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Abstract—Existing inefficient traffic light cycle control causes 
numerous problems, such as long delay and waste of energy. To 
improve efficiency, taking real-time traffic information as an input 
and dynamically adjusting the traffic light duration accordingly 
is a must. Existing works either split the traffic signal into equal 
duration or only leverage limited traffic information. In this pa- 
per, we study how to decide the traffic signal duration based on 
the collected data from different sensors. We propose a deep rein- 
forcement learning model to control the traffic light cycle. In the 
model, we quantify the complex traffic scenario as states by col- 
lecting traffic data and dividing the whole intersection into small 
grids. The duration changes of a traffic light are the actions, which 
are modeled as a high-dimension Markov decision process. The re- 
ward is the cumulative waiting time difference between two cycles. 
To solve the model, a convolutional neural network is employed to 
map states to rewards. The proposed model incorporates multiple 
optimization elements to improve the performance, such as dueling 
network, target network, double Q-learning network, and priori- 
tized experience replay. We evaluate our model via simulation on a 
Simulation of Urban MObility simulator. Simulation results show 
the efficiency of our model in controlling traffic lights. 

Index Terms—Reinforcement learning, deep learning, traffic 
light control, vehicular network. 

 

I. INTRODUCTION 

HE intersection management of busy or major roads is pri- 

marily done through traffic lights, whose inefficient control 

causes numerous problems, such as long delay of travelers and 

huge waste of energy. Even worse, it may also incur vehicular 

accidents [1], [2]. Existing traffic light control either deploys 

fixed programs without considering real-time traffic or consid- 

ering the traffic to a very limited degree [3]. The fixed programs 

set the traffic signals  equal  time duration  in every  cycle,  or 
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different time duration based on historical information. Some 

control programs take inputs from sensors such as underground 

inductive loop detectors to detect the existence of vehicles in 

front of traffic lights. However, the inputs are processed in a 

very coarse way to determine the duration of green/red lights. 

In some cases, existing traffic light control systems work, 

though at a low efficiency. However, in many other cases, such 

as a football event or a more common high traffic hour scenario, 

the traffic light control systems become paralyzed. Instead, we 

often witness an experienced policeman directly manages the 

intersection by waving signals. In high traffic scenarios, a hu- 

man operator observes the real time traffic condition in the 

intersecting roads and smartly determines the duration of the 

allowed passing time for each direction using his/her long-term 

experience and understanding about the intersection, which is 

very effective. This observation motivates us to propose a smart 

intersection traffic light management system which can take 

real-time traffic condition as input and learn how to manage the 

intersection just like the human operator. To implement such a 

system, we need ‘eyes’ to watch the real-time road condition and 

‘a brain’ to process it. For the former, recent advances in sensor 

and networking technology enables taking real-time traffic in- 

formation as input, such as the number of vehicles, the locations 

of vehicles, and their waiting time [4]. For the ‘brain’ part, rein- 

forcement learning, as a type of machine learning techniques, is 

a promising way to solve the problem. A reinforcement learn- 

ing system’s goal is to make an action agent learn the optimal 

policy through interacting with the environment to maximize 

the reward, e.g., the minimum waiting time in our intersection 

control scenario. It usually contains three components: states 

of the environment, action space of the agent, and reward from 

every action [5]. A well-known application of reinforcement 

learning is AlphaGo [6], followed by AlphaGo Zero [7]. Al- 

phaGo, acting as the action agent in a Go game (environment), 

first observes the current image of the chessboard (state), and 

takes the image as the input of a reinforcement learning model to 

determine where to place the optimal next playing piece ‘stone’ 

(action). Its final reward is to win the game or to lose. Thus, 

the reward may not be obvious during the playing process but 

becomes clear when the game is over. When applying reinforce- 

ment learning to the traffic light control problem, the key point 

is to define the three components at an intersection and quantify 

them to be computable. 

Some previous works propose to dynamically control the traf- 

fic lights using reinforcement learning. Some define the states 
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by the number of waiting vehicles or the waiting queue length 

[4], [8]. But real traffic situation cannot be accurately captured 

by only the number of waiting vehicles or queue length [9]. With 

the popularization of vehicular networks and sensor networks, 

more accurate on-road traffic information can be extracted, such 

as vehicles’ speed and waiting time [10]. However, rich informa- 

tion causes the number of states to increase dramatically. When 

the number of states increases, the complexity in a traditional 

reinforcement learning system grows exponentially. With the 

rapid development of deep learning [11], deep neural networks 

have been employed to deal with the large number of states, 

which constitutes a deep reinforcement learning model [12]. A 

few recent studies have proposed to apply deep reinforcement 

learning in the traffic light control problem [13], [14]. But there 

are two main limitations in existing studies: (1) the traffic sig- 

nals are usually split into fixed-time intervals, and the duration 

of green/red lights can only be a multiple of this fixed-length 

interval, which is not efficient in many situations; (2) the traffic 

signals are designed to change in a random sequence, which is 

not a safe or comfortable way for drivers. In this paper, we study 

the problem on how to control the traffic light signal duration 

in a cycle based on the extracted information from vehicular 

networks or sensor networks. 

Our general idea is to mimic an experienced operator to con- 

trol the signal duration in every cycle based on the informa- 

tion gathered from vehicular networks. To implement such an 

idea, the operation of the experienced operator is modeled as an 

Markov Decision Process (MDP). The MDP is a high-dimension 

model, which contains the time duration of every phase. The sys- 

tem learns the control strategy based on the MDP by trial and 

error in a deep reinforcement learning model. To fit a deep rein- 

forcement learning model, we divide the whole intersection into 

grids and build a matrix, each element of which is the vehicles’ 

information in the corresponding grid collected by vehicular 

networks or extracted from cameras via image processing. The 

matrix is defined as the states and the reward is the cumulative 

waiting time difference between two cycles. In our model, a con- 

volutional neural network is employed to match the states and 

expected future rewards. Note that, every traffic light’s action 

produced from our model affects the environment. When the 

traffic flow changes dynamically, the environment becomes un- 

predictable. To solve this problem, we employ a series of state- 

of-the-art techniques in our model to improve the performance, 

including dueling network [15], target network [12], double Q- 

learning network [16], and prioritized experience replay [17]. 

Our contribution of the paper includes 1) We are the first to 

combine dueling network, target network, double Q network 

and prioritized experience replay into one framework to solve 

the traffic light control problem, which can be easily applied 

into other problems. 2) We propose a control system to decide 

the phases’ time duration in a whole cycle instead of dividing 

the time into segments. 3) Extensive experiments on a traffic 

micro-simulator, Simulation of Urban MObility (SUMO) [18], 

show the effectiveness and high-efficiency of our model. 

The reminder of this paper is organized as follows. The liter- 

ature review is presented in Section II. The model and problem 

statement are introduced in Section IV. The background on rein- 

forcement learning is introduced in Section III. Section V details 

our reinforcement learning model in the traffic light control 

system. Section VI extends the reinforcement learning model 

into a deep learning model to handle the complex states in the 

our system. The model is evaluated in Section VII. Finally, the 

paper is concluded in Section VIII. 

 

II. LITERATURE REVIEW 

Previous works have been done to dynamically control adap- 

tive traffic lights. But due to the limited computing power and 

simulation tools, early studies focus on solving the problem by 

fuzzy logic [19], linear programming [20], etc. In these works, 

road traffic is modeled by limited information, which cannot be 

applied in large scale. 

With the success of deep learning in artificial intelligence, 

more and more researchers use deep learning to solve trans- 

portation problems. Deep learning includes supervised learning, 

unsupervised learning and reinforcement learning, which have 

been applied in network traffic control, such as traffic predic- 

tion and routing [21]. In the traffic light control problem, since 

no labels are available and the traffic scenario is influenced by 

a series of actions, reinforcement learning is a good way to 

solve the problem and has been applied in traffic light control 

since 1990s. El-Tantawy et al. [4] summarize the methods from 

1997 to 2010 that use reinforcement learning to control traf- 

fic light timing. During this period, the reinforcement learning 

techniques are limited to tabular Q learning and a linear function 

is normally used to estimate the Q value. Due to the technique 

limitation at the time in reinforcement learning, they usually 

make a small-size state space, such as the number of waiting 

vehicles [8], [22] and the statistics of traffic flow [23], [24]. A 

signal control system is proposed in [25]. The authors use the 

queue length and current light time as the state and use a linear 

function to approximate the Q values. A cooperative traffic light 

control system based on reinforcement learning is proposed in 

[22]. The authors propose to cluster vehicles and use a linear 

function to approximate the Q values; however, only the queue 

information is used in the states. The complexity in a traffic road 

system can not be actually presented by such limited informa- 

tion. When much useful relevant information is omitted in the 

limited states, it seems unable to act optimally in traffic light 

control [9]. 

With the development of deep learning and reinforcement 

learning, they are combined together as deep reinforcement 

learning to estimate the Q value. Some researchers have applied 

deep reinforcement learning to control the wireless communi- 

cation [27], [28], but the systems cannot be directly applied in 

traffic light control scenarios due to different actions and states. 

We summarize the recent studies that use the value-based deep 

reinforcement learning to control traffic lights in Table I. There 

are three limitations in these previous studies. Firstly, most of 

them test their models in a simple cross-shape intersection with 

through traffic only [13], [14]. Secondly, none of the previous 

works determines the traffic signal timing in a whole cycle. 

Thirdly, deep reinforcement learning is a fast developing field, 

where a lot of new ideas are proposed in these two years, such 

as dueling deep Q network [15], but they have not been ap- 

plied in traffic control. In this paper, we make the following 
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LIST OF PREVIOUS STUDIES THAT USE VALUE-BASED DEEP REINFORCEMENT LEARNING TO ADAPTIVELY CONTROL TRAFFIC SIGNALS 

 

 

 
 

progress. Firstly, our intersection scenario contains multiple 

phases, which corresponds a high-dimension action space in   

a cycle. Secondly, our model guarantees that the traffic signal 

time smoothly changes between two neighboring actions, which 

is precisely defined in the MDP model. Thirdly, we employ the 

states, the optimal policy simply chooses the action that achieves 

the highest cumulative reward. Thus, the optimal Q(s, a) is 

calculated based on the optimal Q values of the succeeding 

states. It can be expressed by the Bellman optimality equation 

to calculate Qπ 
∗ 
(s, a), 

state-of-the-art techniques in value-based reinforcement learn- 
π ∗ π ∗    t t 

1
 

 

III. BACKGROUND ON DEEP REINFORCEMENT LEARNING 

Reinforcement Learning (RL) is a type of algorithms in ma- 

chine learning. It interacts with the environment to learn better 

actions to maximize the objective reward function in the long 

run through trial and error. In reinforcement learning, an agent, 

the action executor, takes an action and the environment returns 

a numerical reward based on the action and the current state. A 

four-tuple ×S, A, R, T ∗ can be used to define the reinforcement 

S : the possible state space. s is a specific state (s S); 

A : the possible action space. a is an action (a A); 

R : the reward space. rs,a denotes the reward in taking 

action a at state s; 

T : the transition function space among all states, which 

represents the probability of the transition from one state 

to another. 

In a deterministic model, T is usually omitted. 

A policy is made up of a series of consequent actions. The 

goal in reinforcement learning is to learn an optimal policy to 

maximize the cumulative expected rewards starting from the 

initial state. Generally speaking, the agent at one specific state s 

takes an action a to reach state st and gets a reward r, which is 

denoted by s, a, r, st . Let t denote the tth step in the policy π. 

The cumulative reward in the future by taking action a at state 
s is defined by Q(s, a) in the following equation, 

Qπ (s, a)= E
 
rt + γrt+1 + γ2rt+2 + ··· |st = s, at = a, π

 
 

 
The intuition is that the cumulative reward is equal to the sum of 

the immediate reward and optimal future reward thereafter. If the 

estimated optimal future reward can be obtained, the cumulative 

reward since now can be calculated. This equation can be solved 

by dynamic programming, but it requires that the number of 

states is finite to make the computing complexity manageable. 

When the number of states becomes large, a function θ is needed 

to approximate the Q value. 

 
IV. PROBLEM STATEMENT 

This paper targets on controlling the traffic lights at road in- 

tersections. A traffic light at an intersection has three signals: 

green, yellow and red. When there are vehicles from multiple 

directions at an intersection, one traffic light may not be enough 

to manage all the vehicles and multiple traffic lights need to 

cooperate at a multi-direction intersection. A status is defined 

as one of all the legal combinations of all traffic lights’ red and 

green signals omitting the yellow signals. At an intersection, the 

traffic signal guides vehicles from non-conflicting directions at 

one time by changing the traffic lights’ statuses. The time du- 

ration staying at one status is called one phase. The number of 

phases is decided by the number of legal statuses at an inter- 

section. All the phases cyclically change in a fixed sequence to 

guide vehicles to pass the intersection. It is called a cycle when 

the phases repeat once. The sequence of phases in a cycle is 

fixed, but the duration of every phase is adaptive based on the 

current traffic condition. If one phase needs to be skipped, its 

duration can be set 0 second. In our problem, we dynamically 

= E 

∞

 

k = 0 

γk rt+ k |st = s, at 
= a, π

l 

. (1) 

adjust the duration in every phase to deal with different traffic 

situations at an intersection to minimize the delay. 

Our problem is to optimize the efficiency of the intersection 

In the equation, γ is the discount factor, which is usually in [0, 1). 
It means the nearest rewards are worthier than the rewards in 

the future. 

The optimal action policy π∗ can be obtained recursively.  

If the agent knows the optimal Q values of the succeeding 

usage by dynamically changing every phase’s duration of a traf- 

fic light via learning from historical experiences. The duration 

of a phase should be extended strategically if there are more ve- 

hicles in that direction. In this paper, we build a deep Q learning 

network to learn the timing strategy of every phase to optimize 

• 

ing algorithms to achieve good performance. Q (s, a)= Est rt + γ max Q 
a t 

. (2) 

• 

• 
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Fig. 1.   The traffic light control model in our system. The left side shows    
the intersection scenario where the traffic light controller gathers road traffic 
information first and it is controlled by the reinforcement learning model; the 
right side shows a deep neural network to help the traffic light controller choose 
an action. 

 

the traffic management. Our network self-updates by continu- 

ously receiving states and rewards from the environment. The 

model is shown in Fig. 1. The left side shows the structure in a 

traffic light. The traffic light first gathers road traffic information 

via a vehicular network [10] or other tools, which is presented by 

the dashed purple lines in the figure. The traffic light processes 

the data to obtain the road traffic’s state and reward, which has 

been assumed in many previous studies [9], [14], [26]. The traf-    

fic light chooses an action based on the current state and reward 

using a deep neural network shown in the right side. The left 

side is the reinforcement learning part and the right side is the 

deep learning part. 
   

V. OUR REINFORCEMENT LEARNING MODEL 

In this section, we define the three elements of our RL model: 

states, actions and rewards. 
 

A. States 

We define the states based on the position and speed of ve- 

hicles at an intersection. Through a vehicular network or other 

tools, vehicles’ position and speed can be obtained [10]. The 

traffic light can extract a virtual snapshot image of the current 

intersection. The whole intersection is divided into same-size 

small square-shape grids. The length of grids, c, should guaran- 

tee that no two vehicles can be held in the same grid and one en- 

tire vehicle can be put into a grid to reduce computation. In every 

grid, the state value is a two-value vector < position, speed > 

of the inside vehicle. The position dimension is a binary value, 

which denotes whether there is a vehicle in the grid. If there is 

a vehicle in a grid, the value in the grid is 1; otherwise, it is 

0. The value in the speed dimension is an integer, denoting the 

vehicle’s current speed in m/s. 

Fig. 2 is an example to show how to set up the state values. 

Fig. 2(a) shows a snapshot of the traffic status at a simple one- 

lane four-way intersection, which is divided into square-shape 

grids. The position matrix has the same size of the grids, which 

is shown in Fig. 2(b). In the matrix, one cell corresponds to 

one grid in Fig. 2(a). The blank cells mean no vehicle in the 

corresponding grid, which are 0. The other cells with vehicles 

inside are set 1.0. The value in the speed dimension is built in a 

similar way. If there is a vehicle in the grid, the corresponding 

value is the vehicle’s speed; otherwise, it is 0. 

Fig. 2. The process to build the state matrix. 

 
B. Actions 

In our model, the actions’ space is defined by how to update 

the duration of every phase in the next cycle. Considering the 

system may become unstable if the duration change between 

two cycles is too large, we specify a change step. In this paper, 

we set it to be 5 seconds. We model the duration changes of two 

phases between two neighboring cycles as a high-dimension 

MDP. In the model, the traffic light changes only one phase’s 

duration by 5 seconds if there is any change. 

We take the intersection in Fig. 2(a) as an example. At the 

intersection, there are four phases, north-south green, north- 

east&south-west green, east-west green, and east-south&west- 

north green. The other unmentioned directions are red by 

default. The yellow signals are omitted here and will be pre- 

sented later. Let a four-tuple < t1, t2, t3, t4 > denote the dura- 

tion of the four phases in current cycle. The legal actions in the 

next cycle is shown in Fig. 3. In the figure, one circle means 

the durations of the four phases in one cycle. Note that the du- 

ration change from the current cycle to the succeeding cycle  

is 5 seconds. The duration of one and only one phase in the 

next cycle is the current duration added or subtracted by 5 sec- 

onds. After choosing the phases’ duration in the next cycle, the 

current duration becomes the chosen one. The traffic light can 
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Fig. 4. The architecture of the deep convolutional neural network to approxi- 
mate the Q value. 

 

is defined by the following equation, 

rt = Wt − Wt+1, (4) 

 

Fig. 3.    Part of the Markov decision process in a multiple traffic lights scenario. 

 

 

select an action in a similar way as the previous procedure. In 

where 
 

 

Nt 

Wt = wit ,t . (5) 
it = 1 

addition, we set the max duration of a phase as 60 seconds and 

the minimal as 0 second. 

The MDP is a flexible model. It can be applied into a more 

complex intersection with more traffic lights, such as an irregular 

intersection with five or six ways, which needs more phases. 

When there are more phases at an intersection, they can be 

added in the MDP model as a higher-dimension value. The 

dimension of the circle in the MDP is equal to the number of 

phases at the intersection. 

The phases in a traffic light cyclically change in sequence. 

Yellow signal is required between two neighboring phases to 

guarantee safety, which allows running vehicles to stop before 

signals become red. The yellow signal duration Tyellow is defined 

by the maximum speed vmax on that road divided by the most 

commonly-seen decelerating acceleration adec . 

Tyellow  = 
vmax 

. (3) 
adec 

It means the running vehicle needs such a length of time to 

firmly stop in front of the intersection. 

 
C. Rewards 

The role of rewards is to provide feedback to a reinforcement 

learning model about the performance of the previous actions. 

It is important to define the reward appropriately so to correctly 

guide the learning process, which accordingly helps take the 

best action policy. 

In our system, the main goal is to increase the efficiency of an 

intersection and reduce the waiting time of vehicles. Thus, we 

define the rewards as the change of the cumulative waiting time 

between two neighboring cycles. Let it denote the ith observed 

vehicle from the starting time to the starting time point of the tth 

cycle and Nt denote the corresponding total number of vehicles 

till the tth cycle. The waiting time of vehicle i till the tth cycle 

is denoted by wit ,t , (1 ≤ it ≤ Nt ). The reward in the tth cycle 

It means the reward is the increment in cumulative waiting 

time between before taking the action and after the action. If 

the reward in the current cycle becomes larger than before, the 

waiting time increases less than before. Considering the delay is 

non-decreasing with time, the overall reward is always negative. 

We aim to maximize the reward so to reduce the waiting time. 

 
VI. DOUBLE DUELING DEEP Q NETWORK 

In the traffic light control system in vehicular networks, the 

number of states are very large, and thus it is challenging to 

directly solve equation (2). In this paper  we propose to use    

a Convolutional Neural Network (CNN) [11] to approximate 

the Q value. Combining with the state-of-the-art techniques, 

the proposed whole network is called Double Dueling Deep Q 

Network (3DQN). 

 
A. Convolutional Neural Network 

The architecture of the proposed CNN is shown in Fig. 4.   

It is composed of three convolutional layers and several fully- 

connected layers. In our system, the input is the small grids 

including the vehicles’ position and speed information. The 

number of grids at an intersection is 60 60. The input data 

become 60 60 2 with both position and speed information. 

The data are first put through three convolutional layers. Each 

convolutional layer includes three parts, convolution, pooling 

and activation. The convolutional layer includes multiple filters. 

Every filter contains a set of weights, which aggregates local 

patches in the previous layer and shifts a fixed length of step 

defined by the stride each time. Different filters have different 

weights to generate different features in the next layer. The 

convolutional operation makes the presence of a pattern more 

important than the pattern’s position. The pooling layer selects 

the salient values from a local patch of units to replace the whole 

patch. The pooling process removes less important information 

and reduces the dimensionality. The activation function is to 
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decide how a unit is activated. The most common way is to 

apply a non-linear function on the output. In this paper, we 

employ the leaky ReLU [29] as the activation function with the 

following form (let x denote the output from a unit), 
⎧
⎨x, if x > 0, 

A(s, a; θ) shows how important an action is to the value function 

among all actions. If the A value of an action is positive, it means 

the action shows a better performance in numerical rewards 

compared to the average performance of all possible actions; 

otherwise, if the value of an action is negative, it means the 

action’s potential reward is less than the average. It has been 
f (x)=  

⎩βx, if x ≤ 
(6) 

0. shown that the subtraction from the mean of all advantage values 

can improve the stability of optimization compared to using the 

β is a small constant to avoid zero gradient in the negative  

side. The leaky ReLU can converge faster than other activation 

functions, such as tanh and sigmoid, and prevent the generation 

of ‘dead’ neurons from regular ReLU. 

In the architecture, three convolutional layers and full con- 

nection layers are constructed as follows. The first convolutional 

layer contains 32 filters. Each filter’s size is 4 4 and it moves 

2 2 stride every time through the full depth of the input data. 

The second convolutional layer has 64 filters. Each filter’s size 

is 2 2 and it moves 2 2 stride every time. The size of the 

output after two convolutional layers is 15 15 64. The third 

convolutional layer has 128 filters with the size of 2  2 and  

the stride’s size is 1 1. The third convolutional layer’s output 

is a 15 15 128 tensor. A fully-connected layer transfers the 

tensor into a 128  1 matrix. After the fully-connected layer, 

the data are split into two parts with the same size 64 1. The 

first part is then used to calculate the value and the second part 

is for the advantage. The advantage of an action means how 

well it can achieve by taking an action over all the other actions. 

Because the number of possible actions in our system is 9 as 

shown in Fig. 3, the size of the advantage is 9 1. They are 

combined again to get the Q value, which is the architecture of 

the dueling Deep Q Network (DQN). 

With the Q value corresponding to every action, we must 

highly penalize illegal actions, which may cause accidents or 

reach the max/min signal duration. The output combines the Q 

value and tentative actions to force the traffic light to take a legal 

action. Finally we get the Q values of every action in the output 

with penalized values. The parameters in the CNN is denoted 

by θ. Q(s, a) now becomes Q(s, a; θ), which is estimated under 

the CNN θ. The details in the architecture are presented in the 

next subsections. 

 
B. Dueling DQN 

As mentioned before, our network contains a dueling DQN 

[15]. In the network, the Q value is estimated by the value     

at the current state and each action’s advantage compared to 

other actions. The value of a state V (s; θ) denotes the overall 

expected rewards by taking probabilistic actions in the future 

steps. The advantage corresponds to every action, which is de- 

fined as A(s, a; θ). The Q value is the sum of the value V and 

the advantage function A, which is calculated by the following 

equation, 

Q(s, a; θ)= V (s; θ) 

+ 

    

( ;  ) 
 1           

( t; )

 

(7) 
 

 

advantage value directly. The dueling architecture is shown to 

effectively improve the performance in reinforcement learning. 

 
C. Target Network 

To update the parameters in the neural network, a target value 

is defined to help guide the update process. Let Qtarget (s, a) 
denote the target Q value at the state s when taking action a. The 

neural network is updated by the Mean Square Error (MSE) in 

the following equation, 

J = P (s)[Qtarget (s, a) − Q(s, a; θ)]2, (8) 

s 

where P (s) denotes the probability of state s in the training 
mini-batch. The MSE can be considered as a loss function to 
guide the updating process of the primary network. To provide 

stable update in each iteration, a separate target network θ−, the 

same architecture as the primary neural network but different 

parameters, is usually employed to generate the target value. 

The calculation of the target Q value is presented in the double 

DQN part. 

The parameters θ in the primary neural network are updated 

by back propagation with (8). θ− is updated based on the θ in 

the following equation, 

θ− = αθ− + (1 − α)θ. (9) 

α is the update rate, which presents how much the newest pa- 

rameters affect the components in the target network. A target 

network can help mitigate the over optimistic value estimation 

problem. 

 
D. Double DQN 

The target Q value is generated by the double Q-learning 

algorithm [16]. In the double DQN, the target network is to 

generate the target Q value and the action is generated from the 

primary network. The target Q value can be expressed in the 

following equation, 

Qtarget (s, a)= r + γQ(st, arg max(Q(st, at; θ)), θ−). (10) 
a t 

It is shown that the double DQN effectively mitigates the over 

estimations and improves the performance [16]. 

In addition, we also employ the E-greedy algorithm to balance 

the exploration and exploitation in choosing actions. With the 

increasing steps of training process, the value of E decreases 

gradually. We set a starting and ending values of E and the 

number of steps to reach the ending value. The value of E linearly 

 

decreases to the ending value. When E reaches the ending value, 

it keeps the value in the following procedure. a t 
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Fig. 5. The architecture of the reinforcement learning model in our system. 
 

E. Prioritized Experience Replay 

During the updating process, the gradients are updated 

through the experience replay strategy. A prioritized experi- 

ence replay strategy chooses samples from the memory based 

on priorities, which can lead to faster learning and to better final 

policy [17]. The key idea is to increase the replay probability 

of the samples that have a high temporal difference error. There 

are two possible methods estimating the probability of an ex- 

perience in a replay, proportional and rank-based. Rank-based 

prioritized experience replay can provide a more stable perfor- 

It then respectively updates the first-order and second-order 

biased moments, s and r, by the exponential moving average, 

s = ρs s + (1 − ρs )g, 

r = ρr r + (1 − ρr )g, (14) 

where ρs and ρr are the exponential decay rates for the first- 

order and second-order moments, respectively. The first-order 

and second-order biased moments are corrected using the time 

step t through the following equations, 
s 

mance since it is not affected by some extreme  large errors. 

In this system, we take the rank-based method to calculate the 

ŝ = , 
1 − ρt 

priority of an experience sample. The temporal difference error 

δ of an experience sample i is defined in the following equation, 

r̂ = 
r
 

1 − ρt 

. (15) 

δi = |Q(s, a; θ)i − Qtarget (s, a)i|. (11) 

The experiences are ranked by the errors and then the priority 

pi of experience i is the reciprocal of its rank. Finally, the 

probability of sampling the experience i is calculated in the 

Finally the parameters are updated as follows, 

θ = θ + Δθ 

  ̂s  

= θ +   −Er √
r̂ + δ 

, (16) 

following equation,  

= p
τ 

 

 (12) 

where Er is the initial learning rate and δ is a small positive 

constant to attain numerical stability. 
Pi τ . 

k k 

τ presents how much prioritization is used. When τ is 0, it is 

random sampling. 

 
F. Optimization 

In this paper, we optimize the neural networks by the ADAp- 

tive Moment estimation (Adam) [30]. The Adam is evaluated 

and compared with other back propagation optimization algo- 

rithms in [31], which concludes that the Adam attains satisfac- 

tory overall performance with a fast convergence and adaptive 

learning rate. The Adam optimization method adaptively up- 

dates the learning rate considering both first-order and second- 

order moments using the stochastic gradient descent procedure. 

Specifically, let θ denote the parameters in the CNN and J (θ) 
denote the loss function. Adam first calculates the gradients of 

the parameters, 

g = ∇θ J (θ). (13) 

 
G. Overall Architecture 

Our deep learning architecture is illustrated in Fig. 5. The 

current state and the tentative actions are fed to the primary 

convolutional neural network to choose the most rewarding 

action. The current state and action along with the next state 

and received reward are stored into the memory as a four-tuple 

s, a, r, st . The data in the memory are selected by the prior- 

itized experience replay to generate mini-batches and they are 

used to update the primary neural network’s parameters. The tar- 

get network θ− is a separate neural network to increase stability 

during the learning. We use the double DQN [16] and dueling 
DQN [15] to reduce the possible overestimation and improve 
performance. Through this way, the approximating function can 

be trained and the Q value at every state to every action can be 

calculated. The optimal policy can then be obtained by choosing 

the action with the max Q value. 

The pseudocode of our 3DQN with prioritized experience 

replay is shown in Algorithm 1. Its goal is to train a mature 
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Algorithm 1: Dueling Double Deep Q Network with Prior- 

itized Experience Replay Algorithm on a Traffic Light. 

Input: replay memory size M , minibatch size B, greedy E, 

pre-train steps tp, target network update rate α, discount 

factor γ. 

Notations: 

θ: the parameters in the primary neural network.       

θ−: the parameters in the target neural network. 

m: the replay memory. 

i: step number.       

Initialize parameters θ, θ− with random values. 
  

Initialize m to be empty and i to be zero.    
Initialize s with the starting scenario at the intersection.    

while there exists a state s do 

Choose an action a according to the E greedy. 

Take action a and observe reward r and new state st. 

if the size of memory m>M then 

Remove the oldest experiences in the memory. 

end if 

Add the four-tuple ×s, a, r, st∗ into M . 
Assign st to s: s st. 

i i + 1. 

if M >B and i> tp then 

Select B samples from m based on the sampling 

priorities. 
Calculate the loss J : 

J =
 1 

[r + γQ(st, arg max(Q(st, at; θ)), θ−)− 
 

 

 

Fig. 6. The intersection scenario tested in our evaluation. 

 

delay of all vehicles. Thus, we evaluate the performance of our 

model using the following two metrics: cumulative reward and 

average waiting time. The cumulative reward is measured by 

adding up the rewards of all cycles in every episode within one 

hour period. The average waiting time is measured by dividing 

 

Q(s, a; θ)]2. 

Update θ with J using Adam back propagation. 

Update θ− with θ: 

θ− = αθ− + (1 α)θ. 
Update every experience’s sampling priority 

based on δ. 

Update the value of E. 

end if 

      end while  

 
adaptive traffic light, which can change its phases’ duration 

based on different traffic scenarios. The agent first chooses ac- 

tions randomly till the number of steps is over the pre-train steps 

and the memory has enough samples for at least one mini-batch. 

Before the training, every samples’ priorities are the same. Thus, 

they are randomly selected into a mini-batch to train. After train- 

ing once, the samples’ priorities change and they are selected by 

different probabilities. The parameters in the neural network is 

updated by the Adam back propagation [31]. The agent chooses 

actions based on the E and the action that has the max Q value. 

The agent finally learns to get a high reward by reacting on 

different traffic scenarios. 

VII. EVALUATION 

A. Evaluation Methodology and Parameters 

1) Evaluation Metrics: Our model’s objective is to maxi- 

mize the defined reward, which is to reduce the cumulative 

2) Traffic Parameters: The evaluation is conducted in 

SUMO [18], which provides real-time traffic simulation. We use 

the Python APIs provided by SUMO to obtain the intersection’s 

information and to send orders to change the traffic light’s tim- 

ing. The intersection is composed of four perpendicular roads, 

as shown in Fig. 6. Each road has three lanes. The right-most 

lane allows right-turn and through traffic, the middle lane only 

allows through traffic, and the left inner lane allows only left- 

turn traffic. The simulated intersection is a 300 m 300 m area. 

The grid length c is 5 meters, which means the total number 

of grids is 60   60. The lane length is 150 meters. Vehicles    

are 5 meters long and the minimal gap between two vehicles 

is 2 meters. Vehicles arrive at the intersection following a ran- 

dom process. The average vehicle arrival rate in every lane is 

1/10 per second (i.e., on average, there is one vehicle arriving 

every 10 seconds). Two lanes allow for through traffic, so the 

flow rate of all through traffic (west-to-east, east-to-west, north- 

to-south, south-to-north) is 2/10 per second (i.e., on average, 

there are two vehicles every 10 seconds). Turning traffic (east- 

to-south, west-to-north, south-to-west, north-to-east) is 1/10 per 

second. Krauss following model [32] is used for Vehicles on the 

road, which guarantees safe driving. The max speed of a vehi- 

cle is 13.9 m/s (50 km/h). The max accelerating acceleration  

is 1.0 m/s2 and the decelerating acceleration is 4.5 m/s2. The 

duration of yellow signals Tyellow is set 4 to be seconds. 

3) Model Parameters: The model is trained in iterations. 

One iteration is an episode in an hour. The reward is accumulated 

in an episode. The simulation results are the average of 50 

the total waiting time by the number of vehicles in an episode. s 
a t 
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TABLE II 

PARAMETERS IN THE REINFORCEMENT LEARNING NETWORK 

 

 
 

 
 

 
 
 

iterations. The development environment is built on the top of 

Tensorflow [33]. The parameters in the deep learning network 

are shown in Table II. 

4) Comparison Study: The performance of our system is 

compared with three strategies: The first one is the simplest set- 

ting: the traffic light’s duration is fixed. We set it to be 30 seconds 

and 40 seconds for every phase. The second one is a conven- 

tional method called Adaptive Traffic Signal Control (ATSC) 

[20], which set the traffic lights with fixed-time signals. The 

third one is a state-of-the-art method, Deep Q Network (DQN) 

[13]. In ATSC, the authors propose a Webster’s method to esti- 

mate the optimal light time duration based on the most recent 

cycles’ saturation. In DQN, the authors propose to use rein- 

forcement learning with an auto-encoder. They use the queue 

length as the state to control traffic lights. The authors show 

that one single Q network can learn good control strategy in a 

two-phase intersection. Regarding to our own framework, we 

also conduct the ablation studies with different reinforcement 

learning architectures and different parameters to present our 

model’s good performance. 

 
B. Experimental Results 

1) Cumulative Reward: The cumulative reward in every 

episode is first evaluated under the same traffic flow rate from 

every lane. We make all strategies have the same rewards as 

our work. Note that we aim to maximize the the rewards, which 

is to minimize the cumulative waiting time, represented as a 

negative number. The simulation results are shown in Fig. 7. 

From this figure, we can see that our 3DQN outperforms the 

other strategies. Specifically, the cumulative reward in 3DQN 

is greater than 50000 (note that the reward is negative since 

the vehicles’ delay is positive) while that in the two fixed-time 

strategies is less than 6000. The fixed-time traffic signals al- 

ways obtains a low reward even after more iterations while our 

model can learn to achieve a higher reward with more iterations. 

This is because the fixed-time traffic signals do not change the 

signals’ time under different traffic scenarios. DQN’s perfor- 

mance is very unstable, which cannot accurately capture the 

whole information in a complex intersection by a deep neural 

 

 
 

 

 

 

 

 

 

 
Fig. 7. The cumulative reward during all the training episodes. 

 

 

Fig. 8. The average waiting time during all the training episodes. 

 

network with the queue length only. Because the normal traffic 

scenario is much more complex than a simple 2-phase inter- 

section, the traffic information represented by queue length is 

inaccurate, which makes DQN choose false actions when two 

traffic scenarios are different but the queue length is the same. 

In addition, one network in DQN is easy to overfit the training 

data. ATSC only chooses the phases’ time duration based on 

several previous cycles, which is inaccurate to predict the future 

traffic scenarios. In 3DQN, the signals’ time changes to achieve 

the best expected rewards, which learns a more general strat- 

egy to handle different traffic states. When the training process 

iterates over 1000 times, the cumulative rewards become more 

stable than previous iterations. It means 3DQN has learnt how 

to handle different traffic scenarios to get the most rewards after 

1000 iterations. 

2) Average Waiting Time: We calculate the average waiting 

time of vehicles in every episode, which is shown in Fig. 8. From 

this figure, we can see that 3DQN outperforms the other four 

strategies. Specifically, the average waiting time in the fixed- 

time signals is always over 35 seconds. Our model can learn to 

reduce the waiting time to about 26 seconds after 1200 iterations 

from over 35 seconds, which is at least 25.7% less than the 

fixed-time strategies. ATSC can get better performance than the 

fixed-time strategy, but it only uses several most recent cycles’ 

information, which cannot well represent future traffic. DQN’s 

performance is very unstable, which means one neural network 

with the queue length cannot accurately capture the real traffic 
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Fig. 9. The cumulative reward during all the training episodes in different 
network architecture. 

 

 

information. The results show that our model can obtain the 

most stable and best performance in vehicles’ average waiting 

time among all the methods. 

3) Ablation Studies: In this part, we evaluate our model by 

comparing to others with different parameters and different ar- 

chitectures. In our model, we use a series of techniques to im- 

prove the performance of deep Q networks. For comparison, 

we remove one of these techniques each time to see how every 

technique influences the performance. The techniques include 

double network, dueling network and prioritized experience re- 

play. The reward changes in all methods are shown in Fig. 9. We 

can see that our model can learn fastest among the four models. 

It means our model reaches the best policy faster than others. 

Specifically, even there is some fluctuation in the first 400 it- 

erations, our model still outperforms the other three after 500 

iterations. Our model can achieve greater than 47000 rewards 

while the others have less than 50000 rewards. 

4) Average Waiting Time Under Rush Hours: In this part, 

we evaluate our model by comparing the performance under the 

rush hours. The rush hour means the traffic flows from all lanes 

are not the same, which is usually seen in the real world. During 

the rush hours, the traffic flow rate from one direction doubles, 

and the traffic flow rates in the other lanes keep the same as 

normal hours. Specifically, in our experiments, the arrival rate 

of vehicles on the lanes from the west to east becomes 2/10 

per second and the arrival rates of vehicles on the other lanes 

are still 1/10 per second. The experimental results are shown 

in Fig. 10. From the figure, we can see that the best policy 

becomes harder to be learnt than the previous scenario. This  

is because the traffic scenario becomes more complex, which 

contains more uncertain factors. But after trial and error, our 

model can still learn a good policy to reduce the average waiting 

time. Specifically, the average waiting time in 3DQN is about 

33 seconds after 1000 iterations while the average waiting time 

in the other two fixed-time methods is over 45 seconds. Our 

model reduces about 26.7% of the average waiting than the 

fixed-time methods. ATSC can achieve better results than one 

fixed-time method and worse than the other because the optimal 

phases’ time duration in the most recent cycles does not work in 

the future traffic considering the traffic scenario becomes very 

complex. DQN’s performance becomes more unstable than that 

 
Fig. 10. The average waiting time in all the training episodes during the rush 
hours with unbalanced traffic from all lanes. 

 

 
in the previous scenario. In summary, 3DQN can achieve the 

best performance under the rush hours. 

 
VIII. CONCLUSION 

In this paper, we propose to solve the traffic light cycle con- 

trol problem using a deep reinforcement learning model. The 

traffic information can be gathered from vehicular networks or 

sensors and used as the input of our model. The states are two- 

dimension values with vehicles’ position and speed information. 

The actions are modeled as a Markov decision process and the 

rewards are the cumulative waiting time difference between two 

cycles. To handle the complex traffic scenario in our problem, 

we propose a double dueling deep Q network (3DQN) with pri- 

oritized experience replay. The model can learn a good policy 

under both rush hours and normal traffic flow. It can reduce the 

average waiting timing by over 20% from the start of the train- 

ing. The proposed model also outperforms other comparison 

peers in learning speed and other metrics. 
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