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Abstract— In this paper, we consider residential demand
response (DR) programs where an aggregator calls upon some
residential customers to change their demand so that the total
load adjustment is as close to a target value as possible.
Major challenges lie in the uncertainty and randomness of the
customer behaviors in response to DR signals, and the limited
knowledge available to the aggregator of the customers. To learn
and select the right customers, we formulate the DR problem
as a combinatorial multi-armed bandit (CMAB) problem with
a reliability goal. We propose a learning algorithm: CUCB-
Avg (Combinatorial Upper Confidence Bound-Average), which
utilizes both upper confidence bounds and sample averages
to balance the tradeoff between exploration (learning) and
exploitation (selecting). We prove that CUCB-Avg achieves
O(log T ) regret given a time-invariant target. Simulation re-
sults demonstrate that our CUCB-Avg performs significantly
better than the classic algorithm CUCB (Combinatorial Upper
Confidence Bound).

I. INTRODUCTION

Demand response (DR) has been playing an increasing
role in reducing the operation cost and improving the sus-
tainability of the power grid [1]–[9]. Most of the existing
successful DR programs are for commercial and industrial
customers. As residential demand takes up to almost 40%
of the U.S. electricity consumption [10], there is a growing
effort in designing residential DR in both academia and
industry. In a typical residential DR program, there is a DR
aggregator such as a utility company requests load changes
from users, for example, by changing the temperature set
points of the air conditioners. To encourage users’ partici-
pation, most of the residential DR programs use incentive
schemes such as prices, rewards, coupons, raffles, etc, under
the assumption that customers are price responsive [7]–[9].
However, because the average monetary reward budget for
single household is usually small, it is reported that rewards
play a limited role for users to decide whether to participate
in or opt out of a DR program [8].

On the other side, there are many factors besides rewards
that affect residential user decisions, such as house size and
type, household demographics, outdoor humidity and tem-
perature, people’s lifestyles, etc. However, the DR aggregator
has limited knowledge of these factors. It is also unclear
how these factors will affect people’s DR action. Moreover,
people with similar factors might react to the same DR
signal in very different ways. These intrinsic, heterogeneous
uncertainties associated with the residential customers call
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for learning approaches to understand and interact with the
customers in a smarter way.

Multi-armed bandit (MAB) emerges as a natural frame-
work to handle such uncertainties [11], [12]. In the simplest
setting, MAB considers n independent arms, each providing
a random contribution according to its own distribution at
time 1 ≤ t ≤ T . Without knowing these distributions, a
decision maker picks one arm at each time step, and tries
to maximize the total expected contribution. The decision
maker should decide whether to explore arms to learn the
unknown distribution, or to exploit the current knowledge
by selecting the arm that has been providing the highest
contribution. When the decision maker can select multiple
arms at each time, the problem is referred as CMAB (Com-
binatorial MAB) in literature [13]–[17]. (C)MAB captures a
fundamental tradeoff in most learning problems: exploration
vs. exploitation. A common metric to evaluate the perfor-
mance of (C)MAB learning algorithms is the regret, which
captures the difference between the optimal value assuming
the distributions are known and the achieved value of the
online learning algorithm. A sublinear regret implies good
performance because it indicates that the learning algorithm
eventually learns the optimal solution.

When applying CMAB framework to residential demand
response, we can treat each customer as one arm. Then the
aggregator follows CMAB methods to explore (learn) and
exploit (select) the customers to achieve the goal of its DR
program. There exist studies of DR via (C)MAB [9], [18]–
[20]. However, most literature sets the goal as maximizing
the load reduction for peak hours without considering the
load reduction target and reliability issues.

Our Contributions: In this paper, we formulate the DR
as a CMAB problem whose objective is to minimize the
deviation between the total load adjustment and a target
level for the power system reliability. We consider a large
number of residential customers, each of whom can commit
one unit of load change (either reduction or increase) with an
unknown probability. The task of the aggregator is to select
a subset of the customers to approximate the target level as
close as possible. The size of the subset is not fixed, giving
flexibility to the aggregator to achieve different target levels.
Compared with the classic CMAB literature [13]–[17], a
major difference of our formulation is that the reliability
objective leads to a non-monotonic objective function for the
CMAB problem, making the existing CMAB approaches and
regret analysis inapplicable here.

In order to design our CMAB online learning algorithm,
we first study the corresponding offline combinatorial op-
timization problem assuming the probabilities of customers
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are known. Based on the structure of the offline algorithm,
we propose an online algorithm CUCB-Avg (Combinatorial
Upper Confidence Bound-Average) and provide a rigorous
regret analysis. We show that, over T time steps, CUCB-Avg
achieves O(log T ) regret given a static target. The depen-
dence of regret on dimension n (the number of customers)
is polynomial. By simulation, we show that the performance
of CUCB-Avg is much better than the classic algorithm
CUCB [13], [16], [17] and similar to Thompson sampling,
another popular CMAB method which has good empirical
performance but is usually difficult to theoretically analyze
[21]–[23].

Related Work in CMAB. Most literature in CMAB studies
a classic formulation which aims to maximize the total
(weighted) contribution of K arms with a fixed integer K
(and known weights) [12], [14]–[17], [24]. As for more
general problem formulation, Chen et. al. study the monotone
objective function: the objective value function is monoton-
ically nondecreasing with arms’ parameters given a fixed
selected subset [13]. They propose the Combinatorial Upper
Confidence Bound (CUCB) using the principle of optimism
in the face of uncertainty. Another line of work follows the
Bayesian approach. [25] studies a Bayesian learning algo-
rithm, Thompson sampling, for general CMAB problems, but
its analysis is based on several assumptions including finite
prior distribution and the uniqueness of the optimal solution,
and the regret bound consists of a large exponential term.

However, our CMAB problem with the reliability objective
function does not satisfy the conditions of monotonicity
or the uniqueness of the optimal solution, and a properly
selected prior distribution for our problem may not satisfy the
assumption in [25]. Therefore, either the learning approaches
or the analysis in current literature do not suit our CMAB
problem, motivating us to design new CMAB algorithms.

Organization of the Paper. Section II introduces the prob-
lem formulation. Section III introduces an offline algorithm
and an online algorithm CUCB-Avg. Section IV studies the
performance guarantee for a time-invariant target. Section V
provides the simulation results.

Notations. Given a set E, and a universal set U , the
complement of set E is denoted as Ē, the cardinality of set
E is |E|. For any positive integer n, let [n] = {1, . . . , n}.
Let IE(x) denote the indicator function on set U such that
IE(x) = 1 if x ∈ E and IE(x) = 0 if x 6∈ E. When
k = 0, the summation

∑k
i=1 ai = 0 for any ai, and the set

{σ(1), . . . , σ(k)} = ∅ for any σ(i). Finally, we define the
big-O and small-o notations. For x = (x1, . . . , xk) ∈ Rk,
we write f(x) = O(g(x)) as x → +∞ if there exists a
constant M such that |f(x)| ≤ M |g(x)| for any x such
that xi ≥ M ∀ i ∈ [k]; and we write f(x) = o(g(x)) if
limx→+∞ f(x)/g(x) = 0. We usually omit the phase “as
x → +∞” for simplicity. When studying the asymptotic
behavior near zero, we consider the inverse of x.

II. PROBLEM FORMULATION

Motivated by the discussion in the previous section, we
will formulate the DR as a CMAB problem in this section.

We focus on the load reduction to illustrate the problem. The
load increase can be treated in the same way.

Consider a demand response (DR) program with an ag-
gregator and n residential customers (arms) over T time
steps where each time step corresponds to one DR event.1

Each customer may respond to a DR event by reducing one
unit of power consumption with probability 0 ≤ pi ≤ 1, or
not respond at all. The demand reduction by customer i at
time step t is denoted by Xt,i, which is assumed to follow
Bernoulli distribution: Xt,i ∼ Bern(pi) and is independent
across time2.

At each time 1 ≤ t ≤ T , there is a DR event with a
demand reduction target D ≥ 0 determined by the power
system. This reduction target might be due to a sudden drop
of renewable energy generation or a peak load reduction
request, etc. The aggregator aims to select a subset of
customers St ⊆ [n], such that the total demand reduction is
as close to the target as possible. The loss/cost at time t can
be captured by the squared deviation of the total reduction
from the target D:

Lt(St) = (
∑
i∈St

Xt,i −D)2

Since demand reduction Xt,i are random, the goal is to
minimize the expected squared deviation,

min
St⊆[n]

ELt(St). (1)

When the response probability profile p = (p1, . . . , pn) is
known, the problem (1) is a combinatorial optimization, and
an offline optimization algorithm is provided in Section III.
The optimal solution is denoted by S∗t .

In reality, the probabilities of response are usually un-
known. Thus, the aggregator should learn the probabilities
from the feedback of previous demand response events, then
make online decisions to minimize the difference between
the total demand reduction and the target D. The learning
performance is measured by Regret(T ), which compares the
total expected cost of online decisions and the optimal total
expected costs in T time steps3:

Regret(T ) := E[
T∑
t=1

Rt(St)] (2)

where Rt(St) := Lt(St) − Lt(S
∗
t ) and the expectation is

taken with respect to random Xt,i and possibly random St.
The feedback of previous demand response events includes

the responses of every selected customer, i.e., {Xt,i}i∈St .
Such feedback structure is called semi-bandit in literature

1The specific definition of DR event and the duration of each event is
up to the choice of the system designer. Our methods can accommodate
different scenarios.

2For simplicity, we only consider that each customer has one unit to
reduce. Our method can be easily extended to multi-unit setting and/or the
setting where different users have different size of units. But the regret
analysis will be more complicated which we leave as future work.

3Strictly speaking, this is the definition of pseudo-regret, because its
benchmark is the optimal expected cost: minSt⊆[n] ELt(St), instead of
the optimal cost for each time, i.e. minSt⊆[n] Lt(St).
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[13], and carries more information than bandit feedback
which only includes the realized cost Lt(St).

Lastly, we note that our problem formulation can be
applied to other applications beyond demand response. One
example is introduced below.

Example 1. Consider a crowd-sourcing related problem.
Given a fixed budget D, a survey planner sends out surveys
and offers one unit of reward for each participant. Each
potential participant may participate with probability pi. Let
Xt,i = 1 if agent i participates; and Xt,i = 0, if agent i
ignores the survey. The survey planner wants to maximize the
total number of responses without exceeding the budget too
much. One possible formulation is to select subset St such
that the total number of responses is close to the budget D,

min
St

(
∑
i∈St

Xt,i −D)2

Since the participation probabilities are unknown, the survey
planner can learn the participation probabilities from the
previous actions of its selected agents and then try to
minimize the total costs during the learning process.

III. ALGORITHM DESIGN

In this section, we first analyze the offline optimiza-
tion problem and provide an optimization algorithm. Then
we introduce the notations for online algorithm analysis,
and discuss two simple algorithms: greedy algorithm and
CUCB (Combinatorial Upper Confidence Bound). Finally,
we present our online algorithm CUCB-Avg, and provide
intuitions behind the algorithm design.

A. Offline Optimization
When the probability profile p is known, the problem (1)

becomes a combinatorial optimization problem:

min
S⊆[n]

EL(S)⇔ min
S⊆[n]

(
∑
i∈S

pi −D)2 +
∑
i∈S

pi(1− pi) (3)

Though combinatorial optimization is NP-hard in general and
only has approximate algorithms, the problem (3) admits a
simple optimal algorithm, as shown in Algorithm 1. Roughly
speaking, Algorithm 1 takes two steps: i) rank the arms
according to pi, ii) determine the number k according to
the probability profile p and the target D and select the top
k arms. The output of Algorithm 1 is denoted by φ(p,D)
which is a subset of [n]. In the following theorem, we show
that such algorithm finds an optimal solution to (3).

Theorem 1. For any D > 0, the output of Algorithm 1,
φ(p,D), is an optimal solution to (3).

Proof Sketch. We defer the detailed proof to [26] and
only introduce the intuition here. To solve (3), we need two
things: i) the total expected contribution of S,

∑
i∈S pi, is

closed to the target D, ii) the total variance of arms in S is
minimized. i) is guaranteed by Line 3 of Algorithm 1: it is
easy to show that |

∑
i∈φ(p,D) pi−D| ≤ 1/2. ii) is guaranteed

by only selecting arms with higher response probability, as
indicated by Line 2 of Algorithm 1. The intuition is given
below. Consider an arm with large parameter p1 and two

Algorithm 1: Offline optimization algorithm
1: Inputs: n, p1, . . . , pn, D > 0
2: Rank pi in a non-increasing order:

pσ(1) ≥ · · · ≥ pσ(n)

3: Find the smallest k ≥ 0 such that
k∑
i=1

pσ(i) > D − 1/2

or k = n if
n∑
i=1

pσ(i) ≤ D − 1/2

Ties are broken randomly.
4: Ouputs: φ(p,D) = {σ(1), . . . , σ(k)}

arms with smaller parameters p2, p3. To make analysis easier,
we assume p1 = p2 + p3. Thus replacing p1 with p2, p3 will
not affect the first term in (3). However,

p1(1− p1) ≤ p2(1− p2) + p3(1− p3)

by p2
1 = (p2 + p3)2 ≥ p2

2 + p2
3. Therefore, replacing one arm

with higher response probability by two arms with lower
response probabilities will only increase the variance.

Remark 1. There might be more than one optimal subset.
Algorithm 1 only outputs one of them.

Corollary 1. When D ≤ 1/2, φ(p,D) = ∅ is optimal.

Notice that when D ≤ 1/2, the optimal subset φ(p,D) =
∅ does not depend on p. Therefore, in the online setting, we
can always find an optimal subset for D ≤ 1/2 even without
any knowledge of p.

B. Notations for Online Algorithms

Let p̄i(t) denote the sample average of parameter pi by
time t (including time t), then

p̄i(t) =
1

Ti(t)

∑
τ∈Ii(t)

Xτ,i

where Ii(t) denotes the set of times steps when arm i was
selected by time t and Ti(t) = |Ii(t)| denotes the number
of times that arm i has been selected by time t. Let p̄(t) =
(p̄1(t), . . . , p̄n(t)). Notice that before making decisions at
time t, only p̄(t− 1) is available.

C. Two Simple Online Algorithms: Greedy Algorithm and
CUCB

In this subsection, we introduce two simple algorithms:
greedy algorithm and CUCB, and explain why they perform
poorly in our problem.

Greedy algorithm is initialized by selecting every arm
at time t = 1. It then uses the sample average of each
parameter p̄i(t−1) as an estimation of unknown probability
pi and chooses a subset based on the offline oracle described
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in Algorithm 1, i.e. St = φ(p̄(t − 1), D). The greedy
algorithm is expected to perform poorly because it only
exploits the current information, but fails to explore the
unknown information, as demonstrated below.

Example 2. Consider two arms with parameters p1 > p2.
The goal is to select the arm with the higher parameter.
Now, suppose after some time steps, we have explored the
suboptimal arm 2 for enough times, such that the sample
average provides a good estimation p̄2 ≈ p2, but haven’t
explored the optimal arm 1 enough so that the sample
average is under-estimated: p̄1 < p̄2 < p1. If we apply
greedy algorithm, we will keep selecting the suboptimal arm
2 based on current information: p̄1, p̄2, but fails to explore
arm 1’s information. As a result, the regret will be O(T ).

A well-known algorithm in CMAB literature that balances
the exploration and exploitation is CUCB [13], [17]. Instead
of using sample average p̄ directly, CUCB modifies the
sample average by adding a confidence interval radius,

Ui(t) = min(p̄i(t− 1) +

√
α log t

2Ti(t− 1)
, 1) (4)

where α is a positive parameter of the algorithm. Then
CUCB applies the offline oracle St = φ(U(t), D) where
U(t) = (U1(t), . . . , Un(t)). Ui(t) is restricted to [0, 1] in
case U(t) is outside the domain of the oracle φ. Ui(t) is
also known as the upper confidence bound of pi, and is
restricted to [0, 1] allows the algorithm to balance exploration
and exploitation, because it carries the information of both
the sample average, and the number of exploration times
Ti(t− 1). CUCB performs well in classic CMAB problems,
such as maximizing the total contribution of K arms for a
fixed number K [13], [17].

However, CUCB performs poorly in our problem, as
demonstrated by simulations in Section V. The major prob-
lem of CUCB is the over-estimation of the arm parameter
p. By choosing St = φ(U(t), D) based on upper confidence
bounds, CUCB selects less arms than needed, which not only
results in a large distance between the total load reduction
and the target, but also discourages exploration.

D. Our Proposed Online Algorithm: CUCB-Avg
Based on our discussion above, we propose a new algo-

rithm, CUCB-Avg. The novelty of our algorithm is that it
utilizes both sample averages and upper confidence bounds
by exploiting the structure of the offline optimal algorithm.

We note that the offline algorithm 1 selects the right subset
of arms in two steps: i) rank (top) arms, ii) determine the
number k of the top k arms to select. In CUCB-Avg, we use
the upper confidence bound Ui(t) to rank the arms in a non-
increasing order. This is the same as CUCB. However, the
difference is that our CUCB-Avg uses the sample average
p̄i(t − 1) to decide the number of arms to select at time t.
The details of algorithm are given in Algorithm 2.

Now we explain why the ranking rule and the selection
rule of CUCB-Ave are expected to work for our problem. The
ranking rule is determined by Ui(t) and an arm with larger
Ui(t) is given a priority to be selected at time t. We note

Algorithm 2: CUCB-Avg
1: Notations: Ti(t) is the number of times selecting

arm i by time t, and p̄i(t) is the sample average of
arm i by time t (both including time t).

2: Inputs: α > 2, D
3: Initialization: At t = 1, play S1 = [n], compute
Ti(1), p̄i(1) according to the observation {X1,i}i∈[n]

4: for t = 2, . . . , T do
5: Compute the upper confidence bound for each i:

Ui(t) = min(p̄i(t− 1) +

√
α log t

2Ti(t− 1)
, 1)

6: Rank Ui(t) by a non-increasing order:
Uσ(t,1)(t) ≥ · · · ≥ Uσ(t,n)(t).

7: Find the smallest kt ≥ 0 such that
kt∑
i=1

p̄σ(t,i)(t− 1) > D − 1/2

or kt = n if
∑n
i=1 p̄σ(t,i)(t− 1) ≤ D − 1/2.

8: Play St = {σ(t, 1), . . . , σ(t, kt)}. Update Ti(t)
and p̄i(t) according to the observation {Xt,i}i∈St

9: end for

that Ui(t) is the summation of two terms: the sample average
p̄i(t− 1) and the confidence interval radius that is related to
how many times the arm has been explored. Therefore, if an
arm i) has a small Ti(t−1) indicating that arm i has not been
explored enough or ii) has a large p̄i(t − 1) indicating that
arm i might have larger parameter pi, then arm i tends to
have a larger Ui(t) and thus is given a priority to be selected.
In this way, CUCB-Avg selects both under-explored arms
(exploration) and arms with large parameters (exploitation).

When determining k, CUCB-Avg uses the sample aver-
ages and selects enough arms such that the total sample
average is close to D. Compared with CUCB which uses
upper confidence bounds to determine k, our algorithm se-
lects more arms, which reduces the distance between the total
reduction and the target, and also encourages exploration.

IV. REGRET ANALYSIS

In this section, we will prove that our algorithm CUCB-
Avg achieves O(log T ) regret when D is time invariant.

The next theorem upper bounds the regret of CUCB-Avg.

Theorem 2. Consider n arms with parameter p =
(p1, . . . , pn) over T time steps. There exists a constant
ε0 > 0 determined by p and D, such that for any α > 2, the
regret of CUCB-Avg is upper bounded by

Regret(T ) ≤M(1 +
2n

α− 2
) +

αMn log T

2ε20
(5)

where M = max(D2, (n−D)2).

Due to the space limit, we defer the proof to [26] and
make a few comments below.
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Regret Bound. The regret bound in (5) is O(n3 log T )
because M ∼ O(n2) and ε0 is a constant determined by
p and D. The bound is referred as distribution-dependent
bound in literature as p is invariant with horizon T [12].

Choice of α. α shows up in two terms: 2Mn
α−2 and αMn log T

2ε20
.

The first term grows when α decreases, and the second
one decreases when α decreases. Since the second term is
O(log T ) while the first term is constant with respect to T ,
α should be chosen to be close to 2 when T is large.

Role of ε0. We defer the explicit expression of ε0 to [26]
and only explain the intuition behind ε0 here. To start with,
we explain why the upper bound in (5) decreases when
ε0 increases. Roughly speaking, ε0 is a robustness measure
of our offline optimal algorithm, in the sense that if the
probability profile p is perturbed to be p̄ by ε0 (i.e., |p̄i−pi| <
ε0 for all i), Algorithm 1’s output φ(p̄, D) would still be
optimal for the true profile p. Intuitively, if ε0 is large, the
learning task is easy because we are able to find an optimal
subset given a poor estimation, leading to a small regret.

To give a rough idea of what factors will affect the
robustness measure ε0, we provide an explicit expression of
ε0 under two assumptions in the following proposition.

Proposition 1. If the following two assumptions hold,
(A1): pi are positive and distinct: pσ(1) > · · · > pσ(n) > 0
(A2): There exists k ≥ 1 such that

k∑
i=1

pσ(i) > D − 1/2

k−1∑
i=1

pσ(i) < D − 1/2

then the ε0 in Theorem 2 can be determined by:

ε0 = min(
δ1
k
,
δ2
k
,

∆k

2
) (6)

where
k = |φ(p,D)|
k∑
i=1

pσ(i) = D − 1/2 + δ1,

k−1∑
i=1

pσ(i) = D − 1/2− δ2,

∆i = pσ(i) − pσ(i+1), ∀ i = 1, . . . , n− 1

(7)

We defer the proof to [26] and only make two comments
on the proposition here. Firstly, it is easy to verify that
Assumptions (A1) and (A2) imply ε0 > 0. Secondly, we
verify that ε0 defined in (6) is the robustness measure.
Essentially, we need to show that if ∀ i, |p̄i − pi| < ε0,
we have φ(p̄, D) = φ(p,D) := {σ(1), . . . , σ(k)}. We prove
this in two steps. Step 1: when ε0 ≤ ∆k

2 , the k arms
with higher p̄i are the same k arms with higher pi because
for any 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, we have
p̄σ(i) > pσ(k) − ε0 ≥ pσ(k+1) + ε0 > p̄σ(j). Step 2: because
ε0 ≤ δ1

k ,
δ2
k , we have i)

∑k
i=1 p̄σ(i) >

∑k
i=1(pσ(i) − ε0) =

D − 1/2 + δ1 − kε0 ≥ D − 1/2 and ii)
∑k−1
i=1 p̄σ(i) <

∑k−1
i=1 (pσ(i) + ε0) = D − 1/2− δ2 + (k − 1)ε0 ≤ D − 1/2

Thus, we have shown that φ(p̄, D) = {σ(1), . . . , σ(k)}.
Finally, we briefly discuss how to generalize the expres-

sion of ε0 in (6) to the case without (A1) and (A2). When
(A1) does not hold, we only consider the gap between the
arms that are not in a tie, i.e. {∆i| ∆i > 0, 1 ≤ i ≤ n− 1}.
When (A2) does not hold and

∑k−1
i=1 pσ(i) = D − 1/2, we

consider less than k − 1 arms to make the total expected
contribution below D − 1/2. For the explicit expression of
ε0, we refer the reader to [26].

Comparsion with the regret bound of classic CMAB. In
classic CMAB literature whose goal is to select K arms with
highest parameters for a fixed integer K, the regret bound
depends on ∆K

2 [17]. We note that ∆K

2 plays the same role
as the ε0 in our problem, as it is the robustness measure of
the classic problem above. That is, given any estimation p̄
with estimation error at most ∆K/2: ∀ i, |p̄i−pi| < ∆K/2,
the highest K arms with the profile p̄ are the same highest
K arms with the profile p.

In addition, the regret bound in literature is O( log T
∆K/2

) as
∆K goes to zero [17], while our regret bound in (5) is
O( log T

ε20
). This difference may be due to technical reasons.

V. NUMERICAL EXPERIMENTS

In this section, we numerically study the performance of
CUCB-Avg for residential DR, and compare it with classic
bandit algorithms such as CUCB and Thompson sampling
[13], [21]. We will show that CUCB-Avg performs much
better than CUCB and similarly to Thompson sampling.

A. Thompson sampling
Thompson sampling is a Bayesian algorithm that views

the unknown probability vector p as a random vector with
a prior distribution. It is fundamentally different from all
the algorithms mentioned above, which all view p as an
unknown but deterministic vector. Thompson sampling is
well-known for its good empirical performance in classical
CMAB problems [22], [23], [25], thus it is worth comparing
our algorithm with Thompson sampling by simulation for our
problem. The theoretical analysis of Thompson sampling is
both limited and complicated, thus we leave for future work
the regret analysis of Thompson sampling for our problem.

For the reader’s convenience, we briefly explain the algo-
rithm procedures here. Thompson sampling first selects the
subset St based on sample p̂t from the prior distribution at
t = 1 (or the posterior distribution at t ≥ 2 ) and the offline
oracle φ: St = φ(p̂t, D), then updates the posterior distribu-
tion by the feedback from the selected subset, {Xt,i}i∈St

.
For more details, we refer the reader to [21].

B. Residential Demand Response
This section studies a residential DR program in two

scenarios, 1) given a time-invariant load-reduction target, 2)
given a time-varying target. Specifically, we consider n =
100 customers, whose response probability pi is uniformly
randomly drawn from [0, 1] for all i. In the time-invariant
case, let the load-reduction target be D = 35 units, and the
time horizon be T = 100, and set the algorithm parameter
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(a) Static case (b) Time-varying case

Fig. 1: The figures compare the regret of CUCB, CUCB-
Avg and Thompson sampling. In both cases, CUCB-Avg has
O(log T ) regret, greatly outperforms CUCB, and performs
similarly to Thompson sampling.

as α = 2.1. In the time-varying case, let the time horizon be
T = 300, consider target Dt to be independently uniformly
drawn from [10, 30], and set the algorithm parameter as
α = 2.05.

Figure 1a plots the regret of CUCB, CUCB-Avg and
Thompson sampling under a time-invariant target with a
logarithmic scale for the x-axis based on 200 independent
simulations. The prior distribution of p is chosen to be the
uniform distribution on [0, 1]n. Firstly, the figure shows that
the regret of CUCB-Avg is linear with respect to log(T ),
which matches our theoretical result in Theorem 2. In
addition, the classic algorithm CUCB performs poorly in
our problem, generating regret almost linear in T . This is
aligned with our intuition in Section III. Finally, the figure
shows that CUCB-Avg and Thompson sampling have similar
performance. In this scenario, CUCB-Avg performs slightly
better, but we note that there exist other scenarios where
Thompson sampling is slightly better.

Figure 1b plots the regret of CUCB, CUCB-Avg and
Thompson sampling under a time-varying target. Interest-
ingly, the figure shows that CUCB-Avg still guarantees
O(log(T )) regret in the time-varying case, and we leave it
as our future work to provide a theoretical explanation for
this observation.

VI. CONCLUSION

In this paper, we study a combinatorial multi-armed bandit
problem motivated by residential demand response with the
goal of minimizing the difference between the total load
adjustment and a target value. We propose a new algorithm
CUCB-Avg, and show that when the target is time-invariant,
CUCB-Avg achieves O(log T ) regret. The numerical results
also confirm the performance of the algorithm. Future work
includes 1) studying the performance guarantee of Thompson
sampling, 2) deriving the lower bound of the regret for
our problem, 3) generalizing the model to handle dynamic
target and population, and other load reduction models of
customers, e.g. continuous distribution, Markov processes.
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