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1. Introduction

Given a point p in R? there are infinitely many minimal planes passing through p.
However, for a general complete metric on R? with infinite volume, it is not known if
any unbounded minimal planes (or surfaces of any topology) exist. This is the topic of
our main result':
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Theorem 1. Let (M, g) be an asymptotically flat 3-manifold containing no closed embed-
ded minimal surfaces. For every point p € M there exists a complete properly embedded
minimal plane in M containing p.

The following notion of asymptotic flatness suffices in Theorem 1: M is diffeomorphic?
to R? and in the associated coordinates, the metric satisfies ¢ = g + b, where |b] +
|z||[Db] + |2|?|D?b] = o(1) as || — oo (where g is the Euclidean metric and D the
Euclidean connection). We emphasize that no curvature assumption (e.g., non-negative
scalar curvature) is included in the statement of Theorem 1.

Our motivation for Theorem 1 comes from Schoen—Yau’s proof of the Positive Mass
Theorem [31]. A key aspect of their proof is showing that certain stable minimal surfaces
cannot exist in an asymptotically flat 3-manifold with positive scalar curvature. This
non-existence result has been refined in the works [17,7,8] (cf. [11]) so as to apply to any
unbounded embedded stable minimal surface. In particular, these works show that such
surfaces cannot exist in asymptotically flat 3-manifolds with positive scalar curvature
or non-negative scalar curvature and “Schwarzschild asymptotics.” It is thus natural
to wonder whether an asymptotically flat manifold admits any complete unbounded
minimal surfaces whatsoever. Theorem 1 settles this question affirmatively, as long as
the manifold does not contain any closed minimal surfaces.

One reason to expect minimal surfaces to exist is the min—max theory of Almgren and
Pitts [29], which produces unstable minimal surfaces in general compact three-manifolds
(even in those which do not contain any stable or area-minimizing surfaces). For closed
manifolds of positive Ricci curvature, Marques—Neves have shown the existence of in-
finitely many minimal surfaces [24]. Simon-Smith [33] used such methods to show that
every closed Riemannian three-sphere contains a minimal embedded two-sphere (see
also [20]). Similarly by sweeping out the manifold with planes, one might expect an
asymptotically flat three-manifold to contain a minimal plane. The difficulty is that an
asymptotically flat three-manifold has infinite volume, and the slices of such a sweepout

“

would also have infinite areas and thus the “width” of such a family is not a sensible
notion.

One can instead try to apply variational methods in a fixed (convex) ball Br(0) to
obtain a minimal disk with boundary and then let R — oco. The difficulty in carrying this
out is that the sequence of minimal surfaces may run off to infinity as R — co. Indeed, in
a non-flat asymptotically flat manifold (M3, g) with non-negative scalar curvature, direct
minimization is doomed to fail: by the work of the first-named author and Eichmair [§],
(M3, g) cannot contain an unbounded area-minimizing surface. Thus, if one considers a
large equatorial circle in Bg(0) and let ¥ i be a minimal disk solving the Plateau problem

for this boundary curve, the limit of ¥z as R — oo is guaranteed to be the empty

2 Note that the work of Meeks-Simon-Yau [27] shows that a general asymptotically flat 3-manifold with
no compact minimal surfaces is automatically diffeomorphic to R® (cf. [22, Lemma 4.1]).



O. Chodosh, D. Ketover / Advances in Mathematics 337 (2018) 171-192 173

set. Similarly, index 1 critical points obtained by min—max methods could potentially
disappear in the limit.

To emphasize the difficulty in controlling index 1 surfaces obtained by min-max, one
may consider a 3-manifold (M3, g) whose metric is asymptotic to the cone

Go = dr® + ra’ges,

for a € (0,1) (where gs2 is the standard round metric on the unit 2-sphere). By [14] we
know that (M3, g) cannot contain any unbounded immersed minimal surfaces of finite
index. Hence, if one considers a sequence of index 1 surfaces ¥ in Br(0) with respect
to the metric g, the surfaces must necessarily run off to infinity as R — oo. Interestingly,
the method developed in this paper also applies in this setting, showing that if (M3, g)
is asymptotic to g, and does not contain any closed minimal surfaces, then it contains
properly embedded minimal planes through every point p € M. These planes have
quadratic area growth, but infinite index. We discuss the extension of Theorem 1 to this
setting in Section 5.

See also Section 1.1 below for a discussion of certain results overcoming the difficulty
we have just described in the context of geodesics on surfaces.

Finally, we note that even in the asymptotic region of (M3, g) it is not clear that
one can perturb a Euclidean minimal surface to a g-minimal surface; an obstruction to
a particular such deformation was demonstrated in [10]. Moreover, such a perturbative
technique has no hope of constructing surfaces through any fixed point p € M as we
do in Theorem 1, since we do not assume that g is close to the Euclidean metric in the
compact part of the manifold.

In this paper we overcome these difficulties by relying on degree theoretic techniques,
rather than variational methods. Degree theory was introduced in this context by Tomi—
Tromba [34] and further developed by White [36,38,39]. Tomi—Tromba first applied it to
show that a curve in the boundary of a convex body in R3 bounds an embedded minimal
disk. White extended the theory and proved (among other things) that a three-sphere
with positive Ricci curvature contains an embedded minimal torus [37]. It was recently
extended to the free boundary setting to prove that convex bodies contain embedded
free boundary annuli [25].

Fix a large convex ball Bg(0) in M. We would like to produce a minimal disk passing
through the origin (as then the limit as R — oo would not be the empty set). By the
degree theory of White, it follows that an equatorial circle C' in the zy plane in 9Br(0)
bounds an odd number of embedded minimal disks. However, assuming no minimal disks
pass through the origin, we prove that any minimal disk bounded by C' in the southern
hemisphere can be “flipped” to another such disk in the northern hemisphere. See Fig. 1.
Thus the number of minimal disks bounded by C' is even. See Fig. 2. This gives a
contradiction and from it we obtain the existence of a minimal disk passing through the
origin. As the argument is indirect, we obtain no information about the Morse index of
the minimal disk obtained.
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Fig. 1. Under a 180° flip, if a disk returns to the same side then it must pass through the origin at some
point.

Fig. 2. Considering the “red” and “blue” disks, we see that if no disk intersects the origin during the “flip,”
the number of disks is even. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

Roughly speaking, the point is that minimal disks in the northern hemisphere pair off
bijectively with those in the southern, and there must be some disk in the middle which
“flips” to itself in order to have an odd number of disks. The rigorous argument and
the precise notion of “flipping” comes from the fact that R3 \ {origin} has two distinct
isotopy classes of embedded two-spheres.

To apply degree theory in this setting and to take a limit as R — oo we need area
and curvature bounds for minimal disks with certain kinds of boundaries, which we also
establish. A difficulty here is that we do not have any a priori control on the surfaces, since
they are not constructed variationally. Instead, we will use curvature estimates based
on the fact that the surfaces are disks. Schoen—Simon [30] have proven that minimal
disks ¥ in R? with bounded area have curvature bounds away from O¥. In a general
Riemannian manifold, these curvature estimates might not apply (they would require
that ¥ intersected any sufficiently small ball in a disk). Thus, we rely instead on the
curvature estimates of White [35]. To apply these estimates, we must show that the
surfaces have bounded area and controlled intersection with 9B, (0) for r sufficiently
large.

In R3, we have the following isoperimetric inequality for minimal surfaces: if ¥ C
Bgr(0) C R? has 9% C Bg(0), then taking X = rd, in the first variation, we find that

2area(X) = /divz Xdu = /g(n,X)d,u < Rlength(9%).
% 0%

Such an estimate holds in the asymptotic region of an asymptotically flat manifold as
well. However, notice that as R — oo, an estimate of this form will not give local area
bounds, since if length(9%) = O(R), then the estimate only implies area(X) < O(R?).
In R3, this would be sufficient to prove local area bounds by the monotonicity formula,
but here the error terms in the monotonicity formula might be too large for such an
argument.
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Instead, we choose 9% to be very close to an equator in dBr(0) and use the above
computation, along with a continuity argument to prove that ¥ intersects 9B, (0) in a
nearly equatorial circle, for all r large. Carrying this out carefully will prove area bounds
for ¥ outside of a fixed compact set. Finally, to prove area bounds in the fixed compact
set, we rely on an isoperimetric inequality of White [41], which requires that M does not
contain any minimal surfaces.

The assumption that M contain no closed embedded minimal surfaces seems essential
for the argument in its current form, since White has shown [41, Theorem 4.1] that in
the presence of closed embedded minimal surfaces, it is always possible to find minimal
disks bounded by well behaved curves, but with curvature and area blowing up. In fact,
the logic of our construction in the proof of Theorem 1 is somewhat analogous to White’s
construction of these misbehaving disks.

It is natural to wonder whether the minimal planes obtained by Theorem 1 have index
0 or 1 in general (we show that as long as the metric satisfies a slightly stronger decay
condition, the of the minimal plane index is finite in Proposition 17, but do not estimate
it explicitly). It also seems natural to conjecture that if (M3, g) is asymptotically flat
with OM consisting of closed minimal surfaces then there is an unbounded minimal
surface in (M3, g) with (possibly empty) free boundary on M. This is supported by the
situation in the Schwarzschild manifold defined (for m > 0) by

1 m )\
g = +m9

on M = {|z| > m/2}, where any Euclidean coordinate plane through {0} clearly yields
such a surface. It would be interesting to compute the index of these free-boundary
annuli in the exact Schwarzschild metric. This should be possible by an ODE analysis.

More generally, are these annuli and the horizon the only embedded minimal sur-
faces in Schwarzschild? The corresponding problem for embedded closed constant mean
curvature surfaces was recently solved by Brendle [6]: such surfaces must be centered
coordinate spheres.

While many authors have studied min—max methods in the non-compact setting [28,
23,15,12], to our knowledge Theorem 1 is the first such construction in a manifold of
infinite volume.

1.1. Analogous results for geodesics on surfaces

One dimension lower, i.e., for geodesics on surfaces, Bangert proved [2,3] that every
complete two dimensional plane contains a complete geodesic escaping to infinity. More-
over, Bonk and Lang use a flip argument in [5, Proposition 6.1] that has a similar flavor to
our techniques described above. More recently, Carlotto and De Lellis proved [9] that an
asymptotically conical surface with non-negative Gaussian curvature contains infinitely
many properly embedded geodesics with Morse index at most one, resolving (in the set-
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ting of asymptotically conical surfaces) the issue described above about controlling the
drifting of min—max critical points as the boundary is sent to infinity.

We emphasize that the arguments in the papers [2,3,5,9] make heavy use of the
two-dimensional setting in various ways. In particular: (i) besides variational methods,
geodesics can be constructed by solving an ODE initial value problem, (ii) the Gauss—
Bonnet formula can be used in a strong way to control the behavior of geodesics on a
surface, and (iii) geodesics have no extrinsic curvature and thus automatically satisfy
curvature estimates. None of these three features carry over to the setting (minimal
surfaces in three manifolds) we consider here.

1.2. On the “flip” argument for Theorem 1

Let us give a more detailed sketch of the existence part of Theorem 1. Let Bgr(0)
be a large ball centered about the origin in M and let Cr := 0Br(0) N {z = 0} be an
equatorial circle in dBg(0). For t € [0, 1] denote the equatorial circle

C% := 0BR(0) N {z cos(nt) = wsin(nt)}. (1.1)

The family C% consists of rotating the circle Cr = C% a full 180° degrees in dBg(0)
back to itself. For each t € [0,1] denote by M}, the family of embedded minimal disks
with boundary equal to C%.

Our goal is to find a minimal embedded disk with boundary in 9 Br(0) passing through
the origin. We can assume toward a contradiction that none of the disks in UM} pass
through the origin.

Since large balls in M are mean convex, one expects from work of Tomi—Tromba that
there should be an odd number of minimal disks in Br with boundary Cg. However,
assuming no disk in U; M}, passes through the origin we can show that the number of
minimal disks with boundary in Cg is even.

To see this, note that M}, consists of two types of disks depending on which “side” of
the disk the origin lies. More precisely, the space of embedded disks in R3\ {origin} with
boundary Cg has two connected components (both contractible). Let us thus denote
the disks in MY as either “red disks” Redgr or “blue disks” Bluegr, depending on the
component in which they are contained. Assume that as ¢ changes, the family of disks
M}, changes continuously (this can be guaranteed after small perturbation of the curves
C%, by Smale’s transversality theorem).

Let D% be some disk in Blueg. As ¢ increases, the disk D% moves with its boundary
to a disk D% in M}, with boundary C%, and finally at ¢ = 1 the disk returns back to a
disk in M%. This gives a bijection

My — M. (1.2)
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We claim that
®(Bluegr) = Redg, (1.3)
and similarly
®(Redg) = Blueg. (1.4)

The reason for (1.3) and (1.4) is that if ® mapped a point in Blueg to a point in
Blueg, then the family U, D% would sweep-out all of Bg(0) and in particular D% would
pass through the origin for some value of ¢. Thus we would have found a minimal disk
with boundary in Br(0) (although with rotated boundary from Cg), which contradicts
our assumption that no such disk exists.

But (1.3) and (1.4) imply that the cardinality of the set Bluep is the same as that of
Redr and thus the number of minimal disks in B?{ is even. This is a contradiction.

Thus for each R we obtain a minimal disk ¥ in Br(0) passing through the origin with
boundary in dBr(0) close to an equator. In light of the curvature estimates we prove in
this paper, we can take a limit of 3z as R — oo and obtain a smooth embedded minimal
plane passing through the origin. This completes the sketch of the “flip” argument used
in Theorem 1.

1.8. Organization of the paper

In Section 2 we prove the curvature bounds we need to take a limit of disks with
boundaries in larger and larger balls. In Section 3 we introduce the degree theory of
Tomi-Tromba as extended by White. In Section 4 we prove Theorem 1. Section 5 includes
a generalization of Theorem 1 to the setting of asymptotically conical 3-manifolds, as
well as a discussion of the Morse index of the surfaces.

Acknowledgments: O.C. was partially supported by the Oswald Veblen Fund and NSF
grants DMS 1638352 and DMS 1811059. D.K. was partially supported by NSF Postdoc-
toral Fellowship DMS 1401996. We are grateful to the referee for a careful reading, and
in particular for pointing out a mistake in the original version of Proposition 17. O.C.
would also like to thank Florian Johne for several useful comments on the first version
of this article.

2. Area and curvature bounds

In this section we prove curvature and area estimates for minimal disks in an asymp-
totically flat manifold with no closed embedded minimal surfaces.

The following estimates are due to Anderson [1] and White [35]. We will use them
to control the curvature of our surfaces in a large, but fixed ball. These estimates are
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somewhat related to those of Schoen—Simon [30] but crucially do not require the surfaces
to intersect small balls in topological disks.

Theorem 2 (Curvature estimates). Let N denote a compact Riemannian 3-manifold with
strictly mean convex boundary ON. Suppose that ¥ is an embedded minimal disk with
0% C ON. Then, there is a constant C depending on

e the Riemannian manifold (N, g),
e the area of X2,
o the C*%-norm of 0% (i.e., the C* norm of 0% as a map parametrized by arc length,),

and
dos(z,y)
dn (z,y) 7

o the “embeddedness” of 0%, i.e., maXy£ycon
so that the second fundamental form As, of ¥ satisfies |As| < C.

Thus, to obtain curvature estimates, it will be crucial to obtain area bounds. We recall
the following isoperimetric inequality due to White [41].

Theorem 3 (Isoperimetric inequality). Suppose that N is a compact Riemannian
3-manifold with strictly mean convexr boundary ON. Assume that N does not contain
any closed embedded minimal surfaces. Suppose that % is an embedded minimal surface
with 0¥ C ON. Then, there is a constant C' depending only on (N, g) so that

area, (%) < C'length, (0%).

Suppose now that (M3, g) is asymptotically flat and ¥ g are embedded minimal disks
in Br(0) whose boundary 9Xr is converging in C*® to an equator as R — oo (after
rescaling the picture to unit size).

Choose ¢ > 0 sufficiently small so that any stationary integral 2-varifold in R? that is
not a (multiplicity one) flat plane has density at infinity at least 1 + 2 (this is possible
by Allard’s theorem; cf. [40]).

Fix o sufficiently large so that |Vr| < 2 and D?r2 > g for r > 0 (where 7 is the usual
Euclidean radial coordinate in the chart at infinity). Here, the gradient V and Hessian
D? are taken with respect to the asymptotically flat metric g. The following quantity
will be crucial for our proof of area and curvature estimates.

Definition 4. Define o(R) to be the infimum of o € [og, R] so that for all p € [0, R), ¥g
is transverse to 0B,,

1
—— du < 2n(1+¢e)p,
/ Vo ( )p

S rNIB,(0)
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and after rescaling by p~!, the curve X N 9B,(0) is in the e-neighborhood (in the C**
sense”) of the set of equatorial circles in B,(0).

Our goal will be to show that ¢(R) is uniformly bounded from above.
Lemma 5. We have that R"'o(R) — 0 as R — o0o.
Proof. Consider the vector field X = rVr. Note that DX = $D%*? = g+o(1) as r — oo.
Choose Ag — 0 so that AgR — oo and so that Y g intersects B),r(0) transversely (for

example Ag ~ R~ will suffice). Consider the vector field X in the first variation formula
for ER \ B)\RR(O)5

(2+o0(1))areay(Xr \ Bryr(0))

= / divy X du

Er\Bagzr(0)
= /g(n,X)du— / g(n, X) du
OXR ZRmaBARR(O)

< (27 +o(1)) R,

where the o(1) terms are as R — oo. Here, 7 is the outwards pointing unit normal to
O(Xgr \ Bar) (so the second term on the third line was negative, and thus could be
discarded).

Consider fJR =R! (Xr \ Banpr), along with the associated rescaled metric §. Note
that areag(ZR) < 7 + o(1). Denote by V, a stationary integral varifold in R3\ {0} of
Y g so that X converges to V in the varifold sense (after passing to a subsequence). It
is clear that V extends (cf. [13, Lemma D.4]) to a stationary integral varifold in Bj(0)
with 0 € supp V and |V||(B1(0)) < 7. Thus, the monotonicity formula implies that V' is
the varifold associated to X, a flat disk through the origin with multiplicity one.

Now, by White’s version of Allard’s interior and boundary regularity theorem [40] we
see that ¥ converges with multiplicity one in C2® on compact subsets of R3 \ {0} to >
Observe that X intersects each dB,.(0) transversely in an equatorial curve and

1
dip = 27r
/ Vsr|

$NdB,-(0)

for all » € (0,1]. Thus, for any r € (0,1], we may take R sufficiently large so that
R7'o(R) < r. This proves the claim. O

3 We can use the || - |5, norm from [35, p. 244] to measure distance here.
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Proposition 6. The quantity o(R) is uniformly bounded from above as R — oco.

Proof. The argument is somewhat similar to Lemma 5. However, we proceed here by
contradiction. To this end, assume that o(R) — oo as R — oo. We will rescale X g by
o(R)~! to produce a contradiction.

By definition of o(R), we find that

length (X r N 0Bay(r)(0)) < Co(R)
Hence, by considering X = rVr in the first variation as in Lemma 5, we see that

areay (S N (Bao()(0) \ Bay (0)) < Co(R)?.

Now, consider X5 := ¢(R)"*(Xr \ By, ). By Lemma 5, the boundary components of ¥ p
are eventually disjoint from any compact subset of R3\ {0}.
By the definition of ¢(R) and the co-area formula, we have that for p > 1,

areay(Sr N (B,(0) \ B1(0))) < 7(1+€)(p* — 1). (2.1)

Putting this together, ¥z has uniformly bounded area on compact subsets of R?\ {0}.
Thus, we may pass to a subsequence and find a stationary mtegral varifold V in R3 so
that X5 converges to V away from {0}. Moreover, by (2.1), & has quadratic area growth,
and density at infinity bounded above by 7(1 + ¢). Thus, a standard argument shows
that the density at infinity is 7, and V is the varifold associated to a plane through the
origin with multiplicity one. As before, Allard’s theorem implies that the convergence of
¥k to V occurs in C%® on compact subsets of R?\ {0}.
Thus, we find that for k large, 3y is transverse to 0B,(0) for all r ~ 1,

1
———dp = 27(1 4 o(1))r
) / Vs, 7]
rNOB,-(0)

as k — 0o, and %) N dB,.(0) is converging in C> to an equator in dB,.(0) as k — oco.
This contradicts the definition of o(R) after rescaling. O

Now, taking o larger if necessary, using the isoperimetric inequality in Theorem 3
as combined with the definition of o(R) we find that ¥y has uniformly bounded area
inside of By, (0) and uniform quadratic area growth outside of By, (0). Furthermore, we
have that £ NJB,(0) is close in C%* to an equatorial circle for any p > 0. This allows
us to apply the curvature estimates of Theorem 2 to obtain the following compactness
theorem:

Proposition 7 (Compactness). Let M denote an asymptotically flat manifold diffeomor-
phic to R3 which contains no closed embedded minimal surfaces.
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Let ¥r, be a sequence of embedded minimal disks in M containing p € M with
0Xr C 0BR(0) and R — oo. Suppose in addition that after rescaling to unit size, 0¥ g
is converging to an equator in OBgr(0) in the C*% topology. Then, a subsequence of Y
converges smoothly on compact subsets of M to a complete properly embedded minimal
plane Yoo with p € Y.

Furthermore, Yo, has quadratic area growth and for X — oo, after passing to a subse-
quence A3, converges smoothly with multiplicity one on compact subsets of R\ {0}
to a plane through the origin.

Proof. By Proposition 6, the quantity o(R) is uniformly bounded as R — co. Thus, we
can take oo even larger if necessary so that for all R > o¢, and any p € [0p, R), we have
that X g is transverse to 0B,(0),

1
du <2n(1+¢)p, 2.2
/ T < 2n(L+ ) (2.2)
SrNOB,(0)

and after rescaling by p~!, the curve X5 N 9B,(0) is in the C** e-neighborhood of an
equator.

Thus, we see that ¥r N By, (0) has uniformly bounded area, by the isoperimetric
inequality Theorem 3. This and the co-area formula (using (2.2)) show that there is
A > 0 so that

areay (X N B,(0) < A+m(1+¢)(p* — o7) (2.3)

for all p >€ [og, R] (where A is independent of R). Moreover, for any p € [0, R], we
have seen that ¥z NOB,(0) is controlled in C** (and uniformly “embedded” in the sense
described in Theorem 2). Thus, by Theorem 2 applied to ¥z N B, C B,(0), we have that
the curvature of X is uniformly bounded on compact subsets of R3. By the uniform
quadratic area growth, so is the area, and thus we can pass to a subsequential (smooth)
limit to find a properly embedded minimal plane ¥, with p € X .

The plane ¥, has quadratic area growth by (2.3), so it remains to consider the
blow-down limits A™'¥ ... By the quadratic area growth, a subsequence converges in the
varifold sense (on compact subsets of R?\ {0}) to a stationary integral varifold V on R3
with the property that

IVII(Bo(0)) < (1 +¢).

Note that here, exactly in the previous two proofs, we have used the standard extension
property of stationary integral varifolds described in e.g. [13, Lemma D.4]. Now, by
choice of €, Allard’s theorem applies to show that V is a multiplicity one plane in R3.
Thus, the convergence happens smoothly with multiplicity one on compact subsets of

R3\ {0}.
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Finally, we observe that V must be a plane through the origin: since p € ¥, and X
is connected, we can always find a point in 3o N 0B, (0) for any n > 0 fixed. Thus,
A"13. N B, (0) # (. The monotonicity formula implies that there is a definite amount
of area in a small ball around this point. This easily is seen to imply that the blow-down
plane must pass through the origin. O

3. Degree theory

In this section we introduce the degree theory of Tomi-Tromba [34] as later extended
by White [38] needed for the proof of Theorem 1.

Let M denote a compact Riemannian three-ball with strictly mean convex boundary
OM. Let D denote the flat unit disk in R2 Let us call two maps fi,fo : D — M
equivalent if f; = fy o u for some diffeomorphism u : D — D fixing 0D pointwise. Let
[f1] denote the equivalence class of fi. Let

M ={[f]: f € C**(D, M) a minimal immersion with f(0D) C 9M}.

We have the following theorem due to White [36] (generalizing earlier work of Tomi-
Tromba in R? [34]):

Theorem 8. The space M is a smooth Banach manifold and
IM: M — C>*(0D,0M) (3.1)
given by

I([f]) = flop (3.2)

is a smooth Fredholm map of index 0.

By Smale’s infinite dimensional version [32] of Sard’s theorem it follows that the
singular values of a Fredholm map are of the first category in the Baire sense, so in
particular they contain no interior point. Since II is Fredholm of index 0, for any regular
value y of the mapping II, the set II-!(y) is a 0 dimensional manifold, and is locally the
union of finitely many points [32, Corollary 1.5].

In order to assign a mod 2 degree to the mapping IT we need to restrict to subsets of
M on which the mapping II is proper. Namely, we have the following:

Theorem 9 (Mod 2 degree). Let M’ and W be open subsets of M and C**(0D,0M)
respectively, such that W is connected and I1 : M’ — W is proper. Then for generic
v € W, the number of elements TI=1(y) N M’ is constant modulo 2.

Finally, we have the following theorem [21, Theorem. 2.1]:
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Theorem 10. Suppose the Riemannian three-ball M with mean conver boundary and
containing no closed embedded minimal surfaces. Let M’ be the subset of M con-
sisting of embeddings, and let W := C*>*(0D,0M). Then II restricted to M’ is a
proper map. Moreover, the mod 2 degree of Il is equal to one. In particular, a generic
v € C>*(dD,dM) bounds an odd number of embedded minimal disks.

We also have the following which allows us to perturb curves in the Banach space
C%%(dD,dM) to be transverse to II [32, Theorems 3.1 and 3.3] (and thus have nice
pre-images under II):

Theorem 11 (Smale’s transversality theorem). Let T' be a C' mapping T : [0,1] —
C>*(0D,0M). Then after arbitrarily small C' perturbation of T', one obtains a new
mapping T : [0,1] — C**(0D,0M) so that Hfl(f[O, 1) N M’ is a smooth one-
dimensional submanifold with boundary consisting of the finite set TI—1(T'(0)) N M’ and
I-(T'(1)) N M.

4. Proof of main theorem

In this section we prove Theorem 1. Thus let M be an asymptotically flat three-
manifold containing no closed embedded minimal surfaces. Let Bg(0) denote the Eu-
clidean ball of radius R. Fix p € M. We will always assume that R is large enough so
that p € Br(0).

To apply degree theory, we need the following:

Lemma 12. For R large enough, the ball Br(0) is convex with respect to g. In particular,
for R large enough, any minimal disk with boundary in OBr(0) is contained entirely in
Br(0).

Let Cr := 0BRr(0) N {z = 0} be the equatorial circle in dBg(0) in the xy-plane. Let
us consider a one parameter family of curves in 0Bg(0). Namely for ¢ € [0, 2] denote the
equatorial circle

C% := OBg(0) N {2z cos(nt) = wsin(nt)}. (4.1)

The family C% consists of rotating the circle Cp = C% a full 360° degrees in 0Br(0)
back to itself.

In fact we will be interested in only half of this family, namely the part with ¢ € [0, 1].
The path from 0 to 1 reverses the orientation from C% to C} and thus is not a closed
loop in C%*(0D,0M).

Since M contains no embedded minimal surfaces and its boundary is mean con-
vex (Lemma 12) by Theorem 11 we can replace the curve {Ch}icpo,2] by a new curve
{D%}ieqo,2) arbitrarily close to {Ch}iejo,2) so that:
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Proposition 13 (Degree is odd). The set L := H_I(Ute[oyl]D%) N M’ is a smooth one
dimensional manifold. Moreover, the closed curve D%, in OBr(0) bounds an odd number
of embedded minimal disks.

We can arrange that the nearby curves D% and DY are in a connected reqular neigh-
borhood for 11 and thus bound the same number of embedded minimal disks. Finally,
we can ensure that both curves D% and D}, have images arbitrarily close to that of the
equator in the xy-plane, Cy.

Proof. We can find a curve ~y arbitrarily close to C'% which is a regular value of II. Then,
by concatenating small paths of curves on both ends of {Cﬁ}te[o,l], we can obtain a path
{D%}te[o,l] so that D% =, D}% = —v (i.e., v with the opposite orientation), and so
that DY, is arbitrarily close to Ck.

For s € [0, 1] choose a path Ej, with E, =~ and so that for s € [1,1), Ef, is close to

dBr(0)N {z = Rs}

and a regular value of II for a.e. s close to 1. For s close enough to 1, it follows
(see page 149 in [38]) that E3, bounds precisely one embedded minimal disk. Namely,
II-*(EY,) consists of one point. Thus the mod 2 degree of IT on the set I (Usepo,11Ef;)
is odd. Thus we see (cf. Theorem 2.1 in [38]) that v must bound an odd number of disks.

Now, since 7 is a regular value for II, any boundary curve which is sufficiently close
to v will bound the same (odd) number of minimal surfaces as v (and they will be small
perturbations of those bounded by 7). Then, by applying Theorem 11, we can arrange
for a small perturbation of {Dﬁz}te[o,l] to {D%}eepo,1) which is transverse to IL. If this
perturbation is sufficiently small, the endpoints will still be in the regular neighborhood
of v, which is what we wanted. O

On the other hand, we have:

Proposition 14 (Degree is even). Suppose no disk in L passes through p € M fized, then
the number of disks bounded by v = D% s even.

See Fig. 3 for an illustration of the proof of this proposition.

Proof. Let us consider the smooth one-manifold £. The boundary of L consists of ele-
ments A := II"71(D%) together with elements in B := I[I"}(D}). We want to compute
the parity of the cardinality of A and B. By the classification of 1-manifolds, each con-
nected component of £ with non-empty boundary has exactly two boundary points.
Some such components of £ have both boundary points in either A or B. Let us denote
these connected components by £” and A” (B”) the subset of A (resp. B”) joined by
curves in L.

Similarly let us denote by A’ (B’) the elements of A (resp. B) so that £ connects
each point in A’ to one in B’. Let £’ be the set of connected component of £ with one
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L =T""(Dj)

=
= s

A

Fig. 3. The setup for the proof of Proposition 17. The disks in Blue%, Red%7 Blue}a, and Red}2 are colored
blue and red respectively at ¢t = 0 and ¢ = 1. As we show in the proof, the components in the 1-manifold £
that go between ¢t = 0 and t = 1 produces a bijection ® between A’ and B’.

boundary point in A and its other in B. Thus £’ provides a bijection ® between A’
and B'.

Given a disk D € A, let Sp denote the component of dBg(0) \ dD containing the
South Pole of 9Br(0), and Np the component containing the North Pole. Let us say D
is a Blue% disk if the three-ball bounded by D U Sp does not contain p in its interior
(this definition is well-defined as no disk in 4 intersects p by assumption and each disk
in A is contained in Br(0) by Lemma 12). If the three-ball bounded by D U Sp does
contain p, let us say D is a “red” disk RedOR. Thus we partition A into Blue% and Red%.
In the same way we partition B into Red) and Blueg,.

As in Proposition 13, by choosing the perturbation D% of C% small enough, we obtain
that the cardinality of Blue% is equal to that of Bluey and the cardinality of Red is
equal to that of Red}.

We claim that in addition the cardinality of Blue’, is equal to that of Red% modulo 2.
Thus the cardinality of A is even and Proposition 14 follows.

Toward that end, we first consider the disks in A’ C A which are in bijective corre-
spondence with B’ by the map ® described above. We claim that

(A’ N Blue}) C Redk, (4.2)
and similarly
®(A NRed%) C Blueg. (4.3)

To prove (4.2), fix a disk P € A’ N Bluek. Since P is blue, it follows that P U Sp is
a two-sphere not containing the origin. As we move P along the curve in £ linking it
to a disk in B’, we obtain a moving sequence of boundary curves D%, starting at D%
and ending at D}, together with a moving sequence of disks P; with boundary D%,
In this notation Py = P and P, = ®(P). For each t there is a choice of component
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S; of BR(0) \ D%, so that at time 0, S; is nearly all in the southern hemisphere, and
the component S; varies continuously in ¢. For ¢t = 1, (after a 180° rotation has been
completed), S is mostly in the northern hemisphere. Note that as no minimal disk in £
hits p and S; is contained in the boundary of the sphere of radius R, it follows that the
two-sphere P, U S; bounds a three-ball that is disjoint from the origin for all ¢. Thus in
particular P; U S; bounds a ball disjoint from p. It follows that P; is a red disk. Thus
®(P) is red as desired, establishing (4.2) and mutatis mutandis, (4.3).

Thus the cardinality of A" and thus also B’ (as the set is in bijective correspondence
with A’) is even.

It remains to consider the other elements of A which comprise the set A”. Arguing
similarly to the above paragraph, one can see that a component of £” cannot join a
blue disk in A” to a red disk in A”. Thus the only possibility is that each component
of £” joints a red disk to a red disk, or a blue disk to a blue disk. But anyway these
contribute an even number of elements, and thus the cardinality of A" is even. But since
the cardinality of A is the sum of the cardinalities of A’ and .A”, we obtain that this
cardinality is even. This completes the proof. O

Since the conclusions of Propositions 13 and 14 are in contradiction, it follows that
the assumption of Proposition 14 is false, and thus:

Corollary 15. For R large enough, Br(0) contains an embedded minimal disk passing
through p with boundary arbitrarily close to some equatorial circle Cl, where t € [0,1]
depends on R.

We may thus combine this with the curvature and area estimates to complete the
proof of the main result.

Completion of proof of Theorem 1. Let R; — oo be a sequence of radii, and let ¥;
denote the embedded minimal disk with some boundary circle close to Cﬁi obtained from
Corollary 15. Denote by ¥ a subsequential limit of ; as i — oo (using Proposition 7).
By Proposition 7 ¥, contains p and thus is non-empty. Moreover, the same proposition
shows that ¥, is a smooth properly embedded minimal plane. This completes the proof
of Theorem 1. O

We remark that it should be possible to prove that ¥, has a unique tangent plane at
infinity (cf. [7, Lemma 14]). It would be interesting to know if this tangent plane is the
same as the one containing the (limits of the) circles C%ij. This would presumably imply
that there is a full one-parameter family of minimal planes through any given point p.

5. Remarks related to the Morse index

In this section we discuss the index of the minimal planes obtained in Theorem 1. We
begin by discussing a related setting in which the disks Y have unbounded index. We
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say that a metric on M? is asymptotically conical if M is diffeomorphic to R? and in the
associated coordinates g = g, + b where

Go = dr? + 1?0’ gse,
and |b| + |z||Dg, bl + |:E|2|D3ab| = o(1).

Theorem 16. Let (M3, g) be an asymptotically conical 3-manifold containing no closed
embedded minimal surfaces. For every point p € M there exists a complete properly
embedded minimal plane containing p. If the cone parameter satisfies a € (0,1) each
plane has infinite Morse indez.

Proof. The existence proof proceeds exactly as that of Theorem 1, after noting that the
vector field X = r0, satisfies Dy X = 2g,. Finally, the statement about the Morse index
is a consequence of [14, Remark 10]. O

Now, for any asymptotically flat (M?3,g) with no closed interior minimal surfaces, it
is not hard to construct g; asymptotically conical (with a;; — 1) so that g; converges lo-
cally smoothly to g and (M3, g;) contains no closed embedded minimal surfaces. Through
any p € M, we can consider the sequence of minimal planes X; with respect to g; as
constructed in Theorem 16. By appropriately modifying the arguments to prove com-
pactness, we see that (after passing to a subsequence) X; converges locally smoothly
to a minimal plane ¥ with respect to g still containing p. One might expect 3 still to
have infinite Morse index. Surprisingly, this is not the case as long as we impose slightly
stronger decay assumptions on the metric (as we show in the next proposition). Thus,
the index of the 3; “drifts to infinity” as the asymptotic cone angle parameter o tends
to 1.

Proposition 17. Consider (M3, g) asymptotically flat. Assume that the asymptotically flat
metric g satisfies the stronger decay condition’: g = g + b where

[b] + |z[| Db| + [2]?|D?b| = O(r~7) (5.1)
for some T > 0. Suppose that ¥ is an unbounded minimal surface in (M3,g) so that

e X has quadratic area growth and

o for A\ — oo, after passing to a subsequence, \"1X converges in C’iﬁ(R‘3 \ {0}) to a

(multiplicity one) plane through the origin.

Then % has finite Morse indez.

4 Note that these conditions are still much weaker than is usually considered.
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We note that the argument used here should extend (using e.g., arguments from [8]) to
show equivalence of finite index and finite total curvature for embedded minimal surfaces
in asymptotically flat 3-manifolds.” We note that in the case of ambient R? the equiva-
lence of finite index and finite total curvature is a well known result of Fischer-Colbrie
[18].

Proof. We begin by observing that because A=1X is close to a plane in C2_(R?\ {0})

loc
for A sufficiently large, we see that

kdp = 21 4 o(1),
YXNOBR

as R — oo. Moreover, by convexity of large coordinate balls, it is clear that ¥ N Bp is a
disk. Thus, Gauss—Bonnet yields

sz/J, = 0(1)
YNBgr
as R — oo. On the other hand, the Gauss equations give
2Ks. = R, — 2Ric,(v,v) — |[As|* = O(r 77) — |As|?,

where we have used (5.1) to estimate the scalar curvature R, and Ricci curvature Ric,
of g. Because ¥ has quadratic area growth, a simple estimate on dyadic annuli gives

/O(riQ*T) < 0.

=

Thus,

/|Ag|2 < 00.
%

This implies that
[As| =0(~'7) (5.2)

for some ¢ > 0 by the work of Bernard-Riviere [4, Corollary I.1] (clearly ¥ is embedded
outside of a compact set by blow-down assumption on A\71X).°

5 Depending on the hypothesis concerning (M, g) (e.g., non-negative scalar curvature, Schwarzschild
asymptotics, etc.) it may be necessary (or not) to assume quadratic area growth for the minimal surface.

6 We note also the work of Carlotto [7] that proves such an estimate under the a priori assumption that
3 has is stable outside of a compact set (and under stronger asymptotic decay conditions of the metric).
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We prove that for g > 0 to be chosen, the function ¢(x) = 1 — |x|#* satisfies the
following inequality outside of a compact set

Asp + (|As|? + Ricy(v,v))p < 0. (5.3)

Since ¢ is positive, this implies that X is stable outside of a compact set. This will then
imply” that ¥ has finite Morse index by work of Devyver [16].

To establish (5.3), note that Ric = O(r~277) by the assumed asymptotically flat
condition (5.1). On the other hand, a straightforward blow-down argument, using the
fact that

Aper™H = p2r=27#
shows that
Asp = —r727"(* + 0(1))
as |z| — oco. Hence,
A+ (|Asf? + Ricy(v, 1)) = — (2 + o(1))r > + O(r>7) 4 O(27)

which is negative for r sufficiently large, as long as we choose 0 < g < min{7,0} (we
recall that 7 > 0 is the constant in (5.1) while § > 0 is the constant in (5.2)). This
completes the proof. O

Remark 18. We give an example to show that Proposition 17 is false without the stronger
notion of asymptotic flatness assumed there. Our construction follows a construction of
Grigor’'yan and Nadirashvili [19, Section 2.6] modified in a straightforward manner to
the present setting.

Consider a metric of the form

g = dr* + h(r)*gs

where h(r) is smooth and satisfies h(r) = r(1 — (logr)~2) for r sufficiently large and

h(r) = r? for r sufficiently small. It is clear that (R3,g) is asymptotically flat in the

sense of Theorem 1 but not in the stronger sense considered in Proposition 17.
Consider X a totally geodesic plane in (R3, g), i.e. for any equator v : S — S2, set

Y= {(r,7(0)) : 7 € [0,00),0 € S'}.

7 In flat R® there is a well known but indirect proof by Fischer-Colbrie [18] that stability of a minimal
surface outside of a compact set is equivalent to finite index. This proof does not seem to extend to the
present situation; this is why we appeal to [16] here.
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That ¥ is totally geodesic (and thus minimal) follows from the symmetry of (R?,g). We
claim that ¥ has infinite Morse index. It is easy to compute (cf. [6, (2)])

7h”(r) 1— R (r)?
GINIGE

Ric(v,v) = > (rlogr)~?

for r sufficiently large. Consider the function

1
o(r) = (log 7")% sin (5 log log r)

for r € [2mk, 2m(k + 1)] (taking ¢ identically 0 otherwise). Note that

(! (r)) = — 57~ (logr) (1)

We consider ¢ in the second variation form of area for 3. We find, for k sufficiently large:

Qo) = [l = (AP + Ric(w. )¢ du
S

2m(k+1)

<o [ (G0 = (rlogr) e — (ogr) s
2k
2m(k+1)

3

<2r ro' (r)? — Srt(logr) 2p(r)? ) dr
o )
2m(k+1) ;

—2r [ () = logr) el
2mk
2m(k+1) X

=2 / <§7‘1(1og7")2g0(7‘) — Zr%logr)%p(r)) o(r)dr
27k
27 (k+1)

= - / ril(logr)*Q@(T)er

27k

< 0.
Because this holds for all &k sufficiently large, ¥ has infinite index.
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