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A B S T R A C T

Building performance models (BPMs) such as building energy simulation models have been widely used in
building design. Conventional BPMs may not be able to effectively address human- building interactions in new
buildings still under design. The lack of such capability often contributes to the existence of building perfor-
mance gaps, i.e., differences between predicted performance during design and actual performance of buildings.
To improve the prediction accuracy of conventional BPMs, a computational framework is developed. It combines
an existing BPM with context-aware design-specific data involving human-building interactions in new designs,
using a machine learning approach. Immersive virtual environment (IVE) is used to capture data describing
design-specific human-building interactions; and an artificial neural network (ANN) is used to combine data
obtained from an existing BPM and an IVE to produce an augmented BPM. Additionally, the framework has the
capability to rank influence of factors impacting human-building interactions using a feature ranking technique,
which can help the design of future IVE experiments for better data collection.

The framework is tested using an application of a single occupancy office. An IVE of the office is created to
simulate key artificial light use events during design. The Hunt model is selected as an existing BPM. The actual
use of artificial lighting in the office is observed for one month using sensors to validate the effectiveness of the
framework. The results of the application have shown the potential of the framework in improving the prediction
accuracy of the Hunt model evaluated against data obtained from the actual office. The results verify the im-
portant role of context-aware design-specific data in improving the prediction of human-building interactions
during design. In addition, the feature ranking technique is effective in identifying influencing factors impacting
human-building interactions. Limitations of this study and future work are also discussed.

1. Introduction

According to the International Energy Agency (IEA), buildings in
developed countries consume up to 40% of their total energy [1]. The
significant consumption of fossil fuel-based energy has caused negative
environmental impacts such as ozone layer depletion, global warming,
and climate change [2]. In addition, studies have confirmed that deci-
sions made during design phases significantly influence energy effi-
ciency during building operations (e.g., [3,4]). Thus, improvements in
decision support for building energy efficiency during design can con-
tribute to the reduction of building energy consumption and enhance-
ments in building energy performance [5].

Building performance models (BPMs) are decision-support tools
assisting designers and engineers to understand, analyze, and optimize
building performance during design. There are different types of BPMs,

including simulation models of whole building energy consumptions
[6], predictive models for the performance of building systems such as
space heating [7] and air quality [8], and models of occupant interac-
tions with building components such as light switches, blinds, windows,
and thermostats [9] [10]. A number of research studies (e.g., [11] [12]
[13] [14]) have successfully attempted to include human-building in-
teractions in building performance modeling and predictions. Gen-
erally, such BPMs are constructed by collecting data of human-building
interactions, and finding correlations between independent variables
(e.g., temperature, illuminance, solar irradiance, and occupancy status)
and dependent variables (e.g., human interactions with building com-
ponents such as light switches, blinds, and windows). For instance,
BPMs for predicting artificial lighting use (e.g., [11,15]) consider work
area illuminance as an independent variable to predict whether occu-
pants turn on artificial lighting at arrival. Arguably, not only work area
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illuminance but also the location of light switches [16], interiors lay-
outs [17], and occupancy statuses [18] have impact on occupant in-
teractions with light switches. Human-building interactions (e.g., oc-
cupant responses to contextual factors and occupant habitual
behaviors) are highly context-depended. Often, the context of existing
buildings where data for developing BPMs are obtained differs from the
context of a new building under design. Thus, the application of BPMs
in a different context may significantly introduce large variances, and
contribute to the discrepancies between predictions during design and
actual performance during operations [19]. An alternative is to custo-
mize existing BPMs to address the context of buildings under design.

According to the Merriam-Webster dictionary, context is defined as
“the interrelated conditions in which something exists or occurs.”
Contextual factors are often used to describe or model such interrelated
conditions. In this paper, factors that may influence human-building
interactions but are ignored in existing BPMs are considered as “con-
textual factors” in relation to the existing BPMs. There are evidences that
human-building interactions are driven by contextual factors such as
building conditions [20,21]. Moreover, multiple contextual factors may
influence human-building interactions simultaneously [22]. Therefore,
having the capability to consider human-building interactions in a
specific context such as the context embodied in a new design may be
one of the keys to significantly enhance the accuracy of BPMs.

Immersive virtual environments (IVEs), considered as multisensory
computer-generated environments, have been effectively applied to
various research in building design and engineering, such as emergency
evacuation [23,24], building designs [25–27], and occupant behavior
predictions [28,29]. IVEs have also been applied to studies related to
human-building interactions and energy usages. For instance, Hey-
darian et al. [30] studied occupant lighting preferences in a single office
using IVEs. Saeidi et al. [31] validated occupant light use behavior in
IVEs and showed that IVEs were capable of replicating field experi-
ences. Niu et al. [32] developed a framework to integrate building
designs with IVEs to help building designers capture occupant pre-
ferences and identify context patterns. Studies have shown that human-
building interactions are context-dependent. Since buildings under de-
sign do not physically exist, human-building interactions with buildings
under design cannot be observed directly. To capture such human in-
teractions, IVEs are proxies of reality that allow designers or researchers
to observe such interactions. Overall, the main advantages of applying
IVEs during design include replicating the context of buildings under
design [31], allowing designers or researchers to control experimental
conditions, and applying desired experimental contextual factors [33].
Therefore, IVEs have the potential to support designers or researchers
to observe human-building interactions in simulated building context
during design. However, IVEs have many limitations such as short ex-
periment sessions, small data samples, and negative impacts on parti-
cipants (e.g., cybersickness) [34], which make IVE-based experiments
limited. The limitations of IVEs determine that it is difficult to con-
tinuously collect human-building interaction data in virtual environ-
ment for long time. IVE-based experiments for data collection are often
highly focused and event/purpose-driven, therefore data collected
using IVEs are not as comprehensive as data collected in reality using
conventional occupancy data collection approaches (e.g., sensing, field
studies, and surveys). Consequently, it is difficult to create compre-
hensive BPMs as general models, if only using data from IVE experi-
ments. Thus, it is more feasible to bias a general model using ob-
servation data to fit a particular design than producing a general BPM
only from observational data obtained from IVE experiments.

To enhance the prediction accuracy of existing BPMs, the authors
have created a novel computational framework, which combines an
existing model with observational data obtained from IVE experiments.
Specifically, the framework preserves the general predictive power of
an existing BPM, while addressing specific human-building interactions
in the context of a new design identified by designers or researchers. As
a result, the framework produces a more representative BPM specific to

a building under design, and not as general as an existing BPM, to
improve prediction accuracy.

In the following, the authors first discuss the research objective, and
then provide an overview of the computational framework followed by
the discussion of applying the framework to a single occupancy office.
Based on the application, results, conclusions, and future work are then
discussed.

2. Research objective

The objective of this study is to determine if the computational
framework can potentially improve the prediction accuracy of BPMs
during design. To achieve the objective, the authors apply the compu-
tational framework to the study of a single occupancy office. The fra-
mework produces an optimal BPM, which is called an augmented BPM.
The application is designed to verify the effectiveness of the framework
using the augmented BPM, which is achieved by testing a hypothesis.

The authors hypothesize that the computation framework can sig-
nificantly improve the prediction accuracy of BPMs during design. To
test this hypothesis, absolute errors are analyzed, including (1) the
absolute error that measures the discrepancy between the predicted
output of an existing BPM and actual data (E1), and (2) the absolute
error that measures the discrepancy between the predicted output of an
augmented BPM and actual data (E2).

The formulas for calculating E1 and E2 respectively are shown in
Eqs. (1) and (2):

= ∣ − ∣an existing BPME predicted outcome of actual data1 (1)

= ∣ − ∣the augmented BPME predicted outcome of actual data2 (2)

Both errors are used to test the hypothesis as shown in the de-
scription below:

H0: mean of E1 – mean of E2= 0
H1: mean of E1 - mean of E2 > 0
A one tailed t-test (α=0.05) is applied to investigate the statisti-

cally significant difference between the mean of E1 and the mean of E2.

3. Overview of the computational framework

The computational framework comprises of four main elements (see
Fig. 1): (1) an existing BPM, (2) context-aware design-specific data, (3)
computation, and (4) an augmented BPM. In theory, the framework is
parametric and does not have any restrictions on the input datasets,
because it only combines an existing BPM with context-aware design-
specific data. Datasets associated with an existing BPM and context-
aware design-specific data are inputs to the framework. Since the fra-
mework can be applied to any existing BPM and context-aware design-
specific data, datasets applied in the framework do not need to be
specified. In practice, there is a need to consider the cost associated
with acquiring data using IVE experiments. In the following, details of
components are discussed.

3.1. Existing building performance model

An existing building performance model (BPM) represents a model
that already exists, and it does not necessarily capture important con-
textual factors of a new building design. For example, the Hunt model
uses illuminance to predict the status of light switches. While it may be
effective in general, the model cannot accurately predict artificial
lighting usage, if a new design has a very different occupancy pattern
from what the Hunt model is implicitly based on [11].

When a dataset represented by an existing BPM is needed, the
computational framework provides a tool to generate such a dataset
using statistical approaches, e.g., Monte Carlo simulations. The dataset
is called existing BPM dataset.
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3.2. Context-aware design-specific data

Context-aware design-specific data describe contextual factors in a
set of specific events of a new design. For example, a designer may
believe that how occupants interact with light switches at arrival in
summer mornings is critical to a design purpose. The contextual factor,
summer mornings, needs to be explicitly included in a BPM to observe
occupant behaviors. The context-aware design-specific data are used to
modify an existing BPM so that the BPM will better reflect the context
of a new building under design. To construct context-aware design-
specific data, an immersive virtual environment (IVE) is used as a tool
to collect context specific data of a design, e.g., occupant's use of arti-
ficial lighting on a clear summer day. IVE-based experiments are often
conducted with small samples in short period of time, leading to small
IVE datasets [33,35,36]. To overcome this limitation, the framework
provides an alternative solution to the small sample size issue by ap-
plying statistically data learning approaches such as Hidden Markov
Model (HMM) to generate a large dataset, called synthetic IVE dataset.

3.3. Computation

Two major parts are included in the computation component, i.e.,

combining the existing BPM dataset and the Synthetic IVE dataset, and
feature ranking.

3.3.1. Combining the existing BPM dataset and the synthetic IVE dataset
The purpose of combining the existing BPM dataset and the synthetic

IVE dataset is to produce an augmented BPM. The authors applied an
artificial neural networks (ANN) [37] to this process. Comparing to
other methods such as Bayesian networks, regression models, Kalman
filter, and other graphical models, ANNs provide several advantages for
the computational framework. In many applications, ANNs have been
proven that they are more accurate, flexible, and consistent in predic-
tions than Bayesian networks [38], regression models [39] [40] [41],
Kalman filter [42], and K-means [43]. ANNs have the capability to
combine multiple datasets during training [44], e.g., the existing BPM
dataset and the synthetic IVE dataset, while other graphical models may
not offer or need complex algorithms to support such a function. Among
graphical models, Bayesian networks offer the capability to combine
multiple datasets, but they do not allow fine-grained control [45]
(mixture ratio) over the combination of datasets. Unlike Bayesian net-
works, a greedy algorithm (see Fig. 2) can be used for fine-grained
control to train an ANN with an appropriate mixture of two datasets.

To train the ANN for combining the existing BPM dataset and the
synthetic IVE dataset based on a mixture ratio α (0 to 1), the authors use
an efficient greedy heuristic algorithm (see Fig. 2). The algorithm uses
the mean absolute error (MAE) to measure the effectiveness of ANNs
trained on both datasets. Before training ANNs, the existing BPM dataset
is split into the existing BPM training dataset and the existing BPM testing
dataset. Similarly, the synthetic IVE dataset is split into the synthetic IVE
training dataset and the synthetic IVE testing dataset. During training, two
MAEs are calculated in every epoch. First, the MAE that measures the
difference in the predictions of the ANN and the synthetic IVE testing
dataset (MAESI). Second, the MAE that measures the difference in the
predictions of the ANN and the existing BPM testing dataset (MAEEX). The
algorithm (Fig. 2) uses α to maintain the proportion of MAESI and
MAEEX based on the following equations:

+
≈ −

MAE
MAE MAE

1 α
SI

SI EX (3)

+
≈

MAE
MAE MAE

α
EX

SI EX (4)

Fig. 1. Computational framework.

Fig. 2. Greedy heuristic algorithm.
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The Eq. (3) is simplified by substituting value of MAESI+MAEEX in
Eq. (4) and becomes MAE

MAE

SI

EX ≈ −1 α
α

, which is used during training.

During training, at every epoch, if MAE
MAE

SI

EX > −1 α
α

, the algorithm greedily

attempts to reduce MAE
MAE

SI

EX in this epoch by training ANNs on the synthetic
IVE training dataset to reduce MAESI. Otherwise, in that epoch, ANNs are
trained on the existing BPM training dataset to reduce MAEEX. The
training continues for a pre-specified number of epochs.

Several mixture ratios (α) may be used to combine the existing BPM
dataset and the synthetic IVE dataset in the training. In the computational
framework, the obtained results are called updated BPMs. The most
accurate updated BPM when validated with reference data, i.e., data
from a physical building is considered as an augmented BPM.

3.3.2. Feature ranking
Feature ranking is generally used to discern and discard weakly

influent, irrelevant, and redundant features from a given set of features
before performing further critical analysis [38]. Techniques that are
often used to perform feature ranking can essentially be divided into
three main categories, which are filter, wrapper, and embedded
methods. The filter method directly uses properties of data to estimate
the goodness of features and ignores the effects of the selected feature
subsets on the performance of a classifier. Using the wrapper method,
the estimation of the goodness of features is obtained by learning and
evaluating the performance a classifier such as an ANN using only
features of interest [39]. The embedded method is a combination of the
filter and the wrapper methods. The embedded method uses the in-
ternal information of a classifier to analyze feature ranking [40].
However, there is no best method among the three [41]. In this study,
the authors apply the feature ranking technique to rank the influence of
factors impacting human-building interactions. The wrapper methods
are selected since the ANN has been used as a classifier and the input
data are classified into features of interest (e.g., occupancy, inter-
mediate leaving, and illuminance).

4. Application of the computational framework

The application of the computational framework is focused on un-
derstanding the potential of the framework and validating the hy-
pothesis. The prediction of artificial lighting usage in a single occu-
pancy office is used for data collection and validation. The authors have
monitored the physical office for a month to collect artificial lighting
usage data. The data obtained from the physical office are used for two
purposes: (1) creating an IVE simulating different contextual conditions
for collecting human-building interaction data, and (2) validating an
augmented BPM. An IVE is created by referring to the physical office,
modeling conditions relevant to variables of a selected BPM, and con-
textual factors to be studied. The occupant who occupied the physical
office has also participated in the IVE experiment. The Hunt model for
predicting lighting usage is selected as an existing BPM [11]. After
computation, the most accurate updated BPM is selected as the aug-
mented BPM. Predicted results of the augmented BPM are compared with
predicted results of the existing BPM to evaluate the effectiveness of the
proposed framework. In the following, the authors explain the appli-
cation in details.

4.1. Existing BPM and existing BPM dataset

The light switch BPM proposed by Hunt [11] is selected as the ex-
isting BPM. The selection of the Hunt model is based on several reasons:
(1) it is used as a baseline model for many extended models predicting
artificial light use [15,42,43], (2) it is cited as one of the major models
by a recent paper in the field [44], and (3) the framework is generic,
i.e., it can use the Hunt model or its expanded models as input. More-
over, the Hunt model has one independent variable (work area

illuminance), allowing researchers to have more room to demonstrate
the inclusion of other variables as contextual factors. It is expensive to
collect data in IVE experiments for contextual factors, because all vir-
tual scenes and stimuli about the contextual factors need to be designed
and modeled. The more variables to include, the more expensive and
time-consuming the experiments are. Therefore, to achieve the objec-
tive of this study, any well-accepted model ideally with a small set of
input variables is acceptable.

Hunt applied a field study approach to collect data of human-
building interactions with light switches. He observed occupant light
switching behaviors in six different rooms including multi-person of-
fices, school classrooms, and open-plan teaching area for six months. He
deployed time-lapse photography to capture the lighting status in the
rooms every 8min throughout the day and night. Using Probit regres-
sion analysis, the Hunt model predicts artificial lighting status based on
work area illuminance (lux) (Fig. 3) [11].

Monte Carlo (MC) simulation is used to generate independent and
identically distributed (IID) samples from the Hunt model. The input is
work area illuminance, which is randomly generated following a uni-
form distribution. The output of MC simulation is probabilities of
switch on under various work area illuminance levels. The input and
output are arranged into pairs of work area illuminance and the cor-
responding probability of switch on. This data set is referred to as ex-
isting BPM dataset.

4.2. Context-aware design-specific data

4.2.1. Physical Environment
A single occupancy office located on the campus of a major state

university in the south-central region of the USA is selected as the ac-
tual environment for the application (Fig. 4). The office occupant is a
30–40-year-old male faculty member. The dimension of the office is 9 ft
wide by 12 ft long and 10 ft high (Fig. 6). Various sensors are placed in
the office to measure the lighting illuminance (lux), the artificial
lighting status (on, off), and the occupancy pattern (occupy, non-oc-
cupy) from September 23rd to October 27th, 2016. Two Onset
UX90–005 HOBO occupancy/light runtime data loggers are placed
above the door (sensor #1 in Fig. 6) and the work area (desk) (sensor
#2 in Fig. 6) respectively to identify the occupancy pattern and the
lighting status (on/off). Two Onset U12-012 HOBO temperature/re-
lative humidity/light/data loggers are place at the work area (sensor #
3 in Fig. 6) and windows (sensor # 4 in Fig. 6) respectively to speci-
fically measure the work area and outdoor light intensity respectively.
The sensors are set to collect data every 5 s.

The data collected from the physical environment are used to con-
struct the IVE experiment. The authors have observed major patterns of
the occupant interactions (i.e., human-building interactions) with the
office lighting system along with information of contextual factors,
namely occupancy status, length of intermediate leaving, work area
illuminance, and outdoor illuminance. The major patterns of the oc-
cupant's interactions with the office lighting system are mapped into
128 events, including (1) 25 event of arrival at the office, (2) 40 events

Fig. 3. Probability of switching on under work area illuminance of the Hunt
model.
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of intermediate leaving, (3) 40 events of returning from the inter-
mediate leaving, and (4) 36 events of departure. The IVE experiment is
constructed based on the information of these events for data collection
and validation.

The data also form a baseline for evaluating an augmented BPM, i.e.,
the probabilities of switching on when the occupant arrives at the of-
fice. Fig. 7 shows that the occupant always turns on the light regardless
of the minimum work area illuminance based on sensor data.

4.2.2. Immersive virtual environment (IVE) and experiment
The IVE configuration is illustrated in Fig. 5. The IVE experiment

are structured based on three main factors including (1) the con-
siderations of the cost of developing IVE models and conducting ex-
periments, (2) the obtained occupancy data from the physical en-
vironment, and (3) the Spatial-Temporal Event-Driven (STED)
modeling approach [33]. The STED designs IVE experiment by mod-
eling critical events during a day in chronological order, which com-
prises of four main components, namely states, contexts, events, and
human-building interactions.

Based on the three main factors, states, contexts, events, and
human-building interactions are defined:

• States are light switch conditions, which include switch on and off.

• Contexts are conditions of the independent variable and the con-
textual factors in Table 1. The independent variable is work area
illuminance considered in Hunt model. The contextual factors are
outdoor illuminance, occupancy, and intermediate leaving statuses.
The occupancy statuses comprise of occupy and non-occupy. The
intermediate leaving statuses are non, short, and long leaving. The
work area and outdoor illuminance are categorically defined. There
are two major constraints for illuminance to be designed as cate-
gorical. First, the STED defines variables in IVE experiments as
discrete. Although a small interval between minimum and

Fig. 4. The physical environment.

Fig. 5. The IVE configuration.

Fig. 6. The layout of the physical environment and the locations of the sensors.

Fig. 7. Probability of switching on under work area illuminance (physical en-
vironment).
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maximum illuminance levels may be defined to simulate continuous
illuminance, it will unnecessarily increase the number of IVE ex-
periments. Second, due to the limitations of IVE technologies, ty-
pically an IVE experiment session will only last for about 40min.
Participants may not be able to tolerate in IVEs for a long period of
time to simulate continuous illuminance as in physical environ-
ments. Levels of the work area illuminance are defined by applying
the recommended lighting levels from the U.S. General Services
Administration (GSA) [45], which 500 lx is the recommended light
level at work area when performing office tasks. Accordingly, a
darker level is defined as 200 lx and brighter level is defined as
700 lx based on the average of minimum and maximum natural light
during work time (8:00 am – 5:00 pm). Although the levels of the
work area illuminance are maintained as dark (200 lx), normal
(500 lx), and bright (700 lx), the levels of the outdoor illuminance
are respected to the sun locations and directions depended on the

times of the day in the experiment. Therefore, if the outdoor illu-
minance is dark, normal, and bright, the work area illuminance
without artificial lighting is assigned as dark, normal, and bright

Fig. 8. Diagram of factors included in the IVE experiment.

Fig. 9. Probability of switching on under work area illuminance (HMM).

Fig. 10. Scheme of artificial neural networks (ANNs) of the computational framework.

Fig. 11. Observations of updated Hunt models obtained from the computational
framework using various mixture ratio (α).
***IVE= the synthetic IVE dataset.
BPM= the existing BPM dataset.
Actual= the actual data from the physical environment.
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respectively.

• Events are occurrences of contexts that trigger the occupant to
change or maintain the states as shown in Table 3. There are five
critical events considered during a day in the IVE experiments, in-
cluding initial events before arrival at the office, arrival at the office,
intermediate short leave or long leave, returning from the inter-
mediate short leave or long leave, and departure.

• Human-building interactions are interactions of the occupant on
light switch.

In each event, the situations of contextual factors and independent
variable included in the Hunt model (see Table 1) are exposed to the
participant. Visual (e.g., outdoor conditions) and auditory (e.g., re-
minders) cues are used to inform the participant about outdoor condi-
tions and length of leaving or staying in the office respectively. Ex-
amples of cues are shown in Table 2. The participant is asked to interact
with the light switch, which he may switch on, switch off, or maintain
the light switch. Then, data of occupancy status, work area and outdoor
illuminance, and intermediate leaving status along with the light status
in each event are collected throughout the sequence (see Table 3). The
participant is the same person who occupies the physical office. The
participant uses a head-mounted display (HMD) to experience the IVE
and participate in the experiment. The experiment is divided into two
sessions and each session lasts about 70min in total. The study has been

approved by the local Institutional Review Board (IRB).

4.2.2.1. Determinations of data points in the IVE experiment. Fig. 8
illustrates the diagram of factors included in the IVE experiment.
Based on Fig. 8, events of the arrival, intermediate leave, returning
from intermediate leave, and departure include 3, 2, 3, and 2
alternatives respectively, which lead to 3× 2×3×2=36 unique

Fig. 12. The hypothesis testing.

Fig. 13. Plots of probability of switching on obtained from the synthetic IVE testing dataset and prediction of the ANN.

Table 1
Contextual factors and independent variable in the application.

Contextual factor Status

Occupancy Occupancy (True)
Non-occupancy (False)

Outdoor illuminance Dark
Normal
Bright

Intermediate leaving Short intermediate leave
Long intermediate leave

Independent variable Status

Work area illuminance Dark (200 lx)
Normal (500 lx)
Bright (700 lx)
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combinations (called “sequences”). To construct the IVE experiment, 36
sequences, and cost of developing IVE and conducting experiment are
taken into an account. First, each sequence is extracted and assigned to
four events (2nd-5th data point of each sequence in Table 4). Second
the initial events are appended to each sequence (1st data point of each
sequence in Table 4). The initial events are not included in the sequence
diagram in Fig. 8 because it results in doubly increasing the number of
total data point and excessive experimental time. Appending the initial
events to the sequence s relieves the number of total data point and
excessive experimental time as well as maintain the uniqueness of the
36 sequences. Therefore, a total data point is 180 (i.e., 36 (sequence
s)× 4 (data points in each sequence)+ 36 (data points from each
initial event)).

4.2.3. Generating synthetic IVE data
Due to the fact that the data sample from the IVE experiment is

small and the IVE data represented a sequence of events, the authors
decide to employ a Hidden Markov Model (HMM) Baum-Welch algo-
rithm [46] to generate a synthetic dataset based on data from the IVE
experiment (i.e., increasing the number of independent and identically
distributed (IID) samples). The advantages of the HMM are that it has
the ability to statistically learn information about observed parameters
to estimate for non-observable parameters [47], and recognize se-
quential patterns of provided data [48].

The HMM Baum-Welch algorithm [46] learns the relationship of the
participant's light switch interactions and the factors influencing the
interactions. The HMM assumes that the current state (St) impacts the
next state (St+1). The hidden state happening at time t+ 1 (St+1) is
dependent only on the hidden state happening at time t (St) [49] [50].
The change in hidden states from time t to time t+ 1 is called state
transition. The probability of state transitions can be calculated and
simplified as a transition probability matrix. The observations depend
on the hidden state variables, and therefore the probability density
function of observations is dependent on the hidden state variables
[50]. The observation probabilities can be expressed in a matrix form as
an observation probability matrix. The HMM is trained by using the
distribution of hidden states and observations from the transition and
observation probability matrices. After training, the HMM are executed
to generate IID samples.

From the 180 data points obtained from the IVE experiment, the
hidden states and the observations of events are classified. The statuses
of the light switch are classified as the hidden states. The statuses of the
other variables, namely occupancy status, intermediate leaving, and
outdoor and work area illuminance are classified as observations. Each
observation as a vector is encoded to an ordinal variable for training the
HMM. non-occupancy, short intermediate leave, dark work area illu-
minance, and normal outdoor illuminance are represented as
“no+ short+ dark+dark” and encoded by using a single value such
as “1”. The transition and observation probabilities are calculated. The
HMM is trained to learn the relationship between the hidden states and
observations from the transition and observation probabilities. After
training, the HMM is executed to generate the statuses of the light
switch and variables in Table 1. The complete analysis of HMM for the
case study can be found in [51]. To obtain the variables corresponding
to the Hunt model, probabilities of switching on upon arrival based on
work area illuminance are computed (Fig. 9). The probabilities of
switching on upon arrival are calculated and paired with the IID sam-
ples of variables in Table 1 generated by the HMM and called synthetic
IVE dataset.

4.3. Computation

4.3.1. Artificial neural network (ANN)
The ANN (Fig. 10) is a three-layered perceptron network including

input, two hidden, and output layers. Input in the input layer includes
occupancy status, intermediate leaving, and minimum work areaTa
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illuminance. Output in the output layer is the probability of switching
on. The hidden layers of the model are generated using 300 hidden
neurons with rectified linear unit activation function (ReLU) since it has
been shown to have better fitting ability than the sigmoid function in

similar applications [38]. To prevent overfitting, elastic net regular-
ization (combination of L1 (Laplacian) and L2 (Gaussian) penalties)
[52] is used. The sigmoid activation function is applied to the neuron at
the output layer because the values of outputs are probabilities. The loss

Table 3
The sequence of the IVE experiment.

Event 

Sequence of IVE Experiment in a Day 
Light Status 

Before 
Interaction  

Virtual and Auditory Cues 
Exposed to the Participant 

 Interaction  
Light Status 

After 
Interaction 

Arrival at 
the Office 

Initial light 
status

V1 and A1 
Participant 

interacts with 
light switch 

Light status 
of the event 

Intermediate 
Leave 

Light status of 
the previous 

event 

Short (A2)
Long (A3)

Participant 
interacts with 
light switch 

Light status 
of the event 

Returning 
from 

Intermediate 
Leave 

Light status of 
the previous 

event 
V2 and A4 

Participant 
interacts with 
light switch 

Light status 
of the event 

Departure 
Light status of 
the previous 

event 
A5

Participant 
interacts with 
light switch 

Light status 
of the event 

Table 4
Details of IVE experimental days.

Sequence Initial
(1st data point of each
sequence)

Arrival at the office
(2nd data point of each
sequence)

Intermediate leave
(3rd data point of each sequence)

Returning from intermediate
leave
(4th data point of each
sequence)

Departure
(5th data point of each
sequence)

Light
switch

Occupancy Illuminance Occupancy Intermediate
leave

Occupancy Illuminance Occupancy Illuminance Occupancy

1 On False Bright True Long False Bright True Normal False
2 Off False Bright True Long False Bright True Dark False
3 On False Bright True Long False Normal True Normal False
4 Off False Bright True Long False Normal True Dark False
5 On False Bright True Long False Dark True Normal False
6 Off False Bright True Long False Dark True Dark False
7 On False Bright True Short False Bright True Normal False
8 Off False Bright True Short False Bright True Dark False
9 On False Bright True Short False Normal True Normal False
10 Off False Bright True Short False Normal True Dark False
11 On False Bright True Short False Dark True Normal False
12 Off False Bright True Short False Dark True Dark False
13 On False Normal True Long False Bright True Normal False
14 Off False Normal True Long False Bright True Dark False
15 On False Normal True Long False Normal True Normal False
16 Off False Normal True Long False Normal True Dark False
17 On False Normal True Long False Dark True Normal False
18 Off False Normal True Long False Dark True Dark False
19 On False Normal True Short False Bright True Normal False
20 Off False Normal True Short False Bright True Dark False
21 On False Normal True Short False Normal True Normal False
22 Off False Normal True Short False Normal True Dark False
23 On False Normal True Short False Dark True Normal False
24 Off False Normal True Short False Dark True Dark False
25 On False Dark True Long False Bright True Normal False
26 Off False Dark True Long False Bright True Dark False
27 On False Dark True Long False Normal True Normal False
28 Off False Dark True Long False Normal True Dark False
29 On False Dark True Long False Dark True Normal False
30 Off False Dark True Long False Dark True Dark False
31 On False Dark True Short False Bright True Normal False
32 Off False Dark True Short False Bright True Dark False
33 On False Dark True Short False Normal True Normal False
34 Off False Dark True Short False Normal True Dark False
35 On False Dark True Short False Dark True Normal False
36 Off False Dark True Short False Dark True Dark False
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function of the model is binary cross entropy (logistic regression). The
learning rate and regularization are 10−6.

Before input data can be used by the ANN, they are normalized first
to ensure compatibility between the existing BPM dataset and the syn-
thetic IVE dataset. Since the Hunt model has only illuminance as an
independent variable, contextual data for the Hunt model, e.g., occu-
pancy, intermediate leaving, and outdoor illuminance are randomly
generated according to the available occupancy, intermediate leaving,
and outdoor illuminance of the synthetic IVE dataset. For instance, since
occupancy status in the synthetic IVE dataset includes non-occupancy
and occupancy, the data of occupancy in the existing BPM dataset are
randomly generated with non-occupancy and occupancy.
Corresponding to the status of intermediate leaving in the synthetic IVE
dataset, the data of intermediate leaving in the existing BPM dataset are
randomly generated with non-leave, short intermediate leave, and long
intermediate leave.

After normalization, inputs and outputs of the existing BPM dataset
and the synthetic IVE dataset are defined as shown in Fig. 10. The existing
BPM dataset and the synthetic IVE dataset are divided into training da-
tasets (i.e., the existing BPM training dataset and the synthetic IVE training
dataset) and testing datasets (i.e., the existing BPM testing dataset and the
synthetic IVE testing dataset) based on an 80–20 split. Five percent of the
inputs of the synthetic IVE training dataset is changed to White Gaussian
noise to prevent overfitting during training.

4.3.2. Training algorithm
To initialize the ANN model, the existing BPM training dataset is used

to train the ANN for 60,000 epochs to allow the ANN to accurately learn
the probability distribution of the existing BPM dataset. After initializing,
to train the ANN on a mixture of the existing BPM training dataset and the
synthetic IVE training dataset with a mixture ratio (α), the efficient
greedy heuristic algorithm (Fig. 2) is used. The training continues for
400,000 epochs. To understand the impact of the mixture ratio on the
prediction accuracy of updated Hunt models, mixture ratios (α) from 0 to
1 with an interval of 0.1 are used to generate a sequence of updated
Hunt models. After training, the existing BPM testing dataset are used as
inputs to acquire outputs (the probabilities of switching on) through the
trained ANN. The inputs (i.e., the inputs of the existing BPM testing da-
tasets) and the obtained outputs are paired to construct updated Hunt
models. Among all updated Hunt models, the best performing one with
the highest prediction accuracy relative to the actual data is considered
as the augmented BPM, the augmented Hunt model in this case.

4.3.3. Feature ranking
Factors such as occupancy status, intermediate leaving, and work

area illuminance have a different level of impact on predictions [33].
Thus, it is important to have a method to determine the relative im-
portance of such factors. The feature ranking technique is used to
evaluate the influence of factors on predictions. To perform feature
ranking in the ANN, the ANN is trained using the synthetic IVE training
dataset, which is modified by considering only one specific factor of
interest, at the input layer. The probability of switching on is selected as
the output in the output layer. For example, the ranking of occupancy
status is analyzed by training an ANN using the synthetic IVE training
dataset that is modified to have the occupancy status as the only input
factor and the probability of switching on as the output in the ANN. The
ANN is trained using the similar scheme as mentioned in Fig. 10.

The correlation of determinations (R2) is used as a statistical mea-
surement of the linear relationship between expected outputs, i.e.,
probability of switching on of the synthetic IVE testing dataset, and pre-
dicted output (i.e., the probability of switching on obtained from pre-
diction by the ANN). R2 provides a measure of how accurate expected
outputs are learned by the ANN [53]. The value of R2 ranges from 0 to
1, in which 1 means the probability of switching on can be predicted
without error. Therefore, a higher R2 means a factor has more influ-
ential impact on the prediction of switching on.

5. Results

5.1. Updated Hunt models

Fig. 11 presents updated Hunt models (each with a different α),
plotting the probability of switching on versus work area illuminance
ranging from 200 lx to 700 lx. In addition, the existing BPM dataset, the
synthetic IVE dataset, and the actual dataset obtained from the physical
office are also presented. Some observations can be made from Fig. 11:

• The prediction accuracy of updated Hunt models improves as α in-
creases; and

• Significant improvements in terms of prediction accuracy of the
updated Hunt models can be visually noticed when α is from 0.2 to
0.8. However, when α is> 0.8, the rate of the improvement is not as
obvious as when α is ≤0.8.

• When α=0.2, 0.4, and 0.6, the probability of switching on de-
creases when the work illuminance is lower than around 350 lx and
then increases when the work illuminance is higher than 350 lx.
These behaviors occur because of several reasons. One of the main
reasons is that the synthetic IVE dataset is categorical, which in-
cludes work area illuminance at 200, 500, and 700 lx. At α=0.2,
0.4, and 0.6, the weight of the existing BPM dataset is stronger than
the synthetic IVE dataset especially in the region around 350 lx. The
existing BPM biases the probability of switch on toward itself. At
α=0.8 and above, the weight of the existing BPM dataset becomes
weaker than the synthetic IVE dataset. Updated Hunt models tend to
follow behaviors of the synthetic IVE dataset. However, α between
0.6 and 0.8 are not observed in the study.

• The observations have demonstrated the potential of the proposed
framework to generate updated Hunt models that are better than the
original. The observations have also shown that α, a measure for
mixing the two datasets, may have a relationship with the prediction
accuracy of updated Hunt models. Finding an optimal α can help an
application to reach a desired level of prediction accuracy.

5.2. Hypothesis testing

The updated Hunt model with a mixture ratio α of 0.9 is considered
the augmented Hunt model since it has the best predictive ability among
all generated updated Hunt models.

To validate the hypothesis, 500 data samples are randomly drawn
from the existing BPM testing dataset, in which the occupancy status is
“true” and the intermediate leaving status is set to “none-leave” to be
consistent with the Hunt model. The augmented Hunt model and the
original Hunt model are both tested on this dataset and their predicted
outputs are recorded. Then, 500 samples are drawn from the actual
dataset under identical conditions (occupancy, intermediate leaving,
and work area illuminance).

To test the hypothesis, Eqs. (1) and (2) are used to determine E1 and
E2 as shown below:

E1= | The probability of switching on from the prediction of the existing BPM dataset
–
The probability of switching on from the actual data |
E2= | The probability of switching on from the prediction of the augmented Hunt
model –
The probability of switching on from the actual data |

Statistical one-tailed t-test is used to identify the statistically sig-
nificant difference between the mean of two errors, i.e., E1 and E2
(Fig. 12). The hypothesis is:

H0: mean of E1 – mean of E2= 0
H1: mean of E1 - mean of E2 > 0
From Table 5, the result of the one tailed t-test shows that the P-

C. Chokwitthaya, et al. Automation in Construction 107 (2019) 102917

10



value is smaller than 0.05; therefore, the null hypothesis is rejected. The
result can be interpreted that the mean of E1 is significantly higher than
the mean of E2. It can be concluded that the probabilities of switching
on estimated by the augmented Hunt model are significantly closer to the
actual data than those estimated by the original Hunt model. This result
implies that combining data reflecting design-specific contextual factors
with data from the Hunt model can generated an augmented Hunt model
with higher prediction accuracy than the original Hunt model.

5.3. Feature ranking analysis

Fig. 13 shows the plot of the probability of switching on obtained
from the synthetic IVE testing dataset and the prediction of the ANN, and
the coefficient of determination (R2) for occupancy status (a), leaving
status (b), and work area illuminance (c). It is assumed that occupancy
status, leaving status, and work area illuminance are independent to
each other. The results of R2 in Fig. 13 show that the most influential
factor is occupancy status (R2= 0.8640). The leaving status and the
work area illuminance are respectively less important factors. This re-
sult is consistent with other studies (e.g., [54,55]), which suggests that
the feature ranking analysis has the potential to identify influential
factors.

6. Limitations of the study

Even though the potential of the framework has been shown
through its application to the case, major limitations of the study can be
found in the following aspects:

• At this stage, the framework does not have the capability to de-
termine an optimal mixture of data from an existing BPM and
context-aware design-specific data. Therefore, a series of mixtures
has been applied to show the impact of mixing data from two dif-
ferent sources. However, it is ideal to have an approach allowing
designers or researchers to quickly determine an optimal mixture
depending on the goal of building performance.

• The study uses a single occupancy office as a case study. In addition,
the participant's habitual behavior is very unique, affecting the ob-
servational data significantly. The case has well demonstrated the
potential of the computational framework, because on one hand it
shows the deviation of human-building interactions from predic-
tions, on the other hand it demonstrates the potential of the com-
putational framework to bias a general model to fit a specific design.
However, more cases such as different types of occupants and multi-
occupancy offices need to be studied.

• The limitations of virtual reality technologies determine that it is
difficult to continuously collect human building interaction data in
virtual environment for long time. Hence, data collection using IVEs
are not continuous. For example, only a limited set of illuminance
data is collected in IVE experiments.

7. Conclusions and future work

In this paper, a computational framework has been discussed. The
framework combines design-specific contextual factors with an existing
BPM to produce an augmented BPM with better prediction accuracy. An
immersive virtual environments (IVE) is used to capture data related to
design specific contextual factors. The framework is applied to a
lighting use study, in which the Hunt model is chosen as the existing

BPM. An ANN combines data from the Hunt model with the data ob-
tained from the IVE experiment (context-aware design-specific data) to
generate an augmented Hunt model. Results show that the augmented
Hunt model produces better predictions than the original Hunt model.
Although the Hunt model is selected in this study, the framework is not
designed specifically to the Hunt model.

Several conclusions can be made based on the application of the
framework to the prediction of light switch status of a single occupancy
office:

• Design-specific contextual factors play an important role in pre-
dicting human-building interactions. Other studies [19] [56] [57]
have concluded similarly, which corroborates this study.

• The framework has demonstrated the potential of integrating de-
sign-specific contextual factors with an existing BPM to generate an
augmented BPM, which produces better predictions than the original
BPM. However, it has to be noted that this study has not offered an
approach to determine the α of the augmented BPM. Future work is
needed to determine such an approach.

• The framework relies on an IVE to collect data related to design-
specific contextual factors. As pointed out by previous studies, using
an IVE as a data collection tool has its limitations [58]. Although the
most matured IVE capability, visual simulation, is mainly applied in
this study, visual simulation alone cannot simulate all kinds of
human-building interactions. Other capabilities such as simulating
acoustic and thermal comfort of an indoor space should be devel-
oped and incorporated in the future.

• Feature ranking has the potential to identify important factors in-
fluencing predictions. The proposed method effectively identify that
occupancy status strongly affects the predictions of light switch
status as confirmed by many researches (e.g., [54] [55]). The ability
to identify most influencing factors can help designs of IVE experi-
ments for better data collection.

The contributions of the study are as follow:

• The main contribution of the study is the computation framework
that biases an existing BPM to better fit the context of a building
under design. The case study has demonstrated the potential of the
framework to improve performance predictions. This approach is
different from conventional approaches where in general BPMs
often developed using data of existing buildings are applied to
buildings under design. Due to the uniqueness of each building and
the context-dependent nature of occupant behaviors, BPM devel-
oped using conventional approaches often fail to produce accurate
predictions. Thus, the computational framework offers new possi-
bilities to assists designers or researchers to improve performance
predictions during building design.

• An additional contribution of the framework is to assist designers or
researchers in integrating contextual factors related to a new design
with an existing BPM. To adopt the framework for a building under
design, designers or researchers need to select an existing BPM,
identify contextual factors that are relevant to the design, and then
collect context-aware design-specific data addressing specific
human-building interactions in the context of the design using IVEs.
There is no restriction on the BPM or the contextual factors to be
considered. In most cases, it depends on the knowledge or experi-
ence of designers or researchers to make decisions. To a user, the
computational framework is treated as a black box after the BPM
and the contextual factors are determined, i.e., a user only uses an
augmented model produced by the framework to generate predic-
tions, which better address the context of a building under design.

• The framework is intended for use during a design stage, especially
when a designer has several design options and need to determine
the performance of a building under design.

Table 5
The summary of t-test analysis.

Absolute T-value Degree of freedom P-value H0

617.94 998 <0.05 Reject
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In the future, the framework needs to be validated in different in-
door environments. The data in this study are collected from a single
occupancy office. Other types of spaces including homes and multi-
occupancy offices and other types of occupant needs and preferences
should be studies as well. Moreover, the framework needs to be im-
proved to allow designers or researchers to use performance targets
(e.g., building benchmarks, building standards, arbitrary building data,
and energy consumptions) as the guide for combining data from an
existing BPM and context-aware design-specific data [59]. This step is
important because it makes the framework practical. It will help de-
signers or researchers to obtain appropriate mixtures without trying
many mixture ratios as shown in this study. The framework will help
designers or researchers to compare different design alternatives using
performance targets as a guide. From the comparison, designers or re-
searchers will be able to determine which design alternative should be
selected in order to obtain an overall optimal design. In addition, un-
certainties due to the limitations of IVE technologies need to be con-
sidered in the future improvement of the computational framework.
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