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1. Introduction

In the recent work [6], a regularity and compactness theory has been developed (in a
varifold setting) for weakly stable constant-mean-curvature (CMC) hypersurfaces. The
question of whether there is an effective version of the compactness theorem of [6], i.e.
whether weakly stable CMC hypersurfaces must satisfy a uniform local curvature esti-
mate under appropriate hypotheses, arises naturally from that work. Here we settle this
question by proving, for such hypersurfaces satisfying uniform mass and mean curvature
bounds, a pointwise curvature estimate in the non-singular dimensions (i.e. in dimensions
< 6) and a sheeting theorem (i.e. a pointwise curvature estimate subject to the additional
hypothesis that the hypersurface is weakly close to a hyperplane) in all dimensions. Our
results generalize the foundational works of Schoen—Simon—Yau [24] that established a
pointwise curvature estimate for strongly stable minimal hypersurfaces in low dimensions
and of Schoen—Simon [23] that established a sheeting theorem in all dimensions for a
class of strongly stable hypersurfaces (including CMC hypersurfaces) subject to an a
priori smallness hypothesis on the singular set.

Recall that a smooth immersion z : ¥ — R™*! has constant mean curvature if and
only if every compact portion 31 C 3 is stationary with respect to the hypersurface area
functional a(¥;) for volume-preserving deformations. This condition is equivalent to the
fact that for some constant H, every compact portion 37 C ¥ is stationary with respect
to the functional

J(Zl) = 11(21) + Hva[(ih)

for arbitrary deformations, where vof (31) is the enclosed volume functional (which can
be expressed as vof (¥X1) = n+_1 le z - vdX where v is a continuous unit normal to X
and d¥ is the volume element with respect to the metric induced by the immersion z);
in this case, H is the value of the scalar mean curvature of ¥ with respect to v. If ¥
has constant mean curvature, then for any given ¢ € C2°(X) and relative to any smooth
1-parameter family of deformations of ¥ with initial velocity ¢v, the second variation of
> with respect to J is given by the quadratic form

527(6,8) — / Vo — |As 22,
>

where Ay is the second fundamental form of ¥ and V is the gradient on ¥ (cf. |3,
Proposition 2.5]). We say that the CMC hypersurface X is weakly stable if every compact
portion 3; C X is stable, i.e. has non-negative second variation, with respect to the
area functional, or equivalently, with respect to J, for volume-preserving deformations.
Weakly stable CMC hypersurfaces arise as stable critical points for the isoperimetric
problem. The weak stability of 3 is equivalent to the validity of the stability inequality
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[1asPe < [ vor
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for any ¢ € C°(X) with [ ¢ = 0 (cf. [3, Proposition 2.7]), while strong stability of X
requires that this inequality holds for arbitrary ¢ € C°(X).

The methods used in [24,23] for strongly stable hypersurfaces involve the use of positive
test functions ¢ in the stability inequality, and since these never integrate to zero, it is
not clear how to directly apply these methods in the setting of weak stability. The
strategy employed here is different: we take a geometric approach, combining the results
of [24,23] for strongly stable hypersurfaces with the fact that complete weakly stable
minimal hypersurfaces have only one end, a result established by Cheng—Cheung-Zhou
([8]) and generalized here (in a fairly straightforward manner) to allow the hypersurfaces
to have a small singular set. This generalization is necessary for the sheeting theorem.
A key difficulty in the proof of the sheeting theorem is to correctly “localize” the one-end
result in order to transfer the “flatness” from large to small scales (see Remark 6). This
is handled by a careful blow-up procedure relying on the aforementioned regularity and
compactness theorems in [6] for weakly stable CMC hypersurfaces and a rigidity theorem
(Lemma 5 below), due to Simons ([21]), for minimal hypersurfaces of spheres.

Our main results are Theorem 1, Theorem 2, Theorem 1’ and Theorem 2’ below.
Theorem 1 gives a pointwise curvature bound valid for mass bounded weakly stable
CMC hypersurface of dimension n with 3 < n < 6 (that are assumed, in case 3 <
n < 5, to be immersed, or in case n = 6, immersed without transverse intersections or
immersed with a specific mass bound); Theorem 2 establishes a sheeting result that holds
in arbitrary dimensions for weakly stable CMC hypersurfaces satisfying an arbitrary
uniform mass bound and allowed, a priori, to contain a small set of “genuine” singularities
away from which the hypersurfaces are assumed smoothly immersed without transverse
intersections. By virtue of the regularity theory of [6], the hypotheses of absence or
smallness of the set of genuine singularities in Theorem 1 and Theorem 2 respectively can
immediately be replaced by considerably weaker structural conditions. These stronger
results, which hold in a varifold setting, are given as Theorem 1’ and Theorem 2'.

It is interesting to note the following: Consider a CMC hypersurface ¥ immersed in
R"*! with mean curvature H (possibly equal to zero). Recall that the Morse index of ¥
is defined by setting index(X) to be the maximum dimension of a linear subspace W of
C2°(%) so that for any ¢ € W\ {0}, the second variation §2J (¢, ¢) < 0, or equivalently,

[1aspe > [190P

P P

It is easy to see that if ¥ is weakly stable, then index(¥) < 1. On the other hand,
Theorems 1 and 2 below are false if we replace “X is weakly stable” with “X satisfies
index(X) < 17 This can be seen by considering rescalings of the higher-dimensional
catenoid (the unique non-flat rotationally symmetric minimal hypersurface in R"*1)



136 C. Bellettini et al. / Advances in Mathematics 352 (2019) 133157

which converge weakly to a hyperplane with multiplicity two, but do not have bounded
curvature (or satisfy the conclusion of the sheeting theorem). In the context of the results
below, the crucial difference between “weakly stable” and “index(X) < 17 is that weakly
stable surfaces cannot have two ends (cf. Appendix A) while index one surfaces can (e.g.,
the catenoid).

1.1. Results for hypersurfaces with small singular set

In the non-singular dimensions (i.e. in dimensions < 6), we have the following curva-
ture estimates.

Theorem 1. For each Hy > 0 and A > 1, there exists C = C'(Hop, A) such that the follow-
ing holds: Let 3 <n <6 and let ¥ C Bg(0) C R"*! be a smooth immersed hypersurface
with (X \ £) N Br(0) = 0, H*(X) < AR™ and with constant scalar mean curvature H
such that |H| < HyR™'. Assume that ¥ is weakly stable as a CMC immersion. Forn = 6
suppose additionally either that ¥ contains no point where % intersects itself transversely
(or equivalently, by the maximum principle, for each point p € ¥ where X is not embed-
ded, there is p > 0 such that X N B;L“'l(p) is the union of two embedded smooth CMC
hypersurfaces intersecting only tangentially), or that A =3 — & for some 6 € (0,1).
Then

sup |As|(z) < CR™ 1,
z€XNBR/2(0)

where Ax. denotes the second fundamental form of 3.

We note that when n = 2 (cf. [29,13]) stronger estimates are available—i.e., without
the bounded area assumption—as consequences of the strong Bernstein type theorems
available [2,3,20,12,17]. As such, we will not consider this case here.

Remark 1. In case n = 6, the reason for the additional restrictions in Theorem 1 (that
either ¥ has no transverse points or A = 3 —0) is that it is not known if a pointwise cur-
vature estimate holds for 6-dimensional immersed strongly stable minimal hypersurfaces
satisfying an arbitrary mass bound; such an estimate is only known to hold if the min-
imal hypersurface is either embedded ([23]) or is immersed and satisfies a mass bound
corresponding to A = 3 — ¢ for some J € (0,1) ([27]). See Proposition 3 below.

In all dimensions, we have the following sheeting theorem.

Theorem 2. Let A, Hy > 0 and n > 3. Suppose that X" C Br(0) C R™*! is an immersed
hypersurface with H™(E) < AR™, with constant scalar mean curvature H such that
|H| < HoR™! and with H"~ (X \ £) N Br(0)) = 0 for all o > 0 (in other words,
3 may have a co-dimension 7 singular set). Suppose that ¥ contains no point where ¥
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intersects itself transversely (or equivalently, by the maximum principle, for each p € &
where 3 is not embedded there is p > 0 such that X N B;H‘l(p) is the union of exactly
two embedded smooth CMC hypersurfaces intersecting only tangentially), and that ¥ is
weakly stable as a CMC immersion. There exists 69 = do(n, Ho, A) and C = C(n, Hy, A)
so that if additionally

S ¢ {|z"*!| < GoR}

then ¥ N Bry2(0) separates into the union of the graphs of functions uy < --- < wy,
defined on By 5(0) := Br/2(0) N {a"t1 =0} satisfying

sup (|Dui| + R|D2ui|) < Cédy
B, 5 (0)

fori=1,... k; moreover, each u; is separately a smooth CMC graph.

Remark 2. The constants in Theorems 1 and 2 depend on an upper bound for the mean
curvature Hy. This cannot be removed; indeed, consider the hypersphere ¥ = 9B,.(0),
which is a weakly stable CMC embedding. Note that as r — 0, the curvature of ¥ blows
up (in spite of the fact that ¥ is eventually contained in any slab).

1.2. Results for varifolds

In view of [6, Theorem 2.1], Theorems 1 and 2 above imply the following stronger
results for integral varifolds. We refer to [6, Section 2.1] for precise definitions. Here we
recall, slightly imprecisely, that:

e a classical singularity of an integral varifold V is a point p such that, in a neigh-
borhood of p, spt ||V|| (where ||V denotes the weight measure associated with V)
is given by the union of three or more embedded C'*® hypersurfaces-with-boundary
that intersect pairwise only along their common boundary L containing p and such
that at least two of the hypersurfaces-with-boundary meet transversely along L;

o a (two-fold) touching singularity of an integral varifold V is a point p € spt ||V]]
such that spt ||V is not embedded at p and in a neighborhood of p, the spt ||V is
given by the union of exactly two C'® embedded hypersurfaces with only tangential
intersection;

o (see [22] for details) the first variation of an integral varifold V' is a continuous linear
functional on C} ambient vector fields and it represents the rate of change of the
varifold’s weight measure (area functional) computed along ambient deformations in-
duced by the chosen vector field; when the first variation is a Radon measure (i.e. it
extends to a continuous linear functional on C? vector fields) the varifold is said to
have locally bounded first variation; when, in addition, this Radon measure is abso-
lutely continuous with respect to the weight measure ||[V||, and its Radon-Nikodym
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derivative (called generalized mean curvature of V) is in LP(||V||), the first varia-
tion of V is said be locally summable to the exponent p (with respect to the weight
measure ||V||). By the fundamental regularity theory of Allard, the class of integral
n-varifolds V' with first variation locally summable to an exponent p > n is compact
in the varifold topology under uniform mass and LP mean curvature bounds, and
such a V enjoys an embryonic regularity property: there exists a dense open subset
of spt [[V]| in which spt |[V]| is C** embedded, with @ = 1 — % if n < p < oo and
a € (0,1) arbitrary of p = oo (see [1]).

In low dimensions, we have the following curvature estimates:

Theorem 1. Let A, Hy > 0. For 3 < n < 6, suppose that V € IV, (Bgr(0)) is an integral
varifold with ||V||(Bgr(0)) < AR™. Assume that the following hypotheses hold:

(1)

(2)
3)

(5)

the first variation of V is locally summable to an exponent p > n (with respect to
the weight measure ||V );

V' has no classical singularities;

whenever p is a (two-fold) touching singularity there exists p > 0 such that

H" ({y € spt VI N By(p) : (VI 9) = IV, p)}) = 0,

where © is the density;

the C* embedded part of spt||V| (non-empty by Allard’s regularity theorem) has
generalized mean curvature h with |h| = H for a constant H < Hy (see [0] for the
variational formulation of this assumption, which makes sense for a C* hypersurface
and leads to its C? regularity by standard elliptic reqularity theory);

the C? immersed part of spt||V|| (which is a CMC immersion in view of (4)) is
weakly stable, i.e. stable for the area measure under volume-preserving variations.

Then X = spt ||V||N Br(0) is a smooth immersion and there is C = C(Hy, A) so that

sup |[As|(z) < CR™1,
©E€XNBR/2(0)

where As. denotes the second fundamental form of X.

We also have the following sheeting theorem in all dimensions:

Theorem 2’. Let A, Hy > 0. For any n > 3 suppose that V € IV, (B}T(0)) is an integral
varifold with ||V||(BEt(0)) < AR™. Assume that the following hypotheses hold:

(1)

the first variation of V is locally summable to an exponent p > n (with respect to
the weight measure |V );



C. Bellettini et al. / Advances in Mathematics 352 (2019) 133-157 139

(2) V has no classical singularities;
(3) whenever p is a (two-fold) touching singularity there exists p > 0 such that

H" ({y €spt [VIIN By (p) : (V) = O(IVI.p)}) =0,

where © stands for the density;

(4) the C' embedded part of spt||V|| (non-empty by Allard’s reqularity theorem) has
generalized mean curvature h with |h| = H for a constant H < Hy (see [0] for the
variational formulation of this assumption, which makes sense for a C* hypersurface
and leads to its C? regularity by standard elliptic methods);

(5) the C? immersed part of spt||V|| (which is a CMC immersion in view of (4)) is
weakly stable, i.e. stable for the area measure under volume-preserving variations.

There exists o = dg(n, Ho, A) so that if additionally
spt V]| € {[«" 1] < 6o R}

then spt ||V N Br/2(0) separates into the union of the graphs of functions uy < --- < ug
defined on B}'%/Q(O) := Bpy2(0) N {a"T! = 0} satisfying

sup (| Du;| + R|D?u;|) < &
B /2(0)

fori=1,... k; moreover, each u; is separately a smooth CMC graph.

Remark 3. The extension of the theorems above to the case of an ambient Riemannian
manifold follows the same arguments, employing the result in [5]. Similarly, analogous
results hold in the case of more general prescribed mean curvature problems. For example,
when ¥ as in Theorems 1 or 2 is the boundary of a Caccioppoli set {2 and g is an ambient
function we can define

and consider stable critical points of J, with vof (£) = H"T1(Q) fixed.

Remark 4. Note that Theorems 1, 2, 1" and 2" hold in particular for H = 0; in this case,
the vanishing of the mean curvature prevents touching singularities, therefore assumption
(3) in Theorems 1" and 2" is redundant. For H = 0 our results generalize the works of
Schoen—Simon—Yau [24], Schoen—Simon [23] and the third author [28, Theorem 3.3] from
strong to weak stability.

Remark 5. The conclusions of Theorems 2 and 2’ clearly fail (even for strongly stable
minimal hypersurfaces) for n > 7 without any flatness assumption, by the construction of
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Hardt—Simon [14]. We also note that singularities do occur in stable CMC hypersurfaces
(with H # 0) of dimension > 7, as shown by a recent construction of Irving ([16])
modifying the earlier work of Caffarelli-Hardt—Simon (cf. [9]).

1.8. A remark on bounded index minimal surfaces

The discussion in the paragraph preceding Section 1.1 notwithstanding, the techniques
developed in this paper are relevant for the study of bounded index minimal surfaces in
Riemannian (n + 1)-manifold for n > 7 (i.e., in the singular dimensions). For example,
if ¥* ¢ Bgr(0) € R™"! is a minimal surface with index(¥) < 1, H*(¥) < AR", and
¥ C {]z" "] < §oR}, then by a straightforward application of the Schoen—Simon sheeting
theorem [23], ¥ splits into smooth sheets away from a given point. The argument used to
prove Proposition 6 extends to this situation to conclude that the sheets are connected
by a small region that is close (depending on &) to an index one minimal hypersurface in
R™*! (with small singular set), having reqular ends. This last condition is the non-trivial
conclusion; it follows from the argument in Proposition 6, transferring flatness from
large scales to small scales (see Remark 6). Using the arguments in [10] (cf. [4]), similar
statements hold for index(X) < Iy. See also [25].

1.4. Outline of the paper

Theorem 1 will be proved in Section 3, building on the Bernstein-type result given in
Proposition 3 below (Section 2). Theorem 2 will be proved in Section 4, building on a
different Bernstein-type result (Proposition 4 in Section 2). The proofs of both Bernstein-
type results rely on a global result for weakly stable minimal hypersurfaces, namely the
fact that they must be one-ended. This is proved in [8] in the case of smooth embedded
hypersurfaces; this result, recalled in Theorem 7 of Appendix A, is all that is actually
needed for Theorem 1, together with a classical blow-up argument. For the proof of
Theorem 2, we extend the one-ended conclusion to the situation where the hypersurface
may have a codimension-7 singular set; this is done in Theorem 8 of Appendix A. The
proof of Theorem 2 also relies on a careful blow-up argument for which we need to use
certain results from [6], which we recall in Appendix B.
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2. Two Bernstein-type theorems

We begin with the following Bernstein type result, which will yield Theorem 1 when
combined with a standard blow-up argument. We note that such a result holds for
n = 2 without the embededness or area growth assumptions, as discussed above. As a
notational remark, we stress that we will always write V to denote the intrinsic gradient
on a hypersurface, and will instead denote by VR™™ the ambient gradient.

Proposition 3. For 3 < n < 6, suppose that X" C R™*! is a connected, weakly stable,
immersed minimal hypersurface with no singularities and with H™(X N Br) < AR™ for
some constant A > 1 and all R > 0. When n = 6 assume either that A = 3 —§ for some
0 > 0 or that X is embedded. Then X is a hyperplane.

Proof. We begin by showing that ¥ is (strongly) stable outside of a compact set. If all
of ¥ is strongly stable, then by [24,23] the proposition follows. If not, we may choose
R > 0 so that ¥ N Bg is unstable. If ¥\ Byg is unstable, then we may find functions
p1 € CP (XN Bg) and ¢y € C°(X\ Bag) so that

/IAEIQ%2 >/|W¢\2-
> >

By weak stability, fz w; # 0 for i = 1,2. Choose t € R so that

/801-1-75%02:0
5

Because 1, 2 have disjoint support, we find that
[14sP e +102 > [ 9661+ 1)
b b

This contradicts the weak stability of X. Thus, X is stable outside of a compact set.

We first assume that 3 is embedded. We will explain below the modifications for the
cases X immersed and 3 < n < 5, or ¥ immersed, n = 6 and A = 3— 9. In the embedded
case, we first show that there exists an integer m such that any tangent cone at infinity
is a hyperplane with multiplicity m.

Claim 1. There is m € N so that for any sequence A\; — 0, a subsequence of ¥; := ;X
converges smoothly and graphically on any compact subset of R"1\ {0} to a hyperplane
of multiplicity m.

Proof of the Claim. By [23, Theorem 3] (for n < 5 the estimates in [24] suffice) the

magnitude of the second fundamental form decays as ﬁ for |y| — oo, namely there
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exist Ry > 0 and a constant C' > 0 such that |A|(y) < % for y € ¥ and |y| > Ry,
where |y| denotes the Euclidean norm of y in R™*!. Therefore, there is a subsequence
Aj — 0 (not relabeled) so that 3; = A\;3 converges smoothly (possibly with multiplicity)
on compact subsets of R"*1\ {0} to C, a smooth minimal surface in R™"*!\ {0}. The
smooth convergence implies that C\ {0} is (strongly) stable: by [21] and the dimensional
restriction, C is a flat hyperplane with some multiplicity m € N. Finally, the fact that
the multiplicity m is independent of the sequence (A;) is an immediate consequence of

the monotonicity formula. O

The preceding claim implies that there exists ry such that, whenever r > rq, the
sphere 9B"t1(0) intersects ¥ transversely: indeed, if that failed, we could produce a
sequence of radii r; — 0o where transversality fails but the corresponding sequence %E
would fail to converge graphically at some point on dB*(0). '

Let r > rg. The transversality condition established amounts to the fact that the gra-
dient of h : ¥\ B,,(0) — R, h(z) = |z| (the ambient distance to the origin) is everywhere
non-vanishing. By [18, Theorem 3.1] this implies that, for any R > r, XN (Bg(0) \ B-(0))
deformation retracts onto 3 N 9B, (0). In particular, the number of connected compo-
nents of XN (Br(0) \ B,(0)) equals the number of connected components of ¥ N9B,(0).
Denoting with Dy, ..., Dy the connected components of ¥ N dB,.(0), we consider, for
every R > r, N disjoint open sets Af, ... ,Aﬁ, each containing a single connected com-
ponent of ¥ N (Br(0) \ B-(0)) and labeled so that Af contains D;. Let A; = UR>7.A§{:
the open sets A; for j = 1,..., N are disjoint by construction and cover ¥\ B,(0), so
the number of ends of ¥ is at least N.

The result of [8] (see Theorem 7 below) gives that ¥ is one-ended, i.e. N =1, and so,
for all 7 > ry, ¥ N 0B,(0) is connected. On the other hand, S"~! is simply connected
and, as such, does not admit a nontrivial connected cover. Therefore, recalling Claim 1,
we conclude that m = 1, or equivalently, that the density of ¥ at infinity is 1. Hence
by the monotonicity formula ¥ is a cone with density at the vertex (which is equal to
the density at infinity) equal to 1. Since the density of ¥ at any other point is also 1,
it follows again by the monotonicity formula that X is translation invariant along every
direction so it is a hyperplane.

We now consider the case where ¢ : ¥ — R™*! is only assumed to be immersed and
either 3 < n < 5orn =6 and A = 3 — 4. In this case, we still have, by the local
uniform mass bounds, that for any sequence A; — 0, a subsequence of (A;), |¢(3)]
converges as varifolds to a stationary cone C. By the locally uniform pointwise curvature
bounds (given by [24] for 3 < n < 5 or by [27] for n = 6 and A = 3 — §), it follows
that spt ||C|| is smoothly immersed away from the origin, and the convergence is smooth
and graphical in compact subsets of R"*! \ {0}; moreover, since ¥ \ Bag is stable,
it also follows that the stability inequality [|Ac|*¢* < [|V(|? holds true for every
¢ € Cl(spt||C|| \ {0}), i.e. that spt||C|| \ {0} is stable as an immersion. (Indeed if M;
is any sequence of immersed minimal hypersurfaces of an open set U C R"*! with
no singularities and with 0 M; N U = 0, and if limsup,_, , H"(M; N K) < oo and
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limsup;_, . Supyear;nx [Anm; ()] < oo for each compact K C U, then for any given
compact set K C U, there is a fixed radius ¢ = o(K) > 0 independent of j such
that (after passing to a subsequence without changing notation) for every j and every
p € M; N K, M; N By(p) is the union of smooth embedded graphs with small gradient
over some hyperplanes P; 1, ..., Pjn; passing through p (with Z,JCV;I |P; x| equal to the
tangent cone to M; at p), where N; < N for some N independent of j and p; if V' is
the varifold limit of (M), then for any z € spt ||V|| N U, choosing a sequence of points
zj € M; with z; — z and applying this fact to B,(z;) N M;, we get, passing to a
subsequence, that the hyperplanes P;j — P for k = 1,...,Q for some @) < N, and
so we can write M; N B, /2(z;) as a union of embedded minimal graphs over the fixed
planes P, ..., Py with small gradient. By the higher derivative estimates for solutions to
uniformly elliptic equations, we then see that spt [|V'|[N B /4(2) is the union of smoothly
embedded minimal graphs over Pi, ..., Py, i.e. that spt ||V| N U is immersed, and that
the convergence of (M) is smooth and graphical (via normal sections over spt ||V| NU)
in any compact subset of U. From this, it is easy to verify that if M; are stable, i.e. if
fMj | A, |2¢2 < fMj |V ¢|? for each ¢ € CZ(M;) then [[Agp vyj|?¢? < [V (|? for each
¢ € Celspt|IVD).)

By Simons’ theorem ([21, Theorem 6.1.1]; see the argument in [22, Appendix B] which
is valid when the cone, as in our case, is immersed and stable as an immersion away
from the origin), we conclude that C = Zz]\i1 mye|Ly¢| for some hyperplanes Ly, ..., Ly
and positive integers my, ..., mys. Arguing by contradiction (as in the embedded case),
this shows that ¢ is transverse to dB?*1(0) for all » > rq sufficiently large. Again,
as in the embedded case, we thus find that the number of connected components of
¢ Y(Bgr(0) \ B,(0)) is equal to the number of connected components of ¢~1(9B,.(0))
for any R > r > ry. Because X has only one end by Theorem 7, there is only one such
component. This proves both that C is supported on a single hyperplane, and that it
has multiplicity one. Thus, ¥ is a flat hyperplane by the monotonicity formula. This
completes the proof. O

The proof of Theorem 1 will be achieved by employing Proposition 3 and a standard
blow-up argument (see Section 3). We now present a version of Proposition 3 that holds
in all dimensions. This, in conjunction with the sheeting-away-from-a-point result for
weakly stable CMC hypersurfaces from [6] (recalled in Appendix B, Theorem 10 below),
will imply Theorem 2 using a less standard rescaling argument. We point out that, in
the proof of the next proposition, we make use of the one-end result of [8] for weakly
stable CMC hypersurfaces, generalized here to allow a co-dimension 7 singular set. This
generalization is given in Appendix A, Theorem 8.

Proposition 4. For n > 3, suppose that V is a stationary integral n-varifold in R" 1 with
spt ||[V|| @ connected set, singVC B1(0) (so spt ||V|| is smooth in R"T1\ B1(0)) and with
dimy (sing V) < n — 7. Assume that the regular part ¥ = regV (= spt||V] \ sing V') is
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weakly stable and that V' satisfies area growth |V||(Bg(0)) < AR"™ for some constant
A>1 and all R > 0. Finally, assume that for some ¢ > 0, ¥ satisfies

[As|(@)e] <V —1—¢ (1)
for x € ¥\ By, where | -| denotes the length in R" 1. Then spt ||V| is a hyperplane.

Proof. We begin by proving that Claim 1 from Proposition 3 holds in this setting as
well. For a sequence A; — 0, we consider V; := (\;)% V. Passing to a subsequence, V;
converges to a cone C in the sense of varifolds. Moreover, the assumed curvature estimates
contained in (1) imply that spt ||C||\ {0} is smooth and ¥; converges smoothly to spt ||C||
(possibly with multiplicity) on compact subsets of R"*1\ {0} (here, we use the fact that
the estimate (1) is scale invariant). The curvature estimates pass to the limit, implying
that [ A j|(#)]z] < v/n—1 for all z € spt ||C||\ {0}. Appealing to Lemma 5 below, we
find that C is a flat hyperplane with some multiplicity m € N. This establishes Claim 1
in this setting (that the multiplicity m is independent of the sequence follows again by
monotonicity, as before).

Thus, any tangent cone at infinity of V' is a multiplicity m plane. By Theorem 8,
applied to V, 3 has exactly one end. Arguing as we did in the proof of Proposition 3,
we can use the graphical convergence on compacts sets in R"™*\ {0} (which follows
from the curvature estimate (1)) and the fact that S"~! does not admit any multiple
cover, to obtain that, outside of By, V must agree with the varifold given by ¥ with
multiplicity m. Because the density at infinity of V must be m, there must be equality
in the monotonicity formula starting at any point in ¥ (which also has density m) which
easily implies that the support of V is a hyperplane. 0O

Lemma 5. Suppose that C is a n-dimensional minimal cone in R" 1 that is smooth away
from 0 and satisfies |Ac|(z)|z] < v/n —1. Then C is a flat hyperplane.

Proof. Note that M := CNS" is smooth. By the given curvature estimate, we have that
|Ar| < v/n— 1. By [21, Corollary 5.3.2], M must be totally geodesic. This proves the
assertion. O

Remark 6. Observe that the Simons cone ¥ in R® is (strongly) stable and satisfies
|As|(z)|z| = v/n — 1 for all z € &\ By. As such, we see that the constant v/n — 1 —¢ in
(1) is sharp in the sense that Proposition 4 fails with any larger constant.

The importance of the size of the constant in a (scale invariant) curvature estimate
of the form (1) seems to have been first shown by White in [26]. This has been refined
in [19,7,10]. A key novelty contained in the present work is the combination of (1) with
Lemma 5 and with Theorem 8, allowing flatness to propagate from large to small scales.
Furthermore, our work here seems to be the first use of such an estimate in a setting
where a priori there could be singularities.
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3. Proof of Theorem 1

Because the hypothesis and conclusion are scale invariant, it suffices to take R = 1.
Assume the theorem is false. Then, there is X; in By C R, a sequence of embedded
(when ¥ is immersed and 3 < n < 5, an identical argument will apply by considering
instead rescalings and limits of the immersions) smooth weakly stable hypersurfaces with
|H| < Ho and H™(3;) < A, but so

sup |AEJ‘(I‘) — 00
:EEEJ‘QBI/Z

as j — oo. A standard blow-up argument (which we now recall) produces a surface which
contradicts Proposition 3.

Choose x; € ¥; N By with |Ax,[(z;) — oo. Without loss of generality, we may
assume x; — xo. Choose p; — 0 sufficiently slowly so that p;[As,|(z;) — co. Find
yj € ¥j N By, (x;) maximizing

y = |As;|(y)d(y, 0By, (x;)).

Set 0; = d(y;,0B,,(x;)) and \; = |Ax,|(y;). Clearly o; < p; and y; — xo, so that
[As, [(9)d(y. 9B, (7)) < 03, for y € 2, 0 By, (3. @)

By the choice of y; we have a;\; > p;|As, |(2;), which implies \; := [As,|(y;) — oo and
Ajoj — 00 as j — 0o. We now define

X5 = X(E5 — )

We claim that f]j has bounded curvature on compact subsets of R"*!. Indeed, for z €
¥in By, ,;(0), scaling and (2) yield

9y

CTj*)\j |£L‘|

1 _
g, (@) = 1145, (4 + 7 0) <
J

for || uniformly bounded. Note that 3; has mean curvature |H,| < Ho/)\; — 0.

The monotonicity formula (see e.g. [22]) shows that H™(%; N Bg) < AR" for some
constant A = A(A, n, Hp) independent of j. Then, by higher order elliptic estimates, ij
converges (up to passing to a subsequence) smoothly (possibly with multiplicity) to a
smooth, embedded, complete, weakly stable minimal hypersurface Yo in R™*1,

Because |Ag, |(0) =1 for every j, we find that [Ag_[(0) =1, so Y+ is non-flat. This
contradicts Proposition 3 (applied to Yoo with multiplicity one).
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4. Proof of Theorem 2

We begin by describing the setup of the proof of Theorem 2. By scaling we may
take & = 10. We consider a sequence of weakly stable hypersurfaces 3; with mean
curvature |H| < Hy/10 and H"™(X;) < A10". We assume that each ¥, has a singular set
of co-dimension at least 7 and that ¥; satisfies

5j € {|l="* < 10/5} N Bio(0).

It follows that ¥; converges to the flat disk {z"*! = 0} N B1o(0) (smoothly away from a
point by Theorem 10) with some positive integer multiplicity k, in the sense of varifolds.
The final aim is to show that the conclusion of Theorem 2 is valid for all sufficiently
large j.

We will first establish the regularity assertion and the curvature estimate in Proposi-
tion 6 below; the proof of Theorem 2 will then be completed at the end of the section.
The curvature estimate of Proposition 6 will be a consequence of Proposition 4 and a
blow-up argument. Its scale-breaking nature is reminiscent of the arguments in [10].

Proposition 6. Fiz np > 0. Then, for j sufficiently large, 3; N By is smooth and there is
z; € Bg so that

[As; [(2)]z — 2| <n
for all x € ¥; N By, where | -| stands for the length in R™"*1.

We briefly explain the idea of the proof. The conclusion is non-trivial only when we
are in the second alternative of the partial sheeting result from [6] that is recalled in
Theorem 10, Appendix B. This second alternative gives that, away from a point, X, is
converging smoothly (with sheeting) to a hyperplane with multiplicity. Thus, there is
some y and 6 > 0 small so that the conclusion holds outside of Bs(y).

The strategy of the proof is to pick the smallest ball B, (z;) so that the conclusion for
Y, holds outside of the ball. The claim will follow if we can prove that actually §; = 0,
so we will assume that §; > 0. Rescale ; to 3, so that the ball Bs, (2;) becomes B1(0)
(outside of which, the smoothness and scale invariant curvature estimates hold). We can
pass f]j to the limit, which inherits the curvature estimates (and smoothness) outside
of B1(0). By Proposition 4, the limit is a union of hyperplanes (note that here we have
transferred the flatness estimates contained in the partial sheeting result to the smaller
scale, as pointed out in Remark 6). Now, the partial sheeting result (applied to flj)
implies, as above, that the convergence of ij to the limit occurs smoothly away from
a single point. This contradicts our choice of Bs,(2;), since for j large, we could take
a smaller ball around the point where sheeting fails in the rescaled picture. This will
contradict the assumption that §; > 0, and will complete the proof.
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Proof of Proposition 6. Clearly, it suffices to assume that 7 < v/n — 1. If the first case
of the conclusion of Theorem 10 holds for every X; large enough, then the curvature
estimate is true with z; = 0 (and the conclusion of Theorem 2 is valid, so there is
nothing further to prove). So we may assume (by the second case of the conclusion of
Theorem 10) that there is a point y € B5(0) N {z"™! = 0} such that X; are sheeting
away from y, i.e. for any r > 0, £, N (By(0) \ B, (y)) is smooth for j sufficiently large and

sup |As; |(x) — 0 (3)
z€X;N(By(0)\Br(y))

as j — oo. We will subsequently replace ¥; by ¥; N Bg(0) (to avoid any irrelevant issues
with the behavior of ¥; near its boundary).
For z € Bg(0), we define

Y% =3, \ B.(2) is smooth }

0(%;, 2) :=inf {7" >0:
and [As,|(z)|z — 2| < n for all x € X}

Note that 6(2;,y) — 0 as j — oo, by the partial sheeting result discussed above.

For every j set §; := inf.cp, ) 0(X;,2) and choose zjx with 0(X;,z;%) — §; as
k — oo. Passing to a subsequence, we may assume that z; , — z; € Bg(0). We claim that
6(%j,z;) = d;. If not, there is € > 0 and w € X \ Bs, y2.(2;) with either (i) w € sing¥;
or (ii) |[As, |(w)|w — 2z;| > 1 + 2¢. Note that w € ¥; \ Bs, y(z;,x) for k sufficiently large.
Thus, in case (i), we find that, by the definition of §(-,-), 6(X;,2; %) > 0; + € for all k
sufficiently large. This contradicts the choice of z; ;. Similarly, in case (ii) we have that

>1n+e€,

|[As; | (w)|w = 2,5

for k sufficiently large, since |w — z;5| — |w — z;| as k — oo. Again, this yields a
contradiction, as before.

Thus, we have arranged that z; minimizes 6(X;,-). Since 6(%;,y) — 0, we also have
that 0; — 0 and consequently, it follows from the definition of §; and (3) that z; — .
We claim that §; = 0 for all sufficiently large j. Arguing by contradiction, we assume
(upon extracting a subsequence that we do not relabel) that 6; > 0 for all j. Using this,
we now perform the relevant blow-up argument. Define

Ej = (5;1(23 - Zj).
Note that as in the proof of Theorem 1, the monotonicity formula implies that H”(f]j N

Br(0)) < AR" for some A = A(A, n, Hy). Moreover, the choice of §; implies that ¥, \ By
is smooth and satisfies

s, |(@)]2] <7 (4)
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for = € ¥; \ By. Note also that |Hy, | < @% — 0. The area bounds and weak stability
imply, by the regularity and compactness theorems in [6] (recalled in Theorem 9, Ap-
pendix B below), that ) ; converge in the varifold sense to V', which is stationary, weakly
stable, has smoothly embedded support outside of a co-dimension 7 singular set, and
satisfies |V (Bgr(0)) < AR". Furthermore, by the curvature estimates (4), the support

of V is a smooth hypersurface 3o outside of By (0) satisfying
[As (@)|z] <n

and the convergence is smooth on compact sets outside By (0). Thus, by Proposition 4,
each connected component of the support of V is a hyperplane and so the support of
| V] is made up of finitely many parallel hyperplanes.

Now, we again appeal to Theorem 10 to conclude that the convergence of ij to V
occurs smoothly (possibly with multiplicity) away from some fixed point Z € spt || V|| (if
the sheeting actually occurs everywhere, we simply set Z = 0). Note that the curvature
estimates (4) imply that |Z| < 1.

Define 2; = z; + 6,7 and let §; := §(%;, 2;). Since §; > §;/2 (by the definition of §;),
there is w; € ;\ Bs, /2(Z;) so that either (i) w; € sing 3y, or (ii) |As, [(w;)|w; — 2;] > n.
We note that in either case we have that

hjrgloglf 5;1|wj — Z;| = oo. (5)

(For if not, then defining w; = 6]71(wj — 2;), we find that, in the scale of 3; discussed
above,

12—y = 65 1(25 — 25) — (w; — 2)| = 6; Hw; — 3]
is bounded above (after passing to a subsequence) and bounded below by 1 (since w; ¢
By, /2(24)), but because 3; sheets away from 2, we find that either (i) or (ii) would be a
contradiction.) Finally, we define
) = |wj = 57N (E5 - &)
and set
Wy = |wj = 27wy = 25), Z = lwy = 5517 (= - &) = =85 |wy — 25|72

Note that it follows from (3), (i) and (ii) that w; — y and hence (since z; — y) that
|w; — 2;| — 0. We have already shown that outside of Bs,(z;), ¥; is smooth and satisfies

(4). This implies that ij is smooth outside of Bs |, —z,1-1(%;) and additionally satisfies

Ay,

(@)|z — %] <n.
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By (5), and recalling that || < 1, we have that §;/2; — w;|™' — 0 and %, — 0. As
before, we may take the varifold limit V' of f]j, and the curvature estimates we have just
established show that this limit occurs smoothly (possibly with multiplicity) outside of
B1/2(0). The curvature estimates pass to the limit so by Proposition 4 each connected
component of spt HV” is a hyperplane. Thus, since |w;| = 1, we find that w; ¢ sing Ev]j
and |Ai:j|(wj> — 0, so

|Ag, ()] — 0.
Rescaling to the original scale, this contradicts both (i) and (ii) above (concerning w;).
This contradiction establishes that J; = 0 for j sufficiently large.
We have now shown that 3; is smooth away from z; and satisfies

[As; [(@)|z = 2] <n

for all x € 3; \ {z;}. If z; ¢ 3; there is nothing further to show. Else, arguing as in the
beginning of the proof of Proposition 3, we see that for fixed j and any small ball B,(z;),
the hypersurface ; is strongly stable either in B,(z;) or in By \ B,(z;); it follows from
this fact that for each fixed j, there is p > 0 such that X; is strongly stable in the annulus
B,(z;) \ {2}, and hence in the ball B,(z;). Moreover, by the curvature estimates and
Lemma 5, any tangent cone X; at z; must be supported on a hyperplane. Thus, X; is

smooth at z; by [6, Theorems 3.1 and 3.3]. This completes the proof of Proposition 6. O

Completion of the proof of Theorem 2. As discussed in the beginning of this section,
¥, converge in the sense of varifolds to the hyperplane {z"*! = 0} with multiplicity k.
We claim that the curvature of ¥, is uniformly bounded on X; N By(0). Let \; =
maxs; (o) |As, | and assume for a contradiction (upon extracting a subsequence that
we do not relabel) that \; — oo as j — oco. By applying Proposition 6 iteratively we
may find a further subsequence (not relabeled) so that ¥; is a smooth immersion in the
whole ball By(0) and there is z; € Bg(0) and 1; — 0 so that X, satisfies the curvature
estimates

|As; ()| — 25 < n; (6)

for all x € By(0). Note that since z; € Bg(0), it follows from (6) that |Ayx;, | is uniformly
bounded in the annulus By(0)\ Bs(0) and therefore the maximum of |Asx;, | in 3; N By(0)
is achieved at a point y; € Bg(0). We set

E]‘ = )\j(Ej — yj)

By construction we have [Ag [(0) =1 and that [Ag. | is uniformly bounded on compact

subsets of R"*!, so i]j converges smoothly on compact subsets of R™*! to a non-flat
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smooth hypersurface ¥o,. On the other hand, the estimate (6) is scale invariant, so for
Zi = Xj(z; — y;), we see that

[Ag, [(2)]z — 25| < nj.

Considering x = 0 here, we find that Z; — 0, since n; — 0. Hence, passing this inequality
to the limit, we find that

[As [ (@)]z] =0,

contrary to the fact that Y. is non-flat.

This implies that the curvature of ¥; (in the original scale, for the original sequence)
was uniformly bounded in Bg(0). Since ¥; converges to a hyperplane, the uniform cur-
vature bounds and standard elliptic estimates conclude the proof. O

Remark 7. It is possible to conclude in a slightly different manner, by using the curvature
estimates from Proposition 6 with n < 1 to prove that the function f;(z) = |z —
z;|? is strictly convex (for any j large enough). From this, if we assume sheeting of
Y, away from a point y (second alternative of Theorem 10), it is not hard to argue
(using a max-min argument) that distinct sheets of X; N (By(0) \ By/2(y)) cannot be
connected in Bj/p(y) (endowing X; with the topology of the immersion, not of the
embedding); therefore each connected component of ¥; in By(0) contains exactly one
sheet of £; M (By(0) \ By 2(y)). Theorem 2 then follows from Allard’s regularity theorem
applied to each connected component individually, since standard arguments show that
each component converges to the hyperplane with multiplicity 1 in the sense of varifolds.
This alternative argument seems to be necessary for the applications to bounded-index
surfaces mentioned in Section 1.3 (cf. [10]).

Appendix A. Weakly stable minimal hypersurfaces have only one end

In this appendix we review a result of Cheng-Cheung-Zhou [8] for weakly stable
complete, non-compact minimal hypersurfaces immersed in R"*! that generalized earlier
work of Cao—Shen—Zhu [11] establishing the same result for strongly stable complete,
non-compact minimal hypersurfaces. We include their proof here, since for our purposes
we need to extend (as we do below) the argument to the case where the hypersurfaces
are allowed to have a small singular set. We recall that we write V to denote the intrinsic
gradient on a hypersurface, and will specify VR if we refer to the ambient gradient.

Theorem 7 ([8, Theorem 3.2]). A complete connected oriented weakly stable minimal
hypersurface immersed in R™tY, n > 2, has only one end.

Proof. In R?, a complete oriented weakly stable minimal surface is a plane, by [12], so
we need only consider n > 3.
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Suppose that ¥ is a complete oriented weakly stable minimal hypersurface in R"*?
with at least two ends. By [11, Lemma 2|, there exists a non-constant bounded harmonic
function u with finite Dirichlet energy, [i. [Vul? < oc.

Consider ¢ € C§(X) so that [, ¢|Vu| = 0 (we will choose a specific ¢ below). Plugging
©|Vu| into the stability inequality for ¥ yields

/ AP Vaf? < / V(e V) ?
>

P

1
— [1919ui?6? + VIV - T + [Tup Tl
2
1
= [191VulP? - SAVuPe? + [TuP (Tl
b

- / (IVIVul — [D*uP)e® - Rics (Y, Vu)o® + [Val2| VP,
>

where we have integrated by parts and used the Bochner formula on X

1 2 2,12 :

§A|Vu| = |D*u|* 4+ Ricx(Vu, Vu).
The Gauss equations (and minimality of ¥) imply that

Rics(Vu, Vu) = —|A(Vu, -)|* > —|A]*|Vul?.
Moreover, because u is harmonic, we have the improved Kato inequality
2,12 2 1 2
D2’ ~ [9[Vull* > —— ||l

Combined with the stability inequality as above, this yields
[I9IulPe < -1 [ 1vuPies
b b

We now choose ¢ appropriately. First, we argue that fz |Vu| = oo. Let p € ¥ such
that |V u|(p) > 0. Write BZ(p) for the intrinsic ball of radius 7 around p in ¥. For almost
every R > 1, we have

ou
2 2 _ 2 _
0< HVUHL?(B{U(ZJ)) < Hvu||L2(B§(p)) = / [Vul” = / Yo < fullze / [Vul,
BE(p) dBE(p) 9BE(p)

so because u is bounded, there is some constant C' = C(u,p) > 0 so that
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/ V| > C > 0.

9BE(p)

Hence, by the co-area formula

/ |Vu|>/ / V| > C(R - 1),

BE(p)\BE(p) 1 9BZ(p)

which tends to infinity as R — oo.
For a,b, R to be chosen with R > a > 0, we define (for ¢ € [0,1])

1 ds(z,p) <a
(a+ R —dx(z,p)/R a<ds(xz,p)<a+R
_Jtla+R—ds(z,p))/R a+ R <ds(z,p) <a+2R
pln)=q 4+ 2R <ds(z,p) <a+2R+b
t(ds(z,p) — (a+3R+0b))/R a+2R+b<ds(z,p) <a+3R+D
0 ds(z,p) > a+3R+b.

For € > 0 fixed, choose R so that (n —1)R™? [, |[Vu|*> < e. Then,

/<p0|Vu| > / [Vu| >0

2 BX(p)

/<p1|Vu| < / IVl / V.

x B§+R(P) B§+2R+5(P)\Ba+2R

and

Since we have seen that [i[Vu| = oo, we may take b = b(a, €) sufficiently large so that

/301|Vu| < 0.
5

Thus, there is some ¢t = #(b, ¢) € (0,1) so that

/got|Vu| =0.

b

Choosing ¢; in the above computation, we note that |[V,| < R™!, so

/|V|Vu||2 (n—1) /|w| V2 < (n—1)R /|vU|2 <e
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Thus, we find that

IV|Vul]? <e.

BZ(p)

Since a and € were arbitrary, we find that V|Vu| = 0 along ¥, so |Vu| is constant. Since
¥ has infinite volume and |Vu| € L*(X), we find that |Vu| = 0. Thus, u is constant,
a contradiction. This completes the proof. O

We now explain how the preceding argument generalizes to the case where the minimal
hypersurface is allowed to have a small singular set.

Theorem 8. For n > 3, suppose that V is a stationary integral n-varifold in R™" 1 with
spt ||V|| connected, dimy (singV') < n — 7 and with singV C B1(0). Assume that the
regular part spt ||V||\sing V' is weakly stable. Then spt |V|| has exzactly one end at infinity.

Proof. Let M = spt ||V||\ sing V and suppose that M has two (or more) ends at infinity.
The proof proceeds as in the smooth case (Theorem 7 above) with a few additional argu-
ments. First we note that by [15, Theorem A (ii)], sing V' does not disconnect spt ||V||, so
M is connected. This is needed at the end of the proof in order to have that the identical
vanishing of Vu implies the global constancy of w (and not just the local constancy),
which provides the desired contradiction.

The next argument concerns the existence of a non-constant bounded harmonic
function u with finite energy on M. This is proved in the case singV = 0 in
[11, Lemma 2] (and is used, as noted, in Theorem 7 above). The completeness assump-
tion in [11, Lemma 2] is not necessarily fulfilled by M, so it does not seem possible to
simply invoke that result. We note, however, that completeness is used in [11] only to
infer that each end has infinite volume ([11, Lemma 1]); this fact on the other hand
follows directly from the monotonicity formula. Then we can follow verbatim the argu-
ments in [11, Lemma 2], only with the following additional care. When we exhaust the
hypersurface with domains D; we should remove, from the D; constructed in [11], the
closure of a smooth tubular neighborhood of sing V' (whose size shrinks as i — c0). This
will produce further boundary components, in addition to those in [11], on which we will
set boundary value 0 when solving the Dirichlet problem [11, (2)].

One more additional argument is needed in view of the fact that the test function
©t|Vu| constructed in Theorem 7 might fail, a priori, to be an admissible function for
the stability inequality. Indeed, ¢;|Vu| is not compactly supported on M and we do
not have sufficient control of |Vu| near sing V. (If e.g. |Vu| were bounded near singV,
a straightforward capacity argument would suffice.) In order to overcome this difficulty,
we first observe an energy growth estimate for u in balls centered on sing V' (inequality
(7) below) which is obtained as follows: Since Au = 0 on M, we see by integrating by
parts and using the Cauchy—Schwarz inequality that for any ¢ € CL(M),
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1/2 1/2
[Vul?¢? = — [ 20uVuVe <2 (M ¢*|Vul? Q Vel |,
Jroere=] / /

from which we immediately get (using also the bounds —1 < u < 1)

[vure <o [wvop <a [ vop.

M M M

Consequently, a standard capacity argument that only needs that the 2-capacity of sing V'
is 0 (true in view of H"~2(sing V) = 0) gives that the inequality

AZ VulPs? <4 Al Vo

holds for all ¢ € C}(R™*1). In particular, choosing any p € sptV and ¢ € C}(Ba,.(p))
to be a standard bump function that is identically equal to 1 on B,(p) and identically
equal to 0 on the complement of Bs,.(p) with |an+1¢| < 2, the preceding inequality

r?
and the monotonicity formula give

Vul* < Cr 2, (7)

B (p)NM

where C' is independent of 7.

With this we proceed as follows: Let § > 0 and let {B,.(z;)}XY, be a cover of sing V'
(compact since singV C B;(0)) with ZZ]\LI r=* < § (possible since dimy (singV) <
n — 7). Defining a cutoff function (5 = mineqy,.. ny G, where ¢; € CH(R"1) with
0<¢ <1,¢G=0in By, (z;), ¢ =1in R\ By, (2;) and |D¢| < 2r; ', in view of (7)

we see that

N N N
/|VC5|2|Vu|2 <2y / VG Vul> <8 r? / [Vul> <8C> rf~* <8CH
M ilemi =1 =t

BZ’V‘i

whence

/\VC5|2\Vu|2 0 (8)

M

as 0 — 0. We can now adapt the arguments in Theorem 7: let ¢ > 0 be arbitrary
and choose R > 0 so that (n —1)R™? [, [Vu|?® < e. For every § > 0 choose a compactly
supported function ¢, s that is constructed in the manner ¢; is constructed in Theorem 7
so as to ensure [ (5¢15/Vu| =0 (one can work with the function ¢, defined above and
set @ > 1 so that ¢; is 1 on the singular set and (5|Vu| = |Vu| on BZ 5., (p) \
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B§+2 r(p); the t for which the zero-average condition is met will depend however on d,
hence the dependence of ¢, s on 6). As 6 — 0, since | 5] < 1 and |V s < % are
uniformly bounded, and moreover b(e, a) can be chosen independently of 0, we get for a
sequence d; — 0T that ¢, 5, — @ for a compactly supported Lipschitz function satisfying
J @|Vu| = 0 and ¢ identically 1 on BZ(p).

Plugging the (admissible) test function (s¢: s|Vu| in the stability inequality we get,
arguing as in the proof of Theorem 7 by means of Bochner’s formula and Gauss equations,

/ VIVl (Cors)?

M

<(n—1) / VPV (Cos)?
M

—(n—1) / VG0 5| Vul? + 205G VUV s - Veors + G2V sVl
M

using the Cauchy—Schwarz inequality for the middle term on the right-hand side, setting
d = ¢, and letting j — oo we obtain (recalling (8)) that the first and second term on
the right-hand side vanish in the limit; moreover, with the choices of € and R recalled
above, using that (s, T 1, ¢; 5, — ¢ as §; — 0, and that [V 5, | < %, we get

/ V|Vl 257 < e,
M

which allows us to conclude, in view of the arbitrariness of ¢, that [Vu| = 0 on ¥ and
obtain the desired contradiction with the non-constancy of u. O

Appendix B. Results from [6]

We recall here the regularity /compactness results from [6] that are used in the proof
of Theorem 2. The first one is a combination of [6, Theorem 2.1] and [6, Theorem 2.3].

Theorem 9 (regularity/compactness for weakly stable CMC hypersurfaces). Let n > 2,
R, Ky, Hy € (0,00) be fived. Denote by S, 1, (B (0)) the class of all hypersurfaces
M in BET(0) such that

o M is an immersed, smooth, weakly stable, CMC hypersurface (not necessarily com-
plete) in BET(0), with integer multiplicity (constant on every connected component
of the immersion);

o« W (M\M) =0 for all @ > 0 (i.e. M is allowed to have a singular set of
co-dimension at least 7);
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e M has no transverse points; equivalently (by the strong maximum principle), at every
p € M where M is not embedded, there exists p > 0 such that M N BZ‘H(p) is the
union of exactly two embedded complete smooth CMC hypersurfaces in B;“H(p) that
intersect only tangentially;

o the modulus H of the mean curvature of M is < Hy;

o H"(M) < K.

Then SHO’KO(B}%H(O)) is a compact family in the varifold topology. Moreover, if V,, €
Suy. i, and V,, =V the (constant) mean curvature of V' is given by lim,, .o Hy, where
H, is the (constant) mean curvature of V,,.

The next result is a synthesis of [6, Theorem 2.1], [6, Theorem 3.1], [6, Theorem 3.3]
and [6, Lemma 8.1].

Theorem 10 (sheeting away from a point for weakly stable CMC hypersurfaces). Let
V; =V, where V; € S, 1, (BE(0)) (with the notations from the previous statement)
and V is a sum of parallel hyperplanes, each with a constant integer multiplicity. Then,
up to a rotation of coordinates

o cither, for every k large enough, we have
spt Vi, restricted to (B’é (0) x R) = Uj_,graphuy,
2

where u; € C**(B%(0);R), uj are separately smooth CMC graphs (possibly with
tangential intersectigns) with small gradients and uy < uz < ... < ug,

o or there exists a point y € spt||V| N (FE/Q(O) X R) and a subsequence Vj such
that, for any r > 0, the following holds: for j' large enough (depending on r) Vj is
strongly stable in (B%(0) x R)\ B"T!(y) and moreover Vj converges smoothly (with
sheeting and possibly with multiplicity) to V away from y, in the following sense.
With the notation V. = 3" q;|W;| (where each W is one of the parallel hyperplanes
of suppV), >4 = q and y € Wh, if r < dist(Wy1, W;) for i # 1, then for j' large
enough (depending on r), the following decomposition holds:

spt Vs restricted to ( %(O) X R) \ B (y) = UJL graph u; U Ui_,, +1eraphu;
where u; € C**(B%,(0) \ B"(y);R) for j = 1,...,q1, u; € C>*(B%,(0);R) for
10 10
J=aq+1,...,q and the u; are separately smooth CMC' graphs (possibly with tangential

intersections) with small gradients and uq < ug < ... < Ug.
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