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1. Introduction

Given a point p in R3 there are infinitely many minimal planes passing through p. 

However, for a general complete metric on R3 with infinite volume, it is not known if 

any unbounded minimal planes (or surfaces of any topology) exist. This is the topic of 

our main result1:
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1 Added in proof: Mazet–Rosenberg [26] have recently generalized Theorem 1 to show that under the same 
hypothesis, there exists a minimal plane through any three points.
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Theorem 1. Let (M, g) be an asymptotically flat 3-manifold containing no closed embed-

ded minimal surfaces. For every point p ∈ M there exists a complete properly embedded 

minimal plane in M containing p.

The following notion of asymptotic flatness suffices in Theorem 1: M is diffeomorphic2

to R3 and in the associated coordinates, the metric satisfies g = ḡ + b, where |b| +

|x||D̄b| + |x|2|D̄2b| = o(1) as |x| → ∞ (where ḡ is the Euclidean metric and D̄ the 

Euclidean connection). We emphasize that no curvature assumption (e.g., non-negative 

scalar curvature) is included in the statement of Theorem 1.

Our motivation for Theorem 1 comes from Schoen–Yau’s proof of the Positive Mass 

Theorem [31]. A key aspect of their proof is showing that certain stable minimal surfaces 

cannot exist in an asymptotically flat 3-manifold with positive scalar curvature. This 

non-existence result has been refined in the works [17,7,8] (cf. [11]) so as to apply to any

unbounded embedded stable minimal surface. In particular, these works show that such 

surfaces cannot exist in asymptotically flat 3-manifolds with positive scalar curvature 

or non-negative scalar curvature and “Schwarzschild asymptotics.” It is thus natural 

to wonder whether an asymptotically flat manifold admits any complete unbounded 

minimal surfaces whatsoever. Theorem 1 settles this question affirmatively, as long as 

the manifold does not contain any closed minimal surfaces.

One reason to expect minimal surfaces to exist is the min–max theory of Almgren and 

Pitts [29], which produces unstable minimal surfaces in general compact three-manifolds 

(even in those which do not contain any stable or area-minimizing surfaces). For closed 

manifolds of positive Ricci curvature, Marques–Neves have shown the existence of in-

finitely many minimal surfaces [24]. Simon–Smith [33] used such methods to show that 

every closed Riemannian three-sphere contains a minimal embedded two-sphere (see 

also [20]). Similarly by sweeping out the manifold with planes, one might expect an 

asymptotically flat three-manifold to contain a minimal plane. The difficulty is that an 

asymptotically flat three-manifold has infinite volume, and the slices of such a sweepout 

would also have infinite areas and thus the “width” of such a family is not a sensible 

notion.

One can instead try to apply variational methods in a fixed (convex) ball BR(0) to 

obtain a minimal disk with boundary and then let R → ∞. The difficulty in carrying this 

out is that the sequence of minimal surfaces may run off to infinity as R → ∞. Indeed, in 

a non-flat asymptotically flat manifold (M3, g) with non-negative scalar curvature, direct 

minimization is doomed to fail: by the work of the first-named author and Eichmair [8], 

(M3, g) cannot contain an unbounded area-minimizing surface. Thus, if one considers a 

large equatorial circle in BR(0) and let ΣR be a minimal disk solving the Plateau problem 

for this boundary curve, the limit of ΣR as R → ∞ is guaranteed to be the empty 

2 Note that the work of Meeks–Simon–Yau [27] shows that a general asymptotically flat 3-manifold with 
no compact minimal surfaces is automatically diffeomorphic to R3 (cf. [22, Lemma 4.1]).
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set. Similarly, index 1 critical points obtained by min–max methods could potentially 

disappear in the limit.

To emphasize the difficulty in controlling index 1 surfaces obtained by min–max, one 

may consider a 3-manifold (M3, g) whose metric is asymptotic to the cone

ḡα = dr2 + r2α2gS2 ,

for α ∈ (0, 1) (where gS2 is the standard round metric on the unit 2-sphere). By [14] we 

know that (M3, g) cannot contain any unbounded immersed minimal surfaces of finite 

index. Hence, if one considers a sequence of index 1 surfaces ΣR in BR(0) with respect 

to the metric g, the surfaces must necessarily run off to infinity as R → ∞. Interestingly, 

the method developed in this paper also applies in this setting, showing that if (M3, g)

is asymptotic to gα and does not contain any closed minimal surfaces, then it contains 

properly embedded minimal planes through every point p ∈ M . These planes have 

quadratic area growth, but infinite index. We discuss the extension of Theorem 1 to this 

setting in Section 5.

See also Section 1.1 below for a discussion of certain results overcoming the difficulty 

we have just described in the context of geodesics on surfaces.

Finally, we note that even in the asymptotic region of (M3, g) it is not clear that 

one can perturb a Euclidean minimal surface to a g-minimal surface; an obstruction to 

a particular such deformation was demonstrated in [10]. Moreover, such a perturbative 

technique has no hope of constructing surfaces through any fixed point p ∈ M as we 

do in Theorem 1, since we do not assume that g is close to the Euclidean metric in the 

compact part of the manifold.

In this paper we overcome these difficulties by relying on degree theoretic techniques, 

rather than variational methods. Degree theory was introduced in this context by Tomi–

Tromba [34] and further developed by White [36,38,39]. Tomi–Tromba first applied it to 

show that a curve in the boundary of a convex body in R3 bounds an embedded minimal 

disk. White extended the theory and proved (among other things) that a three-sphere 

with positive Ricci curvature contains an embedded minimal torus [37]. It was recently 

extended to the free boundary setting to prove that convex bodies contain embedded 

free boundary annuli [25].

Fix a large convex ball BR(0) in M . We would like to produce a minimal disk passing 

through the origin (as then the limit as R → ∞ would not be the empty set). By the 

degree theory of White, it follows that an equatorial circle C in the xy plane in ∂BR(0)

bounds an odd number of embedded minimal disks. However, assuming no minimal disks 

pass through the origin, we prove that any minimal disk bounded by C in the southern 

hemisphere can be “flipped” to another such disk in the northern hemisphere. See Fig. 1. 

Thus the number of minimal disks bounded by C is even. See Fig. 2. This gives a 

contradiction and from it we obtain the existence of a minimal disk passing through the 

origin. As the argument is indirect, we obtain no information about the Morse index of 

the minimal disk obtained.



174 O. Chodosh, D. Ketover / Advances in Mathematics 337 (2018) 171–192

Fig. 1. Under a 180◦ flip, if a disk returns to the same side then it must pass through the origin at some 
point.

Fig. 2. Considering the “red” and “blue” disks, we see that if no disk intersects the origin during the “flip,” 
the number of disks is even. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Roughly speaking, the point is that minimal disks in the northern hemisphere pair off 

bijectively with those in the southern, and there must be some disk in the middle which 

“flips” to itself in order to have an odd number of disks. The rigorous argument and 

the precise notion of “flipping” comes from the fact that R3 \ {origin} has two distinct 

isotopy classes of embedded two-spheres.

To apply degree theory in this setting and to take a limit as R → ∞ we need area 

and curvature bounds for minimal disks with certain kinds of boundaries, which we also 

establish. A difficulty here is that we do not have any a priori control on the surfaces, since 

they are not constructed variationally. Instead, we will use curvature estimates based 

on the fact that the surfaces are disks. Schoen–Simon [30] have proven that minimal 

disks Σ in R3 with bounded area have curvature bounds away from ∂Σ. In a general 

Riemannian manifold, these curvature estimates might not apply (they would require 

that Σ intersected any sufficiently small ball in a disk). Thus, we rely instead on the 

curvature estimates of White [35]. To apply these estimates, we must show that the 

surfaces have bounded area and controlled intersection with ∂Br(0) for r sufficiently 

large.

In R3, we have the following isoperimetric inequality for minimal surfaces: if Σ ⊂

BR(0) ⊂ R
3 has ∂Σ ⊂ ∂BR(0), then taking X = r∂r in the first variation, we find that

2 area(Σ) =

∫

Σ

divΣ X dµ =

∫

∂Σ

ḡ(η, X)dµ ≤ R length(∂Σ).

Such an estimate holds in the asymptotic region of an asymptotically flat manifold as 

well. However, notice that as R → ∞, an estimate of this form will not give local area 

bounds, since if length(∂Σ) = O(R), then the estimate only implies area(Σ) ≤ O(R2). 

In R3, this would be sufficient to prove local area bounds by the monotonicity formula, 

but here the error terms in the monotonicity formula might be too large for such an 

argument.
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Instead, we choose ∂Σ to be very close to an equator in ∂BR(0) and use the above 

computation, along with a continuity argument to prove that Σ intersects ∂Br(0) in a 

nearly equatorial circle, for all r large. Carrying this out carefully will prove area bounds 

for Σ outside of a fixed compact set. Finally, to prove area bounds in the fixed compact 

set, we rely on an isoperimetric inequality of White [41], which requires that M does not 

contain any minimal surfaces.

The assumption that M contain no closed embedded minimal surfaces seems essential 

for the argument in its current form, since White has shown [41, Theorem 4.1] that in 

the presence of closed embedded minimal surfaces, it is always possible to find minimal 

disks bounded by well behaved curves, but with curvature and area blowing up. In fact, 

the logic of our construction in the proof of Theorem 1 is somewhat analogous to White’s 

construction of these misbehaving disks.

It is natural to wonder whether the minimal planes obtained by Theorem 1 have index 

0 or 1 in general (we show that as long as the metric satisfies a slightly stronger decay 

condition, the of the minimal plane index is finite in Proposition 17, but do not estimate 

it explicitly). It also seems natural to conjecture that if (M3, g) is asymptotically flat 

with ∂M consisting of closed minimal surfaces then there is an unbounded minimal 

surface in (M3, g) with (possibly empty) free boundary on ∂M . This is supported by the 

situation in the Schwarzschild manifold defined (for m > 0) by

g =

(

1 +
m

2|x|

)4

ḡ

on M = {|x| ≥ m/2}, where any Euclidean coordinate plane through {0} clearly yields 

such a surface. It would be interesting to compute the index of these free-boundary 

annuli in the exact Schwarzschild metric. This should be possible by an ODE analysis.

More generally, are these annuli and the horizon the only embedded minimal sur-

faces in Schwarzschild? The corresponding problem for embedded closed constant mean 

curvature surfaces was recently solved by Brendle [6]: such surfaces must be centered 

coordinate spheres.

While many authors have studied min–max methods in the non-compact setting [28,

23,15,12], to our knowledge Theorem 1 is the first such construction in a manifold of 

infinite volume.

1.1. Analogous results for geodesics on surfaces

One dimension lower, i.e., for geodesics on surfaces, Bangert proved [2,3] that every 

complete two dimensional plane contains a complete geodesic escaping to infinity. More-

over, Bonk and Lang use a flip argument in [5, Proposition 6.1] that has a similar flavor to 

our techniques described above. More recently, Carlotto and De Lellis proved [9] that an 

asymptotically conical surface with non-negative Gaussian curvature contains infinitely 

many properly embedded geodesics with Morse index at most one, resolving (in the set-
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ting of asymptotically conical surfaces) the issue described above about controlling the 

drifting of min–max critical points as the boundary is sent to infinity.

We emphasize that the arguments in the papers [2,3,5,9] make heavy use of the 

two-dimensional setting in various ways. In particular: (i) besides variational methods, 

geodesics can be constructed by solving an ODE initial value problem, (ii) the Gauss–

Bonnet formula can be used in a strong way to control the behavior of geodesics on a 

surface, and (iii) geodesics have no extrinsic curvature and thus automatically satisfy 

curvature estimates. None of these three features carry over to the setting (minimal 

surfaces in three manifolds) we consider here.

1.2. On the “flip” argument for Theorem 1

Let us give a more detailed sketch of the existence part of Theorem 1. Let BR(0)

be a large ball centered about the origin in M and let CR := ∂BR(0) ∩ {z = 0} be an 

equatorial circle in ∂BR(0). For t ∈ [0, 1] denote the equatorial circle

Ct
R := ∂BR(0) ∩ {z cos(πt) = x sin(πt)}. (1.1)

The family Ct
R consists of rotating the circle CR = C0

R a full 180◦ degrees in ∂BR(0)

back to itself. For each t ∈ [0, 1] denote by M t
R the family of embedded minimal disks 

with boundary equal to Ct
R.

Our goal is to find a minimal embedded disk with boundary in ∂BR(0) passing through 

the origin. We can assume toward a contradiction that none of the disks in ∪tM
t
R pass 

through the origin.

Since large balls in M are mean convex, one expects from work of Tomi–Tromba that 

there should be an odd number of minimal disks in BR with boundary CR. However, 

assuming no disk in ∪tM
t
R passes through the origin we can show that the number of 

minimal disks with boundary in CR is even.

To see this, note that M0
R consists of two types of disks depending on which “side” of 

the disk the origin lies. More precisely, the space of embedded disks in R3 \{origin} with 

boundary CR has two connected components (both contractible). Let us thus denote 

the disks in M0
R as either “red disks” RedR or “blue disks” BlueR, depending on the 

component in which they are contained. Assume that as t changes, the family of disks 

M t
R changes continuously (this can be guaranteed after small perturbation of the curves 

Ct
R by Smale’s transversality theorem).

Let D0
R be some disk in BlueR. As t increases, the disk D0

R moves with its boundary 

to a disk Dt
R in M t

R with boundary Ct
R, and finally at t = 1 the disk returns back to a 

disk in M0
R. This gives a bijection

Φ : M0
R → M0

R. (1.2)
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We claim that

Φ(BlueR) = RedR, (1.3)

and similarly

Φ(RedR) = BlueR. (1.4)

The reason for (1.3) and (1.4) is that if Φ mapped a point in BlueR to a point in 

BlueR, then the family ∪tD
t
R would sweep-out all of BR(0) and in particular Dt

R would 

pass through the origin for some value of t. Thus we would have found a minimal disk 

with boundary in BR(0) (although with rotated boundary from CR), which contradicts 

our assumption that no such disk exists.

But (1.3) and (1.4) imply that the cardinality of the set BlueR is the same as that of 

RedR and thus the number of minimal disks in B0
R is even. This is a contradiction.

Thus for each R we obtain a minimal disk ΣR in BR(0) passing through the origin with 

boundary in ∂BR(0) close to an equator. In light of the curvature estimates we prove in 

this paper, we can take a limit of ΣR as R → ∞ and obtain a smooth embedded minimal 

plane passing through the origin. This completes the sketch of the “flip” argument used 

in Theorem 1.

1.3. Organization of the paper

In Section 2 we prove the curvature bounds we need to take a limit of disks with 

boundaries in larger and larger balls. In Section 3 we introduce the degree theory of 

Tomi–Tromba as extended by White. In Section 4 we prove Theorem 1. Section 5 includes 

a generalization of Theorem 1 to the setting of asymptotically conical 3-manifolds, as 

well as a discussion of the Morse index of the surfaces.

Acknowledgments: O.C. was partially supported by the Oswald Veblen Fund and NSF 

grants DMS 1638352 and DMS 1811059. D.K. was partially supported by NSF Postdoc-

toral Fellowship DMS 1401996. We are grateful to the referee for a careful reading, and 

in particular for pointing out a mistake in the original version of Proposition 17. O.C. 

would also like to thank Florian Johne for several useful comments on the first version 

of this article.

2. Area and curvature bounds

In this section we prove curvature and area estimates for minimal disks in an asymp-

totically flat manifold with no closed embedded minimal surfaces.

The following estimates are due to Anderson [1] and White [35]. We will use them 

to control the curvature of our surfaces in a large, but fixed ball. These estimates are 
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somewhat related to those of Schoen–Simon [30] but crucially do not require the surfaces 

to intersect small balls in topological disks.

Theorem 2 (Curvature estimates). Let N denote a compact Riemannian 3-manifold with 

strictly mean convex boundary ∂N . Suppose that Σ is an embedded minimal disk with 

∂Σ ⊂ ∂N . Then, there is a constant C depending on

• the Riemannian manifold (N, g),

• the area of Σ,

• the C2,α-norm of ∂Σ (i.e., the C2,α norm of ∂Σ as a map parametrized by arc length), 

and

• the “embeddedness” of ∂Σ, i.e., maxx�=y∈∂Σ
d∂Σ(x,y)
dN (x,y) ,

so that the second fundamental form AΣ of Σ satisfies |AΣ| ≤ C.

Thus, to obtain curvature estimates, it will be crucial to obtain area bounds. We recall 

the following isoperimetric inequality due to White [41].

Theorem 3 (Isoperimetric inequality). Suppose that N is a compact Riemannian 

3-manifold with strictly mean convex boundary ∂N . Assume that N does not contain 

any closed embedded minimal surfaces. Suppose that Σ is an embedded minimal surface 

with ∂Σ ⊂ ∂N . Then, there is a constant C depending only on (N, g) so that

areag(Σ) ≤ C lengthg(∂Σ).

Suppose now that (M3, g) is asymptotically flat and ΣR are embedded minimal disks 

in BR(0) whose boundary ∂ΣR is converging in C2,α to an equator as R → ∞ (after 

rescaling the picture to unit size).

Choose ε > 0 sufficiently small so that any stationary integral 2-varifold in R3 that is 

not a (multiplicity one) flat plane has density at infinity at least 1 + 2ε (this is possible 

by Allard’s theorem; cf. [40]).

Fix σ0 sufficiently large so that |∇r| ≤ 2 and D2r2 ≥ g for r ≥ σ0 (where r is the usual 

Euclidean radial coordinate in the chart at infinity). Here, the gradient ∇ and Hessian 

D2 are taken with respect to the asymptotically flat metric g. The following quantity 

will be crucial for our proof of area and curvature estimates.

Definition 4. Define σ(R) to be the infimum of σ ∈ [σ0, R] so that for all ρ ∈ [σ, R), ΣR

is transverse to ∂Bρ,

∫

ΣR∩∂Bρ(0)

1

|∇ΣR
r|

dµ ≤ 2π(1 + ε)ρ,
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and after rescaling by ρ−1, the curve ΣR ∩ ∂Bρ(0) is in the ε-neighborhood (in the C2,α

sense3) of the set of equatorial circles in ∂Bρ(0).

Our goal will be to show that σ(R) is uniformly bounded from above.

Lemma 5. We have that R−1σ(R) → 0 as R → ∞.

Proof. Consider the vector field X = r∇r. Note that DX = 1
2D2r2 = g+o(1) as r → ∞. 

Choose λR → 0 so that λRR → ∞ and so that ΣR intersects ∂BλRR(0) transversely (for 

example λR ≈ R− 1

2 will suffice). Consider the vector field X in the first variation formula 

for ΣR \ BλRR(0):

(2 + o(1)) areag(ΣR \ BλRR(0))

=

∫

ΣR\BλRR(0)

divΣ X dµ

=

∫

∂ΣR

g(η, X) dµ −

∫

ΣR∩∂BλRR(0)

g(η, X) dµ

≤ (2π + o(1))R2,

where the o(1) terms are as R → ∞. Here, η is the outwards pointing unit normal to 

∂(ΣR \ BλR) (so the second term on the third line was negative, and thus could be 

discarded).

Consider Σ̃R := R−1(ΣR \ BλRR), along with the associated rescaled metric g̃. Note 

that areag̃(Σ̃R) ≤ π + o(1). Denote by Ṽ , a stationary integral varifold in R3 \ {0} of 

Σ̃R so that Σ̃R converges to Ṽ in the varifold sense (after passing to a subsequence). It 

is clear that Ṽ extends (cf. [13, Lemma D.4]) to a stationary integral varifold in B1(0)

with 0 ∈ supp Ṽ and ‖Ṽ ‖(B1(0)) ≤ π. Thus, the monotonicity formula implies that Ṽ is 

the varifold associated to Σ̃, a flat disk through the origin with multiplicity one.

Now, by White’s version of Allard’s interior and boundary regularity theorem [40] we 

see that Σ̃R converges with multiplicity one in C2,α on compact subsets of R3 \{0} to Σ̃. 

Observe that Σ̃ intersects each ∂Br(0) transversely in an equatorial curve and

∫

Σ̃∩∂Br(0)

1

|∇Σ̃r|
dµ̄ = 2πr,

for all r ∈ (0, 1]. Thus, for any r ∈ (0, 1], we may take R sufficiently large so that 

R−1σ(R) ≤ r. This proves the claim. ✷

3 We can use the ‖ · ‖∗

2,α norm from [35, p. 244] to measure distance here.



180 O. Chodosh, D. Ketover / Advances in Mathematics 337 (2018) 171–192

Proposition 6. The quantity σ(R) is uniformly bounded from above as R → ∞.

Proof. The argument is somewhat similar to Lemma 5. However, we proceed here by 

contradiction. To this end, assume that σ(R) → ∞ as R → ∞. We will rescale ΣR by 

σ(R)−1 to produce a contradiction.

By definition of σ(R), we find that

lengthg(ΣR ∩ ∂B2σ(R)(0)) ≤ Cσ(R)

Hence, by considering X = r∇r in the first variation as in Lemma 5, we see that

areag(ΣR ∩ (B2σ(R)(0) \ Bσ0
(0)) ≤ Cσ(R)2.

Now, consider Σ̃R := σ(R)−1(ΣR \ Bσ0
). By Lemma 5, the boundary components of Σ̃R

are eventually disjoint from any compact subset of R3 \ {0}.

By the definition of σ(R) and the co-area formula, we have that for ρ > 1,

areag̃(Σ̃R ∩ (Bρ(0) \ B1(0))) ≤ π(1 + ε)(ρ2 − 1). (2.1)

Putting this together, Σ̃R has uniformly bounded area on compact subsets of R3 \ {0}. 

Thus, we may pass to a subsequence and find a stationary integral varifold Ṽ in R3 so 

that Σ̃R converges to Ṽ away from {0}. Moreover, by (2.1), Σ̃ has quadratic area growth, 

and density at infinity bounded above by π(1 + ε). Thus, a standard argument shows 

that the density at infinity is π, and Ṽ is the varifold associated to a plane through the 

origin with multiplicity one. As before, Allard’s theorem implies that the convergence of 

Σ̃k to Ṽ occurs in C2,α on compact subsets of R3 \ {0}.

Thus, we find that for k large, Σ̃k is transverse to ∂Br(0) for all r ≈ 1,

∫

Σ̃k∩∂Br(0)

1

|∇Σ̃R
r|

dµ = 2π(1 + o(1))r

as k → ∞, and Σ̃k ∩ ∂Br(0) is converging in C2,α to an equator in ∂Br(0) as k → ∞. 

This contradicts the definition of σ(R) after rescaling. ✷

Now, taking σ0 larger if necessary, using the isoperimetric inequality in Theorem 3

as combined with the definition of σ(R) we find that ΣR has uniformly bounded area 

inside of Bσ0
(0) and uniform quadratic area growth outside of Bσ0

(0). Furthermore, we 

have that ΣR ∩ ∂Bρ(0) is close in C2,α to an equatorial circle for any ρ ≥ σ0. This allows 

us to apply the curvature estimates of Theorem 2 to obtain the following compactness 

theorem:

Proposition 7 (Compactness). Let M denote an asymptotically flat manifold diffeomor-

phic to R3 which contains no closed embedded minimal surfaces.
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Let ΣR, be a sequence of embedded minimal disks in M containing p ∈ M with 

∂ΣR ⊂ ∂BR(0) and R → ∞. Suppose in addition that after rescaling to unit size, ∂ΣR

is converging to an equator in ∂BR(0) in the C2,α topology. Then, a subsequence of ΣR

converges smoothly on compact subsets of M to a complete properly embedded minimal 

plane Σ∞ with p ∈ Σ∞.

Furthermore, Σ∞ has quadratic area growth and for λ → ∞, after passing to a subse-

quence λ−1Σ∞ converges smoothly with multiplicity one on compact subsets of R3 \ {0}

to a plane through the origin.

Proof. By Proposition 6, the quantity σ(R) is uniformly bounded as R → ∞. Thus, we 

can take σ0 even larger if necessary so that for all R > σ0, and any ρ ∈ [σ0, R), we have 

that ΣR is transverse to ∂Bρ(0),

∫

ΣR∩∂Bρ(0)

1

|∇ΣR
r|

dµ ≤ 2π(1 + ε)ρ, (2.2)

and after rescaling by ρ−1, the curve ΣR ∩ ∂Bρ(0) is in the C2,α ε-neighborhood of an 

equator.

Thus, we see that ΣR ∩ Bσ0
(0) has uniformly bounded area, by the isoperimetric 

inequality Theorem 3. This and the co-area formula (using (2.2)) show that there is 

Λ > 0 so that

areag(ΣR ∩ Bρ(0)) ≤ Λ + π(1 + ε)(ρ2 − σ2
0) (2.3)

for all ρ >∈ [σ0, R] (where Λ is independent of R). Moreover, for any ρ ∈ [σ0, R], we 

have seen that ΣR ∩∂Bρ(0) is controlled in C2,α (and uniformly “embedded” in the sense 

described in Theorem 2). Thus, by Theorem 2 applied to ΣR ∩Bρ ⊂ Bρ(0), we have that 

the curvature of ΣR is uniformly bounded on compact subsets of R3. By the uniform 

quadratic area growth, so is the area, and thus we can pass to a subsequential (smooth) 

limit to find a properly embedded minimal plane Σ∞ with p ∈ Σ∞.

The plane Σ∞ has quadratic area growth by (2.3), so it remains to consider the 

blow-down limits λ−1Σ∞. By the quadratic area growth, a subsequence converges in the 

varifold sense (on compact subsets of R3 \ {0}) to a stationary integral varifold V on R3

with the property that

‖V ‖(Bρ(0)) ≤ π(1 + ε).

Note that here, exactly in the previous two proofs, we have used the standard extension 

property of stationary integral varifolds described in e.g. [13, Lemma D.4]. Now, by 

choice of ε, Allard’s theorem applies to show that V is a multiplicity one plane in R3. 

Thus, the convergence happens smoothly with multiplicity one on compact subsets of 

R
3 \ {0}.
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Finally, we observe that V must be a plane through the origin: since p ∈ Σ∞ and Σ∞

is connected, we can always find a point in Σ∞ ∩ ∂Bηλ(0) for any η > 0 fixed. Thus, 

λ−1Σ∞ ∩ ∂Bη(0) 
= ∅. The monotonicity formula implies that there is a definite amount 

of area in a small ball around this point. This easily is seen to imply that the blow-down 

plane must pass through the origin. ✷

3. Degree theory

In this section we introduce the degree theory of Tomi–Tromba [34] as later extended 

by White [38] needed for the proof of Theorem 1.

Let M denote a compact Riemannian three-ball with strictly mean convex boundary 

∂M . Let D denote the flat unit disk in R2. Let us call two maps f1, f2 : D → M

equivalent if f1 = f2 ◦ u for some diffeomorphism u : D → D fixing ∂D pointwise. Let 

[f1] denote the equivalence class of f1. Let

M = {[f ] : f ∈ C2,α(D, M) a minimal immersion with f(∂D) ⊂ ∂M}.

We have the following theorem due to White [36] (generalizing earlier work of Tomi–

Tromba in R3 [34]):

Theorem 8. The space M is a smooth Banach manifold and

Π : M → C2,α(∂D, ∂M) (3.1)

given by

Π([f ]) = f |∂D (3.2)

is a smooth Fredholm map of index 0.

By Smale’s infinite dimensional version [32] of Sard’s theorem it follows that the 

singular values of a Fredholm map are of the first category in the Baire sense, so in 

particular they contain no interior point. Since Π is Fredholm of index 0, for any regular 

value y of the mapping Π, the set Π−1(y) is a 0 dimensional manifold, and is locally the 

union of finitely many points [32, Corollary 1.5].

In order to assign a mod 2 degree to the mapping Π we need to restrict to subsets of 

M on which the mapping Π is proper. Namely, we have the following:

Theorem 9 (Mod 2 degree). Let M′ and W be open subsets of M and C2,α(∂D, ∂M)

respectively, such that W is connected and Π : M′ → W is proper. Then for generic 

γ ∈ W , the number of elements Π−1(γ) ∩ M′ is constant modulo 2.

Finally, we have the following theorem [21, Theorem. 2.1]:
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Theorem 10. Suppose the Riemannian three-ball M with mean convex boundary and 

containing no closed embedded minimal surfaces. Let M′ be the subset of M con-

sisting of embeddings, and let W := C2,α(∂D, ∂M). Then Π restricted to M′ is a 

proper map. Moreover, the mod 2 degree of Π is equal to one. In particular, a generic 

γ ∈ C2,α(∂D, ∂M) bounds an odd number of embedded minimal disks.

We also have the following which allows us to perturb curves in the Banach space 

C2,α(∂D, ∂M) to be transverse to Π [32, Theorems 3.1 and 3.3] (and thus have nice 

pre-images under Π):

Theorem 11 (Smale’s transversality theorem). Let Γ be a C1 mapping Γ : [0, 1] →

C2,α(∂D, ∂M). Then after arbitrarily small C1 perturbation of Γ, one obtains a new 

mapping Γ̃ : [0, 1] → C2,α(∂D, ∂M) so that Π−1(Γ̃[0, 1]) ∩ M′ is a smooth one-

dimensional submanifold with boundary consisting of the finite set Π−1(Γ̃(0)) ∩ M′ and 

Π−1(Γ̃(1)) ∩ M′.

4. Proof of main theorem

In this section we prove Theorem 1. Thus let M be an asymptotically flat three-

manifold containing no closed embedded minimal surfaces. Let BR(0) denote the Eu-

clidean ball of radius R. Fix p ∈ M . We will always assume that R is large enough so 

that p ∈ BR(0).

To apply degree theory, we need the following:

Lemma 12. For R large enough, the ball BR(0) is convex with respect to g. In particular, 

for R large enough, any minimal disk with boundary in ∂BR(0) is contained entirely in 

BR(0).

Let CR := ∂BR(0) ∩ {z = 0} be the equatorial circle in ∂BR(0) in the xy-plane. Let 

us consider a one parameter family of curves in ∂BR(0). Namely for t ∈ [0, 2] denote the 

equatorial circle

Ct
R := ∂BR(0) ∩ {z cos(πt) = x sin(πt)}. (4.1)

The family Ct
R consists of rotating the circle CR = C0

R a full 3600 degrees in ∂BR(0)

back to itself.

In fact we will be interested in only half of this family, namely the part with t ∈ [0, 1]. 

The path from 0 to 1 reverses the orientation from C0
R to C1

R and thus is not a closed 

loop in C2,α(∂D, ∂M).

Since M contains no embedded minimal surfaces and its boundary is mean con-

vex (Lemma 12) by Theorem 11 we can replace the curve {Ct
R}t∈[0,2] by a new curve 

{Dt
R}t∈[0,2] arbitrarily close to {Ct

R}t∈[0,2] so that:
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Proposition 13 (Degree is odd). The set L := Π−1(∪t∈[0,1]D
t
R) ∩ M′ is a smooth one 

dimensional manifold. Moreover, the closed curve D0
R in ∂BR(0) bounds an odd number 

of embedded minimal disks.

We can arrange that the nearby curves D0
R and D1

R are in a connected regular neigh-

borhood for Π and thus bound the same number of embedded minimal disks. Finally, 

we can ensure that both curves D0
R and D1

R have images arbitrarily close to that of the 

equator in the xy-plane, C0.

Proof. We can find a curve γ arbitrarily close to C0
R which is a regular value of Π. Then, 

by concatenating small paths of curves on both ends of {Ct
R}t∈[0,1], we can obtain a path 

{D̃t
R}t∈[0,1] so that D0

R = γ, D1
R = −γ (i.e., γ with the opposite orientation), and so 

that Dt
R is arbitrarily close to Ct

R.

For s ∈ [0, 1] choose a path Es
R with E0

R = γ and so that for s ∈ [ 1
2 , 1), Es

R is close to

∂BR(0) ∩ {z = Rs}

and a regular value of Π for a.e. s close to 1. For s close enough to 1, it follows 

(see page 149 in [38]) that Es
R bounds precisely one embedded minimal disk. Namely, 

Π−1(Et
R) consists of one point. Thus the mod 2 degree of Π on the set Π−1(∪s∈[0,1]E

s
R)

is odd. Thus we see (cf. Theorem 2.1 in [38]) that γ must bound an odd number of disks.

Now, since γ is a regular value for Π, any boundary curve which is sufficiently close 

to γ will bound the same (odd) number of minimal surfaces as γ (and they will be small 

perturbations of those bounded by γ). Then, by applying Theorem 11, we can arrange 

for a small perturbation of {D̃t
R}t∈[0,1] to {Dt

R}t∈[0,1] which is transverse to Π. If this 

perturbation is sufficiently small, the endpoints will still be in the regular neighborhood 

of γ, which is what we wanted. ✷

On the other hand, we have:

Proposition 14 (Degree is even). Suppose no disk in L passes through p ∈ M fixed, then 

the number of disks bounded by γ = D0
R is even.

See Fig. 3 for an illustration of the proof of this proposition.

Proof. Let us consider the smooth one-manifold L. The boundary of L consists of ele-

ments A := Π−1(D0
R) together with elements in B := Π−1(D1

R). We want to compute 

the parity of the cardinality of A and B. By the classification of 1-manifolds, each con-

nected component of L with non-empty boundary has exactly two boundary points. 

Some such components of L have both boundary points in either A or B. Let us denote 

these connected components by L′′ and A′′ (B′′) the subset of A (resp. B′′) joined by 

curves in L′′.

Similarly let us denote by A′ (B′) the elements of A (resp. B) so that L connects 

each point in A′ to one in B′. Let L′ be the set of connected component of L with one 
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Fig. 3. The setup for the proof of Proposition 17. The disks in Blue0

R, Red0

R, Blue1

R, and Red1

R are colored 
blue and red respectively at t = 0 and t = 1. As we show in the proof, the components in the 1-manifold L
that go between t = 0 and t = 1 produces a bijection Φ between A′ and B′.

boundary point in A and its other in B. Thus L′ provides a bijection Φ between A′

and B′.

Given a disk D ∈ A, let SD denote the component of ∂BR(0) \ ∂D containing the 

South Pole of ∂BR(0), and ND the component containing the North Pole. Let us say D

is a Blue0
R disk if the three-ball bounded by D ∪ SD does not contain p in its interior 

(this definition is well-defined as no disk in A intersects p by assumption and each disk 

in A is contained in BR(0) by Lemma 12). If the three-ball bounded by D ∪ SD does 

contain p, let us say D is a “red” disk Red0
R. Thus we partition A into Blue0

R and Red0
R. 

In the same way we partition B into Red1
R and Blue1

R.

As in Proposition 13, by choosing the perturbation Dt
R of Ct

R small enough, we obtain 

that the cardinality of Blue0
R is equal to that of Blue1

R and the cardinality of Red0
R is 

equal to that of Red1
R.

We claim that in addition the cardinality of Blue0
R is equal to that of Red0

R modulo 2. 

Thus the cardinality of A is even and Proposition 14 follows.

Toward that end, we first consider the disks in A′ ⊂ A which are in bijective corre-

spondence with B′ by the map Φ described above. We claim that

Φ(A′ ∩ Blue0
R) ⊂ Red1

R, (4.2)

and similarly

Φ(A′ ∩ Red0
R) ⊂ Blue1

R. (4.3)

To prove (4.2), fix a disk P ∈ A′ ∩ Blue0
R. Since P is blue, it follows that P ∪ SD is 

a two-sphere not containing the origin. As we move P along the curve in L linking it 

to a disk in B′, we obtain a moving sequence of boundary curves Dt
R, starting at D0

R

and ending at D1
R, together with a moving sequence of disks Pt with boundary Dt

R. 

In this notation P0 = P and P1 = Φ(P ). For each t there is a choice of component 
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St of ∂BR(0) \ Dt
R so that at time 0, St is nearly all in the southern hemisphere, and 

the component St varies continuously in t. For t = 1, (after a 1800 rotation has been 

completed), S1 is mostly in the northern hemisphere. Note that as no minimal disk in L

hits p and St is contained in the boundary of the sphere of radius R, it follows that the 

two-sphere Pt ∪ St bounds a three-ball that is disjoint from the origin for all t. Thus in 

particular P1 ∪ S1 bounds a ball disjoint from p. It follows that P1 is a red disk. Thus 

Φ(P ) is red as desired, establishing (4.2) and mutatis mutandis, (4.3).

Thus the cardinality of A′ and thus also B′ (as the set is in bijective correspondence 

with A′) is even.

It remains to consider the other elements of A which comprise the set A′′. Arguing 

similarly to the above paragraph, one can see that a component of L′′ cannot join a 

blue disk in A′′ to a red disk in A′′. Thus the only possibility is that each component 

of L′′ joints a red disk to a red disk, or a blue disk to a blue disk. But anyway these 

contribute an even number of elements, and thus the cardinality of A′′ is even. But since 

the cardinality of A is the sum of the cardinalities of A′ and A′′, we obtain that this 

cardinality is even. This completes the proof. ✷

Since the conclusions of Propositions 13 and 14 are in contradiction, it follows that 

the assumption of Proposition 14 is false, and thus:

Corollary 15. For R large enough, BR(0) contains an embedded minimal disk passing 

through p with boundary arbitrarily close to some equatorial circle Ct
R, where t ∈ [0, 1]

depends on R.

We may thus combine this with the curvature and area estimates to complete the 

proof of the main result.

Completion of proof of Theorem 1. Let Ri → ∞ be a sequence of radii, and let Σi

denote the embedded minimal disk with some boundary circle close to Cti

Ri
obtained from 

Corollary 15. Denote by Σ∞ a subsequential limit of Σi as i → ∞ (using Proposition 7). 

By Proposition 7 Σ∞ contains p and thus is non-empty. Moreover, the same proposition 

shows that Σ∞ is a smooth properly embedded minimal plane. This completes the proof 

of Theorem 1. ✷

We remark that it should be possible to prove that Σ∞ has a unique tangent plane at 

infinity (cf. [7, Lemma 14]). It would be interesting to know if this tangent plane is the 

same as the one containing the (limits of the) circles Cti

R . This would presumably imply 

that there is a full one-parameter family of minimal planes through any given point p.

5. Remarks related to the Morse index

In this section we discuss the index of the minimal planes obtained in Theorem 1. We 

begin by discussing a related setting in which the disks ΣR have unbounded index. We 
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say that a metric on M3 is asymptotically conical if M is diffeomorphic to R3 and in the 

associated coordinates g = ḡα + b where

ḡα = dr2 + r2α2gS2 ,

and |b| + |x||Dḡα
b| + |x|2|D2

ḡα
b| = o(1).

Theorem 16. Let (M3, g) be an asymptotically conical 3-manifold containing no closed 

embedded minimal surfaces. For every point p ∈ M there exists a complete properly 

embedded minimal plane containing p. If the cone parameter satisfies α ∈ (0, 1) each 

plane has infinite Morse index.

Proof. The existence proof proceeds exactly as that of Theorem 1, after noting that the 

vector field X = r∂r satisfies Dḡα
X = 2ḡα. Finally, the statement about the Morse index 

is a consequence of [14, Remark 10]. ✷

Now, for any asymptotically flat (M3, g) with no closed interior minimal surfaces, it 

is not hard to construct gj asymptotically conical (with αj → 1) so that gj converges lo-

cally smoothly to g and (M3, gj) contains no closed embedded minimal surfaces. Through 

any p ∈ M , we can consider the sequence of minimal planes Σj with respect to gj as 

constructed in Theorem 16. By appropriately modifying the arguments to prove com-

pactness, we see that (after passing to a subsequence) Σj converges locally smoothly 

to a minimal plane Σ with respect to g still containing p. One might expect Σ still to 

have infinite Morse index. Surprisingly, this is not the case as long as we impose slightly 

stronger decay assumptions on the metric (as we show in the next proposition). Thus, 

the index of the Σj “drifts to infinity” as the asymptotic cone angle parameter α tends 

to 1.

Proposition 17. Consider (M3, g) asymptotically flat. Assume that the asymptotically flat 

metric g satisfies the stronger decay condition4: g = ḡ + b where

|b| + |x||D̄b| + |x|2|D̄2b| = O(r−τ ) (5.1)

for some τ > 0. Suppose that Σ is an unbounded minimal surface in (M3, g) so that

• Σ has quadratic area growth and

• for λ → ∞, after passing to a subsequence, λ−1Σ converges in C2,α
loc (R3 \ {0}) to a 

(multiplicity one) plane through the origin.

Then Σ has finite Morse index.

4 Note that these conditions are still much weaker than is usually considered.
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We note that the argument used here should extend (using e.g., arguments from [8]) to 

show equivalence of finite index and finite total curvature for embedded minimal surfaces 

in asymptotically flat 3-manifolds.5 We note that in the case of ambient R3 the equiva-

lence of finite index and finite total curvature is a well known result of Fischer-Colbrie 

[18].

Proof. We begin by observing that because λ−1Σ is close to a plane in C2
loc(R3 \ {0})

for λ sufficiently large, we see that

∫

Σ∩∂BR

κdµ = 2π + o(1),

as R → ∞. Moreover, by convexity of large coordinate balls, it is clear that Σ ∩ BR is a 

disk. Thus, Gauss–Bonnet yields

∫

Σ∩BR

KΣdµ = o(1)

as R → ∞. On the other hand, the Gauss equations give

2KΣ = Rg − 2 Ricg(ν, ν) − |AΣ|2 = O(r−2−τ ) − |AΣ|2,

where we have used (5.1) to estimate the scalar curvature Rg and Ricci curvature Ricg

of g. Because Σ has quadratic area growth, a simple estimate on dyadic annuli gives

∫

Σ

O(r−2−τ ) < ∞.

Thus,

∫

Σ

|AΣ|2 < ∞.

This implies that

|AΣ| = O(r−1−δ) (5.2)

for some δ > 0 by the work of Bernard–Riviere [4, Corollary I.1] (clearly Σ is embedded 

outside of a compact set by blow-down assumption on λ−1Σ).6

5 Depending on the hypothesis concerning (M, g) (e.g., non-negative scalar curvature, Schwarzschild 
asymptotics, etc.) it may be necessary (or not) to assume quadratic area growth for the minimal surface.

6 We note also the work of Carlotto [7] that proves such an estimate under the a priori assumption that 
Σ has is stable outside of a compact set (and under stronger asymptotic decay conditions of the metric).
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We prove that for µ > 0 to be chosen, the function ϕ(x) = 1 − |x|−µ satisfies the 

following inequality outside of a compact set

∆Σϕ + (|AΣ|2 + Ricg(ν, ν))ϕ ≤ 0. (5.3)

Since ϕ is positive, this implies that Σ is stable outside of a compact set. This will then 

imply7 that Σ has finite Morse index by work of Devyver [16].

To establish (5.3), note that Ric = O(r−2−τ ) by the assumed asymptotically flat 

condition (5.1). On the other hand, a straightforward blow-down argument, using the 

fact that

∆R2r−µ = µ2r−2−µ

shows that

∆Σϕ = −r−2−µ(µ2 + o(1))

as |x| → ∞. Hence,

∆Σϕ + (|AΣ|2 + Ricg(ν, ν))ϕ = −(µ2 + o(1))r−2−µ + O(r−2−τ ) + O(r−2−δ)

which is negative for r sufficiently large, as long as we choose 0 < µ < min{τ, δ} (we 

recall that τ > 0 is the constant in (5.1) while δ > 0 is the constant in (5.2)). This 

completes the proof. ✷

Remark 18. We give an example to show that Proposition 17 is false without the stronger 

notion of asymptotic flatness assumed there. Our construction follows a construction of 

Grigor’yan and Nadirashvili [19, Section 2.6] modified in a straightforward manner to 

the present setting.

Consider a metric of the form

g = dr2 + h(r)2gS2

where h(r) is smooth and satisfies h(r) = r(1 − (log r)−2) for r sufficiently large and 

h(r) = r2 for r sufficiently small. It is clear that (R3, g) is asymptotically flat in the 

sense of Theorem 1 but not in the stronger sense considered in Proposition 17.

Consider Σ a totally geodesic plane in (R3, g), i.e. for any equator γ : S1 → S
2, set

Σ := {(r, γ(θ)) : r ∈ [0, ∞), θ ∈ S
1}.

7 In flat R3 there is a well known but indirect proof by Fischer-Colbrie [18] that stability of a minimal 
surface outside of a compact set is equivalent to finite index. This proof does not seem to extend to the 
present situation; this is why we appeal to [16] here.
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That Σ is totally geodesic (and thus minimal) follows from the symmetry of (R3, g). We 

claim that Σ has infinite Morse index. It is easy to compute (cf. [6, (2)])

Ric(ν, ν) = −
h′′(r)

h(r)
+

1 − h′(r)2

h(r)2
≥ (r log r)−2

for r sufficiently large. Consider the function

ϕ(r) = (log r)
1

2 sin

(

1

2
log log r

)

for r ∈ [2πk, 2π(k + 1)] (taking ϕ identically 0 otherwise). Note that

(rϕ′(r))′ = −
1

2
r−2(log r)−2ϕ(r)

We consider ϕ in the second variation form of area for Σ. We find, for k sufficiently large:

Q(ϕ, ϕ) =

∫

Σ

(|∇Σϕ|2 − (|AΣ|2 + Ric(ν, ν))ϕ2)dµ

≤ 2π

2π(k+1)
∫

2πk

(ϕ′(r)2 − (r log r)−2ϕ(r)2)r(1 − (log r)−2)dr

≤ 2π

2π(k+1)
∫

2πk

(

rϕ′(r)2 −
3

4
r−1(log r)−2ϕ(r)2

)

dr

= 2π

2π(k+1)
∫

2πk

(−(rϕ′(r))′ −
3

4
r−1(log r)−2ϕ(r))ϕ(r)dr

= 2π

2π(k+1)
∫

2πk

(

1

2
r−1(log r)−2ϕ(r) −

3

4
r−1(log r)−2ϕ(r)

)

ϕ(r)dr

= −
π

2

2π(k+1)
∫

2πk

r−1(log r)−2ϕ(r)2dr

< 0.

Because this holds for all k sufficiently large, Σ has infinite index.
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