Chasing the Signal: Statistically Separating
Multi-Tenant I/O Workloads

Si Chen Avani Wildani *
Department of Computer Science Department of Computer Science
Emory University Emory University
Atlanta, GA, 30322 Atlanta, GA, 30322
si.chen2@emory.edu avani@mathcs.emory.edu
Abstract

Identifying the characteristics of a storage workload is critical for resource provi-
sioning for metrics including performance, reliability, and utilization. Although
multi-tenant systems are increasingly commonplace, characterization of multiple
workloads within a single system trace is difficult because workloads are highly
dynamic and typically not labeled. We show that, by converting a block I/O work-
load to a signal and applying blind source separation, we are able to successfully
separate many application workloads.

1 Introduction

Tuning a storage system is a difficult, delicate balance of reliability, availability, security, and
performance spread over the workloads that the system serves. For characterization, we define a
workload as a functionally distinct usage of the system.

As storage systems increase in size, multi-tenancy, or multiple workloads sharing the same space, has
become commonplace. As a result of normal OS processes such as batching or CPU scheduling, 1/0s
from different workloads tend to appear interleaved when viewed in a trace. In a recent study, 60% of
traces recorded were strided and composed of interleaved workloads [8].

An interleaved storage workload could arise from something as simple as a small organization running
both a database and a web-server simultaneously on the same hardware. Other common instances
of this functional multi-tenancy include co-locating a set of VMs or balancing several users using a
service on the same hardware such as for streaming services. Part of provisioning a storage system
is understanding how to balance the unique needs of multiple clients with individual service level
agreements (SLAs). SLAs are hard to consistently meet when it is difficult to isolate a client’s activity.
Moreover, a single client may have multiple, functionally distinct workloads that are not rigorously
defined [1]. Though projects such as Crystal [3] discuss how to implement multi-tenant solutions
in the presence of multiple workloads, to the best of our knowledge no one has studied separating
workloads by functional qualities.

Block I/O traces are commonly available measures of workloads because they are relatively simple to
instrument and do not incur the storage and privacy concerns of traces from higher in the stack. If a
trace is translated into a signal by binning across the spatial dimension, the problem of separating
workloads becomes analogous to separating any set of signals that share a noisy channel. We thus
posit that they are amenable to blind source separation techniques such as independent component
analysis (ICA) that traditionally are used for signal separation.

*Corresponding Author

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Methods

A multi-user, multi-application workload is similar to a noisy party: there are many different
“conversations” happening in the room, but we are recording them with a single microphone and
we’d like to know who said what. Methods originating in signal processing have shown considerable
promise in systems data analysis. Separating out signals by visually examining trace logs is very
difficult, as I/O contention and system activity results in the individual workloads being mixed even
more thoroughly than our cocktail-party example.

Blind source separation (BSS) is, very generally, trying to answer the following question: if the
components of an observed p-variate vector x are linear combinations of the components of a latent
unobserved p-variate source vector y, and one can write © = (Qy where €2 is an unknown full-rank
mixing matrix, can we derive (2 based on a set of observations z1, ..., z, [7].

We begin with the hypothesis that functional workload signals are non-Gaussian, which our prelim-
inary results (Figure 1) support. Blind source separation techniques like independent components
analysis (ICA) isolate individual non-Gaussian signals within a shared data pipeline by selecting
a set of candidate signals and then minimizing the mutual information across said signals. This is
accomplished through measuring signal kurtosis and using non-Gaussianity as a proxy for indepen-
dence [4]. ICA has been used successfully to separate other dependent parallel time series such as
financial data [4] and EEG recordings [10], providing sound evidence that ICA could be used to
separate storage workloads as a precursor to identification. ICA takes the number of source signals as
a parameter; while in this work we provide a source number as input, techniques exist to estimate this
number from an arbitrary mixed workload trace [2].

2.1 Creating the source signal

Without a standard definition of workloads, we tentatively use PID as a workload identifier. In this
way, we can transfer one single trace (with the metrics of PID and corresponding logical block
address) into several sub channels of workload signals. The mixing matrix can be thought of as
simulating I/O contention and scheduling issues between the workloads. Since the ICA mixing
process is that the NV observations are a linear combination of the N sources. Using the vector-matrix
notation, the ICA mixing model can be written as z = As, where z is the observation with NV vectors,
s is the source with IV vectors, and A is the NV * N mixing matrix. The goal of ICA is to find matrix
W (the inverse of A) that will reconstruct the source s’, which satisfies s’ = Wz.

While solving the ICA problem, we should keep in mind of two kinds of ambiguities[4] . First,
ambiguity comes from the magnitude and scale. Since both s and A are unknown, scalar k£ multiplied
in s can be counteracted by dividing the corresponding a; by the same k. This gives us an uncertain
solution. Second, the order of the independent components is not fixed because if a permutation
matrix P is multiplied to s, since x = AP~ 1Ps, the mixing matrix became W = AP~! . Under
either circumstance, directly calculating the Mean Square Error (MSE) by comparing the generated
s’ and source s is not appropriate. However, the first problem can be simply overcome using unit
variance E {522} = 1. While this still leaves the sign ambiguity, we set the absolute value to the
outcomes. The Second ambiguity can also be eliminated by trying every possible signal order during
calculation. With the above processing, the MSE could be used to test the performance of ICA
algorithms.

2.2 BSS Techniques

The FastICA algorithm is a generative model that separates out the non-Gaussian independent
components using an iterative Gram-Schmidt-like decorrelation to find the weight vectors of the
unmixing matrix that will return the component signals. Second-order source separation was created
by the signal processing community to address situations with significant correlation between samples,
which is more representative of workloads contending for the same hardware resources. AMUSE [9]
(Algorithm for Multiple Unknown Signals Extraction) is a standard second-order technique that uses
covariances and autocovariances with different lags 7 = 1, 2, ... of an observed multivariate time
series. Second-Order Blind Identification (SOBI) relies on second-order statistics to explode the
time-correlation structure assumption of the signals. Finally, Joint Approximation Diagonalization of
Eigenmatrices (JADE) uses target matrices as the fourth order cumulants of whitened signals.

Other techniques, in particular Dependent Component Analysis (DCA), were considered but were
not appropriate for the size of our data. While DCA allows dependence within the components group,
it still requires mutual independence between the groups. In our case, this flexibility benefits little
because and some ICA algorithms could achieve local even global consistency.

3 Results

We experimented with block I/O traces collected at Florida International University [S]. Each I/O is
represented by a tuple of <Time ,PID,LBA,size in 512 Bytes blocks,Write or Read>. For
the sake of demonstration, we use PID as a ground truth indicator of workload label. To further
simplify the problem, we removed accesses that did not correspond to one of the top 10 PIDs. All
source traces were converted to signals, centered, whitened, and mixed using a mixing matrix of full
rank. To validate, we calculate MSE between the recovered signals and the true source signals.

3.1

300000
250000
200000
150000
100000

50000

Signal Quality

Histogram for pid No.0

Histogram for pid No.1

Histogram for pid No.2

400000

300000

200000

100000

o

350000

300000

250000

200000

150000

100000

50000

o] m
6o 05 10 15 20 25 30 35 40
e

00
7

o5 10 15 20

o -
00 05 10 15 20 25 30 35 40

1e7

Figure 1: These sample histograms of PID incidence over time show that these signals are non-
Gaussian. Kurtosis values for the first 3 PIDs are -1.67, 24.6, and .303, respectively.

Figure 1 shows the non-Gaussianity of our data. All other PIDs we tested had similar distribution.

Table 1: Sample PID Correlations

PID 1 PID 2 Correlation
1 2 -0.4679
1 3 -0.1701
1 4 -0.1813
1 5 -0.1204
3 5 -0.0189

We calculate correlation (Table 1) to measure the independence of our PID-derived signals.

3.2

Signal Separation

Table 2: Mean Squared Error for BSS

Source PIDs FastICA PCA Amuse Jade Sobi

1,2 0.6975 0.7464 0.4445 0.1345 0.4302

1,3 0.347 0.5618 0.1339 0.016 0.178
1,4 0.3446 0.5647 0.1146 0.0115 0.0232
0,2 0.8218 0.618 0.9403 0.3183 0.3359
1,2,3 0.4579 0.7203 0.2352 0.0969 0.2857
0,1,5 0.5779 0.8699 0.3018 0.0077 0.0142
1,3,5 0.2289 0.531 0.1999 0.01 0.0192
1,2,3,4,5 0.2708 09787 0.5867 0.0634 0.1974

Observations (mixed signal) Observations (mixed signal)

bl
bl
10 10
o 1000 2000 3000 4000 5000 GOOO 7000 BOOOD o 20000 40000 0000 BOO0O
jade: mse = 0.9861354197462232 jade: mse = 0.15703732308675342
. [lL] (N ' PR
I o - e
—20 20
0 1000 2000 3000 4000 5000 6000 7000 BOOD 3 0800 20000 P 0000
sobi: mse = 0.7957556226579674 sobi: mse = 0.2803854526966448
0
20
20
10 1 .]
o] oo e RS S 0 %&Mﬂg
0 1000 2000 3000 4000 5000 600D 7000 800D 5 20000 20800 0600 20000
PCA: mse = 0.9790043941984464 PCA: mse = 0.7894110422098727
20
10
10
0 ! B e i LRt 0 a0 | - reet -
D 1000 2000 3000 4000 5000 600D 700D BOOD 0 20000 20000 80000 20000
10 minutes 1 hour

Figure 2: Five application traces [6] were separated with BSS techniques and PCA. Both visual
examination and the MSE that the component signals returned by BSS techniques are closely resemble
ground truth (note: sign is arbitrary). The PCA signals are much less accurate. Also, while MSE
was lowest for a long trace(the y axis represents frequency, and the x axis is time), even the first ten
minutes of I/Os led to low MSE for BSS.

Table 2 shows the MSE for separating different mixtures of source PIDs. Jade, based on higher-order
statistic, outperforms all other BSS techniques. To put the BSS techniques we tried in context, we
also calculated the MSE for signals returned from principal components analysis (PCA). We see,
as expected, the MSE is considerably higher for PCA because PCA only has the assumption of
orthogonality between signals, while ICA does not.

All of the MSE values in Table 2 are calculated using a week of trace data. Figure 2 shows that even
ten minutes of source data is sufficient to de-interleave trace data in the workloads we examined.

4 Discussion

A major issue with using ICA for this type of analysis is the inherent assumption that the instances
(traces) that we use to separate workloads are iid. Since workloads are by the nature of the problem
description running on the same storage system, there will be dependence in a trace as a result of
resource contention in the underlying architecture. Additionally, while PID is not a perfect indicator
of workload(because of variety in long time slot), we are specifically looking for functional groups of
signals: it is fine if one “signal” corresponds to multiple users or server types if they behave similarly.

Block I/0 traces are generally possible to collect, but for HPC systems and other applications where
dynamic trace collection is infeasible, it may be possible to separate interleaved workloads by
clustering features in metadata snapshots and then analyzing with a visual classification model.

In conclusion, we have demonstrated that, surprisingly, mixes of I/O workloads are separable using
BSS techniques. Even though they run on the same hardware, PID signals are independent and
leveraging the excess kurtosis shows very low error values. While our sample data here is limited, it
is collected from a heterogeneous group of users and applications, indicating that it will be noisier
than datasets from industry. Our next step is to test statistically separation on more datasets without
filtering noisy PID signals. Once we could retrieve the split trace by the split signals, we can
implement duplication and grouping data on disk to avoid unnecessary disk activity, thus improving
SLAs.

References

(1]

(2]

(3]

(4]

[5

—

[6

—_

[7

—

(8]

[9

—

(10]

Maureen Chesire, Alec Wolman, Geoffrey M Voelker, and Henry M Levy. Measurement and analysis of a
streaming media workload. In USITS, volume 1, pages 1-1, 2001.

Pando Georgiev, Fabian Theis, and Andrzej Cichocki. Sparse component analysis and blind source
separation of underdetermined mixtures. /EEE Transactions on Neural Networks, 16(4):992-996, 2005.

Raul Gracia-Tinedo, Josep Sampé, Edgar Zamora, Marc Sanchez-Artigas, Pedro Garcia-Lépez, Yosef
Moatti, and Eran Rom. Crystal: Software-defined storage for multi-tenant object stores. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies, pages 243-256. USENIX Association,
2017.

Aapo Hyvirinen, Juha Karhunen, and Erkki Oja. Independent component analysis, volume 46. John Wiley
& Sons, 2004.

R. Koller and R. Rangaswami. /o deduplication: utilizing content similarity to improve i/o performance.
ACM Transactions on Storage (TOS), 6(3):1-26, 2010.

Ricardo Koller and Raju Rangaswami. I/o deduplication: Utilizing content similarity to improve i/o
performance. ACM TOS, 6(3):13, 2010.

Jari Miettinen, Klaus Nordhausen, Hannu Oja, and Sara Taskinen. Statistical properties of a blind source
separation estimator for stationary time series. Statistics & Probability Letters, 82(11):1865-1873, 2012.

Bumjoon Seo, Sooyong Kang, Jongmoo Choi, Jachyuk Cha, Youjip Won, and Sungroh Yoon. Io workload
characterization revisited: A data-mining approach. IEEE Transactions on Computers, 63(12):3026-3038,
2014.

Lang Tong, VC Soon, YF Huang, and RALR Liu. Amuse: a new blind identification algorithm. In Circuits
and Systems, 1990., IEEE International Symposium on, pages 1784-1787. IEEE, 1990.

Ricardo Vigério, Jaakko Sarela, V Jousmiki, Matti Hamalainen, and Erkki Oja. Independent component
approach to the analysis of eeg and meg recordings. IEEE transactions on biomedical engineering,
47(5):589-593, 2000.

	Introduction
	Methods
	Creating the source signal
	BSS Techniques

	Results
	Signal Quality
	Signal Separation

	Discussion

