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Abstract—Blended courses that mix in-person instruction with
online platforms are increasingly common in secondary education.
These platforms record a rich amount of data on students’ study
habits and social interactions. Prior research has shown that these
metrics are correlated with students performance in face-to-face
classes. However, predictive models for blended courses are still
limited and have not yet succeeded at early prediction or cross-
class predictions, even for repeated offerings of the same course.
In this paper, we use data from two offerings of two different
undergraduate courses to train and evaluate predictive models of
student performance based on persistent student characteristics
including study habits and social interactions. We analyze the
performance of these models on the same offering, on different
offerings of the same course, and across courses to see how well
they generalize. We also evaluate the models on different segments
of the courses to determine how early reliable predictions can be
made. This paper tells us in part how much data is required to
make robust predictions and how cross-class data may be used, or
not, to boost model performance. The results of this study will help
us better understand how similar the study habits, social activities,
and the teamwork styles are across semesters for students in each
performance category. These trained models also provide an
avenue to improve our existing support platforms to better support
struggling students early in the semester with the goal of providing
timely intervention.

Index Terms—Social Network Analysis, Performance Prediction,
Cross-Class Performance Prediction, Early Performance Prediction,
BlendedCourses.

I. INTRODUCTION

THE use of technology and online tools in undergraduate

courses is expanding and blended courses are becoming

the norm in secondary education. The tools used in these

courses include: learning management systems (LMSs) such

as Moodle and Canvas which are used to distribute course

materials; discussion forums such as Piazza which are used by

students to seek help or to collaborate with others; automated

submission and grading systems such as WebAssign for

assignments and automated feedback; and more recently soft-

ware development tools such as Github or Jenkins which

support realistic assignments and help prepare students for

their future jobs. In addition to supporting students’ learning,

these tools provide us with rich data on the students’ online

behavior and study habits as well as their social connections,

performance, and help-seeking.

Until recently detailed data of this kind has been rare in edu-

cation and has only been available in Massive Open Online

Courses (MOOCs) and other purely online courses. Student

behaviors in MOOCs has been studied extensively. This

research has shown that students’ social interactions and online

behaviors on MOOCs can be used to predict their performance

as well as the likelihood that they will complete or drop out of

the course [16], [17], [19], [30], [34], [38], [42], [49], [57],

[65], [66]. Prior research on MOOCs has also shown that the

prediction models were applicable on data from other offerings

of the same course, different courses, and even using only data

from early weeks of those classes [8], [9], [18], [27], [36], [56].

Researchers have begun to mine the rich online data from

blended courses to develop predictive models that can be used

to understand students’ habits and to predict their performance

(e.g. [33], [59], [60], [67]). In prior work, for example, we

evaluated features of students’ study habits and social interac-

tions in some of our current blended datasets [26], [53]. We

found that these features could be used to predict the students’

performance on the same offering. While these studies have

been informative, most of the work has been focused on ana-

lyzing a single offering of a course (e.g. [67]) or on replicating

findings from one course in another (e.g. [3]), not on develop-

ing models that can be used across classes or class offerings.

This is crucial because in order for a model to be useful it

must be the case that we can train it before it is actually neces-

sary. If we have to wait until a given class offering is complete

and we have calculated student outcomes before we can train a

model, then any guidance based upon it would be not useful.

Therefore, in order for such predictive models to be useful, we

must be able to train them on one class or class offering and

use them on another. Thus, they must be able to rely on fea-

tures of the students, such as their study habits and social

behaviors, that can persist across classes, and it must be the

case that we can make reliable predictions early in the course,

while there is still time for the students to choose a better path.

Our goal in this work is to address this issue by developing

cross-class models of student performance based upon students’

study habits and social relationships. Unlike performance met-

rics which may be specific to a course or to an assignment, we

hypothesize that positive and negative study habits will be per-

sistent for students across classes and as a result, that predictive
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models based on these habits should generalize from one class

to the other. In this study, we will use data collected from two

offerings of two different introductory CS courses at NC State

University to address the following research questions:

� RQ1. How do different methods of social graph genera-

tion affect the performance of predictive models based

upon them?

� RQ2. What features of students’ study habits and social

connections are most predictive of student performance?

� RQ3. How early can we predict students’ performance

in these classes using the data from the same class?

� RQ4. Will predictive models generated from one offer-

ing of a course transfer to another offering of the same

course?

� RQ5. Will prediction models generated on one course

transfer to another?

� RQ6. How will these models perform in identifying at-

risk students?

This work will highlight the potential for predictive models

based upon real-time data from different online learning

platforms to provide guidance to students during a course.

II. BACKGROUND

A. Social Learning & Study Habits

We chose to focus on models based upon social relationships

and study habits in light of prior research showing that these fea-

tures are both essential to learning, and generally persist across

classes. Social learning has been studied by a number of

researchers including Bandura [4] as well as Lave and Wenger

[43]. Bandura, in particular, noted that learning through social

connections and by example is often more efficient than learn-

ing through direct experience and practice. He argued that suc-

cessful social learning was driven in part by the students’ ability

to connect with and to reproduce the lessons of their peer group.

Lave and Wenger articulated a complete theory of learning as

an inherently social activity. Professionals, small communities,

and experienced groups constitute communities of practice

(e.g. professional programmers, computer scientists, or students

in CSCS226) with their own distinct group knowledge and prac-

tices [43], [62]. In their formulation, students are novices who

seek to learn this knowledge and move into these communities

by emulating members of the group or even co-constructing

new knowledge and engaging in “legitimate peripheral partic-

ipation”, by engaging in practices that emulate professional

activities, and by absorbing shared practices. Their ability to do

so properly depends upon their social connections and the

extent to which they seek help from others. Lave and Wenger

further argue that these communities not only help students

learn course material better but also engaging in these commu-

nities can give the students some sense of belonging, thus the

students who participate more are less likely to leave the course.

Other researchers have studied this framework in online plat-

forms before (e.g. [6], [21], [28], [37]).

In most of this prior work, the researchers concluded that in

order for the students to work towards solving a problem as a

community, it is better for them to have face-to-face interactions.

Thus, they propose some online platforms for these discussions

to take place and they argue that when these platforms are good

enough, the students’ experience will be sufficiently close to

what face-to-face interaction feels like and thus closer to tradi-

tional communities of practice. However, there is some debate

about how well the theory of communities of practice fits into

online discussion forums inMOOCs. In blended courses, the dis-

cussion forum is only an addition to the students’ interaction

modes. They can still meet and know each other in person and

engage in other richer forms of interaction. They are also more

likely to have other preexisting social relationships with one-

another which they will bring to class. Thus, we hypothesize that

the social interactions recorded should be closer to full social

learning and thus more effective. Additionally, the students’ use

of the discussion forums is determined by their individual study

habits and social behaviors that are more general than a single

class. That is why we believe that these features will be robust in

the face of differences in class structure and content and are

appropriate for use in cross-class evaluation.

Prior research has also investigated different individual

programming and study patterns among students and observed

that better performing students usually have distinguishing

habits. Often these studies are based upon snapshots of the

students’ code and recordings of their activities, investigating

how these habits correlate with the students’ performance.

Several researchers have noted that lower performing students

usually take longer to complete the exercises [1], [55], [58].

Prior research that has tracked student activities during their cod-

ing sessions has also shown that better performing students usu-

ally analyze the code in a more logical manner and spot the

issues faster, while lower performing students have difficulty

localizing problems [45], [58]. Aside from observing students

while coding, other researchers have inferred students’ coding

behaviors from online activities or code snapshots recorded by

the IDE [5], [8], [13], [14], [32], [59], [60]. They have shown

that students with some general online habits such as those who

prefer to spend more time on the lecture videos, or who pausing

more than once, or rewind at least once are more likely to per-

form better in class [8]. As these studies show, better-performing

students tend to have online behavioral patterns that distinguish

them from the lower-performing groups andmost of these habits

do not seem to be class-specific. Thus, we choose to also look

into the students’ online habits and patterns of work tomake pre-

dictions both within and across classes.

B. Predictive Models in MOOCs

All course activities in a typical MOOC occur online.

Students view lecture videos, complete assignments electroni-

cally, and seek help via a single platform or a suite of tools that

are all controlled by the course provider. And as the students are

spread across the globe and are largely unknown to one-another,

this platform is typically the only option for communication.

This creates data chokepoints that yield a wealth of data

on students’ performance, communications, and study habits

(e.g. data from Coursera and EdX platforms [3], [25], [63]).

This data has been used to support a great deal of work on pre-

dictive and analytical models both within- and across-classes.
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1) Within Class Predictions: While MOOCs are quite popu-

lar, they are also characterized by high levels of dropout some-

times as much as 90+% [50]. As a consequence, prior

researchers have focused heavily on predicting not only how

students will perform but who will actually finish, or dropout.

Some have used metrics extracted from the students’ social

interactions and their social presence [12], [30], [34], [35], [38],

[42], [52], [65], [68]. These metrics include measures of con-

nectivity, engagement, and online presence which can be calcu-

lated from their interactions. This work has been driven by the

premise that students who are more engaged with their peers are

both more likely to learn and less likely to quit. Joksimovic

et al., for example, analyzed students’ social presence through

features such as continuing a thread, complimenting other users,

and expressions of appreciation [38]. They found that thesemet-

rics can be used to predict the students’ final grades on the

course. Yang et al. applied survival analysis to identify the most

important features for predicting the students’ dropout [65].

The analyzed features included those of students’ posting

behavior such as post length, students’ enrollment date (stu-

dents frequently join MOOCs after the official start date), and

social network features. Ultimately they concluded that the date

students enroll in the course, their post length (i.e. how long in

average their posts are), and their authority score (i.e. how

much the reply to their peers who ask a lot of questions) were

the most informative of the available features. Kovanovic et al.

[42] and Jiang et al. [34] also analyzed students’ social network

features. Both groups found that centrality, the extent to which

a student is on the shortest path between other individuals, was

predictive of their performance. Kovanovic et al. also found

that the students’ interactive social presence (e.g. whether or

not they were affective, interactive, or cohesive) was highly cor-

related with their other social metrics and their performance.

Other researchers have analyzed informative metrics based

upon students’ general study habits such as: the number of

posts made or read, time spent online, when they joined the

course, the number of videos watched in a week, the number of

quizzes or assignments they attempted, the number of forum

posts made per week along with the post length, the time spent

on assignments, whether they spend more time on forums or on

the assignments, whether or not they start early, and other

demographic data such as their age, fluency with English, and

their education level [3], [15], [17], [20], [48], [49], [52], [54],

[65], [66]. These features are typically defined with the goal of

capturing common behaviors, such as starting assignments

early or writing more detailed posts, among better performing

groups and using those to classify students by performance or

persistence. While most of these features can be calculated

directly from the students’ user-system interaction logs, some

researchers have gone further to analyze generated features

such as study sessions, action sequences and estimates of con-

fusion, which must be constructed from groups of logs and

which require some estimation and analysis [2], [9], [15], [40],

[44], [54], [64]. These features are intended to capture complex

behavioral patterns among students that can highlight reasons

for failing or dropping out of a course such as general confu-

sion, dissatisfaction, or boredom.

Many of the more complex models included study sessions

which were generated from a sequence of student interactions

with the system during a set span of time. Amnueypornsakul

et al. for example, set study sessions and used the features

extracted from those sessions such as the length of the

sequence, the number of occurrences, and the number of Wiki

page views to train a predictive model for attrition using Sup-

port Vector Machines. However, their results don’t seem to be

promising as their F1 score was approximately 0.2 [2]. Li et al.

defined sessions as well, but applied N-gram classification

techniques from natural language processing to the action

sequences to predict whether or not the students would obtain a

certification of the students. They assumed that the better per-

forming students usually take specific sequences of actions that

can distinguish them from lower performers [44]. They used

Logistic Regression models and were able to achieve an F1

score between 0.5 and 0.6. Brooks et al. defined different fixed-

duration sessions which ranged from one day to an entire

semester, and then classified the students’ level of activity in

each window as a binary feature (active vs. inactive) [9]. They

further defined sequences over these values and then classified

them using n-grams to predict dropout. These sequences can be

used to show whether or not a student has long periods of inac-

tivity or whether they work diligently. They combined these

features with a decision tree model and were able to predict

Distinction group of the students (grade > 85) with a k of 0.9

or above for different classes. Their high performing prediction

models can show that most of the high performing students are

identifiable by their amount of activities during different course

timeframes. Sinha et al., by contrast, defined a network over the

students and course resources, connecting each student to the

online resources they accessed. They then used metrics col-

lected from that network to predict student performance and

were able to outperform the model based on N-grams of

students’ activities [54]. They used cost sensitive LibSVM

with radial basis kernel function (RBF) as the learning algo-

rithm and were able to achieve an accuracy of about 0.6 and a k

around 0.3 for different configurations. The graph metrics on

their kinds of network shows the frequency of the students’

access to different class material and tools and the findings of

their study show that in their case, this frequency has been

more informative than the sequences of actions.

Other researchers also focused on the content generated by

the students and used text-based features to make predictions

of the students’ performance [16]. Crossley et al. for example,

extracted linguistic features and applied a multivariate analy-

sis of variance(MANOVA) for statistical analysis. They found

that the average post length, the word age of acquisition (i.e.

the age at which a word is typically learned) for words in the

post, the use of Cardinal numbers, Hypernymy standard devia-

tion (Hyponymy shows the relationship between a generic

term and a specific instance of it, this measure shows how spe-

cific or generic their language is), Situational cohesion, and

Trigram frequency are helpful measures when predicting stu-

dent performance as they can show the relative complexity of

the students’ posts which in turn can relate to the amount of

time they spent writing the content [16]. Then they used these
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features for a Stepwise Discriminant Function Analysis and

were able to predict student retention within the course with

an accuracy of 67.8 and a k of 0.379.

2) Cross Class Predictions: While many features have been

used successfully for within-class performance prediction, they

do not always generalize across classes, due in part to varia-

tions in course structure or content. Nor do they always general-

ize even to different offerings of the same class, due in part to

variations in the student populations. Some of the features

described above, however, do generalize and can be used to

make predictions based upon a few weeks of data [7]–[9], [18],

[27], [29], [36], [56], [61]. Boyer et al., for example, identified

two different kinds of learning models: models trained on the

entire history of the class, and models trained on a moving time

window of the class [7]. They also specifically considered

transfer learning, bringing information from a prior course to

make predictions in an ongoing one. They found that the per-

formance of an a-posteriori model, based on the entire history

of a class, is more accurate than a predictive model based on a

real-time moving window. They concluded that this was due to

the fact that the real-time model did not have access to all of the

necessary information for accurate prediction, but that its accu-

racy was more realistic. They used data from three offerings

of a class and trained a logistic regression model on the two ear-

lier offerings before testing it on the first four weeks of the last

one. They achieved an Area Under the Curve (AUC) score of

0.6-0.7 by the end of week four using models from previous

offerings. Brooks et al. showed that by using data from the first

three weeks of the class they could reach a moderate accuracy

(k > 0:4) when identifying high performing students (students

with a grade higher than 85) [9]. They also showed that using

models trained on the first two offerings of a class to make pre-

dictions on a third offering can be done with moderate accuracy

(k > 0:5). Jiang et al. were also able to make predictions of

students’ performance using a regression model and features

such as social network degree, the number of completed assess-

ments, and the average quiz score in the first week. By using

data from the end of the first week they were able to identify

students who achieved distinction in the course with an accu-

racy of 92.6% [36].

C. Predictive Models on Blended Courses

Unlike MOOCs which offer rich and relatively comprehen-

sive datasets, blended courses are far more challenging to ana-

lyze particularly given how much of the students’ interactions

(e.g. classroom lectures and direct peer contact) are not captured.

As a consequence, research on these courses has been more lim-

ited and far fewer analytical methods have been tried.Moreover,

most of this research has been focused on making within-class

predictions using data from the entire semester. Watson et al.,

for example, defined features based upon the students’ program-

ming behavior in an introductory programming course to teach

Java to students of varying abilities [60]. Some examples of

these features are the time students spent resolving a specific

type of error or the frequency with which they transitioned

between different types of errors and between error states and

success. They then used a regression analysis to predict the

students’ performance. They found that predictions based upon

the student’s observed programming behaviors were the most

informative. This is not entirely surprising given the close asso-

ciation between coding and introductory coursework. Ibrahim

et al. used general information on the students such as their

knowledge of information technology applications, previous

school type (boarding or non-boarding), general programming

knowledge, and family financial status to predict the students’

undergraduate Cumulative Grade Point Average (CGPA) [33].

They used methods such as Decision Trees, Linear regression,

and Artificial neural networks in their models. The average Root

Mean Squared Error (RMSE) for all of their models was around

0.2 while Artificial neural network was the best performing of

all. Zafra et al. analyzed students’ activities on a learning man-

agement system (LMS) and utilized features such as number of

assignments completed in the course, total time spent on the

assignment section, number of messages posted to the forum,

number of messages read on the forum, total time spent on the

forum, number of quizzes seen, number of quizzes passed, num-

ber of quizzes failed, and total time spent on the quizzes to pre-

dict the students’ final performance [67]. They used several

machine learning algorithms such as Sequential minimal optimi-

zation, Naive Bayes, Rep Tree (i.e. a type of decision tree imple-

mented in Weka which minimizes the total variance of numeric

features [22]), Decision Stumps (a decision tree with a depth of

one [22]), and Multiple-instance logistic regression. With these

models they were able to achieve an accuracy of � 0:7 and a

specificity of � 0:6. When analyzing a smaller online course,

Macfadyen et al. defined features based upon the students’ activ-

ities on the course LMS such as the total number of discussion

messages posted, the total number of mail messages sent, and

the total number of assessments completed. Using these features

and a logistic regression model they were able to identify 81%

of the failing students by the end of the semester and overall

73.7% of their predictions were correct [46]. In their study, they

showed the potential for LMS data to make early predictions of

the students’ performance and using those predictions to issue

early warnings. Additionally, Vihavainen et al. showed the

potential of applying models across classes by training a non-

parametric Bayesian network using B-Course on data from an

undergraduate programming course and applied it to a synchro-

nousmath class [59]. Their study, however, was done on a single

cohort of students who they tracked across classes and is not

affected by the differences between the students of different

classes.

III. DATASET INFORMATION

Our analyses in this work is based on two offerings each of

two distinct courses “Discrete Mathematics for Computer Sci-

entists” (DM) which was collected in the Fall semesters of

2013 and 2015, and “Java Programming Concepts” (Java)

which was collected in the Fall of 2015 and 2016. DM-2015

and Java-2015 occurred contemporaneously. Both DM and

Java are core undergraduate courses that are required for all stu-

dents majoring in Computer Science. Students typically take
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both courses during their second or third year in school and

among the students in our analysis 126 are common between

DM-2015 and Java-2015. Our analysis in this work does not

include information on the students from the other classes they

were taking. The main reason for not adding this information is

generality of the analysis.We want this work to be replicable on

other classes and the data from other simultaneous courses is

not necessarily available, as in DM-2013 and Java-2016. Both

courses use significant online materials and support including

online assignments, supplemental material, and student forums.

Thus they are prototypical blended courses. Both classes use

the Piazza discussion forum. Piazza is structured as a question-

answering platform. Students open a thread by asking questions

or making a posts. The students and instructor can then reply to

the question or reply to the replies. An example thread is shown

in Fig. 1. As the figure illustrates, the responses from the instruc-

tors and TAs are flagged as “instructor answer” and are distinct

from the student responses. In each reply, the students can post

a feedback or ask more questions and keep a discussion going.

Instructors can also explicitly mark a post as ‘resolved’ after

they reply to it. Students can also recommend or upvote posts as

needed. In some courses, posts may be made anonymously with

the identity being kept secret from other students (partial ano-

nymity) and possibly from the instructors as well (complete

anonymity). The completely anonymous posting was permitted

briefly in DM-2013 but was blocked in all other courses while

partially-anonymous posting was always allowed. Participation

in Piazza was highly encouraged, though not mandatory, in the

courses.

The topics covered in DM include: propositional logic, predi-

cate calculus, methods of proof, elementary set theory, the analy-

sis of algorithms, and the asymptotic growth of functions. The

main focus of the Java class is on software system design and

testing; encapsulation; polymorphism; composition; inheritance;

linear data structures; specification and implementation of finite-

state machines; interpretation of inductive definitions (functions

and data types); and resource management. Some information

on the population of these courses is shown in Table I. Our data-

sets consist of the Piazza discussions, Moodle logs, and final

grades for all the classes as well as Github commit logs for Java

classes andWebAssign logs for DM-2013.

The grade distributions for these classes are shown in Fig. 2.

As this figure shows, most of the students performed well in the

classes. Thus, we concluded that partitioning them into pass/

fail groups would be uninformative and result in a skewed data-

set. Since the median grades for all these datasets were close to

90 which is the cutoff between an A- and a B+ in the course, we

decided to segment the students into A- or above and B+ or

below. We, therefore, partitioned the classes into two groups,

the distinction group who earned an A- or above, and the non-

distinction who earned a B+ or below. This cut-off value

resulted in an almost even partition of the students. We believe

that this segmentation leaves room for adjusting the analysis

for other classes with different grade distributions.

A. Discrete Math

A total of 251 students enrolled in DM-2013, while DM-

2015 had a total of 255 students. In both semesters, the class

was offered in two sections taught by the two instructors with

5 shared teaching assistants. The average final grade in DM-

2013 was 81.2 and 87.6 in 2015 class. Both sections in each

offering used the same Moodle webpage for sharing assign-

ments, a Piazza forum for discussions, and both used WebAs-

sign alongside hand-graded homeworks. In these classes, the

students achieved a 90% or better average on the first three

assignments (which were completed three weeks in the course)

were offered a role as a peer tutor. Peer tutors who completed

ten hours of scheduled support for their classmates, by holding

Fig. 1. An example of a Piazza question and the followups.
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in-person office hours or answering questions online, were per-

mitted to skip the final exam. The only substantive structural

difference between the two courses was that in 2015 the

instructor consciously delayed responding to posts on Piazza so

that the TAs and peer tutors would be more involved. Most of

the posts were still answered in the same amount of time with

the lead TA providing most of the responses.

B. Java Programming Concepts

A total of 181 students completed the Java course in 2015

while the 2016 class had a total of 206 students. In both years,

the course was offered in two different in-person sections with

two separate instructors as well as a distance education section

with two instructors, for a total of four different instructors

with shared teaching assistants. We ignored the distance edu-

cation students in our analysis because they were a much

smaller group and differed substantially from the local stu-

dents who can engage in face-to-face interactions. However,

they are included in our social network structures as they

replied to questions by other students on the same forum.

These classes used Piazza for discussions, Moodle for sharing

course materials, Github for working on group projects, and

Jenkins for automated code evaluation.

IV. METHODS

For our analysis, we first extracted individual social net-

works from the courses and defined browser and study ses-

sions to group students’ online activities. We then extracted

suitable quantitative metrics from these structures and used

those metrics to train predictive models. As discussed above

the models were trained on a single class offering and were

then evaluated both within and across classes.

A. Defining Social Networks

There are a number of different ways to extract social net-

works from online student interactions. The variation in these

methods is due to differing assumptions that are made about the

unrecorded student behaviors or about the ‘meaning’ of the digi-

tal records. Several of these have been previously explored with

MOOCs. In this research, we focused on two distinct methods

described by Brown et al. [11], [12], and Zhu et al. [68]. We des-

ignate these methods A and B respectively. In both methods

each node in the graph represents a forum participant while each

directed arc represents a communicative relationship.

In method A, based upon prior work by Brown et al. [12], [63]

we make the assumption that everyone who replies to a thread

has read all of the prior posts and replies within it before making

their contribution. Therefore, we connect the author of every

reply to all the authors who contributed to the thread including

the head post. Thus, inmethodA, a directed edge (u, v) is defined

between users u and v for each instance where u replied to a

thread later than v. Our prior work showed that this method gives

the best results when predicting student performance in MOOC

forums where opening a thread shows you all the replies without

needing to click on them [25], [63].

In method B, based upon the work by Zhu et al. [68], by con-

trast, we only assume that any author is replying to the head

post of the thread and to any reply that they specifically respond

to if any. We do not make connections to the other replies.

Under this more conservative assumption the network is lim-

ited to explicit social connections rather than the additional

implicit ones incorporated above. Thus, in method B, a directed

edge (u, v) is created between users u and v if u has replied to a

post by v or commented on a reply by them. Our prior work on

MOOCs has shown that when a forum structure requires the

participants to click on every reply to read it completely and

the replies are shown in short forms, method B works better

than method A [25]. An example of these two methods of graph

generation is shown in Fig. 3.

The structure of the student forums and their relative size is

markedly different in blended courses and MOOCs. Most of the

threads produced in our blended courses are shorter with an aver-

age length of 1-2 posts and replies, when compared to an average

length of 5-6 in MOOCs with some MOOC threads reaching as

long as 90 posts. In this part of our study, we generated both

types of graphs to assess whether these assumptions affect the

sensitivity and reliability of our predictions. Each node in these

graphs represents a participant in the course (Instructor, TA, or

Student). In the DM-2013 class, posting completely anony-

mously was allowed. This produced unknown author posts and

replies which were removed from the analysis. The graphs

include all student interactions with other peers or with the

teaching staff. We then aggregated the links between each pair

of users to produce a single directed arc that was weighted by the

number of communicative arcs in each direction.

B. Study and Browser Sessions

In our prior work [53], we sought to analyze students’ study

habits within courses by analyzing their study sessions. To that

Fig. 2. The distribution of grades in different classes.

TABLE I
STATISTICS OF EACH CLASS
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end, we collected log data from all of the different online plat-

forms used in the DM-2013, DM-2015, and Java-2015 courses

and unified them into a single transaction log. We then used a

data-driven method to segment this log into individual study ses-

sions and analyzed the students’ behaviors within these sessions.

We found that the properties of these sessions were significantly

different among different performance groups and they can be

used to make predictions on the students’ performance.

We applied this same technique to generate unified logs for

our current dataset. These logs included 285,465 total actions

from the DM-2013 class, 24,180 actions from the DM-2015

class, 135,351 actions from the Java-2015 class and 175,059

from the Java-2016 class. Most of these transactions were

WebAssign actions from DM-2013 and Moodle actions from

the other courses. The large divergence in total actions

between the DM-2013 and DM-2015 datasets is due to the

fact that the bulk of the transactions in the dataset are WebAs-

sign activities which were not available to us in 2015.

In order to effectively analyze how students work we needed

to group these individual actions into coherent sequences or

sessions. Grouping these actions is a nontrivial problem and, as

Kovanovic et al. [41] argued, how this grouping is defined can

substantially affect the outcome of any analysis. Fixed time

durations have been used in prior studies (e.g. [10]) but this

method can artificially separate actions that otherwise occur

together (e.g. assignment submissions at 12:00 am and 12:01)

and thus seemed inappropriate for our task where some students

chose to work in short bursts and others regularly pull all-

nighters. Likewise, methods based upon collecting browser his-

tories or additional data were intractable given our inability to

access that information. Therefore we selected a cutoff time

between actions based upon our existing dataset. This approach

is similar to the one taken by Amnueypornsakul et al. [2] where

we group all the actions that are within “m” minutes from each

other in the same session and as soon as an action is later than m

minutes from the previous one, we assume that a new session

has begun. We defined those cutoffs based on our data and the

general trends we could observe in the students’ behavior [53].

We defined two different cutoff times (m) since the types of ses-

sions can be different based on what resources are used and

whether or not the students switched platforms. WebAssign

and Moodle, for example, record clickstream actions which are

comparatively brief, while Piazza records posting and editing

questions and replies which takes a longer time. Additionally,

longer breaks between actions can indicate the students going

offline and working on a problem on paper or reading class

material.

Based on the properties of our data and the patterns of

students’ work, we decided to define the following session

types with different cutoff values:

� Browser Session: m ¼ 15 minutes indicating a short

break is likely with the same browser open.

� Study Session: m ¼ 40 minutes indicating that the stu-

dent likely changed tasks or quit working entirely.

Browser Sessions can be viewed as times when the students

worked on a single task. This may include students working

on multi-part WebAssign questions, reading through materials

on Moodle, or working through an issue with their code with

guidance from Piazza. Sessions of this type are comparatively

short in duration. The Study Session by contrast allows for

larger gaps where students may shift from reading materials to

answering questions or engaging in (online) discussions with

their peers, and back again. This large cutoff was based in part

upon the cross-platform breakdown and was in part intended

to address our lack of data regarding the students’ offline

activities.

C. Feature Extraction

We extracted two different classes of features from the social

networks and browser sessions described above. We calculated

these features at three different time-points during the semester,

before the first mid-term, before the second mid-term, and at

the end of the class. These differing cutoffs were used to deter-

mine how early we would be able to reflect on the students’ per-

formance. We discuss these features in greater detail below.

1) Features Based on the Social Graph: We calculated the

following social metrics:

� In-degree shows the number of replies and feedback

the student has received.

� Out-degree indicates the number of replies and feed-

back the student has given

� Betweenness Centrality is defined as a measure of the

extent to which a vertex lies on the shortest path

between others [23]. Betweenness centrality tells how

important this user is in connecting different users to

each other, nodes with high betweenness are described

as having some degree of control over the communica-

tion of others. [23]

� Hub and Authority Scores are defined as mutually

reinforcing scores: a good hub is a node that points to

many good authorities; a good authority is a node that

many good hubs point to [39]. Users with high hub

scores are those who frequently respond to the other

active learners that post questions on the forum as the

students with high authority scores are the ones that

receive the most replies from the hub students.

Fig. 3. An example of the two different methods of graph generation.
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2) Features Based on Sessions: Our previous study of the ses-

sions showed that many of the features that we defined were

correlated with the students’ performance [53]. We therefore

chose the following metrics when making predictions about

the student performance. We generated the metrics for the

browser sessions and study sessions separately, to determine if

one of these session types was more informative than the other.

The features are as follows:

� Number of sessions: How many separate times the stu-

dent has gone online throughout the semester, or in a

specific timespan

� Average number of actions in sessions: How many

actions the student usually gets done every time they

start a session

� Total number of actions: How many total actions the

student has done throughout the semester or during a

specific timespan

� Average duration of sessions: How long the student

typically stays online when they start a new session

� Overall Time spent in sessions: Howmuch time approx-

imately the student has spent accessing online class tools,

calculated as time ¼ Number of sessions� Average

duration of sessions

� Average gap between sessions

� Inconsistency: How different the number of the sessions

started by a student is from class average and how infre-

quent they get online, calculated as Inconsistency ¼
Average Gap� ðmaxðNumber of sessionsÞ �Number

of sessionsÞ
� Number and proportion of Homogeneous sessions

(where students were active on one platform only): In

how many sessions and what proportion of sessions has

the student focused on the same platform

� Number and proportion of Heterogeneous sessions

(where students switched platforms): In how many ses-

sions and what proportion of sessions has the student

switched platforms

� Ratio of sessions containing Piazza activity: In what

proportion of sessions has the student made a post or a

reply on Piazza

� Number of Piazza questions: Number of posts made

by the student

� Number of Piazza answers: Number of replies made

by the student

D. Performance Prediction

As discussed before, we focused on classifying the students

into two groups: distinction (A- or above) and non-distinction

(B+ or below). We then divided the performance prediction

step into three different rounds. In the first round, we trained

and tested the machine learning models on the same class using

5-fold stratified cross validation and recorded the average F1

score over the 5 rounds of tests. These predictive models will

show us howwell those features are able to predict the students’

performance and how early they can be used to make a

prediction.

In the second round, we trained a predictive model on the

earlier offering of each class (DM-2013 and Java-2015) and

then tested them on the later offerings (DM-2015 and Java-

2016) of the same class to see if these predictive models are

generalizable from one offering to the other.

In the third round of our analysis, we applied the predictive

model that we trained on the DM-2013 class (the earliest

offering), on both of the Java offerings that were offered after

that, to see if the predictive models could be generalized

across later offerings of different courses as well.

We used three classes of models: Random Forests, Support

Vector Machines (SVM), and a Logistic Regression. All were

trained using the Scikit Learning library for Python [47]. All of

the models were tuned using a 5-fold cross validation via a grid

search to fit the best parameters for the data. We chose these

models because they are both fast and interpretable in this con-

text. The random forest model was tuned to find the best max

depth, the logistic regression was tuned on its penalty, toler-

ance, and C (i.e. inverse of regularization strength where

smaller values show stronger regularization.), and the SVM

model was tuned to find the best values for C and g for the RBF

model (i.e. how far the influence of a single training example

reaches, low values meaning far and high values meaning close

[47]) in each fold. Finally, we evaluated the models according

to their average F1 score using stratified 5-fold cross validation.

F1 score or F measure shows the average between precision and

recall [47]. In our case, it evaluates the model based on the pro-

portion of the distinction students the model can find and what

proportion of the guessed distinction students were true.

V. RESULTS AND DISCUSSION

A. RQ1. How Do Different Methods of Social Graph

Generation Affect the Performance of Predictive Models

Based Upon Them?

To answer our first research question, we generated both

types of graphs for all the classes and compared their effec-

tiveness in making performance predictions. As we would

expect, while the main structure of these graphs were similar,

the graph that was generated using method A (GA) had more

edges than the graph that was generated using method B (GB),

as in generating GA in each thread we connect the author of

every reply to all the authors before, compared to GB where

the reply authors only get connected to the main post author.

As a result, GA was a proper subgraph of GB, many of the

links in GA were absent from GB and many others had less

weight.

In order to evaluate these graphs, we calculated the correlation

between the graph attributes and the students’ class performance.

Since our grades and graph attributes are not normally distrib-

uted, we chose to apply the nonparametric Spearman’s Correla-

tion Coefficient. The correlation coefficients and the p-values

are reflected in Table II. Our results show that, consistent with

our expectations, most of the graph attributes correlate with the

students’ performance more strongly in GA which connects the

replying users to all the users who posted and replied to the same

question earlier than them. While in-degree, betweenness
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centrality, hub score, and authority score have higher correla-

tions with the students’ performance in GA for all the classes,

the only exception is the out-degree which has a higher correla-

tion in GB. However, the correlations between out degree and

performance are very similar inGA and inGB and the difference

between them is usually very small.

B. RQ2. What Features of Students’ Study Habits and Social

Connections Are Most Predictive of Student Performance?

We used x
2 tests and random forests to identify the most

informative features in each of the different timespans of these

classes. A set of features identified for DM-2013 is shown in

Table III. The x2 feature ranking is based on testing for the sta-

tistical independence of the individual features, where features

with a high degree of dependence are less likely to be selected.

Random forest feature selection, by contrast generates trees

using the Gini impurity of each feature to make selections and

favors the features that provides the highest reduction for the

tree on each step. Most of the features that were selected are

common between both methods such as inconsistency, total

time, and total actions. However, some features that were

selected by the x2 model such as betweenness centrality are not

selected by the random forest model while others selected by

the random forests such as degree are absent in x2. Further anal-

ysis however, showed that for most of the features that were

selected by only one model, they were replaced by a different

but highly correlated feature (0.8 or more). We therefore

focused solely on the x2 features for the rest of our analysis.

For all of the classes we ranked the features and we were

able to observe a sudden drop in the x2. We used these drops

to select the cutoff point for each of the features in our predic-

tive models. Based upon those cutoff points for the DM-2013

class, we decided to use 15 features for the models before tests

1 and 2, and 14 for the full-semester models, while for DM-

2015, 15 features seemed more appropriate for all of the time-

frames. For Java-2015 we kept 16 features for the before test 1

model, 14 features for the before test 2 model, and 17 features

for the whole semester model. For Java-2016, we kept 13 fea-

tures for the before test 1 model, 19 features for the before test

2 model, and 21 features for the whole semester model.

To answer our second research question, we then examined

the top 15 features in detail to determine what elements were

most informative across classes. When we compare across the

classes and timeframes we found that the most important fea-

tures were:

� Total time spent in both types of sessions;

� total number of actions performed in both browser and

study sessions;

� Number of study and browser sessions;

� Number of homogeneous sessions among study and

browser sessions;

� Number of answers posted on Piazza.

These findings show that some study patterns, such as spend-

ing more time on the online tools, performing more online

actions, generating more sessions, focusing on one tool at a

time per session, and answering more questions on Piazza all

distinguish between high-performing and lower-performing

TABLE II
SPEARMAN CORRELATION BETWEEN GRAPH ATTRIBUTES AND FINAL GRADE FOR DIFFERENT GRAPH TYPES
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students across classes, even as some of the tools used varied

across classes (e.g. DM classes useWebAssign for their assign-

ments and Java classes use Github for their project submis-

sions). The fact that most of these features were selected for

both the browser and study sessions shows that these two types

of sessions are informative and defining features based upon

only one would not cover the variance of the data as much as

they do when used in concert. There are other features that

were frequently among the top 15 of the different classes, while

they might be missing in one or two timeframes, such as the

Betweenness Centrality in the social graph which was the first

chosen feature for most of the cases and Inconsistency of

sessions.

Prior studies of MOOCs have shown that, while social graph

features can be predictive of student performance, when com-

pared to the other study habits they cannot add much value to

the predictive models [25], [56]. The fact that betweenness cen-

trality and the number of Piazza answers were almost always

among the top predictive features in our models shows that in

the blended courses being socially active does make a differ-

ence, separate from other study habits. While the social graph

features are highly correlated, the selection of Betweenness

Centrality shows that only actively participating in the forum,

whether asking or answering questions, is not enough. Since

these raw graphs are directed, a user with high betweenness

centrality must have connections to and from many others,

which means they have both received replies from, and replied

to many people. The inconsistency measure represents the

length of the gaps between the student’s different sessions and

how the total number of sessions they completed compares to

the maximum count in the course. This feature measures how

frequently or infrequently a student accessed the class material.

Thus a student with a high inconsistency score is one that typi-

cally goes offline from the course for a long period of time and

has fewer total sessions than the others.We found that this mea-

sure had a weak negative correlation with student performance.

One key difference between the discussion forums in

blended courses and MOOCs is the users’ relative participation

rate. Prior research on MOOCs has shown that the students’

participation in the discussion forums is very low in the

MOOCs. For example, in our prior work on MOOCs only 5%

of the students posted or replied on the class discussion forum,

while for all the blended courses of this study, the participation

rate was more than 60%. While participation on Piazza was not

mandatory for any of the classes, it was encouraged as the main

source of advice. The low participation rate in MOOCs may

explain why the students’ social attributes were not as informa-

tive as their study habits, while in blended courses the social

networks seem to be more helpful. One additional interesting

point about the social network metrics is that both in-degree

and out-degree were often not as important as the betweenness

centrality score. As noted above, students with high between-

ness centrality scores occupy a privileged place within the net-

work and link many of the users to each other. This shows that

giving or receiving answers alone does not determine students’

performance, while communicating both ways with more of

the class members by having connections to a wider variety of

people does.

TABLE III
FEATURE RANKINGS DM-2013
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C. RQ3. How Early Can We Predict Students’ Performance

in These Classes Using the Data From the Same Class?

The results for each of the different algorithms on different

classes are shown in Table IV. As the table shows, in most cases

using the data from the whole semester allowed us to identify

the distinction students with an F1 score of 70% or more. We

believe that the reason why whole semester data outperforms

the smaller timeframes across the semester is that the additional

information helps to account for variance among the student

groups. While the students’ behaviors may not be similar in

specific timeframes of the semester, the overall habits of the

distinction group seem to be similar across classes. If we trun-

cate our data to an earlier timeframe such as before test 1 or

before test 2, the performance of the models is reduces, but still,

most of them are able to achieve an F1 score of about 60%.

For our third research question, we wanted to find out how

early we can cut the data and make performance predictions.

Our findings show that when using the early stage data, as

early as the first or second midterm of the classes, while not as

accurate as the whole semester data, we are still able to predict

the students’ performance with reasonable accuracy in most of

the classes. In order to assess the significance of these differ-

ences we compared our results at different time frames using

an Aligned Ranks Friedman test [24], [31] via the STAC plat-

form [51] to see if these results are significantly different. A

post-hoc use of the Aligned Rank Friedmen test found no sig-

nificant difference between the models. Thus, our next step

would be to analyze whether we can train our models on a

prior offering and then test them on an early stage of the class.

D. RQ4. Will Predictive Models Generated From One

Offering of a Course Transfer to Another Offering of the

Same Course?

In order to be able to use the models for making predictions,

we need them trained before we have final class grades. Thus,

the models will be more useful if we are able to train them on

one offering of a class and apply them to another class which

is still ongoing. In our present work in order to make cross pre-

dictions across offerings, we selected the best performing

algorithm for each timespan of each course. As a result, for

DM-2013 for example, we trained a logistic regression using

15 features for before test 1 and before test 2 timespans and 14

features for the whole semester.

Prior research has shown that while using a whole semester

of data from the earlier offering might provide more informa-

tion for the training of a model, using the data from the same

timespan of the prior offering may produce a more generaliz-

able model [25]. Thus, when making predictions for each time-

span we used two different models. The first was trained on the

same timeslice of the prior offering while the second model is

trained on the whole semester data of the earlier offering.

The cross offering results are shown in Table V. As these

results show, using the whole semester data of the first offer-

ing provides us with a better predictive model on early stages

of the second class. To answer our fourth research question,

our findings indicate that despite the differences in the top fea-

tures across offerings, these models are able to predict the dis-

tinction group in the second course offering with an F1 score

of 60% or more before the first exam.

E. RQ5. Will Prediction Models Generated on One Course

Transfer to Another?

Finally, in order to use the models for early prediction they

must be trained before the class is over. Using models from

other courses can be beneficial in cases where a course is

being offered for the first time, thus we need to study whether

the predictive models trained on one class can be used to

make predictions on a later offering of a different class. In this

case, as in the cross offering predictions, we use both data

from the same timespan and data from the whole semester of

the earlier course to make predictions on early stages of the

latter. Here we tried the model trained on DM-2013 on Java-

2015 and Java-2016. While DM-2015 and Java-2015 were

offered in the same semester, we also tested the Java-2015

model on the performance in DM-2015 so that our findings

are not only based on models trained on DM classes and we

can also see how well the models trained on a Java class can

perform on a DM offering.

Our findings are shown in Table VI. As these results indi-

cate, as with the cross offering models, using the data from the

whole semester of the earlier class seems to produce a better-

trained model. To answer our fifth research question, these

models were able to make predictions on the later offering of

another course with an F1 score of 60% or more, even when

using only the data collected before the first test.

TABLE V
F1 SCORES FOR CROSS OFFERING PREDICTIONS

TABLE IV
F1 SCORES FOR SAME CLASS PREDICTIONS
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F. RQ6. How Will These Models Perform in Identifying

At-Risk Students?

While the number of at-risk students in our classes were

low, we decided to evaluate whether our models could identify

at-risk students as well. The classes included in this study are

C-wall classes, meaning the students need a C or better grade

to proceed to the further courses in Computer Science curricu-

lum. We therefore defined all the students gaining a lower

than C grade as at-risk. There were between 20 and 35 such

students in these classes. To prevent our models from fitting to

the majority class, we sampled the not-at-risk students in our

data to twice the number of at-risk students.

The results of this at-risk prediction are shown in Table VII.

As these results show, despite a smaller number of samples

remaining in the at-risk groups, the models can still perform

well and sometimes better than the distinction prediction.

VI. CONCLUSIONS

In this study, we first analyzed two different methods for gen-

erating social graphs from the students’ interactions on class-

room discussion forums.We found that, as inMOOCs, when the

users are able to see all of the replies on a thread without clicking

on them, assuming that the students read all the replies before

posting a new one gives us a more informative social network.

We also defined several features based on students’ study behav-

ior and social interactions and used those features to make pre-

dictions of the students’ class performance. Our findings showed

that in contrast to prior studies of MOOCs, the students’ social

metrics seem to be as or more helpful for predicting student per-

formance than the students’ study behaviors. We also found that

when using a suitable prediction algorithm, the defined features

can predict the distinction group students with an F1 score of

about 60% even before completing the first test. Our results also

show that these predictive models were able to generalize from

earlier offerings of one course to later offerings of the same

course or even to other courses. Our results also show that these

models are able to be trained to predict at-risk students in these

classes, even considering the low number of students in this

group. These generalized models show that, as we hypothesized,

most of the behaviors and social interaction metrics of higher

performing students are similar across different classes. We also

examined these metrics specifically for the students who were

enrolled in both DM-2015 and Java-2015 (126 students) and

found that there was a positive but weak correlation (0.3 - 0.4)

betweenmost of themetrics of these students in different classes.

The fact that correlation is positive shows that the metrics are

mostly consistent for the same student in different classes. We

attribute the weakness of the correlations to structural differen-

ces between the courses and effect of other unshared students

who do affect the metrics. Moreover, the importance of some of

the graph features shows that, consistent with social learning the-

ory and the theory of Communities of Practice, being involved in

the discussions is important to the students’ performance. While

prior research does not imply and we did not assume that more

connections are necessarily better, the selection of graph metrics

among the most predictive features suggests that at least in our

cases, the students who were more engaged in the discussions

performed better in the class. These cross class models can help

the instructors make predictions on their students’ performance

as early as the first test and intervene by making more support or

resources available for the lower performing students. The

results of this study can also be used to help in identifying harm-

ful study patterns such as inconsistency.

One of the limitations of this work was that we did not have

access to the WebAssign data from the DM-2015 class. While

our 2013 data suggests that the majority of student actions

were WebAssign transactions, the only features reflecting

these actions that were considered to be important were the

session features. This lack of data seems to have a relatively

small effect on the generality of the model across classes since

this data source is missing for all the students and thus every-

one’s sessions will be shorter.

In future, we plan to expand our analysis by using data from

more offerings of these courses. We also plan to study the post

and reply content as well as commit messages generated by the

students and define some text-based features based on those to

make our models more accurate. The students’ teamwork

behavior and their participation in the course projects can also

provide us with more insight on their work and study habits

which we can use to identify students in need of support and

provide tailored guidance. We are in the process of designing

tailored course interventions for these classes. We plan to use

these predictive models to identify, and intervene with at-risk

students early in the semester and to provide them with more

resources such as group study and peer tutoring.

TABLE VI
F1 SCORES FOR CROSS COURSE PREDICTIONS

TABLE VII
F1 SCORES FOR CROSS CLASS AT-RISK CLASSIFICATION
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