PHYSICAL REVIEW D 100, 064006 (2019)

Convergence of Fourier-domain templates for inspiraling
eccentric compact binaries

Sashwat Tanay ,l’* Antoine Klein,z’w Emanuele Be1rti,4’i and Atsushi Nishizawa™

5,6.8

'Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA

*Institut dAstrophysique de Paris, CNRS & Sorbonne Universités,

UMR 7095, 98 bis bd Arago, 75014 Paris, France
3School of Physics and Astronomy, University of Birmingham,

Edgbaston, Birmingham B15 2TT, United Kingdom

*Department of Physics and Astronomy, Johns Hopkins University,

3400 N. Charles Street, Baltimore, Maryland 21218, USA
SResearch Center for the Early Universe (RESCEU), School of Science, University of Tokyo,
Bunkyo, Tokyo 113-0033, Japan
6Kobayashi—Maskawa Institute for the Origin of Particles and the Universe, Nagoya University,
Nagoya 464-8602, Japan

® (Received 28 May 2019; published 3 September 2019)

The space-based detector LISA may observe gravitational waves from the early inspiral of stellar-mass
black hole binaries, some of which could have significant eccentricity. Current gravitational waveform
templates are only valid for small orbital velocities (i.e., in a post-Newtonian expansion) and small initial
eccentricity e (“post-circular” expansion). We conventionally define e, as the eccentricity corresponding
to an orbital frequency of 5 mHz, and we study the convergence properties of frequency-domain inspiral
templates that are accurate up to 2PN and order ¢ in eccentricity [S. Tanay, M. Haney, and A. Gopakumar,
Phys. Rev. D 93, 064031 (2016)]. We compute the so-called “unfaithfulness” between the full template and
“reduced” templates obtained by dropping some terms in the phasing series; we investigate the conditions
under which systematic errors are negligible with respect to statistical errors, and we study the convergence
properties of statistical errors. In general, eccentric waveforms lead to larger statistical errors than circular
waveforms due to correlations between the parameters, but the error estimates do not change significantly
as long as we include terms of order e} or higher in the phasing.
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I. INTRODUCTION

The first two observing runs by Advanced LIGO and
Virgo [1] detected gravitational waves (GWs) from 11
compact binary coalescence events, and the era of GW
astronomy has begun. In the near future, GW astronomy
has the potential to answer several important open ques-
tions: it will test general relativity in the strong gravity
regime, probe the neutron star equation of state, shed light
on astrophysical formation scenarios of compact object
binaries, and potentially resolve outstanding open problems
in cosmology [2-6].

This paper is motivated by the possibility of identifying the
formation channels of binary black holes (BBHs) using a
combination of Earth- and space-based GW detectors
[7-10], and in particular by the prospect of using eccentricity
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measurements to distinguish between two of the main
proposed formation channels [11-13]: field and dynamical
formation. Most BBHs are expected to circularize by the time
they enter the most sensitive band of ground-based detectors,
so we must rely on measurements of masses, spins, redshifts
and kicks to distinguish between different formation scenar-
ios [14-23]. However, typical BBH eccentricities are larger
for binaries formed dynamically than for binaries formed in
the field (see e.g.,Fig. 1 of [13]), at the typical frequencies
~1072 Hz targeted by the planned Laser Interferometer
Space Antenna (LISA) [24]. Therefore LISA has the poten-
tial to measure BBH eccentricities and to shed light on their
formation channel in a way that is complementary to ground-
based detectors [11-13,25-31].

There is a large body of work extending the pioneering
study of GWs from eccentric compact binaries by Peters
and Mathews [32], where the binary dynamics was treated
at Newtonian order, to higher post-Newtonian (PN) orders.
The first analytic Fourier-domain templates were calculated
within the stationary-phase approximation for arbitrary
initial eccentricity, including the effect of periastron advance,
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in [33]. Analytical expressions for the decay of the orbital
parameters under radiation reaction using hypergeometric
functions were derived in [34—-36] at Newtonian order, and in
[36] at 1PN order. A Kepler-like parametrization was
introduced and extended up to 3PN order in [37-39], and
the decay of the orbital parameters under radiation reaction
was computed in [40—43]. Now the evolution of the orbital
parameters under radiation reaction is known up to 3.5 PN
order [44,45]. A time-domain template for compact binaries
where the orbital elements were evolved via numerical
integration was introduced in Ref. [46], and it can be regarded
as the eccentric extension of the popular TaylorT4
approximant for quasicircular binaries.

In the analysis of quasicircular binary inspirals it is
common to use analytic Fourier-domain templates com-
puted within the stationary-phase approximation (SPA),
such as the TaylorF2 template. Reference [47] general-
ized these Fourier-domain templates to eccentric binaries,
computing templates which are valid at Newtonian order
and up to order e} in a small-eccentricity expansion of the
phase (here ¢ is defined to be the eccentricity at some
reference orbital frequency f1, = forb.0)-

This work was extended to 2PN—68 in Ref. [46], which
will be the starting point of our study. Moore et al. [48]
extended Ref. [46] to 3PN order, but only at leading order
in ey. All of the templates above are valid at Newtonian
order in amplitude and do not include the effect of
periastron advance in the phase. Reference [49] constructed
analytic templates which are valid for arbitrary initial
eccentricity e, within the SPA using a truncated sum of
harmonics and hypergeometric functions. This work was
recently extended to 3PN accuracy [50], and efforts are
underway to extend Ref. [47] up to 3PN-¢f order in phase
and 1PN order in amplitude, incorporating periastron
advance effects [51].

With so many parallel efforts on analytic Fourier-domain
eccentric templates underway, it is crucial to investigate the
convergence of these proposed GW templates. This is the
main goal of our work. We study the convergence proper-
ties of the 2PN-¢f accurate template proposed in Ref. [46].
This “fiducial template” is a sum over harmonics (labeled
by j), where each harmonic has a phase which itself is a
bivariate series in the initial eccentricity e, and in the PN
parameter

(1)

X
6‘3

<2ﬂszforb> 23
where f .y, is the orbital frequency for a circular binary, and
m, = (1 + z)m is the redshifted total mass of the binary.
A preliminary, more limited investigation of the conver-
gence of this bivariate series in the context of parameter
estimation can be found in [52]. Our work should be
helpful in guiding future efforts to extend the above

templates to higher orders, and it can readily be generalized
as soon as more accurate templates become available.

We focus on the convergence of the expansion of the
phasing (rather than the amplitude) because the phasing is
known to have greater impact on detectability and param-
eter estimation. We first drop some terms from the fiducial
template to get (presumably) less accurate “reduced”
templates, then we perform calculations of the so-called
“unfaithfulness” between these reduced templates and the
fiducial 2PN -eg accurate template to assess the importance
of the dropped term(s). We also investigate the conditions
under which systematic errors due to dropping high-order
terms from the fiducial template exceed the statistical
errors. This is useful because whenever systematic errors
are negligible with respect to statistical errors, one can
choose a truncated template to improve computational
efficiency in parameter estimation. Finally we study the
convergence of statistical errors.

The paper is organized as follows. Section II describes
the waveform model and gives details on our calculation of
matches and Fisher matrices. Section III is an overview
of data analysis concepts that are relevant for our study.
Our results on unfaithfulness are presented in Sec. IVA,
the comparison of systematic and statistical errors is shown
in Sec. IV B, and the convergence of statistical errors is
studied in Sec. IV C. In Sec. V we summarize our main
results and outline directions for future work. To improve
readability, some technical details are relegated to the
Appendices. Appendix A illustrates why certain cross
terms in the Fisher matrix integrands can be neglected
due to their oscillatory nature, and Appendix B defines
beam pattern functions and other quantities appearing in the
calculation of the GW strain. The code used in our analysis
is publicly available online [53].

II. WAVEFORMS, MATCH AND FISHER
MATRIX CALCULATIONS

In this section we describe our waveform model, and
then we give details of our unfaithfulness and Fisher matrix
calculations.

Our analytic frequency-domain GW template for com-
pact binaries inspiraling in eccentric orbits uses Newtonian
amplitudes, the first six harmonics (j =1,...,6), and a
2PN-¢§ accurate phase. Here ¢, is the eccentricity at which
the orbital frequency of the binary is f,/2, and we
(somewhat arbitrarily) set f, = 10 mHz. In other words,
when the binary has eccentricity e, the second harmonic
(which dominates the signal for small eccentricities) has
frequency f. From Appendix B and Eq. (3.11) of [47] it
follows that if we include six harmonics, the expression of e
used in the amplitude should be accurate up to O(e}).
Below we list the relevant expressions only at Newtonian
order for illustration, but in the actual calculations we
retained all terms up to 2PN-¢§ order; these can be found in
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Appendix A of [46]. The waveform in the stationary phase
approximation has the form

f (an nf> ~7/6 Z‘f(f < ->2/3

X e~ (”/4+‘P(f-1)—¢0(f-1))’ 2)

h(f) =

where the symmetric mass ratio n = mm,/m?,

A= _<5'7_”>‘/2 Gomg

384 (32)

the quantity D, is the luminosity distance to the source,
and

L(f.)) = Fo(f. )CL(f) + F (£ )CL(). (4

2(f.J) = Fo (£ )SL) + Fx (£ )SK()- (5)
The definitions of F+,FX,Cﬁ'r,C{<,SJJ'r,SJ; are given in
Appendix B. The Fourier phase ¥(f,j) and e(f, ),
up to the leading PN order and sixth order in ¢, are

Dy given by
(L—e(f.j)?)"* oL . 3 [(Gm,zf\3/3 8/3
) +i=(f.0), W)= id -2 J :
D)= ety g e e TR v =2 ()T ()) e
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We also introduced the Doppler phase
¢p(f.J) = 2zRf sin s cos (p(f. ) — ¢s). )

where R = 1AU and the orbital phase ¢(f,j) of LISA’s barycenter around the Sun is
2rt(f,j) 1 Gm_ (2Gm_znf ~8/3 5 785¢3 n~ 5222765 o
2xt. +—= Z - 19/9 4( _ , 38/9
W0 = T, T, ¢ N ned | jcd 256 T 11008V e\ “1asaeat V)

2608555

75356125
LDV ~-19/9 13556125
10039206 /7 >+e (

35487744

Here Ty = 1 yr, the angles (65, ¢b5) define the direction
of the source in the Solar barycenter frame, and ¢, and ¢,
denote the time and phase at coalescence, respectively
[54,55]. The amplitudes c’ ,C’;,Si, Si are computed by
keeping the first two terms in the expansion of Eq. (7):
cf. Appendix B. This is consistent with retaining a
Newtonian amplitude and six harmonics. The beam pattern

A1)+

17355248095

1326481225
6600720384

-\ —38/9
20+ o e050a88

x(f,j)””m :

(10)

functions F, and F, depend on f and j through ¢(f, j).
The equations listed above are of order x” in a PN
expansion; hence they do not depend on x.

The above template is slightly modified with respect
to Ref. [46]: the amplitude has an extra factor of V3 /2
to account for the 60° opening angle of the LISA arms
[56], and the Fourier phase has been changed from ¥ to
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(¥ — ¢p) to account for the Doppler phase due to the
motion of the detector around the Sun [52,55].

A. Fiducial template and truncated templates

We will now introduce the structure of the templates used
in our calculations. We refer to the 2PN-¢f order accurate
template of [46] as the “fiducial template”. To assess
convergence, we also consider various “truncated tem-
plates,” i.e.,templates derived from the fiducial one by
dropping certain terms in the phase. The amplitude of all
templates is accurate at Newtonian order and O(e*),
because the phase plays a more important role than the
amplitude for detection and parameter estimation (see e.g.,
[44-47]).

Table I illustrates the difference between the various
templates. Each cell in the table represents a term of a
certain order in the PN frequency parameter x (rows) and in
the initial eccentricity e, (columns). We will use two
different notations to distinguish between templates.

A “letter-based” template means that we drop all terms of
order greater than or equal to the corresponding cell in the
table. For example, “waveform A” is obtained by neglect-
ing cells A, B, C and D, i.e., all of the 2PN corrections to
the waveform; “waveform B” is obtained by neglecting
cells B, C and D, i.e., all 2PN corrections of order e% and
higher in the initial eccentricity; and “waveform C” is
obtained by neglecting cells C and D. Similarly, “waveform
G” is obtained by neglecting cells G, F, E and D; “wave-
form F” is obtained by neglecting cells F, E and D; and
“waveform E” is obtained by neglecting cells E and D.
“Waveform D” corresponds to neglecting only the 2PN,
e$ term.

We will also use a curly bracket notation {y"}, meaning
that the phase is y" accurate in the parameter y, where y
stands either for ¢ or for x in the bivariate series for the
Fourier phase of Eq. (6). For example, the {e3} template is
accurate up to order €3 (and 2PN) in phase, i.e., we retain
the first two columns from the left in Table I. Likewise, for
the {x'} template we retain terms up to 1PN (and order ef)
in phase, i.e., the two bottom rows in Table I.

TABLE 1. Template naming conventions. According to the
alphabetical naming convention, the template obtained by drop-
ping terms corresponding to the letters B, C and D from the phase
is called “template B”, and so on (see text). In the curly bracket
convention, the {e3} template is obtained by retaining terms of
order up to e% (i.e., the two leftmost columns). Additionally,
“template H” corresponds to dropping cells C, D and E from the
fiducial template.

2PN (x2) A B C D
1.5PN (x%/2) E
IPN (x') F
Newtonian (x9) G

e e e e

The fiducial template of Eq. (2) is a series of harmonics
labeled by the integer j, where the phase ¥(f, j) of each
harmonic is itself a bivariate series in x and e,: cf. Egs. (6)
and (8). Here we focus on the convergence of ¥(f, j) as a
bivariate series because, as already mentioned, the phase of
a GW template is more important than the amplitude (as
long as e is small, so that a small-e, expansion is valid).'
In this work we have retained only the first six harmonics
(j=1,...,6) in all of our templates. The convergence
of the harmonic expansion is an interesting topic for
future work.

B. Match calculations

Our convergence analysis of PN, small-eccentricity
waveforms is based on some data analysis concepts that
we introduce below. First of all, we define the “faithful-
ness” M between two GW signals h;(7) and h,(t) as the
following integral, maximized over the time and phase of
coalescence 7. and ¢,

M = max——-"2) (11)

tetbe /(I 1) (hoa 12

and the “unfaithfulness” as (1 — M). The inner product
between two waveforms (hy, h,) is defined as

(hy, hy) = 40 /f'““wdf, (12)

Fom Sh(f)

where /,(f) stands for the Fourier transform of /;(¢) and
S,(f) is the noise power spectral density of the LISA
detector [58]. The signal-to-noise ratio (SNR) p of template
h in the detector can be estimated by

p*(h) = (hlh). (13)

Unlike [58], we do not use a sky-averaged response, and
thus we should not include the corresponding factor of 5 in
the noise curve. We also treat the two channels separately
(so our noise curve differs by an extra factor of 2) and we
include the geometrical factor \/3/2 in the waveform

'At Newtonian order, the radiation reaction timescale 7, =
o/ (Where @ = 2xf,y, is the angular frequency) is

T _5GM (GMo\ 33 (1-€%)"?
963\ 1+ B+ 36t

The quantity in square brackets—say, Z(e¢)—must be expanded
for small e to finally arrive at the expression of the Fourier phase
¥ which occurs in Eq. (2) [47]. Any Taylor series has a radius of
convergence equal at most to the distance from the expansion
point (here e = 0) and the nearest singularity in the complex
plane [57], which here is located at e ~ -0.58i. Therefore none of
our templates should be trusted beyond e, ~ 0.58 (although they
may become unfaithful for much smaller values of eg).
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definition (2), yielding an extra factor of 3/4. For these
reasons, we use the noise curve of [58] without the overall
factor 10/3, i.e.,

Su(f) = % [POMS (f) + 4(22}()];)} [1 * % <fi> 1
+8.(f), 14)

where L =2.5 Gm and f, = 19.09 mHz. Furthermore
Poms(f), Pace and the confusion noise S.(f) are given by

POMS = (15 X 10_11 m)2 |:1 + (2 I;HZ>4] HZ_l, (15)

2
Poe = (3 x 10715 ms~2)? [1 + (—0'4 }nHZ> }

x {1 + (8 thz)T Hz™!, (16)

f 13 )
Al L fa+pf sin(kf)
(HZ ¢

< [1+ tanh(y(fe = f))] Hz!,  (17)

Se(f) =

where A = 9 x 107 and all parameters have been chosen
corresponding to an observation time of 2 years:
a=0.165 Hz !, p =299 Hz™!, x=611Hz", y =
1340 Hz™! and f; = 0.00173 Hz.

C. Fisher matrix and cross terms

Our eccentric GW templates depend on 11 parameters:
In M., Inn,t,, ¢, InDy, ey, 05, ¢s.0,,¢, and p. Here
M. =n’ m, is the redshifted chirp mass, 7=
mym,/m? is the symmetric mass ratio, ¢, and ¢, are the
coalescence time and orbital phase, D; is the luminosity
distance and e is the initial eccentricity, defined as the
eccentricity corresponding to an orbital frequency f,4, =
5 mHz (so that the second harmonic of the radiation is at
10 mHz). The angles (6, ¢s) and the angles (6;,¢;)
define the direction of the source and of the binary’s orbital
angular momentum in the Solar barycenter frame. Finally,
represents the position of the pericenter in the binary’s
orbital frame [47,59].

Let p = {p4} be a vector whose components are any of
these eleven parameters. The Fisher matrix is defined as the
matrix with elements

B © [Oh(f)* Oh(f)] 1
’ABMA [apA apg]shmdf' (18)

In the high SNR regime, the statistical errors associated
with estimating the parameters can be approximated by the
square root of the diagonal elements of the inverse Fisher
matrix [60].

Each of our templates fz( f) is obtained by summing over
the first six harmonics, i.e., a(f) = ?:1 h ;- Therefore the
integrand above contains 36 terms: 6 “diagonal terms”
where both harmonics are the same and 30 “cross terms”
involving different harmonics. Examples of a diagonal term

and of a cross term are

o [ {ﬁfll(f)*afh(f)] PR

Opa opp | Su(f)
and
L[ 5712(f)*8713(f)] 1
4N df, 20
[ Slsme
respectively.

Numerical calculations show that the cross terms oscillate
rapidly and that they do not significantly contribute to the
integral, so they can be dropped. An analytical justification
for this approximation can be found in Appendix A.

D. Binary catalog and cosmology

To investigate the statistical properties of our waveforms
we use a catalog of 1000 systems. The individual
source-frame masses of the binary components are uni-
formly distributed between SMy and 45Mg. The angles
O, 5,0, ,¢; are uniformly distributed over the sphere,
and the angle /3 is uniformly distributed between [0, 27]. We
set ¢, and ¢. equal to 0. We truncate the Fisher matrix
integrals of Eq. (18) at f,.x = 1 Hz, and we choose f;, so
that the observation time is 2 years. We assume a ACDM
cosmology and a spatially flat universe with Hy =
67.36 km/s/Mpc, €, = 0.3153 and Q, = 0.6847 and
we fix z =0.1 (corresponding to D; = 447.8 Mpc) for
all binaries.

II1. SOME DATA ANALYSIS BACKGROUND
AND MOTIVATION

There are two kinds of parameter estimation errors:
systematic and statistical. Systematic errors are due (e.g., to
mismodeling of GW signals, and statistical errors are due to
the noise in “ideal” detectors (real detectors usually
contribute to systematic errors as well) [61]. If the sys-
tematic errors associated with neglecting some terms in the
waveform template are smaller than statistical errors, we
can safely neglect those terms and increase the computa-
tional efficiency of parameter recovery without compro-
mising its accuracy. Here we follow Appendix G of [62],
and we introduce a criterion to decide whether systematic
errors are smaller than statistical errors.

Consider a detection scenario where systematic errors
are negligible, so all parameter estimation errors are
statistical and due to noise. Assume also that the SNR
for this detection is large enough that the posterior
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probability distribution is sharply peaked close to the true
parameter values p, [61]. For a parameter vector p close to
Do, the unfaithfulness is 1 — M, and the mean value of the
unfaithfulness over the posterior probability is [62]

(D-1)

1= EMw) = 55w

(21)
where E denotes the expectation value, D = 11 is the
dimension of our parameter space, and the subscript “sta”
stands for “statistical.”

Let us now include systematic errors. If we demand
systematic errors to be negligible with respect to statistical
errors, then the unfaithfulness (1 — M) due to GW mis-
modeling should be negligible with respect to the expected
value of the unfaithfulness in Eq. (21), i.e.,

(D-1)

1-M < .
2 SNR?

(22)

We also need a measure of the overall statistical
uncertainty. Following e.g., Lyons [63], we can associate
an n-dimensional error ellipsoid (about the maximum of
the posterior distribution) with a Gaussian posterior in an
n-dimensional parameter space. This ellipsoid is the region
of 1o confidence interval, within which the parameter
vector can be found with probability ~0.68. The square
roots of the diagonal elements of the inverse Fisher matrix
are the projections of this error ellipse on the parameter
axes. Define € as the product of Fisher errors on all para-
meters, and €, as the volume of the error ellipsoid. It can be
shown that € is given by the square root of the determinant
of the inverse Fisher matrix and that € > ¢,, where the
equality is realized when the parameters are uncorrelated
with each other, while having ¢/¢, > 1 means that there is
some correlation between the parameters. The parameter €,
can be considered an overall measure of statistical errors
and it is unaffected by a linear transformation of the
parameters (or equivalently, by a rotation of the parameter
axes): in fact, €, measures the volume of the error ellipsoid,
which should be independent of the orientation of the para-
meter axes. The ratio /¢, (“correlation factor”) quantifies
the degree of correlation among the parameters, or the
misalignment of the error ellipsoid with the parameter axes.

IV. RESULTS

In this section we present our results on the convergence
properties of the 2PN-¢,® accurate bivariate template
(the fiducial template) proposed in Ref. [46], as measured
in terms of the unfaithfulness and Fisher matrix errors.
In subsection IVA we compute the unfaithfulness due
to truncating the fiducial template in various ways
(described below), to get an idea of the relative importance
of various terms. Subsection IV B identifies criteria under
which systematic errors due to neglecting certain terms in
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FIG. 1. Unfaithfulness histograms for templates A-D (top),

D-G (middle), D and H (bottom) with respect to the fiducial
template for three selected values of e. See the discussion around
Table I for a definition of the templates.

the phase are smaller than statistical errors. Finally, sub-
section IV C discusses the convergence properties of the
statistical errors.

A. Unfaithfulness of truncated templates

We compute unfaithfulness distributions for the 1000
binaries in our catalog. We compare the eight truncated
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FIG. 2. Unfaithfulness-SNR plots for various templates with respect to the fiducial template. Top left: templates A-D; top right:
templates D-G; bottom left: templates D and H; bottom right: templates {eé} and {e%}. The SNR on the secondary y-axis corresponds to
the equal sign in Eq. (22). Lines correspond to the median unfaithfulness (SNR) for our sample of 1000 binaries, and shaded regions

correspond to the 25th and 75th percentiles.

templates A—H defined in Sec. IT A (cf. Table I) against the
fiducial template for three selected initial eccentricities
(e = 0.04,0.07,0.1). A large value of the unfaithfulness
indicates that the dropped term(s) are significant.

Our results are shown in Fig. 1. The histograms in the top
panel show the effect of dropping terms of various orders in
the initial eccentricity e, at 2PN order (i.e., we move
“horizontally” along the top row Table I). As expected, the
unfaithfulness decreases as we move from template A to
template D: template D is the closest to the fiducial
template. Similarly, the middle panel shows the effect of
dropping terms of various PN orders at order ¢§ in the
initial eccentricity (i.e., we move vertically along the right
column of Table I). Again, as we move from template G to
template D (thereby dropping all terms higher than the
Newtonian, 1PN, 1.5PN and 2PN order terms, respectively)
the unfaithfulness decreases. Finally, the bottom panel
corresponds to moving diagonally inwards along Table I,
starting from the top-right corner. In each panel, the unfaith-
fulness gets larger as we increase e this is expected, since all
of these waveforms are small-eccentricity expansions.

An interesting exception is template A. In this case we
are dropping a circular term of order 2PN and ), so the
unfaithfulness is largely independent of ¢, (as it should be).
The small faithfulness (M ~ 0.65) of template A means that
the 2PN-¢)) term is very important, and it is suggestive of
the necessity to include higher PN orders for circular
(e8 order) templates. This is well known in the GW data

analysis community, and it is indeed implemented in the
3.5PN accurate circular template TaylorF2 [61].

B. Systematic errors vs statistical errors

In Fig. 2 we study the conditions under which systematic
errors are smaller than statistical errors for selected trun-
cated templates. Each panel shows the unfaithfulness (left
y-axis) and the SNR obtained when we replace the
inequality in (22) by an equality (right y-axis) of selected
truncated templates as a function of ¢;. Solid lines
correspond to the median unfaithfulness (or SNR) over
our sample of 1000 binaries. Shaded areas correspond to
the 25th and 75th percentiles, so they give an idea of the
spread in the data.

Consider, for example, a detection with SNR p = 20 and
initial eccentricity e, = 0.02. If the corresponding point in
one of these plots lies below the unfaithfulness-SNR curve
of the corresponding template, then systematic errors are
negligible with respect to statistical errors. The faithfulness
by itself is not sufficient to decide whether systematic errors
are negligible: we also need Eq. (22) to determine the
maximum SNR beyond which systematic errors dominate.
Note also that it would be incorrect to use these plots for low
SNRs, since large SNRs were assumed to derive Eq. (22).

Another way to read these plots is as follows. Suppose
that we want to compute the posterior distribution for a
detection with maximum likelihood corresponding to
eg =2x 1072, p~20. If we want systematic errors to
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TABLE II.

Maximum detection SNR—computed using Eq. (22) and the median faithfulness—such that systematic errors are smaller

than statistical errors when we drop the term corresponding to each box. Numbers correspond to e, = 0.01, 0.04, 0.07 and 0.1.c0 means
that the median unfaithfulness is zero within machine roundoff errors.

2PN x? 3.7, 3.7, 3.7, 3.7 (100,6.0,1.7,0.76) x 102
1.5PN (x/%) 2.6, 2.6, 2.6, 2.6 170, 16, 7.0, 5.0
IPN (x) 2.6, 2.6, 2.6, 2.6 28, 4.0, 3.1, 2.9
Newtonian (x%) 2.7,2.7, 2.7, 2.6 2.7, 2.6, 2.6, 2.6

e e

(2300, 8.3,0.80,0.17) x 10*
(6000, 23,2.2,0.58) x 10?
(500, 1.8,0.21,0.081) x 10> (210000, 60,2.0,0.22) x 103

(270, 3.7, 2.7, 2.6) (17000, 4.0, 0.18,0.050) x 10?

4 6
o €

(2.1,0.26,0.009,0.001) x 103
(0,130, 4.3,0.50) x 10*

be negligible with respect to statistical errors when we
construct the posterior distribution, we can choose a
template whose unfaithfulness-SNR curve at e¢;~2 x
10~2 (as shown in Fig. 2) gives p > 20. For example,
templates B, C and D satisfy this criterion, whereas
template A does not. Let us remark once again that
Fig. 2 should not be trusted for low SNRs, therefore (for
example) the unfaithfulness-SNR curve for template A
cannot be trusted in this example.

Curves corresponding to low unfaithfulness (or high p)
mean that the GW template will have negligible systematic
errors (recall that a point must lie below the unfaithfulness-
SNR curve for systematic errors to be negligible). Figure 2
implies that systematic errors become negligible as we
move from templates A to D, GtoDand Hto D, i.e., as we
move towards templates which are closer to the fiducial
template, and our mismodeling errors become smaller.
Furthermore, the ratio of systematic to statistical errors
becomes smaller as e, decreases (p gets higher as ¢
decreases). An exception is template A, for which the
dominant dropped term is independent of ¢.

When are systematic errors negligible with respect to
statistical errors? Focus, for example, on template H in the
bottom-left panel of Fig. 2 and on the two templates in the
bottom-right panel. For template H, systematic errors are
negligible in the whole range 0 < ¢, < 0.1 when p < 103.
For the {ej} template, the bottom-right panels shows that
systematic errors become negligible in the range e, <
6 x 1072 for SNRs below the blue curve. The correspond-
ing range is smaller for the {e3} template. In these regions
the truncated template can be used for parameter estimation
to save computational time and the dominant errors are

TABLEIIl. Maximum e such that detections with p < 25 have
systematic errors smaller than statistical errors, when terms
corresponding to the respective cells in the table are dropped.
Center dots mean that the mismatch is so low that systematic
errors are larger than statistical errors for all e in the range we
consider.

2PN (x?) 0.16 0.21 0.30
1.5PN (x3/2) 0.03 0.12 0.24
IPN (x) 0.008 0.06 0.18
Newtonian (x9) 0.0007 0.015 0.05
e e e e

statistical. The convergence of statistical errors will be the
topic of the next subsection.

Table [I—built through the inequality (22)—shows the
maximum detection SNR for which systematic errors are
smaller than statistical errors for templates obtained by
dropping the term corresponding to a given cell, and for
selected values of e; = 0.01, 0.04, 0.07, 0.1. Similarly,
Table III shows the maximum e, such that detections with
p < 25 have systematic errors smaller than statistical errors
when terms corresponding to the respective cells in the
table are dropped.

C. Convergence of statistical errors

Unfaithfulness-SNR plots can be used to identify tem-
plates for which systematic errors are smaller than stat-
istical errors. Given such a template, statistical errors can be
computed (in the high-SNR limit) as the square root of the
diagonal elements of the inverse Fisher matrix. We computed
statistical errors for the 1000 binaries in our catalog using the
{ed},{e3},{e}} and {€§} templates (where the last one is the
fiducial template).” In Fig. 3 we plot median statistical errors
for these four templates.

Statistical errors change going from template {e9} to
template {e3}, but then they plateau. This convergence of
statistical errors was not observed in [52], where errors were
computed only for the circular and O( €3 )-accurate templates.

The error on the eccentricity Ae, decreases when we go
from a circular template {eJ} to the {e3} template, but it is
roughly constant as we increase the order of the e
expansion. This is because the phase of the circular
template {e)} is independent of ey, so all information
comes from the amplitude alone, leading to large errors.
The errors At,., AQg, and A In D; decrease mildly (within a
factor of two) as e increases for all four templates: these
are all extrinsic parameters for which measurement infor-
mation comes largely from the motion of the detector,
which is not significantly affected by the template we use.
The mass errors AM /M and Ar/n are underestimated by
a factor of 5-10 when we use the circular template {ej)},
and they are largely the same for all eccentric templates

Similar calculations were performed in [52] for two tem-
plates: a circular template and a template at leading order in ¢
with different amplitudes.
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FIG.3. Top two rows: statistical errors for the {eJ}, {e3}, {¢$} and {e§} (fiducial) template. The errors change going from the {eJ} to
the {e3} template, but they are pretty much constant at higher orders in ¢;. Bottom: SNR (left); volume of the error ellipsoid |z|~!/2 as
given by the square root of the determinant of the inverse Fisher matrix (center); and correlation between the parameters, as measured by
€/eq [see the discussion below Eq. (22)].

{ef} with n = 2, 4, 6; in other words, the simplest eccentric The bottom row of Fig. 3 addresses the question: how do
template {e3} already contains enough information to  statistical errors change as we increase the order of the ¢
estimate mass measurement errors. Note also that most ~ expansion in the phase? The bottom central panel shows
errors (with the exception of Ae) vary by at most factor of  that |z|~!/? (the volume of the error ellipsoid, as given by
2 as functions of e. the square root of the determinant of the inverse Fisher
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FIG. 4. Statistical error histograms for the fiducial template and four selected values of e.
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matrix) decreases going from the {e{} to the {¢3} template:
the 11-dimensional error ellipsoid shrinks (i.e., statistical
errors decrease) with more accurate templates. This is in
apparent contradiction with previous plots, showing that
many errors on individual parameters increase. The sol-
ution to this apparent paradox (as shown in the bottom-right
panel) has to do with correlations between parameters, as
measured by e¢/e,—see the discussion below Eq. (22): this
quantity3 increases by a factor of 10°~10° going from the
{ed} template to the {ej} template, and then remains
roughly constant. Recall that all plots refer to a fixed
redshift z = 0.1 (D; = 447.8 Mpc), but errors scale lin-
early with D; in the large-SNR limit.

In Fig. 4 we plot histograms of the statistical errors for all
1000 binaries using our fiducial template. These histograms
essentially confirm the conclusions of [52]. We can
measure the initial eccentricity as long as Aey < ¢ this
is true for most binaries when ¢, > 0.1. If ¢; = 0.01,
Aey < e for about 90% of the binaries in our sample.

Before closing this section, we would like to mention that
setting # = 0 (as was done in [52], thereby reducing the
number of parameters from 11 to 10) results in a decrease of
AQg by a factor of ~10. This suggests that the parameter /3 is
correlated with sky location parameters, and that setting it to
zero can lead to an underestimation of those errors.

V. CONCLUSIONS

We studied the convergence of the frequency domain
2PN-¢$ order accurate “fiducial” GW templates for compact
eccentric binaries of [46]. We built truncated templates by
dropping certain terms, and assessed the importance of those
terms by computing the unfaithfulness (Fig. 1). Dropping
most terms leads to unfaithfulness <0.02 for ¢; < 0.1. The
terms that produce the largest unfaithfulness when dropped
are the 2PN-e) and OPN-¢ terms; extensions at OPN—e/;
with n > 6 [47] and mPN-e) with m > 2 [64] (e.g., the
TaylorF2 approximant) are already available in the
literature.

We then investigated the conditions under which trun-
cated templates produce systematic errors which are
smaller than statistical errors (Fig. 2). This helps us to
identify “fast templates™ that can be used for parameter
estimation considering only statistical errors.

In Fig. 3 we studied the convergence of statistical errors.
Statistical errors converge very quickly, and they do not
change much as long as we include terms of order e% in the
phasing. More accurate templates yield larger statistical
errors than the {e)} template for most parameters, with
the exception of the error Aey on the initial eccentricity.

‘We slightly modify the definition of the correlation factor to
stand for the product of AM/M, An/n, At.,A¢., AD; /Dy,
AQg, AQ,, A and |z|'/2. Note that |z| is equal to the reciprocal
of the parameter ¢, introduced in Sec. III, thus quantifying an
overall measure of the statistical errors.

However the error ellipsoid shrinks as we increase the order
of the ¢, expansion: indeed, statistical errors for most of the
individual parameters increase because of the larger correla-
tions between parameters. Figure 4 shows statistical errors for
the fiducial template, and it confirms the main conclusions of
Ref. [52] (which used slightly different templates).

Several extensions of this work are possible and neces-
sary. An important limitation of our study is that we kept
only the three leading-order harmonics in our templates;
future work should further explore the convergence of iz( f)
[Eq. (2)] as the number of harmonics changes. Our analysis
is specific to stellar-origin BH binaries observed with
LISA, but similar work should be done for second- and
third-generation Earth-based detectors and using other
templates (see e.g.,[44.,45]). There are ongoing efforts to
extend our “fiducial templates” [46] to 1PN order in
amplitude and 3PN order in phase, including the effects
of periastron advance [51]. As soon as these templates are
available, an extension of our analysis can be used to assess
the relative significance of PN amplitude corrections with
respect to phase corrections. It will also be important and
useful to extend our study to Fourier-domain templates
accurate at 3PN and valid for large eccentricities, which are
currently under development [49,65].

ACKNOWLEDGMENTS

We would like to thank Leo Stein and Kaze W. K. Wong
for discussions and suggestions. E. B. is supported by NSF
Grant No. PHY-1841464, NSF Grant No. AST-1841358,
NSF-XSEDE Grant No. PHY-090003, and NASA ATP
Grant No. 17-ATP17-0225. This work has received funding
from the European Unions Horizon 2020 research and
innovation programme under the Marie Skodowska-Curie
Grant Agreement No. 690904. Computational work was
performed at the Mississippi Center for Supercomputing
Research (MCSR) and at the Maryland Advanced Research
Computing Center (MARCC). A.N. is supported by JSPS
KAKENHI Grants No. JP17H06358 and No. JP18H04581.

APPENDIX A: OSCILLATORY CROSS TERMS
IN THE FISHER MATRIX

As discussed in Sec. II, the cross terms in the integrand
of Eq. (18) are highly oscillatory, and thus can be neglected.
This can be understood analytically as follows. Let us first
truncate the templates of [46] at leading order in both the
PN parameter x and the initial eccentricity e, (i.e., we
consider circular templates). We first decompose the
template into its first six harmonics:

h(f) = hi(f) + ho(f) + hs(f) + ha(f) + hs(f) + e (f),
(A1)

and then we decompose each harmonic into an amplitude
and a phase to get
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(A2)

= ZAj(f)e‘P

3 (Gmzf\/3 83 n
J¢‘+128;7< 3 > <2> T4

(A3)

W;(f) = 2xf1.

By Eq. (18), the Fisher matrix elements involve deriv-
atives of the template with respect to the parameters:

871,-(]‘)_[% . aw] v

(A4)

+ IA;
Opa Opa / Opa

and they can be broken down into a sum of integrals of the
form

Su 1 O, (f) Oy, ()"
E}l J1 J2 d
/f min N n (f ) apA ap B f

g}i /fn\ﬂx 1 {8Ajl + 'A a\le}
= o l .
min Sn(f) Opa N Opa

= — iA
Opg aPB

(AS)

as a result of the coupling of different harmonics (j;, j,)
and different parameters (p,, pg). The phase term in the
exponential reads

3 (Gmzf\75/3
R e A o

1G)-G))

Therefore the integrand has a rapidly oscillatory phase
A¥ « f~3/3 whenever j, # j,. For diagonal elements of
the Fisher matrix (p4, = pp) terms with j; = j, always
exist, and those integrals dominate. For certain off-diagonal
terms (e.g..,the In D;-¢. term), the integrals with j; = j,
exactly vanish. However, the natural scale for these terms is
set by the corresponding diagonal elements of the Fisher
matrix, and the integrals with j; # j, can still be neglected.

(A6)

APPENDIX B: BEAM PATTERN FUNCTIONS
AND OTHER QUANTITIES APPEARING
IN THE TEMPLATES

In this appendix, for completeness, we define certain
quantities appearing in the GW strain via Egs. (2), (3), (4)
and (5). It is well known that certain combinations of
trigonometric functions of the eccentric anomaly u of a
binary with eccentricity e can be written as Fourier-Bessel
series [47,66]:

sin u (B1)
1—ecosu ecosu

Z i (ke) sin kl,
=1

cos u 2

Z Ji(ke) cos ki,

k=1

_ B2
l—ecosu e ( )

where J; denotes Bessel functions of the first kind

_ ® (_l)m { 2n+k
_;nlr(n+k+l)<2> . (B3)

and I" is the Gamma function. When combined with the
well-known relations involving the orbital phase ¢ of a
Keplerian orbit

Ji(x)

cosu—e
=—, B4
cosg 1 —ecosu (B4)
= (1 )12 sin u ’ BS
sing = (1-¢7) 1 —ecosu (B5)
the equations above yield
2 e
cosp=—-e+—(1—e )ZJk(ke) coskl  (B6)
€ =1
sing = (1—e2)12) "(J;_y(ke) = Ty (ke)) sinkl. (B7)
k=1

Following [47], the plus and cross polarizations can be
written as

G? 5
h, = - C4ng [(2 cos(2¢p — 2f3) + gcos(cj) —28)
+§cos(3¢ —2p) + € cos(2ﬁ)> (1 + cos?1)
+(ecos ¢ + ez)sinzl] , (B8)
h, = — 4G2” [4sin(2¢) — 28) + Se sin(¢p — 2)
c*pD;
+esin(3¢p — 2f3) — 2¢*sin(23)] cos 1, (B9)

where u = m;m,/(m; + m,) and p (the semilatus rectum
of the orbit) is related to the orbital angular frequency @ via

p \32
co=(m1+m2)1/2(1_62) ;

where the inclination angle ¢ is defined by cos: =L - N
[55,59], where L. and N are unit vectors in the direction of
the orbital angular momentum and in the direction of the
source, respectively. By plugging Egs. (B6) and (B7) into
the expressions for 4, and h, above, we get

(B10)

G
h, = ;Vl (Mw)?/3 Z [C,  cos(jI) + S, sin(jl))].

C

(B11)
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The quantities CLX and Sj+,>< read [47]

3¢ 3
Ci=e (— —225 —5cct + s?)

1
+ ﬁ€3(1602ﬁ + 166‘2‘5Cl2 - 3S%), (BIZ)
1 __3 2 23 502
A e(c;i + 1)syp+ e (c;i +1)s5,  (B13)
2 24
1 4 3
C = 3ec;sy5 — 3¢ Cisa, (B14)
1 23 5
SX = —3€C2ﬂci +E€* CopCis (BIS)
Ci_ = 2(02ﬁ + CgﬁC?) + 62(—56‘25 - SCQﬁC? + S,z)
1
+Ee4(3302ﬂ =+ 33C2ﬁc% —4S12), (B16)
82 =2(c? + 1)sa5 = 5€2(c? + 1)s25
+ 3e*(c7 + 1)s25, (B17)
2 2 1,
C% = —4c;50p + 10e° ¢824 — 5 e'cisy, (B13)
$2 = dcype; — 10e*cppe; + 6e*cape;, (B19)

9 9
Ci = EE(Cz/f + epci) = Ees(l%w +19¢5p¢} = 257),

(B20)

S3 :ge(c?—l- l)szﬂ—%e3(0?+ 1)s24, (B21)
C3 = —9ec;sp5 + %e%iszﬂ, (B22)

S3 =9ecypc; — ie%zﬂci, (B23)

8

Cﬁ = 862(C2ﬂ + C%Czﬂ)

42
+ et (—20c2ﬁ —20c2cay + %) . (B24)

St =8e? (s + cF59p) — 20e* (505 + cF525),  (B25)
Ck = —16€%c;s05 + 40e*c; 525, (B26)
Si = 16626’1'6'215 - 406401'62/;, (B27)
625
Ci_ = Ké(cw + CZﬂC%)7 (B28)
625
Si_ = K (33((,'[2.?2/5 + Szlj), (B29)
625
Ci = — ﬁ €3CiS2ﬂ, (B30)
625
Si = ﬁ€3C2ﬂCi, (B31)
g =L 2 B32
L= oot eaei), (B32)
81
§¢ = 764(0?82ﬁ + 525), (B33)
81
Ccé = _Te“c,-szﬂ, (B34)
81
Sg( = 76462136'[', (B35)

where ¢,; = cos2f3, 5,5 = sin2f3, ¢; = cost and s; = sin 1.
The GW strain at the detector is the linear combination
h(t) = F_ h, + Fh,, and its Fourier transform is given
by Eq. (2). The beam pattern functions F, and F, can be
found, e.g., in [54,55].
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