problems remain open in this research
field. We are able to estimate the information spreading
time only with the idealized setting. In future work, we
plan to estimate the actual information spreading time for
the gossip based model in multiplex networks. And we
also plan to extend this study to more general network
settings like multilayer networks. Meanwhile, the expected
spreading time and extinction time has not been studied in
the other information spreading model-SI/SIR like epidemic
model, which will be our focus in the next step. Finally,
we plan to look into other interesting networking problems
like community detection and influence maximization in
multilayer and multiplex network settings.
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