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Abstract—Mobile crowd sensing emerges as a new paradigm 

which takes advantage of the pervasive sensor-embedded 
smartphones to collect data efficiently. Many incentive 
mechanisms for mobile crowd sensing have been proposed. 
However, none of them takes into consideration the cooperative 
compatibility of users for multiple cooperative tasks. In this 
paper, we design truthful incentive mechanisms to minimize the 
social cost such that each of the cooperative tasks can be 
completed by a group of compatible users. We consider that the 
mobile crowd sensing is launched in an online community. We 
study two bid models and formulated the Social Optimization 
Compatible User Selection (SOCUS) problem for each model. We 
also define three compatibility models and use real-life 
relationships from social networks to model the compatibility 
relationships. We design two reverse auction based incentive 
mechanisms, MCT-M and MCT-S. Both of them consist of two 
steps: compatible user grouping and reverse auction. We further 
present a user grouping method through neural network model 
and clustering algorithm. Through both rigorous theoretical 
analysis and extensive simulations, we demonstrate that the 
proposed mechanisms achieve computational efficiency, 
individual rationality and truthfulness. In addition, MCT-M can 
output the optimal solution. By using neural network and 
clustering algorithm for user grouping, the proposed incentive 
mechanisms can reduce the social cost and overpayment ratio 
further with less grouping time. 

Keywords—Mobile crowd sensing; Incentive mechanism design; 
Online community; Compatibility 

I. INTRODUCTION  
Smartphones are widely available in the recent years. The 

worldwide smartphone market reached a total of 1.45 billion 
units shipped in 2016. From there, shipments will reach 1.71 
billion units in 2020 [1]. Nowadays, smartphones are 
integrated with a variety of sensors such as camera, light 
sensor, GPS, accelerometer, digital compass, gyroscope, 
microphone, and proximity sensor. These sensors can 
collectively monitor a diverse range of human activities and 
surrounding environment. Mobile crowd sensing has become 
an efficient approach to meeting the demands in large-scale 
sensing applications [2], such as Sensorly [3] for 3G/WiFi 
discovery, TrMCD [4] for estimating user motion trajectory, 
crowd-participated system [5] for bus arrival time prediction, 
and participAct [6] for urban crowdsensing. 

Incentive mechanisms are crucial to mobile crowd sensing 
while the smartphone users spend their time and consume 
battery, memory, computing power and data traffic of device 

to sense, store and transmit the data. Moreover, there are 
potential privacy threats [32, 33] to smartphone users by 
sharing their sensed data with location tags, interests or 
identities. A lot of research efforts have been focused on 
designing incentive mechanisms to entice users to participate 
in mobile crowd sensing system. However, they either focus 
on the multiple independent task scenario [7, 9-17], where 
each task only needs one user to perform, or pay attention to 
the single cooperative task scenario [8, 18], where the task 
requires a group of users to perform cooperatively. An 
incentive mechanism for multiple cooperative tasks has been 
designed in [19, 24], however, they neglect the relation among 
users.  

The multiple cooperative task scenarios are very common. 
For example, the construct of fingerprint database [4] requires 
enough users to report sensor readings such that the 
correctness of trajectory can be guaranteed. In the bus arrival 
time prediction system [5], insufficient amount of uploaded 
information may result in inaccuracy in matching the bus 
route. Many time window dependent crowd sensing tasks [8], 
such as continuous measure of trace, traffic condition, noise 
and air pollution need a large sample space such that its result 
has statistical meaning. All above applications require users’ 
collective contributions. 

In multiple cooperative task scenarios, people would 
prefer to cooperate with trustworthy friends, especially when 
people are required to shall their privacy with the cooperators 
for performing sensing tasks. For example, the users in the bus 
arrival time prediction system [5] need to shall their location 
information with other users to guarantee that the pieces of 
sensed data from multiple users can be assembled to picture 
the intact bus route status. For the monitoring tasks [8], the 
users can allocate the sensing time intervals according to their 
private future schedules, habits, preferences or behavior 
profiles [20]. Furthermore, the cooperation of friends in 
mobile crowd sensing also helps to potential sensory data 
aggregation and corresponding local computation in the 
mobile devices in order to reduce network traffic and privacy 
threats. Thus choosing the compatible users to perform 
cooperative tasks can improve not only the participation 
willingness of users, but also the quality and success rates of 
mobile crowd sensing service. 

In this paper, we consider that the mobile crowd sensing 
with multiple cooperative tasks is launched in an online 
community, in which the members (referred as users in the 
rest of this paper) are interested in participating sensing tasks. 
Each of cooperative tasks requires a specific amount of 



compatible users to perform. We use real-life relationships 
from social networks to model the compatibility relationships. 
The objective is designing truthful incentive mechanisms to 
minimize the social cost (the total cost of winners) such that 
each cooperative task can be completed by a group of 
compatible users. In our system model, each user submits the 
tasks it can perform and corresponding bid prices. Meanwhile, 
each user can submit a set of recommended users according to 
its preference. Specifically, if there is no recommended user, 
the user can simply submit the empty set. The platform selects 
a subset of users and notifies winners of the determination. 
The winners perform the sensing tasks and send data back to 
the platform. Finally, each user obtains the payment, which is 
determined by the platform. The process is illustrated by Fig.1. 

 
Fig. 1 Mobile crowd sensing process with multiple cooperative tasks 

The problem of designing truthful incentive mechanisms 
to minimize the social cost for such mobile crowd sensing 
system is very challenging. First, the compatibility models 
should be defined to measure the different compatibility levels. 
Second, when selecting winners for tasks, the incentive 
mechanisms should consider not only the social optimization 
but also the compatibility of the users. Moreover, the user can 
take a strategic behavior by submitting dishonest 
recommended users or bid price to maximize its utility. 
Finally, the users may don’t know the compatible user set 
exactly in some situations. 

The main contributions of this paper are as follows: 
 To the best of our knowledge, this is the first work to 

design truthful incentive mechanisms for the mobile crowd 
sensing system, where each task needs to be performed by a 
group of compatible users. 

 We present two bid models, and formulate the Social 
Optimization Compatible User Selection (SOCUS) problem 
for each. We further present three compatibility models, which 
can depict the different compatibility levels, and use real-life 
relationships from social networks to model the compatibility 
relationships. 

 We design two incentive mechanisms MCT-M and 
MCT-S for two bid models. We show that the designed 
mechanisms satisfy desirable properties of computational 
efficiency, individual rationality and truthfulness. In addition, 
MCT-M can output the optimal solution. 

 We introduce neural network method to learn the 
similarity between users, and group the users using clustering 
algorithm according to this similarity for the situations, where 
the users don’t know the compatible user set exactly. Such 
user grouping method also helps to reduce the social cost and 
overpayment ratio further. 

The rest of the paper is organized as follows. Section Ⅱ 
formulates two bid models and three compatibility models, 
and lists some desirable properties. Section Ⅲ presents the 
benchmark mechanisms for both MCT-M and MCT-S. Section 
IV and Section V present the detailed design and analysis of 

our incentive mechanisms for two bid models, respectively. 
Section Ⅵ  presents user grouping method based on neural 
network and clustering algorithm. Performance evaluation is 
presented in Section Ⅶ. We review the state-of-art research in 
Section Ⅷ, and conclude this paper in Section Ⅸ. 

II. SYSTEM MODEL AND DESIRABLE PROPERTIES 
In this section, we model the mobile crowd sensing system 

as a reverse auction and present two different bid models: 
multi-bid model and single-bid model. In the multi-bid model, 
each user can submit multiple task-bid pairs and can be 
recruited to work on a portion of submitted tasks. The single-
bid model allows each user to bid a global price for multiple 
tasks it can perform. Each user is required to perform all 
submitted tasks once he is selected as a winner in the single-
bid model. Thus the single-bid model is suitable for the single-
minded users, while multi-bid model provides more flexibility 
to the users. Moreover, we present three compatibility models 
of users: weak compatibility model, medium compatibility 
model and strong compatibility model. At the end of this 
section, we present some desirable properties. 

A. Multi-bid Model 
We consider a mobile crowd sensing system consisting of 

a social network application platform and an online 
community with many smartphone users. The platform resides 
in the cloud. The platform publicizes a set                
of m cooperative tasks in an online community   
          of n smartphone users, who are interested in 
participating sensing tasks. Each task      is associated with 
the cooperative index   , which is the least number of 
compatible users to perform   . 

Each user i submits a 2-tuple           , where    

   
    

      
    is a set of ki task-bid pairs. The task-bid pair 

for task j is denoted by   
 
 (  

 
   

 
)    

 
  . Each   

  is 
associated with the cost    

 , which is the private information 
and known only to user i.   

  is the claimed cost, which is the 
bid price that user i wants to charge for performing    

 . Each 
user can submit a set of recommended users, called 
compatible user set, according to its preference. The user 
prefers to cooperate with the users in its compatible user set to 
perform the tasks. We also consider that the real compatible 
user set is the private information and known only to user i. 
     is the claimed compatible user set of i.  

Given the task set T and the bid profile 
              , the platform calculates the winning task-
bid pair set           and the payment   

  for each winning 
task-bid pair   

 
   . The payment for each winner i is 

   ∑   
 

 
 
 
      

. A user i is called a winner and added into 
winner set S if it has at least one winning task-bid pair, i.e., 
       . We define the utility of user i as the difference 
between the payment and its real cost: 
                                 ∑   

 

 
 
 
      

                              (1) 
Since we consider the users are selfish and rational 

individuals, each user can behave strategically by submitting a 
dishonest compatible user set or dishonest bid prices to 



maximize its utility. We assume that the truthfulness of 
submitted task can be achieved since they can be verified by 
the platform. In order to prevent the monopoly and guarantee 
the sensing quality, we assume each cooperative task can be 
completed by at least two different groups of compatible users. 
Here, we say two groups are different iff there is at least one 
different user between them. This assumption is reasonable for 
mobile crowd sensing systems as made in [7, 8, 9]. If a task 
can only be completed by the unique group of compatible 
users, the platform can simply remove it from T. 

The incentive mechanism        outputs a winning 
task-bid pair set    and a payment profile               . 
The objective is minimizing the social cost such that each of 
cooperative tasks in T can be completed by a group of 
compatible users. We will present the compatibility models in 
Section Ⅱ-C. We refer this problem as Social Optimization 
Compatible User Selection (SOCUS) problem, which can be 
formulated as follows: 
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B. Single-bid Model 
The definitions of                   

  are the same as those 
in Section Ⅱ-A. Each user i submits a 3-tuple              , 
where       

    
      

    is a set of ki tasks. The task set    is 
associated with the cost   , which is the private information 
and known only to user i.    is the claimed cost. We also 
consider the real compatible user set is the private information 
and known only to user i.  

Given the task set T and the bid profile 
              , the platform calculates the winner set 
    and the payment    for each winner    . We define 
the utility of user i as: 
                                                                                   (2) 

A user can behave strategically by submitting a dishonest 
compatible user set or a dishonest bid price to maximize its 
utility. The incentive mechanism        outputs a winner 
set   and a payment profile               . The objective 
is minimizing the social cost such that each of the cooperative 
tasks in T can be completed by a group of compatible users. 
The Social Optimization Compatible User Selection (SOCUS) 
problem in the single-bid model can be formulated as follows: 

   ∑    
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C. Compatibility Model 
In this subsection, we present three compatibility models 

to depict the different compatibility levels: 
 Weak Compatibility Model: The two users i and j 

satisfy the weak compatibility (denote as    ) if      or 
     for any      . We consider that the relation of weak 
compatibility is symmetric and transitive. Then we define 
Weak Compatibility Group (WCG) as               . 
Essentially, the weak compatibility model is established on the 
one-way preferences between the users. 

 Medium Compatibility Model: We define the 

transitive relation  : If 𝑘    ⋀          𝑘   , we say 
   . The two users i and j satisfy the medium compatibility 
(denote as    ) if     and     for any      . Then we 
define Medium Compatibility Group (MCG) as             
  . The medium compatibility model is established on the 
transitive two-way preferences between the users. 

 Strong Compatibility Model: The two users i and j 
satisfy the strong compatibility (denote as    ) if      and 
     for any      . We consider that the relation of strong 
compatibility is symmetric and transitive. Then we define 
Strong Compatibility Group (SCG) as               . The 
strong compatibility model is established on the two-way 
preferences between the users. 

                                    
(a)                                      (b)                                        (c)  

Fig. 2 Examples illustrating WCG, MCG and SCG with 3 users, where the 
disks represent users, and the arrows represent the compatible user sets: (a) 
An example of WSG. (b) An example of MSG. (c) An example of SCG. 

Obviously, the medium compatibility model is a special 
case of strong compatibility model, and the weak 
compatibility model is a special case of medium compatibility 
model. We give three simple examples for illustrating WCG, 
MCG and SCG in Fig.2, respectively. 

D. Desirable Properties 
Our objective is to design the incentive mechanisms 

satisfying the following four desirable properties: 
 Computational Efficiency: An incentive mechanism   

is computationally efficient if the outcome can be 
computed in polynomial time. 
 Individual Rationality: Each user will have a non-

negative utility when bidding its true cost and 
compatible user set, i.e.,    0     . 
 Truthfulness: An incentive mechanism is compatibility- 

and cost-truthful (called truthful simply) if reporting the 
true compatible user set and cost is a weakly dominant 
strategy for all users. In other words, no user can 
improve its utility by submitting a false compatible user 
set or cost, no matter what others submit. 
 Social Optimization: A mechanism achieves social 

optimization if it can output the optimal solution. 

III. BENCHMARK MECHANISMS 
In this section, we consider the special cases for multi-bid 

model and single-bid model, respectively, where any user i 
submit the claimed compatible user set         . This 
means any user can cooperate with all other users without 
considering the compatibility of users. We present the 
incentive mechanisms for multiple cooperative tasks in these 
special cases, and treat them as the benchmark mechanisms 
for MCT-M and MCT-S, respectively. 

A. Benchmark Mechanism for the Multi-bid Model 
The Benchmark Mechanism for the Multi-bid Model 

(Benchmark-M) consisting of user selection phase and 
payment determination phase. Let    and    be the users 



bidding for any task    and the winners of any task   , 
respectively. In winner selection phase, we propose an optimal 
algorithm, which selects    task-bid pairs with minimum total 
bid price as the winning task-bid pairs for any task     . 
Obviously, this can output the optimal solution for the SOCUS 
problem. In payment determination phase, we compute 
payment based on the VCG payment rule [10]: A winning 
task-bid pair will be paid an amount equal to the benefit it 
introduces to the system, i.e., the difference between other 
task-bid pairs’ minimum social cost with and without it (Line 
13 of Algorithm 1), where function        means the 
minimum social cost computed by selection phase. The whole 
process is illustrated in Algorithm 1. 

For Benchmark-M, we have the following theorem. 

Theorem 1. Benchmark-M is computationally efficient, 
individually rational, cost-truthful and an optimal algorithm 
of SOCUS problem in the special case of multi-bid model.  

Proof: The running time of obtain    for any task    (Line3) 
takes       since there at most mn task-bid pairs. The while-
loop (Line4-9) is dominated by sorting the task-bid pairs 
based on bid price (Line5), which takes          since there 
are at most n task-bid pairs for each task. There are m tasks, 
and the winner selection phase takes                   
time. In the payment determination phase, a process similar to 
winner selection phase is executed for each winning task-bid 
pair. Since there are at most ∑   

 
    winning task-bid pairs, 

running time of the Algorithm 1 is bounded by 
   ∑   

 
                   .   

It is easy to know that benchmark-M can output the 
optimal solution of SOCUS problem. Since we adopt VCG 
payment rule [10], which is known as an individually rational 
and cost-truthful auction, benchmark-M is individually 
rational and cost-truthful.                                                       ■ 

 Algorithm 1: Benchmark-M 
 
 
1 
2 
3 
4  
5 
6 
7 
8 
9 
10 
 
11 
12 
13 
14 
15 
16 

Input: task set T, bid profile B, user set U 
// Winner Selection Phase 
   ;     ;      0; 
foreach      do 
       ;    { |          

 
}; 

   while |  |     then 
                         

 ; 
                

 
 ; 

                ;         ; 
                   

 ; 
   end 
end 
//Payment Determination Phase 
foreach iU do    0; 
foreach   

 
    do 

     
 
                

 
                   

 
 ; 

end 
foreach iS do      ∑   

 

 
 
 
      

; 
return      ,      ; 

B. Benchmark Mechanism for the Single-bid Model 
First of all, we attempt to find an optimal algorithm for the 

SOCUS problem in the special case of single-bid model. 
Unfortunately, as the following theorem shows, this problem 
is NP-hard. 

Theorem 2. The SOCUS problem in the special case of 
single-bid model is NP-hard. 

Proof: We demonstrate that the SOCUS problem in the 
special case of single-bid model belongs to NP firstly. Given 
an instance of SOCUS problem in the special case of single-
bid model, we can check whether the winners can perform all 
tasks and check whether the social cost is at most k. This 
process can be end up in polynomial time.  

Next, we prove the SOCUS problem in the special case of 
single-bid model is NP-hard by giving a polynomial time 
reduction from the NP-hard Weighted Set Multiple Cover 
problem, WSMC. 

Instance of WSMC (denoted by A): For an universe set 
               of m elements, each    is associated with a 
positive integer   , for            . There is a family of 
sets                and a positive real k, each      has 
its weight     for          . The question is whether exists 
a set           ∑         𝑘, such that any element      
can be covered by    times? 

We consider a corresponding instance of SOCUS problem 
in the special case of single-bid model (denoted by B): There 
is an universe task set                of m tasks, and each 
task    is associated with a task threshold   , for   
         , where    is a positive integer. There is a family of 
task sets                and a positive real k, each user 
    is associated with a task set    and a cost    for   
       . The question is whether exists a set    
       ∑        𝑘 , such that any task      can be 
performed by    times? 

This reduction from A to B ends in polynomial time. We 
can simply see that x is a solution of A if and only if x is a 
solution of B.                                                                            ■ 

Algorithm 2: Benchmark-S 
Input: task set T, bid profile B, user set U 
//Winner Selection Phase 

1         ,    ; 
2    foreach       do       ; 

3    while      do 

4                    
𝑏𝑘

 𝑇′∩𝑇𝑘 
; 

5              ; 
6       foreach      ∩    do 
7                   ; 
8          if     0 then           ; 

9       end for 
10   end while 

//Payment Determination Phase 
11   foreach     do    0; 
12   foreach     do 



13              ,      ,     ; 
14      foreach        do       ; 
15      while       do 

16                         
𝑏𝑘

 𝑇′′∩𝑇𝑘 
;  

17                    
|𝑇′′∩𝑇 |

|𝑇′′∩𝑇 𝑘
|
  𝑘

 ; 

18                   ; 
19         foreach       ∩   𝑘

 do 

20                     ; 
21            if     0 then             ; 
22         end for 
23      end while 
24   end for 

Since the SOCUS problem in the special case of single-bid 
model is NP-hard, it is impossible to compute the winner set 
with minimum social cost in polynomial time unless P=NP. 
We design Benchmark Mechanism for the Single-bid Model 
(Benchmark-S) through a greedy approach. Illustrated in 
Algorithm 2, the reverse auction consists of winner selection 
phase and payment determination phase. 

In the winner selection phase, the users are essential sorted 
according to the Effective Unit Cost. Given any uncovered 
task set   , the Effective Unit Cost of user i is defined as 𝑏 

 𝑇′∩𝑇  
. 

In each iteration of the winner selection phase, we select the 
user with minimum Effective Unit Cost over the unselected 
user set     as the winner until the winners together can 
perform each task      by    times. 

In payment determination phase, for each winner    , we 
execute the winner selection phase over      , and the winner 
set is denoted as   . We compute the maximum price that the 
user i can be selected instead of each user in   . 

Next, we present the theoretical analysis of benchmark-S. 

Lemma 1. Benchmark-S is computationally efficient. 

Proof: Finding the user with minimum with minimum 
Effective Unit Cost takes      , where computing the value 
of    ∩     takes     . Hence, the while-loop (Line3-10) 
takes       . In each iteration of the for-loop (line 12-23), a 
process similar to line 3-10 is executed. Hence the time 
complexity of the whole auction is dominated by this for-loop, 
which is bounded by       .                                                ■ 

Lemma 2. Benchmark-S is individually rational. 

Proof: Let ik be user i’s replacement which appears in the 
ith place in the sorting over      . Since ik would not be at ith 
place if i is considered, we have 𝑏 

 𝑇 ∩𝑇  
 

𝑏 𝑘

|𝑇 ∩𝑇 𝑘
|
. Hence 

   
 𝑇 ∩𝑇  

|𝑇 ∩𝑇 𝑘
|
  𝑘

 
 𝑇  ∩𝑇  

|𝑇  ∩𝑇 𝑘
|
  𝑘

, where the equality relies on the 

observation that        for every ki, which is due to the fact 
that      for every ki. This is sufficient to guarantee 
         ′  ′

|𝑇′′∩𝑇 |

|𝑇′′∩𝑇 𝑘
|
  𝑘

                                              ■ 

Before analyzing the truthfulness of Benchmark-S, we 
firstly introduce the Myerson’s Theorem [13]. 

Theorem 3. ([14, Theorem 2.1]) An auction mechanism is 
truthful if and only if: 
 The selection rule is monotone: If user i wins the auction 
by bidding bi, it also wins by bidding   

    ; 
 Each winner is paid the critical value: User i would not 
win the auction if it bids higher than this value. 

Lemma 3. Benchmark-S is truthful. 

Proof: Based on Theorem 3, it suffices to prove that the 
selection rule of Benchmark-S is monotone and the payment pi 
for each influenced user i is the critical value. The 
monotonicity of the selection rule is obvious as bidding a 
smaller value cannot push influenced user i backwards in the 
sorting. 

We next show that    is the critical value for the user i that 
bidding higher    could prevent i from winning the auction. 
Note                  

|𝑇′′∩𝑇 |

|𝑇′′∩𝑇 𝑘
|
  𝑘

. If the user i bids      , 

he will be placed after L since    
|𝑇′′∩𝑇 |

|𝑇′′∩𝑇  
|
   implies 

𝑏 

 𝑇′′∩𝑇  
 

𝑏  

|𝑇′′∩𝑇  
|
. Hence, the user i would not win the action 

because the first L users have finished all tasks.                      ■ 

Lemma 4. Benchmark-S can approximate the optimal 
solution within a factor of    , where     ∑  

 

 
        

 . 

Proof: Since SOCUS problem in the special case of single-
bid model is be equivalent to the WSMC problem, we can 
obtain the approximation ratio of     using the dual fitting 
method [22] for the WSMC problem.                                       ■ 

As a conclusion of lemma 1 to lemma 4, we have the 
following theorem. 

Theorem 4. Benchmark-S is computationally efficient, 
individually rational, truthful, and     approximate for the 
special case of single-bid model. 

IV. INCENTIVE MECHANISM FOR THE MULTI-BID MODEL  
In this section, we take the compatibility among users into 

consideration, and present an incentive mechanism for 
Multiple Cooperative Tasks in the Multi-bid model (MCT-M). 
MCT-M consists of two steps: compatible user grouping and 
reverse auction. MCT-M first divides the users into 
compatible user groups, in which each user is compatible with 
others. Afterwards, MCT-M performs a reverse auction 
mechanism to select the winning task-bid pairs and determine 
the payment for each user. 

A. Compatible User Grouping 
MCT-M first divides the users into compatible user groups 

based on the compatibility models defined in Section Ⅱ-C, 
and constructs WCGs, MCGs or SCGs.  

For the weak compatibility model, we construct an 
undirected graph to represent the user compatibility relation 
based on the claimed compatible user set. For any         
 , if there is      or     , we add an edge between i and j. 
Then the WCGs can be constructed within       time through 
computing the connected components of the graph. 



For the medium compatibility model, we construct a 
directed graph. For any          , if there is     , we add 
a directed edge from i to j. Then we can construct MCGs 
through computing the strongly connected components of the 
graph, which can be solved within       time. 

For the strong compatibility model, we construct an 
undirected graph. For arbitrary          , if there is      
and     , we add an edge between i and j. Then we can 
construct SCGs through computing the connected components.  

It is straightforward to construct the compatible user 
groups according to the original compatible user sets. 
However, the outcome of compatible user grouping depends 
strongly on the claimed compatible user sets. In other words, 
the users can change the outcome of grouping by misreporting 
their compatible user sets. We use the example in Fig.3 to 
illustrate that grouping according to the original compatible 
user set leads untruthfulness in weak compatibility model. Let 
  {  }                                    
             . All users bid for task j. We first consider 
the case where all three users submit real compatible user sets. 
Obviously,          ,    0  since user 1 cannot 
cooperate with any user. We now consider the case where user 
1 lies by submitting       . In this case,            , 
        and the payment for user 1 would be 3 if we use 
VCG payment rule [10]. Thus,         . Note that user 
1 improves its utility from 0 to 2 by lying about its compatible 
user set. The similar examples can be illustrated for both 
medium compatibility model and strong compatibility model. 

                    
(a)                                         (b)  

Fig. 3 An example showing the untruthfulness of grouping according to the 
original compatible user sets in the weak compatibility model, where the disks 
represent users, and the arrows represent the compatible user sets. The 
numbers beside the disks represent the cost for performing task j. The dotted 
disks represent WCGs: (a) All users submit real compatible user sets. (b) User 
1 lies by submitting       . 

 Algorithm 3: Compatible User Grouping 
 
1 
2 
3 
4 
5 
 
6 
7 
8 
9 
10 
11 
12 
 
13 
14 
15 
16 

Input: graph G 
   ;     ; 
foreach             do 
     ;       ; 

end 
Assign each user independently and uniformly at random 
to one of   subsets           ; 
Let      be a random subset with size    ⌊   ⌋; 
foreach      do  

if       then 
   if      ⌈   ⌉ then 
              ;     ; 
   else 

Let   
     be the set of ⌈   ⌉ users with highest 

indegree based only on edges from     ; 
        

 ;        
 ; 

end 
else  
   if      ⌊   ⌋ then 

17 
18 
19 
 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
 
31 

        ;     ; 
   else 

Let   
     be the set of ⌊   ⌋ users with highest 

indegree based only on edges from     ; 
        

 ;        
 ; 

end 
end 

end 
if        then 

for i=1 to        do 
Select  j uniformly from     ; 
         ; 

end 
end 
Group the users in    based on the specific compatibility 
model. Let   be the set of compatible users groups. 
return  ; 

To solve this issue, we introduce the Random  -Partition 
Mechanism ( -RP) [11], which is a randomized truthful 
mechanism for the approval voting [12]. We construct a 
directed graph G without self-loops: For any          , if 
there is     , we add a directed edge from i to j. Then we 
select a subset    of   users to maximize the total indegree of 
selected users. In our system model, we adopt  -RP to select 
  users with the maximum recommendations. Then MCT-M 
constructs WCGs, MCGs or SCGs based on the 
recommendations of   users selected through  -RP. 

The whole process of compatible user grouping is 
illustrated in Algorithm 3, which works as follows:  

(1) The users are assigned independently and uniformly at 
random to one of   subsets (denoted as           ). Let A 
be the set of these   subsets.  

(2) Select    ⌊   ⌋ subsets from A randomly. Let    
be the set of these    ⌊   ⌋ subsets.  

(3) For each     , if      , select ⌈   ⌉ users from 
   with highest indegree based on edges from     ; if 
     , select ⌊   ⌋ users from    with highest indegree 
based on edges from     . 

(4) If any subset    is smaller than the number of users 
needs to be selected, select all users in this subset. 

(5) If the size of winner set    is smaller than  , select 
       additional users from the unselected users uniformly.  

(6) Group the users in    based on the specific 
compatibility model. 

B. Auction mechanism design 
 Algorithm 4: Reverse Auction for Multi-bid Model 
 
 
 
1 
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3 
4 
5 
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8 

Input: task set T, bid profile B, compatible user group 
set  , the set of   users    
// Winner Selection phase 
   ;      0;     ;              }; 
for 𝑘    to   do     ; 
foreach      do 
   foreach 𝑘    to   do 
          ; 
             {  

 
|           

 
} ; 

      if         then 
         do 
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14 
15 
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19 
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21 
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23 
24 

                        𝑘  𝑘
  

 ; 
                      ; 
         until        ; 
      end 
   end 
   𝑘                   ∑   

 
   𝑘  𝑘  ; 

foreach     ′ do          
 
 ; 

          ∑   
 

   𝑘′  ; 
          ′; 
end 
//Payment Determination Phase 
foreach iU do    0; 
foreach   

 
    do 

     
 
             

    
 
                

    
 
 ; 

end 
foreach iS do      ∑   

 

 
 
 
      

; 
return      ,      ; 

Consider that the outcome of compatible user grouping is 
a set of d compatible user groups               . Let    
be the set of   users. MCT-M then selects a set of winners to 
minimize the social cost through a reverse auction such that 
each cooperative task can be completed by a group of users, 
who belong to the same compatible user group. 

In the multi-bid model, each task submitted by users is 
with a bid price, thus we can select winning task-bid pairs for 
each task independently. For any task     , we process each 
compatible user group    𝑘         . In each iteration, we 
check if there are    users, who bid for    in   . If so, we select 
   users from    with minimum total bid price, and the set is 
denoted as   . Then MCT-M selects the set with minimum 
     ∑   

 
    

 as the winner set for    from all      

       . We apply VCG based payment rule to determine the 
payment for each winning task-bid pair. A winning task-bid 
pair will be paid an amount equal to the benefit it introduces to 
the system, i.e., the difference between other users’ minimum 
social cost with and without it: 
  

 
      ⋃   

    

    
 
         ⋃   

    

    
 
     

 
    

Here function         means the minimum social cost 
computed by MCT-M. Finally, we determine the payment for 
each winner i as    ∑   

 

 
 
 
      

. The whole process is 
illustrated in Algorithm 4. 

C.   Mechanism Analysis 
In the following, we present the theoretical analysis, 

demonstrating that MCT-M can achieve the desired properties. 
Lemma 5. MCT-M is computationally efficient. 
Proof: It suffices to prove that both Algorithm 3 and 

Algorithm 4 are computationally efficient. 
In Algorithm 3, the running time of  -RP (Line1-29) is 

dominated by sorting the users in    (Line12 or Line19). For 
each of   subset,  -RP performs the sorting. The worst case 
happens when all users are assigned to the same subset. In this 
case,  -RP takes          time. Grouping the users in    
(Line30) takes       time. Thus Algorithm 3 takes 
                  time.  

In Algorithm 4, the running time of winner selection phase 
is dominated by sorting the users based on bid price in each 
compatible user group (Line8-11). For each task in T, the 
winner selection phase executes the sorting for each of   
compatible user group. The worst case happens when all users 
are in the same compatible user group. In this case, the winner 
selection phase takes           time. In the payment 
determination phase, a process similar to winner selection 
phase is executed for each winning task-bid pair. Since there 
are at most ∑   

 
    winning task-bid pairs, running time of the 

Algorithm 4 is bounded by    ∑   
 
           .                 ■ 

Lemma 6. The reverse auction is optimal and individually 
rational. 

Proof: It is easy to know that the reverse auction can 
output the optimal solution of SOCUS problem in the multi-
bid model. Since we adopt VCG payment rule, which is 
known as an individually rational auction, the reverse auction 
is individually rational.                                                            ■ 

Before analyzing the truthfulness of MCT-M, we first 
introduce the Theorem about  -RP. 

Theorem 5. ([11, Theorem4.1]) For every value of  ,  -
RP is truthful. 

The truthfulness in Theorem 5 means that no user can 
improve the chance of being selected into    by submitting a 
false compatible user set, no matter what others submit.  

Lemma 7. MCT-M is truthful. 
Proof: The compatibility-truthfulness can be guaranteed 

by Theorem 5. Since we adopt VCG payment rule, which is 
known as a cost-truthful auction, MCT-M is cost-truthful.      ■ 

The above three lemmas together prove the following 
theorem. 

Theorem 6. MCT-M is computationally efficient, 
individually rational, and truthful, and the reverse auction is 
an optimal algorithm of SOCUS problem in the multi-bid 
model.  

V. INCENTIVE MECHANISM FOR THE SINGLE-BID MODEL  
In this section, we consider the case where each user can 

submit a single bid price for all submitted tasks, and present 
an incentive mechanism for Multiple Cooperative Tasks in the 
Single-bid model (MCT-S) with considering the compatibility 
among users. 

A. Mechanism design 
Similar with MCT-M, MCT-S is a two-step mechanism. 

The grouping method is as same as that in MCT-M. Thus we 
focus on solving the SOCUS problem in the single-bid model 
in this subsection. Unfortunately, the following theorem 
shows that it is NP-hard to find the optimal solution. 

Theorem 7. The SOCUS problem in the single-bid model 
is NP-hard. 

Proof: As Theorem 2 shows, the SOCUS problem in the 
special case of single-bid model is equivalent to the WSMC 
problem. We can see that the SOCUS problem in the single-
bid model is a generalization of the WSMC problem when 
each    only can be covered by the users who are within the 

same compatible user group. Since the WSMC problem is NP-
hard, the SOCUS problem in the single-bid model is NP-hard.        

■ 



Since the SOCUS problem in the single-bid model is NP-
hard, we turn our attention to develop a polynomial algorithm. 
The main idea of MCT-S is selecting winners iteratively with 
minimum marginal cost for each task. Illustrated in Algorithm 
5, the reverse auction still consists of the winner selection 
phase and the payment determination phase. 

In the winner selection phase, MCT-S processes tasks in 
arbitrary fixed order. For each task   , we process each 
compatible user group    𝑘         , iteratively. In each 
iteration, let    be the set of winners in    in current state. Let 
      be the set of winners, who bid for   . Then MCT-S 
checks if there are    users, who bid for    in   . If so, we 
select additional        users in    as winners, denoted by 
  

 , with minimum marginal cost. The minimum marginal cost 
of    for    is denoted as      𝑘

  
    ∑      𝑘

′ . For task   , 
MCT-S selects   

  as the additional winner set with minimum 
     𝑘

   among all 𝑘         . The winner selection phase 
terminates when all tasks have been processed. 

 Algorithm 5: Reverse Auction for Single-bid Model 
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Input: task set T, bid profile B, compatible user group 
set  , the set of   users    
// Winner Selection Phase 
   ;              }; 
for 𝑘    to   do 

    ;   
   ; 

foreach      do      𝑘

  
 0; 

end 
foreach      in arbitrary fixed order do 
   foreach 𝑘    to   do 
        

   ; 
                       ; 
            { |           } ; 
      if         then 
         if         then  

break; 
else 
   do 
                  𝑘 ( 𝑘  𝑘

 )      
  ; 

        
    

      ; 
           𝑘

  
      𝑘

  
    ; 

   until         
     ; 

end 
else 

               𝑘

  
  ; 

end 
  end 
   𝑘                         𝑘

  ; 
         

  
 ; 

           ; 
end 
//Payment Determination Phase 
foreach     do    0; 
foreach     do 

foreach      in the same fixed order do 

32 
33 
 
34 
 
35 
36 
 
37 
38 
39 
40 

Select winners from        for   ; 
Let             

   be the marginal cost for 
performing    without i; 
Let         

   be the marginal cost for performing 
   with i; 
if         

               
   then 

                                
            

   
                       }; 

end 
end 

end 
return (S, p); 

In the payment determination phase, for each winner    , 
MCT-S calls the winner selection phase to select winners from 
       for all tasks iteratively. Let             

   be the 
marginal cost for performing    without i. Let         

   be 
the marginal cost for performing    with i. If i is a winner for 
  , i.e.,         

               
  , we compute the 

maximum price of i to make the group including i can be 
selected instead of another group without i. We will prove that 
this price is a critical payment for user i later. 

B. A Walk-Through Example 
We use the example in Fig.4 to illustrate how the reverse 

auction of MCT-S works. 

 
Fig. 4 An example illustrating how the reverse auction of MCT-S works, 
where the disks represent users, the squares represent tasks. The numbers 
below the disks represent the costs. The numbers above squares represent 
cooperative index.                                         
                          . The dotted squares represent compatible 
user groups.                         . 

Winner Selection: 
 For task 1,    ,   

             
         0 , 

  
             

          . 
 For task 2,        ,   

              
         , 

  
                

             . 
 For task 3,            ,   

         
  0 ,   

  
            

          . 
During the payment determination phase, we directly give 

the winners when user i is excluded from the consideration, 
due to the space limitations. 
Payment Determination: 
   : For task 1, winners are {5,6},                 
                   0. For task 2, additional winners are 
{7},                          . For task 3, additional 
winners are  . Thus     0. 
   : For task 1, winners are {1,3},              
            . For task 2, additional winners are {5,6,7}, 
                                      . For task 3, 
additional winners are  . Thus      . 
   : For task 1, winners are {5,6},                 
                    . For task 2, additional winners are 



{7},                          . For task 3, additional 
winners are  . Thus      . 
   : For task 1, winners are {1,3},              
            . For task 2, additional winners are {5,6,7}, 
                                      . For task 3, 
additional winners are  . Thus      . 

C. Mechanism Analysis 
In the following, we present the theoretical analysis, 

demonstrating that MCT-S can achieve the desired properties. 
Lemma 8. MCT-S is computationally efficient. 
Proof: Since MCT-S adopts the same compatible user 

grouping method (Algorithm 3) of MCT-M, the first step of 
MCT-S takes                   time. In reverse auction 
step (Algorithm 5), the winner selection phase in the worst 
case takes           time, which is as same as that in 
MCT-M. In the payment determination phase, a process 
similar to winner selection phase is executed for each winner. 
Since there are at most      ∑   

 
       winners, the running 

time of Algorithm 5 is        ∑   
 
             .         ■ 

Lemma 9. MCT-S is individually rational. 
Proof: We assume that user i is selected for task j in 

winner selection phase. Since the payment determination 
phase processes all tasks and compatible user groups in the 
same order, the output of winner selection before task j would 
not be changed. This means that, in the payment determination 
phase, for task j, it will obtain less or equal marginal cost to 
choose a group of additional winners including i than another 
group of additional winners without i, i.e.,         

   

            
  . Hence we have                

   

         
         . This is sufficient to guarantee 

         𝑇             
            

          .   ■ 
Lemma 10. MCT-S is truthful. 
Proof: The compatibility-truthfulness can be guaranteed 

by Theorem 5. Based on Theorem 3, it suffices to prove that 
the selection rule of MCT-S is monotone and the payment pi 
for each i is the critical value. The monotonicity of the 
selection rule is obvious as bidding a smaller value cannot 
push user i backwards in the sorting. 

We next show that pi is the critical value for i in the sense 
that bidding higher pi could prevent i from winning the 
auction. Note that in the iteration of   ,                

   

     (  )
      . If user i bids      , the group of 

additional winners including i would be replaced by another 
group without i since                

            
   

    implies         
               

  . Hence, user i would 
not win the auction for   . Based on line 36 in Algorithm 3, 
         𝑇             

            
       . User i 

would not win the auction because each      has chosen a 
group of additional winners without i.                                    ■ 

The above three lemmas together prove the following 
theorem. 

Theorem 8. MCT-S is computationally efficient, 
individually rational and truthful in the single-bid model. 

VI. LEARNING USER COMPATIBILITY 

In Section IV-A, we have presented a compatible user 
grouping method based on  -RP. However, this grouping 
method may not effective in some situations. For example, the 
users may don’t know the compatible user set exactly. In this 
case, an effective method is to learn the preferences of users 
based on the historical multiple cooperative mobile crowd 
sensing tasks. Moreover,  -RP will take long time to group 
users. We can utilize the neural network model to train the 
similarity of users in offline manner. From the perspective of 
performance, in order to achieve the truthfulness,  -RP 
excludes some users using random method before grouping, 
which may increase the social cost and overpayment ratio. 

In this section, we present User2Vec, which fallows 
Word2Vec model [26] to mine the similarity between users, 
and group the users using Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) [29] according to this 
similarity.  

A. User2Vec  
We map each user to a high-dimensional vector, and use 

user compatible set as a training set to train the user vector by 
building User2Vec model. 

 
Fig. 5 User2Vec model 

Fig.5 shows the User2Vec model with a multi-user vector 
set setting. In our setting, the user size is V =|U|. The size of 
hidden layer is N. The units on the adjacent layers are fully 
connected. The input is the multiple one-hot encoded vectors, 
where each vector represents a user. For each given user     
only one out of V units             will be 1, and all other 
units are 0. The weights between each input user vector and 



the output layer can be represented by a     matrix W. 
Each row of W is the N-dimension vector representation    of 
associated user of the input layer. Formally, row i of W is 
  

𝑇                    . For a set of users    who work 
together to complete the task, User2Vec takes the users in    
and users in set Neg             as the target and the input 
one-hot vectors, respectively. The Hidden layer vector h is:   

   
 

     
 𝑇(              )                   (3) 

         
 

     
(              )

𝑇
                      (4) 

From the hidden layer to the output layer, there is an 
    matrix        

  . We compute a score    for each 
user     : 
                      

   𝑇                                  (5) 
where   

  is the i-th column of the matrix     . Then we use 
softmax (a log-linear classification model) [30] to obtain the 
posterior distribution of users, which is a multinomial 
distribution. 
                       

        

∑        ′ 
 
 ′  

                 (6) 

where    is the output of the i-th unit in the output layer. 
Substituting (4) and (5) into (6), we obtain 

                     
       

′     

∑       
 ′
′      

 ′  

                     (7) 

      Note that   and   
   are two represents of the user i.    

comes from rows of W, which is the input hidden weight 
matrix, and   

   comes from columns of   , which is the 
hidden output matrix. 
      We derive the weight update equation for this model. The 
training objective (for one training sample) is to maximize (7), 
the conditional probability     of observing the actual output 
user o (denote its index in the output layer as   ) given the 
input users with regard to the weights. 

                               
                                                     
                                          =       ∑       

 ′    ′    (8) 
Let                      be loss function, and the 

target is to minimize E.     is the index of the actual output 
user in the output layer.  
      We derive the update equation of the weights between 
hidden and output layers. Through taking the derivation of E 
with regard to i-th unit’s net input   , we obtain 
     

  

   
                                         (9) 

where      if     , otherwise    0 . Note that this 
derivation is simply the prediction error    of the output layer. 
      Next we take the derivation on    

  to obtain the gradient 
on the hidden output weights: 
    

    
′  

 
  

   
 

   

    
′  

                            (10) 

Therefore, using stochastic gradient descent, we obtain the 
weight updating equation for hidden output weights: 
    

        
    

        
                                    (11) 

or 
  

        
   

        
          for i=1,2,…,V            (12) 

where   0  is the learning rate,    is the f-th unit in the 
hidden layer. This update equation implies that we have to go 
through every possible user in U, check its output probability 
  , and compare    with its expected output    . If      , 
then we subtract a proportion of the hidden vector h (i.e., 
                from   

  , thus making   
   farther away 

from h. If       , which is true only if     (i.e.,    ), 
we add h to   

   , thus making   
   closer to h. If    is very close 

to   , then according to the update equation, very little change 
will be made to the weights.  
      We then can pay attention to W. We take the derivation of 
E on the output of the hidden layer, obtaining 
    

  

   
 ∑

  

   
  

   
   

    
 ∑    

 
      

               (13) 
where EH, an N-dim vector, is the sum of the user vectors in 
Neg, weighted by their prediction error. 
      Then we apply the following equation for every user   in 
Neg to update equation for input hidden weights: 

  
     

   
     

 
 

     
     𝑇    for i=1,2,…,|Neg|    (14) 

In the output layer, if the probability of a user i being 
output user is overestimated        , then the input vector 
of the user set will tend to move farther away from the output 
vector of i. Conversely, if the probability of i being the output 
user is underestimated         , then the input vector will 
tend to move closer to the output vector of i. If the probability 
of i is fairly accurately predicted, then it will have little effect 
on the movement of the input vector. The movement of the 
input vector is determined by the predication error of all 
vectors in U, the larger the predication error, the more 
significant effects a user will exert on the movement on the 
input vector of the user set. 
      In order to deal with the difficulty of having too many 
output vectors that need to be updated per iteration, we only 
update a sample of them. 

Apparently, the output user (i.e., the ground truth, or 
positive sample) should be kept in our sample and gets 
updated, and we need to sample a few users as negative 
samples (negative sampling). A probabilistic distribution is 
needed for the sampling process, and it can be arbitrarily 
chosen. We denote this distribution as      . The method in 
[27] can determine a good distribution empirically. 

Instead of using a form of negative sampling that produces 
a well-defined posterior multinomial distribution, the 
following simplified training objective is capable of producing 
high-quality user embeddings [28]: 

          
   𝑇   ∑         

   𝑇        
        (15) 

where                  is the set of users that are 
sampled based on      , i.e., negative samples. 

To obtain the update equations of the user vectors under 
negative sampling, we first take the derivative of E with 
regard to the net input of the output unit  : 

   

   
′    

 {
    

   𝑇                                     

    
   𝑇                                         

 

                
   𝑇                                              (16) 



where    is the label of user i,      when i is a positive 
sample,    0 otherwise. Next we take the derivation of E 
with regard to the output vector of user i, 

   

   
′  

  

   
′    

 
   

′    

   
′         

   𝑇                (17) 

which results in the following update equation for its output 
vector, 

    
        

   
        

          
   𝑇                (18) 

which only needs to be applied to            instead of 
every user in U.  
      To backpropagate the error to the hidden layer and thus 
update the input vectors of users, we take the derivation of E 
with regard to the hidden layer’s output, obtaining: 
    

  

  
 

                      ∑
  

   
′               

   
′    

  
 

        ∑        
   𝑇                   

              (19) 
By plugging EH into (14) we obtain the update equation 

for the input vectors. 
     We get the final vector for each user based on the trained 
User2Vec model. A continuous space model works in terms of 
user vectors, where similar users are likely with similar 
vectors.  

B. Grouping based on DBSCAN 
In this subsection, we group the users based on the vectors 

processed through User2Vec. Since the number of compatible 
user groups is unknown, we use DBSCAN to group users. 
Given the user set U, DBSCAN is a density-based clustering 
algorithm which formulates a local density denoted as 
                     in the neighborhood of the i-th user. 
                                          is the set 
of neighboring users in the neighborhood of within radius Eps, 
where                is the Euclidean distance between    and 
  in high dimensional vector space. 

Given the minimal number of users in the neighborhood, 
MinPts, any user i is defined as a core user if            
      . Any user i is a noise user if                  . 
For our settings, MinPts is determined by the cooperative 
index of tasks. 

BDSCAN based Grouping works as follows: 
(1) Choose arbitrary unvisited user, and find        . 
(2) If                  , user i and          generate 

a new group together. Recursively process all unvisited users 
in the current group in the same way to expand the group. 

(3) If                  , mark user i as noise user. 
(4) For other unvisited users, repeat step (1) to step (3) 

until all users are belong to a group or are marked as noise 
users. 

VII. PERFORMANCE EVALUATION 
We have conducted thorough simulations to investigate the 

performance of MCT-M and MCT-S for all three compatibility 
models. Due to the space limitations, we only give the 
numerical results under weak compatibility model. To 
investigate the performance of social optimization for SOCUS 

problem, we also implement the benchmark algorithms 
without considering the compatibility among users: 
Benchmark-M for multi-bid model and Benchmark-S for 
single-bid model, respectively.  

We measure the number of winners, social cost, running 
time and overpayment ratio (a metric to measure the frugality 
of a mechanism [23], calculated by ∑             

       
), and reveal 

the impacts of the key parameters, including the number of 
users (n), the number of cooperative tasks (m) and cooperative 
index (r). 

A. Simulation Setup  
The simulations are based on Wikipedia vote network [21], 

which contains all the Wikipedia voting data for adminship 
election from the inception of Wikipedia till January 2008. 
Nodes in the network represent Wikipedia users and a directed 
edge from node i to node j represents that user i voted on 
user j. There are 7115 nodes and 103689 edges in the network. 
For our simulations, we select a set of users uniformly from 
whole Wikipedia vote network, and construct a sub-network 
only consisting of selected users and the edges among them. 
We set the compatible user set of arbitrary user as the set of 
users it voted on within the sub-network.  

We set the default value of parameters as follows: The cost 
of each bid is uniformly distributed in [5, 10]. The cooperative 
index and the number of bidding tasks of each user are 
uniformly distributed in [2, 5] and [3, 5], respectively. The 
window of User2Vec is 5. Let n=300, m=10,  =250, Eps=3, 
MinPts=5. However, we will vary the value of key parameters 
to explore the impacts of these parameters respectively. For 
convenience, we use User2Vec-M and User2Vec-S to 
represent the incentive mechanisms by learning user 
compatibility for multi-bid model and single-bid model, 
respectively. All the simulations were run on an Ubuntu 
14.04.4 LTS machine with Intel Xeon CPU E5-2420 and 16 
GB memory. Each measurement is averaged over 100 
instances. 

B. Impact of n 
To investigate the scalability of designed mechanisms, we 

vary the number of users from 300 to 900, and select 80% 
users for each instance through  -RP for MCT, i.e.,   
0    . As shown in Fig.6, the number of compatible user 
groups goes up under all three compatibility models when the 
number of users increases. There are 2.5, 1.75 and 1.32 users 
in each WCG, MCG and SCG on average, respectively. The 
social cost decreases with increasing user number since the 
platform can find more cheap users. However, the change of 
social cost is very slight because in our system model, the user 
number needs to be large enough in order to complete all 
cooperative tasks. The social cost of MCT-M and User2Vec 
are very close to that of Benchmark-M (only 1.8% more social 
cost than Benchmark-M on average) since the reverse auction 
for multi-bid model (Algorithm 4) can output optimal solution. 
However, MCT-S outputs 48.9% more social cost than 
Benchmark-S on average. Note that User2Vec-S can reduce 
8.24% of social cost comparing with MCT-S since all users 
can pass to the reverse auction step in User2Vec-S. Moreover, 
the designed mechanisms are computational efficient since the 
running time of MCT-M and MCT-S is bounded by 0.8s and 



0.4s, respectively, even there are 900 users. The running time 
of User2Vec-M and User2Vec-S are only 81.8% and 72.1% of 
MCT-M and MCT-S, respectively, since the training of user 
vector similarity can be executed offline. Based on the 
frugality theory, the overpayment ratio depends on the 
competition among users. As seen from Fig.6(d), the 
overpayment ratio of all incentive mechanisms decrease 
because the competition among users intensify when there are 
more users. The overpayment ratio of the incentive 
mechanisms in multi-bid model are less than those in single-

bid model. Obviously, the competition of users in multi-bid 
model is more than that in single-bid model since the incentive 
mechanisms in multi-bid model can select winning task-bid 
pairs independently from all task-bid pairs and the cost of each 
task follows the identical distribution. Note that the User2Vec 
based methods can output less overpayment ratio because 
there are more users in the reverse auction step comparing 
with  -RP based methods. 

  
 

(a)                                                          (b)                                                             (c)                                                            (d)  
 

Fig. 6 Impact of the number of users (n): (a) Number of groups. (b) Social cost. (c) Running time.  (d) Overpayment ratio 

 
                 (a)                                                           (b)                                                               (c)                                                        (d)  

Fig. 7 Impact of the number of cooperative tasks (m): (a) Number of winners.  (b) Social cost.  (c) Running time.  (d) Overpayment ratio 

  
                  (a)                                                          (b)                                                              (c)                                                             (d)  

Fig. 8 Impact of cooperative index(r): (a) Number of winners. (b) Social cost.  (c) Running time. (d) Overpayment ratio 

C. Impact of m 
The number of cooperative tasks can depict the workload 

of mobile crowd sensing system. We fix    00,     0, 
and vary m from 6 to 14. As shown in Fig.7, the number of 
winners and the social cost increase severely in all incentive 
mechanisms with increasing m since the platform needs more 
users to complete the tasks. The winners in multi-bid model 
are much more than that of single-bid model because any user 
will be the winner if one of the task-bid pairs it submits is 
selected in the multi-bid model. Accordingly, the social cost 
of multi-bid model is more than that of single-bid model since 
the cost of each winner follows the identical distribution in our 
settings. The running time also increases with increasing tasks. 
However the running time of MCT-M and MCT-S are still 
lower than 0.4s and 0.1s when there are 300 users and 14 
cooperative tasks, respectively. The overpayment ratio also 

increases since the platform needs to recruit more users to 
perform tasks, which mitigates the competition among users 
accordingly. 

D. Impact of r 
To investigate the performance for the tasks associated 

with different cooperative levels, we vary the distribution 
interval of cooperative index from [2, 2] to [2, 8]. As can be 
seen from Fig.8, MCT-S and User2Vec-S cannot output the 
solution when the cooperative index is too large (the upper 
limit of distribution interval exceeds 7). Both the winners and 
the social cost increase with increasing cooperative level since 
the platform needs more users to perform each cooperative 
task averagely. MCT-M and MCT-S output 6.7% and 52.6% 
more social cost than benchmark algorithms, respectively. The 
social cost can be reduced further by machine learning based 
grouping method. The running time and overpayment ratio 



also increase when the cooperative index goes up. The running 
time of MCT-S is only 32.9% of that of MCT-M, while the 
overpayment of MCT-M is much less than that of MCT-S. For 
both bid models, User2vec based incentive mechanisms can 
reduce the overpayment ration comparing to the MCTs since 
there are more users to compete the winners in auction. 

VIII. RELATED WORK 
Many incentive mechanisms for mobile crowd sensing 

have been proposed thus far. Yang et al. proposed two 
different models for smartphone crowd sensing [9]: the 
platform-centric model where the platform provides a reward 
shared by participating users, and the user-centric model 
where users have more control over the payment they will 
receive. Feng et al. [7] formulated the location-aware 
collaborative sensing problem as the winning bids 
determination problem, and presented a truthful auction using 
the proportional share allocation rule proposed in [15].  
Koutsopoulos designed an optimal reverse auction [14], 
considering the data quality as user participation level. 
However, the quality indicator, which essentially measures 
the relevance or usefulness of information, is empirical and 
relies on users’ historical information. Zhao et al. [16] 
investigated the online crowdsourcing scenario where the 
users submit their profiles to the crowdsourcer when they 
arrive. The objective is selecting a subset of users for 
maximizing the value of the crowdsourcer under the budget 
constraint. They designed two online mechanisms, OMZ, 
OMG for different user models. Zhang et al. proposed IMC 
[17], which consider the competition among the requesters in 
crowdsourcing. The incentive mechanisms considering the 
biased requesters were proposed in [25]. However, all above 
works focus on the multiple independent task scenarios, where 
each task only needs one user to perform. 

Some works aim to the single cooperative task scenario, 
where the task requires a group of users to perform 
cooperatively. Xu et al. proposed truthful incentive 
mechanisms for the mobile crowd sensing system where the 
cooperative task is time window dependent, and the platform 
has strong requirement of data integrity [8]. Furthermore, they 
studied the budget feasible mechanisms for the same crowd 
sensing system [20]. Luo et al. designed the truthful 
mechanisms for multiple cooperative tasks [19, 24]. However, 
they don’t consider the compatibility among users.  

Word2Vec was usually used in natural language 
processing and recommendation systems. Mikolov et al. 
proposed two novel model architectures for computing 
continuous vector representations of words from very large 
data sets [26]. Ester et al. proposed a clustering algorithm, 
DBSCAN, which does not need to define the number of 
clusters [29]. However, no one use Word2Vec model and 
DBSCAN for user grouping in mobile crowd sensing. 

Overall, there is no off-the-shelf incentive mechanism 
designed in the literature for the mobile crowd sensing system, 
where there are multiple cooperative tasks, and each of tasks 
requires a group of compatible users to perform. 

IX. CONCLUSION AND FUTURE WORK 
In this paper, we have designed the incentive mechanisms 

for the mobile crowd sensing system with multiple 

cooperative tasks. We use real-life relationships from social 
networks to model the compatibility relationships. We have 
presented two bid models and three compatibility models for 
this new scenario, and designed two incentive mechanisms: 
MCT-M and MCT-S to solve the SOCUS problem for the two 
bid models, respectively. We have presented a user grouping 
method through neural network model and clustering 
algorithm for the situations, where the users don’t know the 
compatible user set exactly. Through both rigorous theoretical 
analyses and extensive simulations, we have demonstrated that 
the proposed incentive mechanisms achieve computational 
efficiency, individual rationality and truthfulness. Moreover, 
MCT-M can output the optimal solution. By using neural 
network and clustering algorithm for user grouping, the 
proposed incentive mechanisms can reduce the social cost and 
overpayment ratio further with less grouping time. 

In the future, we plan to construct different compatibility 
models according to different indicators, such as the 
geographical distance and user quality, for some specific 
mobile crowd sensing applications. In addition, we plan to 
design other machine learning based grouping methods, and 
valuate the accuracy of grouping by real-world mobile crowd 
sensing systems. 
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