
Open Computing Infrastructure for Sharing Data Analytics
to Support Building Energy Simulations

Omer T. Karaguzel1; Mohammed Elshambakey2; Yimin Zhu, A.M.ASCE3; Tianzhen Hong4; William J. Tolone5;
Sreyasee Das Bhattacharjee6; Isaac Cho7; Wenwen Dou8; Haopeng Wang9;

Siliang Lu10; Mohamed Khalefa11; and Yong Tao12

Abstract: Building energy simulation plays an increasingly important role in building design and operation. This paper presents an open
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(DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as
the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US
Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility
and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations;
(3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations.
Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and
benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be
used in assessing the applications of VIFI. DOI: 10.1061/(ASCE)CP.1943-5487.0000857. © 2019 American Society of Civil Engineers.
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Introduction

Buildings account for more than one-third of the primary energy
consumption in the world; therefore, reducing energy use and
greenhouse-gas emissions in the building sector is a key strategy
for achieving global energy and environmental goals. Building
performance simulation has played an increasingly important role
in designing, operating, and retrofitting buildings to predict energy
efficiency and utility costs (Roth 2017). As more energy policies
and regulations push new buildings or building retrofits toward
achieving low- or zero-net-energy (ZNE) goals, building energy
simulations can be used as tools for evaluating and comparing
design alternatives that employ integrated building technologies
and control strategies. ZNE buildings also require balancing

demand-side building energy efficiency and on-site generation with
the supply-side renewable power, which requires an optimization
based on various performance metrics, including energy use, en-
ergy cost, return on investment (ROI), or greenhouse-gas (GHG)
emissions. Moreover, energy models developed in the building de-
sign phase can be adapted for use later in the building operation
phase to support performance diagnostics and operation improve-
ments, along with guiding building retrofit strategies.

Building performance simulations rely on diagnostic and/or
prognostic models to understand and predict building performance.
Often, these models require significant empirical data inputs on
building operations, physical and environmental conditions, or oc-
cupants and their behaviors (D’Oca and Hong 2015; Kwak et al.
2015). In addition, model calibration with empirical data is critical

1Assistant Professor, School of Architecture, Carnegie Mellon Univ.,
5000 Forbes Ave., MMCH #415, Pittsburgh, PA 15213. Email: okaraguz@
andrew.cmu.edu

2Postdoctoral Research Fellow, College of Computing and Informatics,
Univ. of North Carolina at Charlotte, 9201 University City Blvd., Charlotte,
NC 28223; Researcher, Knowledge-Based and AI Systems, SRTA-City,
Universities and Research District, New Borg Elarab, Alexandria 21934,
Egypt. ORCID: https://orcid.org/0000-0001-6059-5032. Email: melshamb@
uncc.edu; mshambakey@srtacity.sci.eg

3Professor, Dept. of Construction Management, Louisiana State Univ.,
Baton Rouge, LA 70803 (corresponding author). Email: yiminzhu@lsu.edu

4Staff Scientist, Lawrence Berkeley National Laboratory, 1 Cyclotron
Rd., Berkeley, CA 94720. Email: thong@lbl.gov

5Professor, College of Computing and Informatics, Univ. of North
Carolina at Charlotte, Charlotte, NC 28223. Email: william.tolone@uncc.edu

Note. This manuscript was submitted on July 6, 2018; approved on
March 29, 2019; published online on July 19, 2019. Discussion period open
until December 19, 2019; separate discussions must be submitted for in-
dividual papers. This paper is part of the Journal of Computing in Civil
Engineering, © ASCE, ISSN 0887-3801.

6Postdoctoral Research Associate, College of Computing and Infor-
matics, Univ. of North Carolina at Charlotte, Charlotte, NC 28223. Email:
sdasbhat@uncc.edu

7Research Assistant Professor, College of Computing and Informatics,
Univ. of North Carolina at Charlotte, Charlotte, NC 28223. Email: icho1@
uncc.edu

8Assistant Professor, College of Computing and Informatics, Univ. of
North Carolina at Charlotte, Charlotte, NC 28223. Email: wdou1@
uncc.edu

9Ph.D. Student, School of Architecture, Carnegie Mellon Univ., 5000
Forbes Ave., MMCH #415, Pittsburgh, PA 15213. Email: wanghp18@
gmail.com

10Ph.D. Student, School of Architecture, Carnegie Mellon Univ., 5000
Forbes Ave., MMCH #415, Pittsburgh, PA 15213. ORCID: https://orcid
.org/0000-0002-4550-4152. Email: siliang1@andrew.cmu.edu

11Assistant Professor, J.B. Speed School of Engineering, Univ. of
Louisville, Louisville, KY 40208. Email: mohamed.khalefa@louisville
.edu

12Professor, Dept. of Engineering, Nova Southeastern Univ., 3301
College Ave., Ft. Lauderdale, FL 33314. Email: ytao@nova.edu

© ASCE 04019037-1 J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2019, 33(6): 04019037

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f N
or

th
 C

ar
ol

in
a 

A
t C

ha
rlo

tte
 o

n 
09

/3
0/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000857
mailto:okaraguz@andrew.cmu.edu
mailto:okaraguz@andrew.cmu.edu
https://orcid.org/0000-0001-6059-5032
mailto:melshamb@uncc.edu
mailto:melshamb@uncc.edu
mailto:mshambakey@srtacity.sci.eg
mailto:yiminzhu@lsu.edu
mailto:thong@lbl.gov
mailto:william.tolone@uncc.edu
mailto:sdasbhat@uncc.edu
mailto:icho1@uncc.edu
mailto:icho1@uncc.edu
mailto:wdou1@uncc.edu
mailto:wdou1@uncc.edu
mailto:wanghp18@gmail.com
mailto:wanghp18@gmail.com
https://orcid.org/0000-0002-4550-4152
https://orcid.org/0000-0002-4550-4152
mailto:siliang1@andrew.cmu.edu
mailto:mohamed.khalefa@louisville.edu
mailto:mohamed.khalefa@louisville.edu
mailto:ytao@nova.edu
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29CP.1943-5487.0000857&domain=pdf&date_stamp=2019-07-19


to the quality of building performance simulations (Coakley et al.
2014). However, gaining access to empirical data, particularly
monthly or time-interval energy data, can be challenging due to the
data privacy concerns of building owners. Thus, on one hand, the
incorporation of empirical data into building performance simula-
tions improves simulation quality; on the other hand, it presents a
data privacy challenge.

This paper introduces an open computing infrastructure, or
Virtual Information Fabric Infrastructure (VIFI), that integrates
predictive models with empirical data to enhance building energy
simulations. VIFI shares analytics on raw data, complementing
conventional data-sharing strategies that require exposing the raw
data directly. The framework is designed based on the concept
of dynamic data-driven application systems (DDDAS) (Darema
2005). In essence, DDDAS include two parts: computation and
measurement. Computation refers to predictive models or simula-
tions for a particular purpose, such as building energy simulations,
and measurement refers to instrumentation for data collection,
such as building sensors or data archives. The computation piece
takes advantage of measurement data to dynamically calibrate sim-
ulations or predictions and provides feedback to the measurement
piece to inform future data-collection efforts. The feedback loop
between computation and measurement allows continuous im-
provement in simulations and predictions.

Two aspects of VIFI are particularly significant. First, the VIFI
computing infrastructure offers a new data-sharing alternative in
cases where a conventional data-centric sharing strategy is not
applicable. For example, advancements in building sensor and con-
trol technologies have significantly improved the ability of building
owners and managers to collect building performance data, poten-
tially offering an unprecedented opportunity to improve building
energy simulations as they apply to the design of new buildings,
building retrofits, or operational strategies. Yet, access to these big
data by building designers and engineers is highly constrained due
to data privacy issues. In particular, building owners or facility
managers may not feel comfortable sharing the data with others
because such raw data often contain sensitive occupant informa-
tion. In addition, the raw data may not be in the correct form for
others to use. Nevertheless, data owners may support the general
idea of collaborating with others to improve the quality of building
energy simulations. In such scenarios, the VIFI data-sharing infra-
structure can alleviate the data owner’s concerns about privacy and
support their ability to collaborate with others without exposing
their raw data.

Consequently, the VIFI data-sharing infrastructure potentially
allows building designers and engineers to access a larger pool of
building data than would be possible using a conventional direct-
sharing strategy alone. This potential leads to another significant
contribution of the infrastructure: VIFI allows building designers
and engineers to enhance their simulations by combining high-
quality empirical data with diagnostic and/or prognostic models for
simulations. Energy simulations applied to building design often
have many input parameters that need to have strong relevance to
buildings under design. Such relevance significantly affects the
quality of simulations. Improved relevance can be achieved by
offering building designers and engineers access to a large set of
relevant building data, which the new strategy can offer. Therefore,
the infrastructure has the potential to change how building perfor-
mance simulations are done in the future.

The following sections discuss existing studies that are relevant
to building energy data integration and sharing, outline the pro-
posed VIFI for building energy simulations, present a case study to
demonstrate the implementation and use of the infrastructure, and
summarize key conclusions and areas for future research.

Related Studies

The need to incorporate empirical data in building energy simula-
tions has been extensively explored in the existing literature. Build-
ing energy simulations typically require several input variables,
many of which are related to human behavior, such as an occu-
pancy or lighting schedule (Crawley et al. 2001). Traditionally,
building energy simulations are performed in a closed manner
with all inputs fixed or assumed to be constant during a simulation
(e.g., Zhu 2006; Pan et al. 2007). To improve the accuracy of
simulations, dynamic approaches that incorporate real-time varia-
ble inputs have recently gained attention among researchers. For
example, Pang et al. (2016) presented a method that integrates
real-time data such as weather, plug load power, lighting power,
occupancy, and room temperature settings with whole-building
energy simulation. Similarly, Kwak et al. (2015) discussed real-
time simulation through cosimulation to optimize building opera-
tions. However, most such applications have a focus on building
operations, not building design.

Although simulations using real-time data during the design
stage are rare, the idea of enhancing design-stage simulations
through cosimulation with other programs has been previously ex-
plored. For example, Feng et al. (2015) and later Chen et al. (2018)
developed an occupancy simulation software tool to work with
building energy simulation through cosimulation. Software plat-
forms have also been developed for deploying cosimulations, such
as the tight-coupling approach using the building controls virtual
test bed (BCVTB) (Wetter 2011) or the loose-coupling approach
based on the occupant behavior XML (obXML) (Hong et al. 2016).
Additionally, OpenStudio SDK provides an ecosystem of software
tools that allows a comprehensive suite of modeled variables such
as lighting and occupancy to be analyzed in whole-building energy
simulations through an open application programming interface
(Guglielmetti et al. 2011). However, the deployment of the Open-
Studio SDK requires energy models and associated data to be
stored on an OpenStudio server for model execution and calibra-
tion. Thus, the potential of the proposed VIFI strategy, i.e., moving
analytics to data and thus alleviating data privacy concerns, has not
already been explored in the OpenStudio SDK. Clearly, whole-
building energy simulation trends have demonstrated the need for
simulations that address finer component levels. However, even
cosimulations cannot fully address the issue of a simulation’s
relevance to a particular design because the parameters of cosimu-
lations may be tuned to data from dissimilar buildings. Thus, con-
nections must be established between buildings with high relevance
to a particular design and design-stage simulations in order to fur-
ther enhance the robustness of such simulations.

DDDAS offer a method to establish the aforementioned connec-
tions between buildings and simulations. Since their inception,
DDDAS have been applied in scenarios as diverse as emergency
and disaster management (Madey et al. 2007), supply-chain sys-
tems (Celik et al. 2010), and threat management for urban water
distribution systems (Wang et al. 2014). Potential DDDAS appli-
cations to building performance simulations have been identified
as well. For example, Spitler (2006) discussed the use of model-
based control systems as an application of DDDAS and the need
to explore methods of data-gathering processes under a DDDAS
framework. Bouktif and Ahmed (2015) discussed the application
of DDDAS to the energy consumption of a residential system,
where the application includes real-time metering and sensor data
and incorporates human decisions into energy analytics to enhance
predictions. In current building performance applications, DDDAS
fit well for applications such as real-time model-based simulations
for optimizing building operations (Pang et al. 2016).
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These previous applications of DDDAS in buildings mainly
focused on daily operations; applications of DDDAS to building
designs have not yet been reported in the existing literature. The
application of DDDAS during the design of new buildings or build-
ing retrofits is different from applications to operations, in particu-
lar because the input data for design simulations often cannot be
collected in situ. In addition, simulations during the design stage
often cannot be calibrated using empirical data from buildings that
are exact proxies for the building under design (Lomas et al. 1997).
Thus, a better strategy is to offer maximum access to building data
sets, such that building designers and engineers are more likely to
find relevant data from existing buildings for model input or cal-
ibration. As discussed, VIFI provides such a possibility by offering
a complementary approach to the existing data-centric sharing
strategy, increasing access to shared building performance data.

In summary, existing studies concerning building energy simu-
lations call for component-level cosimulations to better address the
need for different types of simulations. However, these component-
level simulations still rely on data that may not be representative of
a particular building under design. Consequently, better access to
building performance data is needed. The increasing availability of
big building operation data sets coupled with the DDDAS frame-
work offers the possibility of a new data-sharing approach that al-
lows building designers and engineers to seek those data that best
match a given design or operation optimization plan and integrate
these data with associated building simulations.

Open Computing Infrastructure for Sharing
Analytics

This section presents a high-level conceptual architecture for the
VIFI open computing infrastructure. Because the topics of simula-
tion models and data collection from existing buildings have al-
ready been discussed extensively and are not the major focus of
this work, the application of VIFI to the integration of simulations
with empirical data is the focus here.

High-Level Conceptual Architecture

Fig. 1 demonstrates the high-level conceptual architecture of VIFI.
There are three key components in the infrastructure: predictive
models (such as simulations), existing buildings, and the VIFI plat-
form. The predictive model component represents any predictive

model that may be applied during building design process, such
as a whole-building energy simulation. The existing building com-
ponent represents sources of empirical data. Data may be drawn
from real-time sensor readings or from other stored logs of building
operations, occupant behaviors, indoor or outdoor environmental
conditions, and other variables relevant to building research or en-
ergy applications. Finally, the VIFI platform represents a comput-
ing platform that coordinates the feedback loop between the first
two components.

This computing infrastructure extends a conventional applica-
tion of DDDAS by inserting a generic computing component, the
VIFI platform, between computation and instrumentation, the two
key components of DDDAS. This extension potentially allows a
wider adoption of DDDAS and better support of data sharing.
In the following section, the key components of this VIFI platform
are detailed.

VIFI Platform

VIFI is an open-source platform that can run on any operating sys-
tem. Although the final VIFI version will be conveyed on an open-
source vault, the Amazon Elastic Compute Cloud (Amazon EC2)
was used for the initial implementation, testing, and assessment of
the platform. In essence, VIFI brings analytics to locations that con-
tain a large amount of data. VIFI allows users to access data already
claimed by others; thus, users of VIFI have the capacity to perform
a variety of analyses, such as integrating data from multiple loca-
tions, for example. VIFI permits virtual sharing of various sorts of
test beds, such as labs that create trial data, without requiring raw
data sets that may be too large or sensitive to share outside the con-
trol of the primary data owners to be moved. The current imple-
mentation of VIFI consists of the following main components
(Figs. 2 and 3):
• Portable analytic container (PAC): a PAC is a lightweight virtual

machine, called a container, that hosts software (e.g., Energy-
Plus), libraries [e.g., Eppy Python module to communicate with
EnergyPlus (Eppy 0.5.44)], and any other tools or operating sys-
tems required by end-users to analyze data. PACs can receive
and execute end-user analysis programs if the required programs
are not already contained in the PAC. Leveraging container tech-
nology [e.g., Docker (Miell and Sayers 2016)], a PAC is portable
and can migrate and execute on heterogeneous host platforms.
PACs facilitate reusability by hosting and utilizing different ana-
lytical libraries and programs pulled from shared repositories
(e.g., DockerHub). Container technology enables the movement
of analytics rather than the movement of data, thus alleviating
problems related to the transfer of big data, e.g., download times
and/or security requirements. Each PAC is a lightweight virtual
machine implemented as a Docker image (DockerHub) and con-
taining the required libraries and support programs that are re-
quired to execute the desired analysis. PACs offer a number of
affordances for distributed analytics: (1) they can be easily trans-
mitted over the network due to their limited size; and (2) they
simplify analytics development for inexperienced clients. The
VIFI infrastructure, as explained by Talukder et al. (2017) and
Elshambakey et al. (2017), is also scalable, i.e., enabling the in-
tegration of various VIFI nodes [e.g., a Building Information
Model (BIM) server]. The ability for VIFI workflows to access
fixed VIFI nodes allows VIFI to cooperate with non-open-source
resources, assuming that a VIFI user has the proper credentials.

• Registry service: distinctive PACs are stored, searched, utilized,
and shared through a registry service. In the current usage, a
docker hub (DockerHub) is utilized to implement the registry
service. Future VIFI upgrades will incorporate expansions of

Fig. 1. High-level conceptual architecture of the open data-sharing
environment.
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appropriated registry repositories to advance download and
transfer time of PACs.

• Orchestrator: the orchestrator provides automatic correspon-
dence between distinctive workflow segments and the coordina-
tion of infrastructure at various locales. Every segment can be as
basic as a solitary procedure running on a host, or the host itself.
In the current VIFI implementation, NiFi version 1.1.1 functions
as the orchestrator, coordinating the execution of workflow seg-
ments across the VIFI infrastructure. NiFi is an open-source tool
for automating and managing the flow of information between
systems. Workflow segments can dwell on the same host or
distributed hosts through NiFi site-to-site communication The
VIFI orchestrator includes loosely coupled NiFi interaction and
coordination between destinations that empower fault-tolerance
and scalability with an increasing number of data stores as well
as end-users.

• User node: the user node is the passageway for a client to inter-
face with the VIFI framework. The user node provides a user
interface, communication, and basic computation capacities.
The current VIFI implementation uses NiFi at every user node
to empower correspondence with other workflow parts, as well
as workflow inception. Clients can plan, alter, and submit
systematic contents as well as other required sources of info to
VIFI through a NiFi web interface.

• Data site: data sites are locations in the VIFI infrastructure that
have varying types of heterogeneous information from different
sources and models. Each VIFI-empowered information site
uses NiFi and Docker Swarm (Vohra 2017). NiFi empowers
appropriated coordination and correspondence between every
data site and other parts of the workflow, and Docker Swarm

executes clients’ contents utilizing determined PACs as Docker
orchestrators. Consequently, Docker Swarm conveys a group of
services at every data site for parallel investigation execution
without expecting clients to have any previous knowledge of
the framework, stages, or situations at every datum site.

• Metadata server: the metadata server stores and lists gathered
data and comments about data sets and records, which can be
created by utilizing a set of enlisted extractors or physically in-
cluded by clients and information proprietors. For movability,
extractors are containerized as PACs. A metadata server sup-
ports data set search and discovery across different sites, as
shown in Fig. 3.

• Crawler: the crawler provides data-crawling through extractors
that send extracted data to the metadata server.

• Watchdog: The watchdog updates the metadata server for any
modifications of the registered distributed data sets.
Fig. 2 outlines the current VIFI implementation [Fig. 2(a)] and

compares this implementation against conventional data-centric
sharing approaches [Fig. 2(b)]. Under conventional data-centric
sharing approaches [Fig. 2(a)], users must first download data
locally and then run required analytics. Under the VIFI implemen-
tation [Fig. 2(b)], users submit required analytics (including a
Docker image and scripts) to data locations and then retrieve post-
processed results. The example in Fig. 2 shows the execution of
multiple requests simultaneously in both cases.

This paper focuses on the data privacy benefits of VIFI more
than the benefits of VIFI in handling large data sets; nevertheless,
VIFI was previously evaluated for an earth science application,
where observational data (≅11 GB) and model data (≅21 GB)
were analyzed and compared to evaluate the fitness of the model

Fig. 2. VIFI system compared with a traditional data analysis system: (a) traditional information fabrics; and (b) VIFI information fabric.

Metadata Processing Discovery & Analysis

Enrollment Extracting
Metadata

Indexing
Metadata Updates Explore &

Search Analysis

Fig. 3. Data life cycle in VIFI.
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(Talukder et al. 2017; Elshambakey et al. 2017). In this setting, it
was observed that VIFI consumed far less processing time than a
conventional data-centric approach. This is because under VIFI,
Docker images need be downloaded only once and then again
as updates are available. The data update rate at each data site under
the conventional approach is expected to be much higher than the
update rate for Docker images; accordingly, users of the conven-
tional approach must download updated data far more often than
they would need to update Docker images under the VIFI approach.
Table 1 illustrates the execution time saving by VIFI, as found by
Talukder et al. (2017).

As indicated in Table 1, the data-transfer time in the case of the
conventional approach is 246.088 s where model and observation
data are transferred simultaneously from Data sites 2 and 3 to the
user node (Data site 1). Due to the workflow implementation in the
case of VIFI, the maximum transfer time is calculated

MaxðT1;T2Þ þ T3

where T1 = transfer time of user scripts and configuration files from
Data site 1 to Data site 2 + Docker image transfer time from
Amazon Web Services (AWS) Elastic Container Registry (ECR) to
Data site 2 + transfer time of results from Data site 2 to Data site 1;
T2 = transfer time of user scripts and configuration files from Data
site 1 to Data site 3 + Docker image transfer time from AWS ECR
to Data site 3 + transfer time of results from Data Site 3 to Data site
1; and T3 = Docker image transfer time from AWS ECR to Data
site 1.

Thus, the maximum transfer time under VIFI is 0.682 s com-
pared with 246.088 s in the conventional approach.

Case Study

A case study is used to demonstrate the application of VIFI for
the integration of empirical data with whole-building energy sim-
ulations in the early building design phase. The case study gener-
ates dynamic lighting schedules using data processing algorithms
within a PAC. Algorithms extract the necessary information from
empirical building data collected from the Intelligent Workspace at
Carnegie Mellon University. The Intelligent Workplace at Carnegie
Mellon University is a living and lived-in research laboratory dedi-
cated to prototyping and testing of integrative high-performance
building technologies such as shading integrated solar photovol-
taics, automated operable windows, automated adjustable external
shading devices, and daylight-controlled dimmable electric lights.
Building data (including occupancy presence) are collected from
these systems through an extensive wired and wireless sensor net-
work and data-acquisition systems.

Measured building operation data from the Intelligent Workspace
are utilized remotely by a building energy simulation tool,

EnergyPlus, via the VIFI platform. The VIFI platform facilitates
the operation of an analysis procedure that converts the collected
empirical data into hourly building lighting schedules. Without mov-
ing any raw empirical data from its original location, VIFI executes
analytics that transform the raw data collected by sensors in the In-
telligent Workspace every 5 min into an hourly lighting schedule in a
specific format that is readable by the remote EnergyPlus simulation
engine. VIFI supports the integration of this empirically derived
lighting schedule with EnergyPlus as well as the execution of annual
energy performance simulations that reflect the schedule.

Description of the Building Energy Model

The small-sized commercial reference office building provided by
the US Department of Energy Building Technologies Office (Deru
et al. 2011) was used for the case-study simulations. This model has
been developed in the format of EnergyPlus version 8.7, which has
been extensively utilized for computational evaluations of inte-
grated building energy performance, mechanical and electrical sys-
tems, and thermal interactions of building spaces with increased
spatial and temporal granularity (Field et al. 2010). The specific
small-sized office model is selected from a comprehensive database
containing 16 different hypothetical reference building definitions
that represent about 70% of the new commercial building stock in
the United States (DOE-EERE 2018).

The DOE small office reference model is a single-story commer-
cial office with a total conditioned and usable floor area of 511 m2.
The building has a rectangular shape and an aspect ratio of 1.5, with
its long axis on a north–south orientation (Fig. 4). Punched windows
are used to represent vertical fenestration configurations, which are
uniformly distributed to each cardinal orientation with a window-to-
wall ratio (WWR) of 21.2% (total window area is 59.6 m2). Thermal
zone layouts are formed using the perimeter-core zoning approach,
resulting in five thermal zones and an unconditioned and unoccupied
attic space. The building envelope is composed of thermally massive
and insulated construction assemblies that comply with the mini-
mum requirements imposed by the American National Standards
Institute/American Society of Heating, Refrigerating and Air-
Conditioning Engineers/Illuminating Engineering Society of North
America (ANSI/ASHRAE/IESNA) Energy Standard 90.1 for non-
residential building types (ASHRAE 2004). The thermophysical
properties of the main building envelope assemblies are listed in
Table 2. The model is equipped with a double-pane glazing system
defined in a simplified manner with U-values, the solar heat gain
coefficient (SHGC), and VT inputs of 3.241, 0.385, 0.305, respec-
tively (including the thermal and optical effects of frames and divid-
ers). Internal loading conditions pertaining to artificial lights,
electrical appliances, and occupancy are given in Table 3 together
with outdoor ventilation rates, infiltration rates, and thermostatic
control limits for indoors.

Table 1. Comparison of transmission time between the conventional approach and proposed VIFI approach for the earth science use case

Data type Data size (MB) Source Destination Time (s)

Conventional approach
Model data 21,296 Data site 3 Data site 1 246.088
Observation data 11,373.308 Data site 2 Data site 1 126.934

VIFI approach
Docker image (one-time transfer) 578.13 AWS ECR Data site 1 0.156
Docker image (one-time transfer) 578.13 AWS ECR Data site 2 0.128
Docker image (one-time transfer) 578.13 AWS ECR Data site 3 0.135
User script and configuration file 0.008 Data site 1 Data site 2 0.183
User script and configuration file 0.008 Data site 1 Data site 3 0.145
Result files 0.156 Data site 2 Data site 1 0.186
Result files 0.156 Data site 3 Data site 1 0.246
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The HVAC system type modeled for the building is a group of
packaged single-zone air conditioners (PSZ-AC) with single-speed
direct expansion (DX) coils and compact gas furnaces for heating
defined for each of the five thermal zones. There is not a central air
conditioning unit (AHU) or an economizer in this configuration.
System fans are of the constant-volume type without variable-speed
drivers (Table 4). The reference office model is simulated under the
environmental boundary conditions for the location of Pittsburgh,
Pennsylvania. A detailed statistical climate summary is provided in
Table 5.

VIFI Implementation of the Case Study

Fig. 5 shows the VIFI implementation of the case study. Although
the case study was implemented on the Amazon EC2, the authors
emulated a distributed environment as in actual applications, in-
cluding a building information model (BIM) server, a user node,
a data server, and an energy server. The BIM server contains the
BIM of the case building. The user node represents the location
where building designers and engineers work. The data server
represents the access point to empirical data, where raw lighting

schedule data are stored in this case. The energy server is where
EnergyPlus is located.

The current capability of VIFI can be extended by incorporating
fixed VIFI nodes (e.g., BIM server and EnergyPlus server) where
analytics do not have to run inside containers (Talukder et al. 2017;
Elshambakey et al. 2017). The ability of VIFI workflows to access
fixed VIFI nodes allows VIFI to cooperate with non-open-source
resources given that a VIFI user has the proper credentials. The
services provided by the BIM server, the data server(s), and the

Table 2. Envelope thermophysical properties

Assembly U-factor (W=m2 K) Thickness (m)

Walls 0.698 0.298
Attic soffit 0.193 0.264
Roof 5.082 0.011
Ground slab 2.193 0.101

Table 3. Internal loading conditions

Model parameter Value

Lighting power density 10.76 W=m2

Equipment power density 10.76 W=m2

Occupancy density 18.58 m2=person
Outdoor air ventilation rate 10 L=s=person
Envelope infiltration rate 0.000302 m3=ðs · m2Þ
Heating set-point/set-back temperature 21°C=15.6°C
Cooling set-point/set-back temperature 24°C=26.7°C

Fig. 4. Overall geometry of the reference building model: (a) three-dimensional exterior view; and (b) plan layout of a typical floor.

Table 4. HVAC system properties

System parameter Definition/value

Cooling system Single-speed DX cooling coils
COP ¼ 3.66W=W

Heating system Gas burner nominal efficiency =
0.80

Fans (only supply) Constant-volume fans with
efficiency of 0.54 at maximum
622 Pa

Minimum air flow rate fraction
(turndown ratio)

Autosized to meet zone
ventilation requirements (from
occupancy)

OA controller No economizers
Design cooling supply air temperature 14.0°C
Design heating supply air temperature 40.0°C

Note: COP = coefficient of performance; DX = direct expansion; and OA =
outside air.

Table 5. Building location and climate characteristics

Parameter
Pittsburgh, Pennsylvania
ASHRAE climate 5A

Weather station number TMY3—725200
Coordinates 40°30′ N; 80°13′ W
Elevation (m) 350
Global solar radiation (Wh=m2) 3,804.5
Direct solar radiation (Wh=m2) 3,112.5
Diffuse solar radiation (Wh=m2) 1,956.3
Wind speed (m=s) 3.94
Dry-bulb temperature (°C) 10.50
Relative humidity (%) 66.41
Heating degree days (18.3°C) 3,124
Cooling degree days (18.3°C) 417
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energy server are registered with VIFI so that a user can determine
what operations or analytics are available for their applications. In
the case study, the following operations and analytics are registered
with VIFI first in the PAC registry (Fig. 5):
• TheBIM server (fixed VIFI node) accepts requests to create an

input data file (IDF) based on the BIM model for energy simu-
lations and returns an IDF.

• The data server creates and returns hourly lighting schedules
based on the raw data.

• The energy server (fixed VIFI node) accepts an IDF and returns
energy simulation results.
The following is the workflow of the VIFI implementation of

the case study:
In Step 1, a building designer or engineer contacts the BIM

server to get an EnergyPlus Input Data File (IDF) (Step 2), which
contains default schedule settings. At this point, some or all parts
of the IDF need to be updated based on proper data analysis
(e.g., lighting schedule or occupancy schedule). In this case study,
the BIM server was accessed directly to simplify the implementa-
tion. In future implementations, the BIM server can be imple-
mented as a fixed VIFI node that does not require a PAC to
access. Sharing a BIM directly with all partners is a conventional
data-centric strategy; therefore, the building designer or engineer
can access BIM on a shared network. The integration of BIM with
VIFI represents an extension to the conventional data-sharing strat-
egy. The new strategy (i.e., sharing analytics) and the conventional
strategy (i.e., sharing data directly) are complementary to each
other and can work hand-in-hand to solve practical problems.

Steps 3, 4, and 5 create an IDF that better reflects design or op-
eration conditions. In Step 3, the building designer or engineer
searches for lighting schedules that best match the expected design
or operation conditions. The metadata server of VIFI (Fig. 3) helps
identify relevant data sources that are accessible through VIFI. In
the case study, the authors assume that the collected data source
from the Intelligent Workspace represents the best match.

Once the data source or sources are identified, the building de-
signer or engineer sends a request to the data source(s) to generate
the required schedule in Step 4. In the case of energy simulations,
the operations needed to develop better schedules are implemented
as standard analytics in VIFI. The analytics are small-sized appli-
cations that run inside Docker containers (Miell and Sayers 2016)
using Docker Swarm (Vohra 2017). Docker containers are pro-
duced using Docker images hosted at different VIFI registries
(e.g., DockerHub). Docker images contain all required libraries/
dependencies to run the user’s analytics. Thus, end users such

as a building designer or engineer do not have to worry about con-
figuration of the required analytics.

The analytics are executed on data at the data source(s). In the
case study, the raw data were collected by sensors every 5 min con-
tinuously over multiple years at the Intelligent Workspace. The raw
data cannot be used by others directly for different reasons: (1) the
occupancy or lighting schedule requires hourly data but the raw
data are collected every 5 min; (2) the data may be in different for-
mats and schemas [e.g., csv, gbXML (GreenBuildingXML), or
obXML (Hong et al. 2015a, b)] from those needed for creating
the IDF; (3) the raw data may contain data that are irrelevant to
the analysis; and (4) the data are too sensitive to share in their
raw format because they may compromise occupant privacy. Thus,
instead of downloading data from the Intelligent Workspace to
the building designer’s or engineer’s local site, the data owner
[Carnegie Mellon University (CMU) in this case] can publish the
analytics that are allowed to operate on its data sources to VIFI, and
the building designer or engineer can find the analytics at the PAC
registry. The building designer or engineer then uses the analytics
to access data and obtain the desired schedule updates. Importantly,
this approach does not require a user to have significant knowledge
about programming, so the person can stay focused on the main
simulation tasks.

Once the building designer or engineer receives the updated
hourly lighting schedule, the original IDF is updated with this
new information in Step 5.

Finally, the updated IDF file is used to run energy simulations
using the EnergyPlus server (Cao et al. 2011) in Step 6. In Step 7,
the building designer or engineer receives simulation results.

Creating, Sharing, and Executing Analytics

Currently VIFI supports two mechanisms for creating, sharing, and
executing analyses. The first mechanism uses Docker containers to
encapsulate the analytics. This mechanism supports the reusability
of different analysis applications and building new analytics from
existing ones. The second mechanism uses a fixed-point VIFI node
to host a specific software such as a BIM. Fixed-point VIFI nodes
are useful in cases where VIFI must interact with software that is
difficult to containerize (e.g., proprietary software without available
Docker images).

Fig. 6 shows the sample application of the first mechanism to cre-
ate a lighting schedule for energy simulation. The authors used light-
ing schedules as an example in the case study to demonstrate
creating, sharing, and executing analytics—lighting schedules are
one of many input schedules to EnergyPlus. Analytics take the form
of a dedicated Python script that generates a lighting schedule in input
definition file (IDF) format using the empirical data collected at
CMU. The input to this analytics script is a file in comma-separated
values (CSV) format with two columns: the first column contains
timestamps, and the second column indicates the artificial light status,
either on or off, as recorded by sensors. The output is a whole year
Schedule:Compact IDF object. Between the input and the output, the
analytics perform data parsing and extraction using the Python
Pandas library. The script is generic and can thus be shared among
different application cases to create improved lighting schedules.

The implementation of the second mechanism is straightforward.
The Eppy Python module (Eppy 0.5.44) was used to integrate third-
party software such as EnergyPlus with VIFI. Despite EnergyPlus
being open-source software, EnergyPlus is used in this use case as
an example of integrating non-open-source software with VIFI
[i.e., VIFI has to interact with the machine hosting EnergyPlus
to use it, rather than downloading a Docker image hosting Energy-
Plus to the machine(s) executing analytics]. In the case study, the

Fig. 5. VIFI application case study for building energy simulations.
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Linux-based EnergyPlus Server version 8.7.0 is used. EnergyPlus
Server runs the energy simulation based on the updated IDF file
and returns the energy use of the sample building.

Simulations and Results

To demonstrate the usefulness of VIFI platform in improving build-
ing energy simulations from the point of occupancy representative-
ness, the authors performed a series of simulation runs using
comparable models. A baseline simulation model representing
common energy modeling practices uses a standard lighting sched-
ule provided by the Building Technologies Office of the US De-
partment of Energy (BTO 2018). Other simulation models use
empirically derived lighting schedules derived based on three
occupancy profiles, i.e., a professor, a graduate student, and a post-
doctoral researcher. The standard lighting schedule lacks relevance
to actual design or operational conditions, whereas empirically
derived schedules hold certain relevance to specific design or op-
eration conditions. The main objective of this demonstration and
subsequent comparative analyses is to reveal the impact of using
empirically derived schedules on the predictive capability of whole-
building energy models. In turn, the impact shows the importance
of using VIFI to improve building energy simulations.

Fig. 7 clearly indicates that empirically derived electric lighting
schedules pertaining to different occupancy types do not match
well with standardized schedules (shown in dashed lines), which
lack dynamism within a typical weekday. The results also signify
the need to use design-specific or building case-specific operational
schedules to enhance the predictive capability of building energy
models. Meanwhile, empirically derived lighting schedules also
show some degree of variations among themselves, which is due

to highly varied space use styles for the selected occupant types.
Compared with the graduate student (with 1,633 h of occupancy),
the user types of professor and postdoctoral researcher spend much
more time in their offices, with occupied hours of 3,094 and
2,676 h, respectively. However, all occupancy time is shorter than
the assumption of standard schedules, 5,097 h in a typical year.

Given fractional hourly schedules, which are drawn from the
outputs from EnergyPlus’ annual energy simulation runs, the au-
thors calculated the cumulative power fraction (CPF) for electric
lighting systems, defined as the sum of the number of hours in
a year when systems are operating in full power, and conducted the
comparisons given in Table 6. The CPF metric, together with its
derivative of full-power equivalent (FPE) metric where FPE ¼
CPF=8,760, revealed that although occupancy types of professor
(Type I) and postdoc (Type III) had very close CPFs compared with
the standardized schedule, there existed a considerable deviation
for the graduate student (Type II) with a 45% change from the stan-
dard CPF, i.e., 2,863. This is due to the fact that Type I and Type III
have similar peak power levels to those of the standard schedule,
whereas Type II shows variations in peak power, its frequency, and
event timing.

It is clear that with similar CPF and FPE metrics, the annual
lighting energy consumption of Type I (professor) is very close
to the model alternative using a standard schedule (only −0.7%
deviation observed between the two). Type III (postdoc) occupancy
type has a CPF and FPE of 2,437 and 0.28, respectively, for lights,
which results in about 14.9% decrease in annual lighting energy
consumption compared with the standardized schedule model.
Simulation results for Type II (graduate student) show significant
departures from the standard schedule model with deviations of up
to −45.7% for lighting energy consumption.

Fig. 6. Sample application of analytics.
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Fig. 7. Comparisons of hourly schedules for electric lights of the alternative models.
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To demonstrate the dynamic effects of alternative hourly light-
ing schedules on cumulative energy performance, annual energy
simulations were performed, facilitated by the VIFI platform.
Annual site energy consumption levels for the end uses of space
heating, cooling, and electric lighting (kWh) were extracted from
annual EnergyPlus simulation runs for comparison purposes
(Fig. 8). Because the lights in a building energy model contribute
to internal heat gains, deviations in the predictions of the energy
models are also found in space heating and cooling energy con-
sumptions. For example, results in Fig. 8 indicate that due to re-
duced usage of lights in the Type II (graduate student) model,
annual space heating energy was increased by 16%, whereas annual
space cooling energy was reduced by 17% compared with the stan-
dard schedule model. Although such increments and decrements
appear to balance each other out in the particular climate zone
(Pittsburgh, Pennsylvania) where heating dominates, such effects
would have important implications for cooling energy savings es-
timates in cooling-dominated climates.

Discussion
The conducted case study demonstrates three key attributes of
the VIFI computing infrastructure. First, the case study shows
the technical feasibility and application potentials of integrating
data-centric and analytic-centric sharing strategies. In the building

industry, data-centric sharing has been the norm, and technologies
such building information models are vehicles allowing stakehold-
ers to directly share data created by others. The case study shows
that VIFI complements the conventional approaches by utilizing
both data and analytics for sharing purposes. This capability may
allow building designers and engineers to access more data than
what conventional methods such as building information models
can provide. Second, the case study shows the VIFI platform en-
ables the use of empirically driven operational building schedules
for energy performance simulations instead of relying on predeter-
mined and generic schedules, which have no apparent contextual
and occupational relevance to building design and operation char-
acteristics. Such an approach can significantly affect the predictive
ability and representativeness of energy performance models and
can be a critical element of model calibration and validation pro-
cedures. Third, the case study has demonstrated the technical fea-
sibility of the creation, sharing, and execution of analytics that can
be executed across distributed sites (e.g., BIM server, data server,
and energy server). This capability is at the core of the VIFI plat-
form and its proposed computing infrastructure.

Furthermore, the case study demonstrates that the VIFI platform
can be instrumental to the automation of specific labor-intensive
energy modeling tasks (e.g., repeated development of annual hourly
schedules for different building spaces with list lengths as high as

Table 6. Comparison of annual lighting schedules types and occupancy

Empirical schedule
Type I

(professor)
Type II

(graduate student)
Type III

(postdoctoral) DOE Std. Sch.

Cumulative power fraction (CPF) 2,843 1,553 2,437 2,863
Full-power equivalent (FPE) 0.32 0.18 0.28 0.33
Occupied hours 3,094 1,633 2,676 5,097
Unoccupied hours 5,503 6,964 5,921 3,663
Input/output timeout hours 163 163 163 N/A

Note: DOE Std. Sch. = Department of Energy Standard Schedule; FPE = CPF/8,760; and input/output timeout = September 12, 2016, 7:00 p.m. to September
19, 2016, 9:00 a.m. and May 25, 2016, 7:00 a.m. to May 26, 2016, 9:00 a.m.

Fig. 8. Comparisons of annual site energy consumptions.
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8,760 elements). Such automation not only reduces human errors
but also speeds up the process of model development and interpre-
tation of results. Additionally, the VIFI computing infrastructure
can be instrumental to model-based building control applications,
which carry building energy models from the design stage through
to the operational stage in order to perform predictions across a
specific time horizon, allowing optimal control of building mechan-
ical and electrical systems for increased energy efficiency and
occupant comfort.

Conclusions and Future Research

This study has demonstrated the potential of VIFI, an open comput-
ing infrastructure, to offer a novel analytics-based data-sharing
strategy that complements conventional data-centric strategies.
By sharing analytics on data, the new strategy points toward a future
where empirical data from existing building operations are closely
connected with decision-making processes that drive building de-
sign and operation through additional cyberinfrastructure. The study
has demonstrated many possibilities for using this novel infrastruc-
ture to enhance building performance simulations. For example, the
study has shown the potential for the VIFI platform to support both
data-centric and analytic-centric sharing. This new strategy bears
significant implications for the building design and engineering
community, where data fragmentation has been recognized as a ma-
jor challenge to data sharing. As shown in the case study, designers
and engineers can access both a building information model and
empirical data in an integrated manner through VIFI. This strategy
enables designers and engineers to access a larger pool of data that
are not only more relevant to improving their simulations, but may
also set the foundation for future applications of advanced methods
such asmachine learning to transfer knowledge that is gained during
building operations back to new building designs.

This study only examined the functional capabilities of the open
computing infrastructure, and many other aspects related to the in-
frastructure require further research. For example, the presented
case study was implemented with the help of computer scientists
who are technical experts in deploying and implementing applica-
tions using VIFI. Looking ahead, it is critical that the VIFI platform
is useful to those in design and engineering domains who do not
have the technical background to understand technical details of the
proposed infrastructure such as the PAC and registry. Therefore, a
user-friendly workflow process is important to develop for future
VIFI implementations. In addition, although the VIFI platform
does not need data owners to share data per se, a certain level of
access to data needs to be granted to outside users in order for the
VIFI analytics to work on the data sets. This requirement goes be-
yond the issue of addressing data privacy and security issues, bring-
ing forth more fundamental questions about the motivation and
benefits of sharing data. Rich data sets are needed for access by
VIFI analytics in order to realize the full benefits of the proposed
infrastructure, and the incentives for creating and sharing such data
sets must be improved. For example, “information as commodity”
(Smith 1983) provides an interesting idea to drive data creators and
users to share data. Such an idea can be pilot-tested in a small com-
munity, such as those working on the development and initial ap-
plications of VIFI. Experimentation with this idea may shed more
light on how to increase the sharing of data, which is important to
other VIFI functions.

Another important issue to be explored is the quality of meta-
data, which plays a significant role in searching for, reusing, and
executing analytics on the VIFI platform. Although metadata are
not addressed in this case study, this topic has been discussed for

decades in the buildings research community and as a result, many
metadata schemas are available, for example gbXML, industry
foundation classes (IFC), obXML, and CityGML. The VIFI re-
search community must develop a strategy for building from such
existing metadata schemas and integrating new concepts as needed
to support VIFI applications. Finally, there is a need to develop a set
of performance metrics to measure the benefits and risks of using
VIFI; these metrics should include technical, economic, and social
measures at the individual, company, and society levels.
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