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Abstract—Pervasive mobile devices and their advances in
sensing and networking have led to an emerging mobile sensing
paradigm. The diversity of mobile users and the openness of
sensing systems raise several crucial concerns for users’ privacy,
data quantity, and quality. Although different aspects of these
issues were addressed separately in existing researches, there
is still a need to provide a holistic solution for secure and
privacy-aware mobile sensing. In this paper, we propose a
privacy-aware and trustworthy mobile sensing scheme with fair
incentives. Leveraging group signature, (partial) blind signature,
and limited number of pseudonyms technologies, our scheme
enables well-behaved users to contribute their data anonymously,
and prevents both greedy and malicious users from abusing
the privacy protection. Moreover, we design a fair incentive
scheme to stimulate users to contribute high-quality data, based
on the data quality and the reputation feedback level. Security
analysis demonstrates that our proposed scheme achieves the
security goals. Extensive evaluation results are presented which
demonstrate the effectiveness and efficiency of our scheme.

Index Terms—mobile sensing, privacy preservation, trustwor-
thiness, fair incentive.

I. INTRODUCTION

Recent years have witnessed a rapid proliferation of mobile
devices such as smartphones and tablets. With the advances
of sensing and communication technologies, these mobile de-
vices are generally equipped with various powerful embedded
sensors (e.g., camera, GPS) and have enhanced communi-
cation capacities (e.g., WiFi, 4G, and Bluetooth). Due to
these advancements, mobile sensing has emerged as a new
sensing paradigm. Compared with the traditional static sensor-
based wireless sensing, mobile sensing has exhibited numerous
advantages such as lower deployment cost and better spatial-
temporal coverage. With personal mobile devices, users can
collect various sensing data from nearby environments, which
fosters many promising applications, including environmental
monitoring, assistive healthcare, and intelligent transportation.
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However, we observe three crucial issues that might impede
the large-scale deployment of these applications. First, privacy
disclosure is a potential obstacle that prevents users from
participating in sensing tasks, as their contributed data may
reveal some sensitive information such as identity, location, or
health status [2]. Therefore, there is an inherent necessity to
provide users a privacy-aware and anonymous mobile sensing
scheme. The second issue lies in the design of incentives
in a fair manner to attract more user participation, which
can provide sufficient sensing data and improve the quality
of sensing service. However, a user would be reluctant to
take sensing tasks unless desirable incentives are provided as
compensation for their energy (e.g., battery) consumption. The
third issue is the data reliability. In practical mobile sensing
applications, due to the massive and open involvement of
diverse participants, it is hard to guarantee that all participants
would submit accurate and reliable sensing data.

There have been some efforts devoted to relevant researches
such as the privacy protection technologies proposed for
anonymous data collection ([6], [12]), incentive schemes
[19], and some trust/reputation management systems ([8],
[15]). However, these solutions only address these issues
separately, rather than addressing all of them collectively.
Although privacy-aware incentives and anonymous reputation
systems were further studied, they still fail to consider these
issues in a holistic perspective. It is nontrivial to address these
issues simultaneously, as some combined issues may bring
new challenges, such as the inherent conflict between user
privacy and data trustworthiness, the potential abuse attack
in privacy-aware incentives, and the fairness of incentives. In
these cases, how to protect the privacy of benign users and
prevent malicious users from breaking the data trustworthiness
and fairness of incentives is much more challenging.

In this paper, we propose a practical integrated scheme pro-
viding privacy-preserving and trustworthy mobile sensing with
fair incentives. Compared with previous researches ([10], [14],
[17], [18]), our scheme is applicable to the multiple-report
scenario! which is rarely considered except for [11], [16].
However, [11] requires a trusted authority for authentication,
and large overhead is induced when generating anonymous
report tokens. In contrast, we adopt group signature for anony-
mous user authentication, where the group manager is not fully
trusted. A limited pseudonym-based approach is crafted to let
participants anonymously submit their reports while prevent-

!The sensing task requires each participant to submit multiple sensing data.



ing malicious users from submitting more reports. Inspired
by [15], we integrate an anonymous reputation management
scheme with our new system model, enabling privacy-aware
trust assessment and reputation update at different entities.
Particularly, based on the data quality and reputation feedback,
a fair payment allocation method is further developed to
reward participants. Finally, we provide flexible revocation
methods to evict participants from tasks or the whole system.
The remainder of this paper is organized as follows. Section
IT and Section III review some related work and preliminaries.
We present our scheme in Section IV. Security analysis and
performance evaluations are shown in Section V and Section
VI, respectively. Finally, Section VII concludes this paper.

II. RELATED WORK

For general privacy protection, Shin et al. [13] first proposed
AnonySense for mobile sensing systems. It provides frame-
works for anonymous tasking and reporting leveraging mix
network and k-anonymity technology. However, this scheme
lacks provable privacy guarantees. Considering the privacy and
incentive issues simultaneously, Zhang et al. [18] first solved
this problem with pseudonym, encryption and hash function.
In [10], two privacy-aware incentive schemes were designed to
reward participants with credits in single-report tasks. The first
scheme relies on a Trusted Third Party (TTP) while the second
adopts blind signature and commitment techniques to preserve
privacy. These two schemes were further improved in [11]
which supports both single-report and multiple-report tasks.
Son et al. [14] realized privacy-preserving mobile incentives
with efficient pseudonym verification. Particularly, duplicate
data with different pseudonyms can be detected by revealing
the user’s private key. Besides these, privacy-aware auction
[9] is also studied as incentive mechanism. However, none of
these solutions consider the trustworthiness of sensed data.

To improve the quality of sensed data without compro-
mising user’s privacy, [8] assigned each participant multiple
pseudonyms and relied on a TTP to transform the reputation
between multiple pseudonyms of the same participant. A
similar solution IncogniSense [5] was proposed by using blind
signatures and cloaking techniques. As an improvement, Wang
et al. [15] proposed ARTSense, which contains a privacy-
aware trust assessment and an anonymous reputation protocol
without the existence of TTP. Nevertheless, no incentives
are provided in these solutions. Although Gisdakis et al. [7]
proposed a secure and accountable mobile sensing system
that preserves the user privacy and provides incentives based
on the Shapley value. However, it lacks a detailed reputation
evaluation method suitable for the multi-report scenario.

III. PRELIMINARIES

A. System Architecture

In this paper, we consider our mobile sensing system
consisting of the following entities.

1) Data collectors (DCs): organizations or individuals who

create sensing tasks by specifying some task require-

ments, such as the specific sensing area/time, the reward
budget, and other requirements.

2) Sensing servers (or servers): entities receiving tasks from
the DCs and publishing tasks to the users. After a task
finishes, servers will give rewards and feedback to the
users, based on the evaluation of sensing data.

3) Participants: mobile users®> collect sensing data with
their mobile devices for requested tasks.

4) Group manager (GM): entity acting for user registration,
reputation management, and request tokens issuance.

5) Trusted pseudonym authority (TPA): an authority who
issues valid pseudonyms to authorized participants for
their reports and receipts submission.
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Fig. 1. System architecture

The system architecture is illustrated in Fig. 1. First, the DCs
create sensing tasks and then forward them to the servers.
Subsequently, the servers publish these tasks to the group
manager and mobile users (Step 1). In this paper, we consider
the DCs and the servers the same party for simplicity, as DCs’
privacy is not under our consideration.

If a mobile user wants to join a task, he/she must register
with the group manager and obtain relevant task request
tokens (Step 2). After being authenticated (Step 3), the user
can request corresponding pseudonyms from the TPA, with
which the sensing reports can be later submitted to the server
anonymously. For each report received, the server evaluates its
reliability and issues a receipt to the participant (Step 4). After
completing a task, the participant submits all his/her receipts
to the server and gets corresponding rewards. Meanwhile,
a reputation feedback is also returned (Step 5). Finally, the
participant submits the feedback to the group manager using
his/her real identity for reputation update (Step 6).

B. Threat model and assumptions

Threats to privacy. Curious group manager may want to
know which tasks the user is interested in. The server may be
curious about the real identity of participants and whether two
tasks/reports are taken/submitted by the same participant.

2In this paper, we use participant and user interchangeably.



Threats to incentives. Greedy participants may try to earn
more rewards by submitting extra reports. Some malicious
participants may try to use tokens obtained from different tasks
interchangeably, use a token twice or usurp others’ tokens.

Threats to trustworthiness. Unauthenticated users may con-
tribute forged data to the server. For legitimate participants,
they may exhibit malicious behaviors, including submitting
false sensing data randomly for certain purposes or collusively
send the same false data to disrupt the sensing applications.

Assumptions. Servers and the group manager are “honest
but curious”, indicating that they will follow the designated
protocols, but are curious to infer user’s privacy. Moreover, the
communications between users and servers are anonymized by
Mix Networks or IP and MAC address recycling techniques.

C. Design goals

The following are our design goals:

G1 Privacy-preserving participation: Group manager and
servers cannot infer if a given participant has request-
ed/accepted a specific task, or whether two or more tasks have
been accepted by the same participant.

G2 Fair and privacy-aware incentives: Participants should
be rewarded fairly based on their data quality in a privacy-
aware manner. Malicious users cannot increase their rewards
by abusing pseudonyms, reusing, or stealing tokens.

G3 Data trustworthiness. Participants should be authen-
ticated before task assignment. Additionally, an anonymous
reputation assessment scheme should be built to mitigate data
trustworthiness threats.

D. Cryptography and Reputation Primitives

Group signature [3]. A group signature scheme allows a
member of a group to anonymously sign messages on behalf of
the group. Specifically, the key generation algorithm KeyGen()
outputs a public verification key vk and a group secret key
gsk. A new member ¢ will obtain a member secret key msk;
after joining the group. Any group member can sign a message
m with msk; and others is able to verify the signature with vk.
If necessary, the group manager can identify, trace, and revoke
the signer with gsk. Group signature has two properties:
anonymity (except for the group manager) and traceability
(only for the group manager), which captures the security
requirements in our system.

Blind signature and partial blind signature. Blind signature
[4] enables a user to obtain a signature from a signer without
knowing the message m to be signed. Specifically, the user
chooses a blinding factor b relatively prime to the signer’s
public modulo ), and computes m’ =m-b*mod ) (blind RSA
signature), where e is the signer’s public key. The signer signs
on m/ with k and sends the signature {m'} to the user. By
computing {m}z = ({m’}x-b~1)mod @, the user can obtain
the real signature. Besides blindness and unlinkability, the user
cannot forge a valid signature from {m’};, for another different
message m. In contrast, partially blind signature [1] enables
the signer to add some public information in the signature,
while others are similar to the blind signature.

Trust and reputation. Following the definition in [15]. We
use “trust” and “reputation” to assess the sensing reports and
the participants, respectively. Particularly, “reputation level” is
employed for privacy protection, which is a discrete approxi-
mation deduced from the participant’s reputation.

IV. THE PTISENSE SCHEME

In this section, we present our scheme PTISense, an in-
tegrated scheme achieving the goals on “Privacy Preserva-
tion”, “Data Trustworthiness” and “Fair Incentives” for mobile
Sensing. The key challenge to be addressed is how to protect
the privacy of well-behaved participants while preventing
misbehaving users from launching abuse attacks. We adopt
the idea of limited number of pseudonyms to avoid users sub-
mitting more reports. In the whole process, blind signature and
partial blind signature are employed to delink the correlation
between data. Moreover, a fair incentive is designed to reward
users in different degrees. To tackle malicious participants,
we provide two revocation methods based on the anonymous
reputation evaluation. Our entire scheme consists of seven
phases for each task group, and the detailed interactions
between our system entities are as follows.

A. Initialization

In this phase, a certificate authority first delivers a key pair
to the server and the group manager, respectively. Moreover,
the group manager performs KeyGen() to generate a group
public key vk and a group secret key gsk.

The server groups all tasks (e.g., indexed as 1,2,..., M
in the order of their reception time) received from the DCs.
Then, the server publishes M tasks to the mobile users.

B. Farticipant registration

If a participant P; wants to take task 7} for the first time,
he/she must register with the group manager and obtain msk;.
Then, P; needs to send some private information and acquire
the corresponding task request token. Using task request token
is to let the server anonymously authenticate the legitimacy of
users and determine whether to authorize users their requested
tasks. In this paper, a task request token is constructed by
binding the user’s identity, reputation R(P;), reputation level
L(P;), and the blinded task ID. Specifically, P; first computes
the blinded task ID BT; = Tj - bPkémmod @Q using the
group manager’s public key pka s and then sends a task token
request (TTR) to the group manager with his/her real identity.

The group manager maintains a reputation table for users
with a preset initial reputation. After receiving TTR, the
group manager first derives h} = H(P;|R(P;)|BT}|p), h? =
H(P;|BTj;), where H is a one-way hash function and p is
a nonce. Then, based on its blind signature on BT} (skgar
is the signing/private key), P;’s task request token for 7} is
constructed as 77 ={h}, h?, {BT;}skcnrs L(Ps) }skons -

C. Participant authentication and task assignment

To prevent malicious users from using tokens inconsistent
with the requested task, the actual task ID should be revealed



to the server in this phase. Specifically, P; generates a group
signature {b},,sk,, which is sent along with b, 7‘ , and T}.
Specifically, P; generates a random pseudonym p and sends
a anonymous task request ®; = (p?, T}, {b}msk,» b, 77) to the
server. Upon receiving R;, based on b and vk, the server can
verify {b}msk, anonymously. If it succeeds, P; is considered
legitimate. To further verify 77, the server performs:
1) It verifies the authenticity of Tij by checking the signa-
ture of the group manager with his/her public key pkaas.
2) It extracts {BT}}sk., from the token and obtains
{T}; } skcn, by removing the blinding factor b. '
3) It verifies {7} }4x.,, and ensures the correctness of 7.
If all steps succeed and Tij has not been used, the token
is considered authentic and correct. Next, the server extracts
L(P;) from 7} and decides whether L(P;) satisfies the task
requirement. If it satisfies, 77 is stored and tagged as ap-
proved to prevent token reuse. Meanwhile, the server computes
h3 = H(h?Inr, + 1|1) and returns an approval message
= (B ks {08} ko ATH (P} ,.). where ng, s the
number of reports required by 7, and h3 is used to request
pseudonyms. Conversely, {h}|0}.. is returned to P;.

D. Report submission and trust evaluation

Before submitting reports, P needs to get ngr, + 1
pseudonyms from the TPA. Specifically, P; sends a pseudonym
request (P;, BT, ny, 41, {h}}sr,.) to the TPA. After verifying
{h3}sk... the TPA returns pseudonyms p},p?, ... ,p?T i

With the obtained pseudonyms, P; can submit reports for
T). Particularly, each report is submitted anonymously as Ry, =
<pi-€7 Tj, {Tj‘L(Pi)}SkSS)Df>7 (l{i = 1, 2, SN ,’ﬁ/TJ_), where Df
is the kth data. {T}|L(P;)}sk,, is included for later report trust
evaluation. For each sensing report received, the server first
verifies the validity of the pseudonym p¥, and then validates
{T;|L(P;)}sk., and ensures that the task ID in it is 7).

If both checks are passed, the server then assesses the trust
of each report. Regarding the trust assessment approach, we
resort to [15] which evaluates the report in a comprehensive
perspective. First, the basic trust of a report Ry is computed
based on the reputation level L(P;) and some contextual
factors (e.g., time/location). Then, its final trust can be de-
rived by further considering the similarity of data submitted
by different participants. Unlike [15], our trust assessment
and reputation update are performed at two different entities
instead of the single server. Moreover, in our multiple-report
scenario, reports for a particular task 7T are further divided into
nr,; collections, and the data 51m11ar1ty for a certain report is
computed based on one of these collections.

Let Tr(Rg) denote the final trust of a report Ry. After
deriving T (R}, ), the server can obtain a feedback level 17 (Ry,)
by comparing T%(Ry) with L(F;). Generally, a positive feed-
back is set when Tp(Ry) > L(F;) and a negative feedback
otherwise. Moreover, two reports with similar gaps would have
the same feedback level, such that the server cannot associate
1y (Ry) with the related report when later submitting receipts.

After receiving Ry, the server issues a receipt Rg, to P,
which can be used to redeem rewards later. Particularly, to

achieve the distinguishability and unlinkability of receipts, we
adopt partial blind signature, in which 7T} is the common infor-
mation shared by the user and the server. Specifically, P; com-
putes o, = H(h}|T;|k) as the receipt identifier and obtains
the partial blind signature {cvy, T} } 55, from the server. Mean-
while, the server sends {{T};|L(P;)}sk., |[lf (Ri)]pk,, }sk., tO
P;. Based on this, the receipt Rp, is as follows:

Ry, = (T, {an, Tj}skoo, {THIL(P) Fskea | L (Rie) | pie. }skss(?)

E. Receipt submission and user remuneration

When the server announces the completion of task T}, each
participant can submit all receipts he/she obtained. Specifical-
41
ly, P; sends <p:lT’ bl (o, R, k=1, > to the server.

Subsequently, the server does some verlﬁcatlons:

1) It verifies the validity of p?Tj ™ and {ag, T} sk,
ensuring that P; is authorized and has submitted ny,
reports for task 7.
2) It checks each o, = H(h}|Tj|k) to ensure that these
receipts are really issued to P;. Anyone who steals
other’s receipts (without /) cannot pass the verification.
If both checks succeed, the server stores and invalidates ay
to avoid receipt reuse. Then, it decrypts [[;(Rg)|pk.,,(k =
1,...,n7,) and gets [;(Ry), based on which the average
feedback E can be computed. Eventually, the server obtains
the average report trust of P; by calculating Tr = I + L(P;).

To realize fair incentives, we enable participants with higher
report trust to earn more rewards. Moreover, different strate-
gies are adopted to reward positive-feedback participants Sp
and negative-feedback participants Sy, respectively. Given the
task budget Br,, the reward distributed to each participant
P, € Sy is

Tr(PT))

S peer TP T;)
where ¢ is an amplification factor to increase the effect of
the negative feedback on the reward allocation. Obviously, the
reward paid to negative-feedback participant is less than their

real contribution, which can be regarded as a punishment.
For each participant Py € Sp, the reward paid is

Tw(Py,T;
F (L, Tj) “(Br,— > r). 3
ZP&GSP TF(Pk’TJ) PeSN

Additionally, the server also returns P; a reputation update
token Uz, = (T}, {H (hi[lg) }sk., s {[lf]pkca }sk.,) for task T.

F. Reputation update

Ty = . eU(PmTJ‘)"l/J’ )

Ty =

In this phase, P; needs to return feedback informa-
tion to the group manager for reputation update as long
as he/she requested tasks. Specifically, upon receiving
Ur,, P; sends a “blinded” reputation token Upr, =
(BT, {H(hH i) }at... {[f]pkcss sk} with his/her real iden-
tity. The group manager verifies the signature of the server,
and obtains [y after decryption. Subsequently, it verifies that

H(P;|R(P,)|BTjlplly) = H(h}|l), which prevents users



from stealing update tokens. After successful verification, the
group manager updates P/s reputation based on E Moreover,
it stores Upr; and tags it as used to prevent token reuse.
Conversely, if P; is not authorized to T}, he/she also needs
to return a request feedback F; = (P;, BT}, {h}|0}s..) to the
group manager. Upon receiving F;, the group manager verifies
{h}|0}sk.. and checks if the task request is indeed rejected by
comparing H (P;|R(P;)|BT}|p)|0 with h}|0. In this case, the
malicious participant cannot act as a new user (i.e., with the
initial reputation) once he/she has been assigned a task.

G. PFarticipant eviction

To further improve the data trustworthiness, PTISense pro-
vides countermeasures to tackle users with low reputations.

In the initialization phase, the system sets a reputation
level threshold, below which the participant is considered
unreliable and should not be assigned any task. Specifically,
after successful verification of 77, the server extracts L(F;)
and checks if L(P;) is less than the threshold. If it satisfies,
the server will deliver {b},,sk, to the group manager who
can open the signature with gsk and reveal the identity of
P;. Finally, the participant will be added to the blacklist and
cannot obtain any task request token from the group manager.

However, some reputation-qualified participants may submit
low-quality data occasionally due to certain motivations. To
mitigate this, PTISense can identify these participants with
the cooperation of TPA. Specifically, once the trust of a
report is detected lower than the preset trust threshold ¢, the
server will send its pseudonym to the TPA. TPA retrieves
other pseudonyms and sends them to the server. Hence, the
participant utilizing these pseudonyms will not get any receipt.

V. SECURITY ANALYSIS

In this section, we show that PTISense can achieve our
defined goals G1 — G3.

Requirement 1. The group manager and the server can
neither associate the participant ID with his/her requested
tasks (submitted reports) nor link multiple tasks (reports)
accepted (contributed) by the same participant, as long as
the two entities do not collude with each other.

Analytical validation. Although the participant’s real ID is
included in TTR, the exact task ID is blinded with b. Given
two different tasks, the group manager cannot identify if they
are requested by the same participant. In the task assignment
phase, a participant can get authenticated anonymously via
group signature. Although the task ID is disclosed to the
server, it is impossible to link tasks to the user’s real identity or
link multiple tasks requested by the same participant, as long
as there is no collusion between group manager and server.

In the report submission phase, although L(P;) is included
in the report, the server cannot deduce any linkage between
reports with the same L(P;), as different participants may have
the same reputation level. Moreover, the server only knows
which tasks the receipts are issued for, but cannot link a user
to the contributed reports due to the partial blind signature.

Requirement 2. A participant can neither use the receipts
of task T; to earn rewards from another task T; nor use the
receipts of a task multiple times to earn more rewards.

Analytical validation. Recall that the receipts issued to a
participant contain the identifiers committed to a specific task
via partial blind signatures. Therefore, malicious participants
cannot use the receipts obtained from another tasks T} to earn
rewards for task 7;. For each receipt Rr, received, the server
would invalidate its identifier ay, so the participant can earn
rewards from the task using his/her receipts only once.

Requirement 3. A participant cannot forge receipts or steal
other receipts to earn more rewards. The higher-quality data
a participant submits, the more rewards he/she will earn.
Meanwhile, The server cannot correlate the rewards with the
reports submitted before.

Analytical validation. Since each receipt issued is signed
by the server, it is infeasible to forge a valid receipt. Some
malicious participants may steal receipts to earn more rewards.
However, they cannot submit the stolen receipts without extra
pseudonyms. Although some may want to steal receipts with
higher feedback level to replace their low-feedback receipts,
they are faced with the risk of getting fewer rewards or being
detected by the server. This is because the feedback is encrypt-
ed by pkss, other entities can neither distinguish the positive
feedback from the negative feedback, nor tell which receipt
has higher feedback. Even though higher-feedback receipts
were usurped, the possible inconsistency of reputation level
in submitted receipts will reveal his/her malicious behavior.

As shown in Eq. (2) and Eq. (3), a participant will earn more
rewards if he/she submits higher-quality reports. Due to the
adoption of partial blind signature, it is infeasible to associate
the receipts with the corresponding data reports. Although the
server can link rewards with the receipts but it cannot link
them with the reports submitted before.

Requirement 4. Unauthorized participants cannot forge and
intercept other’s pseudonyms to report data without being
detected. Moreover, malicious participants can be evicted from
a specific task or the whole system.

Analytical validation. If an unauthorized participant P;
intercepts an approval message which is sent to another
authorized participant P/, he/she cannot pass the check on
H(P;|BTj|ny, + 1) = h3, hence cannot obtain the valid
pseudonyms. Since each pseudonym is signed by the TPA, ma-
licious participants cannot forge a valid pseudonym. Therefore,
we can ensure that all sensing reports received by the server
are from the authorized participants.

As described in Section IV-G, with the cooperation of
the TPA, malicious participants can be identified if he/she
contributed low-quality data occasionally for a task. In this
case, all pseudonyms of this malicious participant are revealed
to the server, but the real identity keeps hidden since the
only entity (i.e., TPA) who knows the relationship between
participant pseudonyms and the real identity do not collude



with the server. For the same reason, even though the server
maliciously requests all pseudonyms of a certain user, it
cannot infer the real identity of these pseudonyms, and cannot
correlate pseudonyms used in different tasks. On the other
hand, for very low-reputation participants, they will be evicted
from the system with their identity revealed.

VI. PERFORMANCE EVALUATION
A. Complexity analysis

Let M.M. and M.E. denote modular multiplication and
modular exponentiation in Zy, respectively. GS/SIG and
GS/VER denote the operations for group signature generation
and verification, respectively. H is the hash computation.
Hence, the user’s computation cost due to task blinding and
group signature generation is M.M.+M.E.+GS/SIG. If P; is
assigned a task with n reports requirement, he/she needs to
obtain n partial blind signatures for receipts, which induces
n(H+2M.M.+2M.E.) overhead. Therefore, for each authorized
participant, the total computation cost incurred in our scheme
is nH+(2n+1)(M.M.+M.E.)+GS/SIG per task. In comparison,
[11] needs more computations due to the extra n partial blind
signatures for report token generation.

At the server, it needs 1GS/VER computation, 2M.E. for
RSA signature verification and M.M.+M.E. cost for blinding
factor removal, respectively. If the server approves the task
request, it needs to perform one hash operation and two RSA
signatures (i.e., H+2M.E.) for the approval message. Next,
nM.E. and 3nM.E. computation cost are incurred to verify
{T;|L(P;)}sk,, and derive n receipts. Correspondingly, the
verification and decryption cost is n(2M.E.+H). Moreover,
3M.E. is required to derive UT].. Therefore, the server’s
computation cost is GS/VER+M.M.+(6n+8)M.E.+(n+1)H for
an assigned task. In contract, more computations are required
in [11] to verify the report token.

'For the group manager, 2(H+M.E.) cost is required to derive
7. In the reputation update phase, the group manager needs
to verify the signature and decrypt the feedback for authorized
participants (2M.E.+H).

B. Implementation

Simulation setup. For the trust and reputation model, the
same parameter setting as in [15] is used to assess the report
trust. We assume that there are 100 participants, out of which
there are 10 malicious participants in default. For simplicity,
we consider similar reports have the maximum similarity
1 while opposite reports have the minimum similarity -1.
We varied the reputation/trust threshold from 0.2 to 0.8,
and the number of malicious participants from 10 to 60, in
order to demonstrate the accuracy and robustness of trust and
reputation model. In addition, we varied the number of reports
n from 5 to 25 to show its impacts on the computation cost.
All programs are implemented in Java on Andriod smartphone
(Snapdragon 820) and a laptop (AMD Athlon M320).

Simulation results. To show the accuracy of our trust assess-
ment and the impact of €, we tested the rates of false positive
FP and false negative FN with different thresholds, and the

corresponding results are shown in Fig. 2. As we can see, when
¢ is small, the FP and FN rates are very low (approximately 0).
As € increases, the FP rate grows while the FN rate remains O.
This is reasonable as there is a higher possibility that a report
is actually correct but its trust is less than a large €. On the
contrary, it is hardly possible that the trust of a false report is
more than the large €. When € = 0.5, the FP rate is only 0.1
after users take 50 tasks and the corresponding FN rate is 0.
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Fig. 2. The rates of false positive and false negative
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Fig. 3 reports how a malicious user’s reputation is changed
with task quantity under different number of malicious users
(n). Apparently, as more tasks are taken, the reputation of
a malicious user drops down quickly and finally remains
stable (close to 0) when a few malicious users exist. The
reason is that the reports submitted by malicious users conflict
with those from majority benign users. Correspondingly, it
is highly possible that malicious users will get low report
trust and negative feedback. With more malicious users, the
reputation decreases more slowly, since more untrustworthy
reports support each other. When more than 50% malicious
users exist, untrustworthy reports may dominate and it results
in that malicious users get high report trust and maintain a
high reputation. Therefore, our scheme is robust to malicious
participants as long as more benign participants are involved.

To study the practicality of our proposed scheme, Fig. 4
measures the computation cost in different phases at three
entities. We find that most computations are performed at the
server. The reason is that n partial blind signatures, n RSA
signatures and encryptions are required by the server for a



task. For participants, the time generating the blinded task ID
is negligible in the registration phase. In contrast, the user’s
major computation time also focuses on the report submission
phase, taking only about 440ms for 10 reports.
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To study the computation performance of our proposed
scheme, we mainly compare PTISense with a state-of-art
solution Li et. al [11]. The result is shown in Fig. 5 (A
denotes assignment, S denotes report submission, and R
denotes remuneration). In the assignment phase, we observe
that the computation time of PTISense keeps stable with n
for both entities, while that of [11] increases as n grows.
This is because a certain number of group signature genera-
tions/verifications are conducted at both entities in PTISense,
independent of n. Nevertheless, n partial blind signatures
are generated for n report tokens. When submitting reports,
PTISense requires comparable running time at user due to the
similar cryptographic operations. However, our scheme takes
the server more time due to the extra encryption of reputation
feedback level, which is the cost of anonymous reputation
management. In the remuneration phase, it clearly shows the
superiority of PTISense at the participant (no cryptographic
cost), while comparable cost is induced at the server for both
schemes. Overall, PTISense can achieve privacy-aware sensing
and incentive with less computation cost, especially at users.

VII. CONCLUSIONS

In this paper, we proposed PTISense to achieve privacy-
aware and trustworthy mobile sensing with fair incentives.
Based on the group signature, (partial) blind signature, we
enable legitimate users to join tasks, contribute data, and earn
rewards without any data linkability. Additionally, by limiting

the number of pseudonyms issued by the TPA, greedy users are
prevented from abusing the privacy-aware system. To further
improve the data trustworthiness, we integrate the anonymous
reputation management into the entire system, based on which
a fair incentive scheme is elaborated to motivate user’s reliable
participation. Security analysis and prototype implementation
demonstrate the security and efficiency of PTISense.
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