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1. Introduction

In the recent work [6], a regularity and compactness theory has been developed (in a 

varifold setting) for weakly stable constant-mean-curvature (CMC) hypersurfaces. The 

question of whether there is an effective version of the compactness theorem of [6], i.e. 

whether weakly stable CMC hypersurfaces must satisfy a uniform local curvature esti-

mate under appropriate hypotheses, arises naturally from that work. Here we settle this 

question by proving, for such hypersurfaces satisfying uniform mass and mean curvature 

bounds, a pointwise curvature estimate in the non-singular dimensions (i.e. in dimensions 

≤ 6) and a sheeting theorem (i.e. a pointwise curvature estimate subject to the additional 

hypothesis that the hypersurface is weakly close to a hyperplane) in all dimensions. Our 

results generalize the foundational works of Schoen–Simon–Yau [24] that established a 

pointwise curvature estimate for strongly stable minimal hypersurfaces in low dimensions 

and of Schoen–Simon [23] that established a sheeting theorem in all dimensions for a 

class of strongly stable hypersurfaces (including CMC hypersurfaces) subject to an a 

priori smallness hypothesis on the singular set.

Recall that a smooth immersion x : Σ → R
n+1 has constant mean curvature if and 

only if every compact portion Σ1 ⊂ Σ is stationary with respect to the hypersurface area 

functional a(Σ1) for volume-preserving deformations. This condition is equivalent to the 

fact that for some constant H, every compact portion Σ1 ⊂ Σ is stationary with respect 

to the functional

J(Σ1) = a(Σ1) + Hvol (Σ1)

for arbitrary deformations, where vol (Σ1) is the enclosed volume functional (which can 

be expressed as vol (Σ1) = 1
n+1

∫

Σ1
x · ν dΣ where ν is a continuous unit normal to Σ

and dΣ is the volume element with respect to the metric induced by the immersion x); 

in this case, H is the value of the scalar mean curvature of Σ with respect to ν. If Σ

has constant mean curvature, then for any given φ ∈ C∞
c (Σ) and relative to any smooth 

1-parameter family of deformations of Σ with initial velocity φν, the second variation of 

Σ with respect to J is given by the quadratic form

δ2J(φ, φ) =

∫

Σ

|∇φ|2 − |AΣ|2φ2,

where AΣ is the second fundamental form of Σ and ∇ is the gradient on Σ (cf. [3, 

Proposition 2.5]). We say that the CMC hypersurface Σ is weakly stable if every compact 

portion Σ1 ⊂ Σ is stable, i.e. has non-negative second variation, with respect to the 

area functional, or equivalently, with respect to J , for volume-preserving deformations. 

Weakly stable CMC hypersurfaces arise as stable critical points for the isoperimetric 

problem. The weak stability of Σ is equivalent to the validity of the stability inequality
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∫

Σ

|AΣ|2φ2 ≤
∫

Σ

|∇φ|2

for any φ ∈ C∞
c (Σ) with 

∫

Σ
φ = 0 (cf. [3, Proposition 2.7]), while strong stability of Σ

requires that this inequality holds for arbitrary φ ∈ C∞
c (Σ).

The methods used in [24,23] for strongly stable hypersurfaces involve the use of positive

test functions φ in the stability inequality, and since these never integrate to zero, it is 

not clear how to directly apply these methods in the setting of weak stability. The 

strategy employed here is different: we take a geometric approach, combining the results 

of [24,23] for strongly stable hypersurfaces with the fact that complete weakly stable 

minimal hypersurfaces have only one end, a result established by Cheng–Cheung–Zhou 

([8]) and generalized here (in a fairly straightforward manner) to allow the hypersurfaces 

to have a small singular set. This generalization is necessary for the sheeting theorem. 

A key difficulty in the proof of the sheeting theorem is to correctly “localize” the one-end 

result in order to transfer the “flatness” from large to small scales (see Remark 6). This 

is handled by a careful blow-up procedure relying on the aforementioned regularity and 

compactness theorems in [6] for weakly stable CMC hypersurfaces and a rigidity theorem 

(Lemma 5 below), due to Simons ([21]), for minimal hypersurfaces of spheres.

Our main results are Theorem 1, Theorem 2, Theorem 1′ and Theorem 2′ below. 

Theorem 1 gives a pointwise curvature bound valid for mass bounded weakly stable 

CMC hypersurface of dimension n with 3 ≤ n ≤ 6 (that are assumed, in case 3 ≤
n ≤ 5, to be immersed, or in case n = 6, immersed without transverse intersections or 

immersed with a specific mass bound); Theorem 2 establishes a sheeting result that holds 

in arbitrary dimensions for weakly stable CMC hypersurfaces satisfying an arbitrary 

uniform mass bound and allowed, a priori, to contain a small set of “genuine” singularities 

away from which the hypersurfaces are assumed smoothly immersed without transverse 

intersections. By virtue of the regularity theory of [6], the hypotheses of absence or 

smallness of the set of genuine singularities in Theorem 1 and Theorem 2 respectively can 

immediately be replaced by considerably weaker structural conditions. These stronger 

results, which hold in a varifold setting, are given as Theorem 1′ and Theorem 2′.

It is interesting to note the following: Consider a CMC hypersurface Σ immersed in 

R
n+1 with mean curvature H (possibly equal to zero). Recall that the Morse index of Σ

is defined by setting index(Σ) to be the maximum dimension of a linear subspace W of 

C∞
c (Σ) so that for any φ ∈ W \ {0}, the second variation δ2J(φ, φ) < 0, or equivalently,

∫

Σ

|AΣ|2φ2 >

∫

Σ

|∇φ|2.

It is easy to see that if Σ is weakly stable, then index(Σ) ≤ 1. On the other hand, 

Theorems 1 and 2 below are false if we replace “Σ is weakly stable” with “Σ satisfies 

index(Σ) ≤ 1.” This can be seen by considering rescalings of the higher-dimensional 

catenoid (the unique non-flat rotationally symmetric minimal hypersurface in R
n+1) 
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which converge weakly to a hyperplane with multiplicity two, but do not have bounded 

curvature (or satisfy the conclusion of the sheeting theorem). In the context of the results 

below, the crucial difference between “weakly stable” and “index(Σ) ≤ 1” is that weakly 

stable surfaces cannot have two ends (cf. Appendix A) while index one surfaces can (e.g., 

the catenoid).

1.1. Results for hypersurfaces with small singular set

In the non-singular dimensions (i.e. in dimensions ≤ 6), we have the following curva-

ture estimates.

Theorem 1. For each H0 > 0 and Λ ≥ 1, there exists C = C(H0, Λ) such that the follow-

ing holds: Let 3 ≤ n ≤ 6 and let Σ ⊂ BR(0) ⊂ R
n+1 be a smooth immersed hypersurface 

with (Σ \ Σ) ∩ BR(0) = ∅, Hn(Σ) ≤ ΛRn and with constant scalar mean curvature H

such that |H| ≤ H0R−1. Assume that Σ is weakly stable as a CMC immersion. For n = 6

suppose additionally either that Σ contains no point where Σ intersects itself transversely 

(or equivalently, by the maximum principle, for each point p ∈ Σ where Σ is not embed-

ded, there is ρ > 0 such that Σ ∩ Bn+1
ρ (p) is the union of two embedded smooth CMC 

hypersurfaces intersecting only tangentially), or that Λ = 3 − δ for some δ ∈ (0, 1).

Then

sup
x∈Σ∩BR/2(0)

|AΣ|(x) ≤ CR−1,

where AΣ denotes the second fundamental form of Σ.

We note that when n = 2 (cf. [29,13]) stronger estimates are available—i.e., without 

the bounded area assumption—as consequences of the strong Bernstein type theorems 

available [2,3,20,12,17]. As such, we will not consider this case here.

Remark 1. In case n = 6, the reason for the additional restrictions in Theorem 1 (that 

either Σ has no transverse points or Λ = 3 − δ) is that it is not known if a pointwise cur-

vature estimate holds for 6-dimensional immersed strongly stable minimal hypersurfaces 

satisfying an arbitrary mass bound; such an estimate is only known to hold if the min-

imal hypersurface is either embedded ([23]) or is immersed and satisfies a mass bound 

corresponding to Λ = 3 − δ for some δ ∈ (0, 1) ([27]). See Proposition 3 below.

In all dimensions, we have the following sheeting theorem.

Theorem 2. Let Λ, H0 > 0 and n ≥ 3. Suppose that Σn ⊂ BR(0) ⊂ R
n+1 is an immersed 

hypersurface with Hn(Σ) ≤ ΛRn, with constant scalar mean curvature H such that 

|H| ≤ H0R−1 and with Hn−7+α((Σ \ Σ) ∩ BR(0)) = 0 for all α > 0 (in other words, 

Σ may have a co-dimension 7 singular set). Suppose that Σ contains no point where Σ
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intersects itself transversely (or equivalently, by the maximum principle, for each p ∈ Σ

where Σ is not embedded there is ρ > 0 such that Σ ∩ Bn+1
ρ (p) is the union of exactly 

two embedded smooth CMC hypersurfaces intersecting only tangentially), and that Σ is 

weakly stable as a CMC immersion. There exists δ0 = δ0(n, H0, Λ) and C = C(n, H0, Λ)

so that if additionally

Σ ⊂ {|xn+1| ≤ δ0R}

then Σ ∩ BR/2(0) separates into the union of the graphs of functions u1 ≤ · · · ≤ uk

defined on Bn
R/2(0) := BR/2(0) ∩ {xn+1 = 0} satisfying

sup
Bn

R/2
(0)

(

|Dui| + R|D2ui|
)

≤ Cδ0

for i = 1, . . . , k; moreover, each ui is separately a smooth CMC graph.

Remark 2. The constants in Theorems 1 and 2 depend on an upper bound for the mean 

curvature H0. This cannot be removed; indeed, consider the hypersphere Σ = ∂Br(0), 

which is a weakly stable CMC embedding. Note that as r → 0, the curvature of Σ blows 

up (in spite of the fact that Σ is eventually contained in any slab).

1.2. Results for varifolds

In view of [6, Theorem 2.1], Theorems 1 and 2 above imply the following stronger 

results for integral varifolds. We refer to [6, Section 2.1] for precise definitions. Here we 

recall, slightly imprecisely, that:

• a classical singularity of an integral varifold V is a point p such that, in a neigh-

borhood of p, spt ‖V ‖ (where ‖V ‖ denotes the weight measure associated with V ) 

is given by the union of three or more embedded C1,α hypersurfaces-with-boundary 

that intersect pairwise only along their common boundary L containing p and such 

that at least two of the hypersurfaces-with-boundary meet transversely along L;

• a (two-fold) touching singularity of an integral varifold V is a point p ∈ spt ‖V ‖
such that spt ‖V ‖ is not embedded at p and in a neighborhood of p, the spt ‖V ‖ is 

given by the union of exactly two C1,α embedded hypersurfaces with only tangential 

intersection;

• (see [22] for details) the first variation of an integral varifold V is a continuous linear 

functional on C1
c ambient vector fields and it represents the rate of change of the 

varifold’s weight measure (area functional) computed along ambient deformations in-

duced by the chosen vector field; when the first variation is a Radon measure (i.e. it 

extends to a continuous linear functional on C0
c vector fields) the varifold is said to 

have locally bounded first variation; when, in addition, this Radon measure is abso-

lutely continuous with respect to the weight measure ‖V ‖, and its Radon–Nikodym 
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derivative (called generalized mean curvature of V ) is in Lp(‖V ‖), the first varia-

tion of V is said be locally summable to the exponent p (with respect to the weight 

measure ‖V ‖). By the fundamental regularity theory of Allard, the class of integral 

n-varifolds V with first variation locally summable to an exponent p > n is compact 

in the varifold topology under uniform mass and Lp mean curvature bounds, and 

such a V enjoys an embryonic regularity property: there exists a dense open subset 

of spt ‖V ‖ in which spt ‖V ‖ is C1,α embedded, with α = 1 − n
p if n < p < ∞ and 

α ∈ (0, 1) arbitrary of p = ∞ (see [1]).

In low dimensions, we have the following curvature estimates:

Theorem 1′. Let Λ, H0 > 0. For 3 ≤ n ≤ 6, suppose that V ∈ IVn(BR(0)) is an integral 

varifold with ‖V ‖(BR(0)) ≤ ΛRn. Assume that the following hypotheses hold:

(1) the first variation of V is locally summable to an exponent p > n (with respect to 

the weight measure ‖V ‖);

(2) V has no classical singularities;

(3) whenever p is a (two-fold) touching singularity there exists ρ > 0 such that

Hn ({y ∈ spt ‖V ‖ ∩ Bρ(p) : Θ(‖V ‖, y) = Θ(‖V ‖, p)}) = 0,

where Θ is the density;

(4) the C1 embedded part of spt ‖V ‖ (non-empty by Allard’s regularity theorem) has 

generalized mean curvature h with |h| = H for a constant H ≤ H0 (see [6] for the 

variational formulation of this assumption, which makes sense for a C1 hypersurface 

and leads to its C2 regularity by standard elliptic regularity theory);

(5) the C2 immersed part of spt ‖V ‖ (which is a CMC immersion in view of (4)) is 

weakly stable, i.e. stable for the area measure under volume-preserving variations.

Then Σ = spt ‖V ‖ ∩ BR(0) is a smooth immersion and there is C = C(H0, Λ) so that

sup
x∈Σ∩BR/2(0)

|AΣ|(x) ≤ CR−1,

where AΣ denotes the second fundamental form of Σ.

We also have the following sheeting theorem in all dimensions:

Theorem 2′. Let Λ, H0 > 0. For any n ≥ 3 suppose that V ∈ IVn(Bn+1
R (0)) is an integral 

varifold with ‖V ‖(Bn+1
R (0)) ≤ ΛRn. Assume that the following hypotheses hold:

(1) the first variation of V is locally summable to an exponent p > n (with respect to 

the weight measure ‖V ‖);
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(2) V has no classical singularities;

(3) whenever p is a (two-fold) touching singularity there exists ρ > 0 such that

Hn
(

{y ∈ spt ‖V ‖ ∩ Bn+1
ρ (p) : Θ(‖V ‖, y) = Θ(‖V ‖, p)}

)

= 0,

where Θ stands for the density;

(4) the C1 embedded part of spt ‖V ‖ (non-empty by Allard’s regularity theorem) has 

generalized mean curvature h with |h| = H for a constant H ≤ H0 (see [6] for the 

variational formulation of this assumption, which makes sense for a C1 hypersurface 

and leads to its C2 regularity by standard elliptic methods);

(5) the C2 immersed part of spt ‖V ‖ (which is a CMC immersion in view of (4)) is 

weakly stable, i.e. stable for the area measure under volume-preserving variations.

There exists δ0 = δ0(n, H0, Λ) so that if additionally

spt ‖V ‖ ⊂ {|xn+1| ≤ δ0R}

then spt ‖V ‖ ∩ BR/2(0) separates into the union of the graphs of functions u1 ≤ · · · ≤ uk

defined on Bn
R/2(0) := BR/2(0) ∩ {xn+1 = 0} satisfying

sup
Bn

R/2
(0)

(

|Dui| + R|D2ui|
)

≤ δ0

for i = 1, . . . , k; moreover, each ui is separately a smooth CMC graph.

Remark 3. The extension of the theorems above to the case of an ambient Riemannian 

manifold follows the same arguments, employing the result in [5]. Similarly, analogous 

results hold in the case of more general prescribed mean curvature problems. For example, 

when Σ as in Theorems 1 or 2 is the boundary of a Caccioppoli set Ω and g is an ambient 

function we can define

Jg(Σ) = a(Σ) +

∫

Ω

g

and consider stable critical points of Jg with vol (Σ) = Hn+1(Ω) fixed.

Remark 4. Note that Theorems 1, 2, 1′ and 2′ hold in particular for H = 0; in this case, 

the vanishing of the mean curvature prevents touching singularities, therefore assumption 

(3) in Theorems 1′ and 2′ is redundant. For H = 0 our results generalize the works of 

Schoen–Simon–Yau [24], Schoen–Simon [23] and the third author [28, Theorem 3.3] from 

strong to weak stability.

Remark 5. The conclusions of Theorems 2 and 2′ clearly fail (even for strongly stable 

minimal hypersurfaces) for n ≥ 7 without any flatness assumption, by the construction of 



140 C. Bellettini et al. / Advances in Mathematics 352 (2019) 133–157

Hardt–Simon [14]. We also note that singularities do occur in stable CMC hypersurfaces 

(with H �= 0) of dimension ≥ 7, as shown by a recent construction of Irving ([16]) 

modifying the earlier work of Caffarelli–Hardt–Simon (cf. [9]).

1.3. A remark on bounded index minimal surfaces

The discussion in the paragraph preceding Section 1.1 notwithstanding, the techniques 

developed in this paper are relevant for the study of bounded index minimal surfaces in 

Riemannian (n + 1)-manifold for n ≥ 7 (i.e., in the singular dimensions). For example, 

if Σn ⊂ BR(0) ⊂ R
n+1 is a minimal surface with index(Σ) ≤ 1, Hn(Σ) ≤ ΛRn, and 

Σ ⊂ {|xn+1| ≤ δ0R}, then by a straightforward application of the Schoen–Simon sheeting 

theorem [23], Σ splits into smooth sheets away from a given point. The argument used to 

prove Proposition 6 extends to this situation to conclude that the sheets are connected 

by a small region that is close (depending on δ0) to an index one minimal hypersurface in 

R
n+1 (with small singular set), having regular ends. This last condition is the non-trivial 

conclusion; it follows from the argument in Proposition 6, transferring flatness from 

large scales to small scales (see Remark 6). Using the arguments in [10] (cf. [4]), similar 

statements hold for index(Σ) ≤ I0. See also [25].

1.4. Outline of the paper

Theorem 1 will be proved in Section 3, building on the Bernstein-type result given in 

Proposition 3 below (Section 2). Theorem 2 will be proved in Section 4, building on a 

different Bernstein-type result (Proposition 4 in Section 2). The proofs of both Bernstein-

type results rely on a global result for weakly stable minimal hypersurfaces, namely the 

fact that they must be one-ended. This is proved in [8] in the case of smooth embedded 

hypersurfaces; this result, recalled in Theorem 7 of Appendix A, is all that is actually 

needed for Theorem 1, together with a classical blow-up argument. For the proof of 

Theorem 2, we extend the one-ended conclusion to the situation where the hypersurface 

may have a codimension-7 singular set; this is done in Theorem 8 of Appendix A. The 

proof of Theorem 2 also relies on a careful blow-up argument for which we need to use 

certain results from [6], which we recall in Appendix B.
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2. Two Bernstein-type theorems

We begin with the following Bernstein type result, which will yield Theorem 1 when 

combined with a standard blow-up argument. We note that such a result holds for 

n = 2 without the embededness or area growth assumptions, as discussed above. As a 

notational remark, we stress that we will always write ∇ to denote the intrinsic gradient 

on a hypersurface, and will instead denote by ∇R
n+1

the ambient gradient.

Proposition 3. For 3 ≤ n ≤ 6, suppose that Σn ⊂ R
n+1 is a connected, weakly stable, 

immersed minimal hypersurface with no singularities and with Hn(Σ ∩ BR) ≤ ΛRn for 

some constant Λ ≥ 1 and all R > 0. When n = 6 assume either that Λ = 3 − δ for some 

δ > 0 or that Σ is embedded. Then Σ is a hyperplane.

Proof. We begin by showing that Σ is (strongly) stable outside of a compact set. If all 

of Σ is strongly stable, then by [24,23] the proposition follows. If not, we may choose 

R > 0 so that Σ ∩ BR is unstable. If Σ \ B2R is unstable, then we may find functions 

ϕ1 ∈ C∞
c (Σ ∩ BR) and ϕ2 ∈ C∞

c (Σ \ B2R) so that

∫

Σ

|AΣ|2ϕ2
i >

∫

Σ

|∇ϕi|2.

By weak stability, 
∫

Σ
ϕi �= 0 for i = 1, 2. Choose t ∈ R so that

∫

Σ

ϕ1 + tϕ2 = 0.

Because ϕ1, ϕ2 have disjoint support, we find that

∫

Σ

|AΣ|2(ϕ1 + tϕ2)2 >

∫

Σ

|∇(ϕ1 + tϕ2)|2.

This contradicts the weak stability of Σ. Thus, Σ is stable outside of a compact set.

We first assume that Σ is embedded. We will explain below the modifications for the 

cases Σ immersed and 3 ≤ n ≤ 5, or Σ immersed, n = 6 and Λ = 3 − δ. In the embedded 

case, we first show that there exists an integer m such that any tangent cone at infinity 

is a hyperplane with multiplicity m.

Claim 1. There is m ∈ N so that for any sequence λj → 0, a subsequence of Σj := λjΣ

converges smoothly and graphically on any compact subset of Rn+1 \ {0} to a hyperplane 

of multiplicity m.

Proof of the Claim. By [23, Theorem 3] (for n ≤ 5 the estimates in [24] suffice) the 

magnitude of the second fundamental form decays as 1
|y| for |y| → ∞, namely there 
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exist R0 > 0 and a constant C > 0 such that |A|(y) ≤ C
|y| for y ∈ Σ and |y| ≥ R0, 

where |y| denotes the Euclidean norm of y in Rn+1. Therefore, there is a subsequence 

λj → 0 (not relabeled) so that Σj = λjΣ converges smoothly (possibly with multiplicity) 

on compact subsets of Rn+1 \ {0} to C, a smooth minimal surface in Rn+1 \ {0}. The 

smooth convergence implies that C \{0} is (strongly) stable: by [21] and the dimensional 

restriction, C is a flat hyperplane with some multiplicity m ∈ N. Finally, the fact that 

the multiplicity m is independent of the sequence (λj) is an immediate consequence of 

the monotonicity formula. ✷

The preceding claim implies that there exists r0 such that, whenever r > r0, the 

sphere ∂Bn+1
r (0) intersects Σ transversely: indeed, if that failed, we could produce a 

sequence of radii ri → ∞ where transversality fails but the corresponding sequence 1
ri

Σ

would fail to converge graphically at some point on ∂Bn+1
1 (0).

Let r > r0. The transversality condition established amounts to the fact that the gra-

dient of h : Σ \Br0
(0) → R, h(x) = |x| (the ambient distance to the origin) is everywhere 

non-vanishing. By [18, Theorem 3.1] this implies that, for any R > r, Σ ∩(BR(0) \ Br(0))

deformation retracts onto Σ ∩ ∂Br(0). In particular, the number of connected compo-

nents of Σ ∩ (BR(0) \ Br(0)) equals the number of connected components of Σ ∩ ∂Br(0). 

Denoting with D1, . . . , DN the connected components of Σ ∩ ∂Br(0), we consider, for 

every R > r, N disjoint open sets AR
1 , . . . , AR

N , each containing a single connected com-

ponent of Σ ∩ (BR(0) \ Br(0)) and labeled so that AR
j contains Dj . Let Ãj = ∪R>rAR

j : 

the open sets Ãj for j = 1, . . . , N are disjoint by construction and cover Σ \ Br(0), so 

the number of ends of Σ is at least N .

The result of [8] (see Theorem 7 below) gives that Σ is one-ended, i.e. N = 1, and so, 

for all r > r0, Σ ∩ ∂Br(0) is connected. On the other hand, Sn−1 is simply connected 

and, as such, does not admit a nontrivial connected cover. Therefore, recalling Claim 1, 

we conclude that m = 1, or equivalently, that the density of Σ at infinity is 1. Hence 

by the monotonicity formula Σ is a cone with density at the vertex (which is equal to 

the density at infinity) equal to 1. Since the density of Σ at any other point is also 1, 

it follows again by the monotonicity formula that Σ is translation invariant along every 

direction so it is a hyperplane.

We now consider the case where ϕ : Σ → R
n+1 is only assumed to be immersed and 

either 3 ≤ n ≤ 5 or n = 6 and Λ = 3 − δ. In this case, we still have, by the local 

uniform mass bounds, that for any sequence λj → 0, a subsequence of (λj)# |ϕ(Σ)|
converges as varifolds to a stationary cone C. By the locally uniform pointwise curvature 

bounds (given by [24] for 3 ≤ n ≤ 5 or by [27] for n = 6 and Λ = 3 − δ), it follows 

that spt ‖C‖ is smoothly immersed away from the origin, and the convergence is smooth 

and graphical in compact subsets of R
n+1 \ {0}; moreover, since Σ \ B2R is stable, 

it also follows that the stability inequality 
∫

|AC |2ζ2 ≤
∫

|∇ ζ|2 holds true for every 

ζ ∈ C1
c (spt ‖C‖ \ {0}), i.e. that spt ‖C‖ \ {0} is stable as an immersion. (Indeed if Mj

is any sequence of immersed minimal hypersurfaces of an open set U ⊂ R
n+1 with 

no singularities and with ∂ Mj ∩ U = ∅, and if lim supj→∞ Hn(Mj ∩ K) < ∞ and 
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lim supj→∞ supx∈Mj∩K |AMj
(x)| < ∞ for each compact K ⊂ U , then for any given 

compact set K ⊂ U , there is a fixed radius σ = σ(K) > 0 independent of j such 

that (after passing to a subsequence without changing notation) for every j and every 

p ∈ Mj ∩ K, Mj ∩ Bσ(p) is the union of smooth embedded graphs with small gradient 

over some hyperplanes Pj,1, . . . , Pj,Nj
passing through p (with 

∑Nj

k=1 |Pj,k| equal to the 

tangent cone to Mj at p), where Nj ≤ N for some N independent of j and p; if V is 

the varifold limit of (Mj), then for any z ∈ spt ‖V ‖ ∩ U , choosing a sequence of points 

zj ∈ Mj with zj → z and applying this fact to Bσ(zj) ∩ Mj , we get, passing to a 

subsequence, that the hyperplanes Pj,k → Pk for k = 1, . . . , Q for some Q ≤ N , and 

so we can write Mj ∩ Bσ/2(zj) as a union of embedded minimal graphs over the fixed 

planes P1, . . . , PQ with small gradient. By the higher derivative estimates for solutions to 

uniformly elliptic equations, we then see that spt ‖V ‖ ∩Bσ/4(z) is the union of smoothly 

embedded minimal graphs over P1, . . . , PQ, i.e. that spt ‖V ‖ ∩ U is immersed, and that 

the convergence of (Mj) is smooth and graphical (via normal sections over spt ‖V ‖ ∩ U) 

in any compact subset of U . From this, it is easy to verify that if Mj are stable, i.e. if 
∫

Mj
|AMj

|2ζ2 ≤
∫

Mj
|∇ ζ|2 for each ζ ∈ C1

c (Mj) then 
∫

|Aspt ‖V ‖|2ζ2 ≤
∫

∇ ζ|2 for each 

ζ ∈ C1
c (spt ‖V ‖).)

By Simons’ theorem ([21, Theorem 6.1.1]; see the argument in [22, Appendix B] which 

is valid when the cone, as in our case, is immersed and stable as an immersion away 

from the origin), we conclude that C =
∑M

ℓ=1 mℓ|Lℓ| for some hyperplanes L1, . . . , LM

and positive integers m1, . . . , mM . Arguing by contradiction (as in the embedded case), 

this shows that ϕ is transverse to ∂Bn+1
r (0) for all r > r0 sufficiently large. Again, 

as in the embedded case, we thus find that the number of connected components of 

ϕ−1(BR(0) \ Br(0)) is equal to the number of connected components of ϕ−1(∂Br(0))

for any R ≥ r > r0. Because Σ has only one end by Theorem 7, there is only one such 

component. This proves both that C is supported on a single hyperplane, and that it 

has multiplicity one. Thus, Σ is a flat hyperplane by the monotonicity formula. This 

completes the proof. ✷

The proof of Theorem 1 will be achieved by employing Proposition 3 and a standard 

blow-up argument (see Section 3). We now present a version of Proposition 3 that holds 

in all dimensions. This, in conjunction with the sheeting-away-from-a-point result for 

weakly stable CMC hypersurfaces from [6] (recalled in Appendix B, Theorem 10 below), 

will imply Theorem 2 using a less standard rescaling argument. We point out that, in 

the proof of the next proposition, we make use of the one-end result of [8] for weakly 

stable CMC hypersurfaces, generalized here to allow a co-dimension 7 singular set. This 

generalization is given in Appendix A, Theorem 8.

Proposition 4. For n ≥ 3, suppose that V is a stationary integral n-varifold in Rn+1 with 

spt ‖V ‖ a connected set, sing V ⊂ B1(0) (so spt ‖V ‖ is smooth in Rn+1 \B1(0)) and with 

dimH (sing V ) ≤ n − 7. Assume that the regular part Σ = reg V (= spt ‖V ‖ \ sing V ) is 
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weakly stable and that V satisfies area growth ‖V ‖(BR(0)) ≤ ΛRn for some constant 

Λ ≥ 1 and all R > 0. Finally, assume that for some ε > 0, Σ satisfies

|AΣ|(x)|x| ≤
√

n − 1 − ε (1)

for x ∈ Σ \ B1, where | · | denotes the length in Rn+1. Then spt ‖V ‖ is a hyperplane.

Proof. We begin by proving that Claim 1 from Proposition 3 holds in this setting as 

well. For a sequence λj → 0, we consider Vj := (λj)# V . Passing to a subsequence, Vj

converges to a cone C in the sense of varifolds. Moreover, the assumed curvature estimates 

contained in (1) imply that spt ‖C‖ \{0} is smooth and Σj converges smoothly to spt ‖C‖
(possibly with multiplicity) on compact subsets of Rn+1 \ {0} (here, we use the fact that 

the estimate (1) is scale invariant). The curvature estimates pass to the limit, implying 

that |Aspt ‖C‖|(x)|x| <
√

n − 1 for all x ∈ spt ‖C‖ \{0}. Appealing to Lemma 5 below, we 

find that C is a flat hyperplane with some multiplicity m ∈ N. This establishes Claim 1

in this setting (that the multiplicity m is independent of the sequence follows again by 

monotonicity, as before).

Thus, any tangent cone at infinity of V is a multiplicity m plane. By Theorem 8, 

applied to V , Σ has exactly one end. Arguing as we did in the proof of Proposition 3, 

we can use the graphical convergence on compacts sets in R
n+1 \ {0} (which follows 

from the curvature estimate (1)) and the fact that Sn−1 does not admit any multiple 

cover, to obtain that, outside of B1, V must agree with the varifold given by Σ with 

multiplicity m. Because the density at infinity of V must be m, there must be equality 

in the monotonicity formula starting at any point in Σ (which also has density m) which 

easily implies that the support of V is a hyperplane. ✷

Lemma 5. Suppose that C is a n-dimensional minimal cone in Rn+1 that is smooth away 

from 0 and satisfies |AC |(x)|x| <
√

n − 1. Then C is a flat hyperplane.

Proof. Note that M := C ∩ S
n is smooth. By the given curvature estimate, we have that 

|AM | <
√

n − 1. By [21, Corollary 5.3.2], M must be totally geodesic. This proves the 

assertion. ✷

Remark 6. Observe that the Simons cone Σ in R
8 is (strongly) stable and satisfies 

|AΣ|(x)|x| =
√

n − 1 for all x ∈ Σ \ B1. As such, we see that the constant 
√

n − 1 − ε in 

(1) is sharp in the sense that Proposition 4 fails with any larger constant.

The importance of the size of the constant in a (scale invariant) curvature estimate 

of the form (1) seems to have been first shown by White in [26]. This has been refined 

in [19,7,10]. A key novelty contained in the present work is the combination of (1) with 

Lemma 5 and with Theorem 8, allowing flatness to propagate from large to small scales. 

Furthermore, our work here seems to be the first use of such an estimate in a setting 

where a priori there could be singularities.
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3. Proof of Theorem 1

Because the hypothesis and conclusion are scale invariant, it suffices to take R = 1. 

Assume the theorem is false. Then, there is Σj in B2 ⊂ R
n+1, a sequence of embedded 

(when Σ is immersed and 3 ≤ n ≤ 5, an identical argument will apply by considering 

instead rescalings and limits of the immersions) smooth weakly stable hypersurfaces with 

|H| ≤ H0 and Hn(Σj) ≤ Λ, but so

sup
x∈Σj∩B1/2

|AΣj
|(x) → ∞

as j → ∞. A standard blow-up argument (which we now recall) produces a surface which 

contradicts Proposition 3.

Choose xj ∈ Σj ∩ B1/2 with |AΣj
|(xj) → ∞. Without loss of generality, we may 

assume xj → x0. Choose ρj → 0 sufficiently slowly so that ρj |AΣj
|(xj) → ∞. Find 

yj ∈ Σj ∩ Bρj
(xj) maximizing

y �→ |AΣj
|(y)d(y, ∂Bρj

(xj)).

Set σj = d(yj , ∂Bρj
(xj)) and λj = |AΣj

|(yj). Clearly σj ≤ ρj and yj → x0, so that

|AΣj
|(y)d(y, ∂Bρj

(xj)) ≤ σjλj for y ∈ Σj ∩ Bσj
(yj). (2)

By the choice of yj we have σjλj ≥ ρj |AΣj
|(xj), which implies λj := |AΣj

|(yj) → ∞ and 

λjσj → ∞ as j → ∞. We now define

Σ̃j = λj(Σj − yj).

We claim that Σ̃j has bounded curvature on compact subsets of Rn+1. Indeed, for x ∈
Σ̃j ∩ Bσjλj

(0), scaling and (2) yield

|AΣ̃j
|(x) =

1

λj
|AΣj

|(yj + λ−1
j x) ≤ σj

σj − λ−1
j |x| → 1

for |x| uniformly bounded. Note that Σ̃j has mean curvature |Hj | ≤ H0/λj → 0.

The monotonicity formula (see e.g. [22]) shows that Hn(Σ̃j ∩ BR) ≤ Λ̃Rn for some 

constant Λ̃ = Λ̃(Λ, n, H0) independent of j. Then, by higher order elliptic estimates, Σ̃j

converges (up to passing to a subsequence) smoothly (possibly with multiplicity) to a 

smooth, embedded, complete, weakly stable minimal hypersurface Σ̃∞ in Rn+1.

Because |AΣ̃j
|(0) = 1 for every j, we find that |AΣ̃∞

|(0) = 1, so Σ̃∞ is non-flat. This 

contradicts Proposition 3 (applied to Σ̃∞ with multiplicity one).
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4. Proof of Theorem 2

We begin by describing the setup of the proof of Theorem 2. By scaling we may 

take R = 10. We consider a sequence of weakly stable hypersurfaces Σj with mean 

curvature |H| ≤ H0/10 and Hn(Σj) ≤ Λ10n. We assume that each Σj has a singular set 

of co-dimension at least 7 and that Σj satisfies

Σj ⊂ {|xn+1| ≤ 10/j} ∩ B10(0).

It follows that Σj converges to the flat disk {xn+1 = 0} ∩ B10(0) (smoothly away from a 

point by Theorem 10) with some positive integer multiplicity k, in the sense of varifolds. 

The final aim is to show that the conclusion of Theorem 2 is valid for all sufficiently 

large j.

We will first establish the regularity assertion and the curvature estimate in Proposi-

tion 6 below; the proof of Theorem 2 will then be completed at the end of the section. 

The curvature estimate of Proposition 6 will be a consequence of Proposition 4 and a 

blow-up argument. Its scale-breaking nature is reminiscent of the arguments in [10].

Proposition 6. Fix η > 0. Then, for j sufficiently large, Σj ∩ B9 is smooth and there is 

zj ∈ B6 so that

|AΣj
|(x)|x − zj | ≤ η

for all x ∈ Σj ∩ B9, where | · | stands for the length in Rn+1.

We briefly explain the idea of the proof. The conclusion is non-trivial only when we 

are in the second alternative of the partial sheeting result from [6] that is recalled in 

Theorem 10, Appendix B. This second alternative gives that, away from a point, Σj is 

converging smoothly (with sheeting) to a hyperplane with multiplicity. Thus, there is 

some y and δ > 0 small so that the conclusion holds outside of Bδ(y).

The strategy of the proof is to pick the smallest ball Bδj
(zj) so that the conclusion for 

Σj holds outside of the ball. The claim will follow if we can prove that actually δj = 0, 

so we will assume that δj > 0. Rescale Σj to Σ̂j so that the ball Bδj
(zj) becomes B1(0)

(outside of which, the smoothness and scale invariant curvature estimates hold). We can 

pass Σ̂j to the limit, which inherits the curvature estimates (and smoothness) outside 

of B1(0). By Proposition 4, the limit is a union of hyperplanes (note that here we have 

transferred the flatness estimates contained in the partial sheeting result to the smaller 

scale, as pointed out in Remark 6). Now, the partial sheeting result (applied to Σ̂j) 

implies, as above, that the convergence of Σ̂j to the limit occurs smoothly away from 

a single point. This contradicts our choice of Bδj
(zj), since for j large, we could take 

a smaller ball around the point where sheeting fails in the rescaled picture. This will 

contradict the assumption that δj > 0, and will complete the proof.
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Proof of Proposition 6. Clearly, it suffices to assume that η <
√

n − 1. If the first case 

of the conclusion of Theorem 10 holds for every Σj large enough, then the curvature 

estimate is true with zj = 0 (and the conclusion of Theorem 2 is valid, so there is 

nothing further to prove). So we may assume (by the second case of the conclusion of 

Theorem 10) that there is a point y ∈ B5(0) ∩ {xn+1 = 0} such that Σj are sheeting 

away from y, i.e. for any r > 0, Σj ∩ (B9(0) \Br(y)) is smooth for j sufficiently large and

sup
x∈Σj∩(B9(0)\Br(y))

|AΣj
|(x) → 0 (3)

as j → ∞. We will subsequently replace Σj by Σj ∩ B9(0) (to avoid any irrelevant issues 

with the behavior of Σj near its boundary).

For z ∈ B6(0), we define

δ(Σj , z) := inf

{

r > 0 :
Σr

j := Σj \ Br(z) is smooth

and |AΣj
|(x)|x − z| ≤ η for all x ∈ Σr

j

}

.

Note that δ(Σj , y) → 0 as j → ∞, by the partial sheeting result discussed above.

For every j set δj := infz∈B6(0) δ(Σj , z) and choose zj,k with δ(Σj , zj,k) → δj as 

k → ∞. Passing to a subsequence, we may assume that zj,k → zj ∈ B6(0). We claim that 

δ(Σj , zj) = δj . If not, there is ǫ > 0 and w ∈ Σj \ Bδj+2ǫ(zj) with either (i) w ∈ sing Σj

or (ii) |AΣj
|(w)|w − zj | > η + 2ǫ. Note that w ∈ Σj \ Bδj+ǫ(zj,k) for k sufficiently large. 

Thus, in case (i), we find that, by the definition of δ(·, ·), δ(Σj, zj,k) ≥ δj + ǫ for all k

sufficiently large. This contradicts the choice of zj,k. Similarly, in case (ii) we have that

|AΣj
|(w)|w − zj,k| > η + ǫ,

for k sufficiently large, since |w − zj,k| → |w − zj | as k → ∞. Again, this yields a 

contradiction, as before.

Thus, we have arranged that zj minimizes δ(Σj , ·). Since δ(Σj , y) → 0, we also have 

that δj → 0 and consequently, it follows from the definition of δj and (3) that zj → y. 

We claim that δj = 0 for all sufficiently large j. Arguing by contradiction, we assume 

(upon extracting a subsequence that we do not relabel) that δj > 0 for all j. Using this, 

we now perform the relevant blow-up argument. Define

Σ̃j = δ−1
j (Σj − zj).

Note that as in the proof of Theorem 1, the monotonicity formula implies that Hn(Σ̃j ∩
BR(0)) ≤ Λ̃Rn for some Λ̃ = Λ̃(Λ, n, H0). Moreover, the choice of δj implies that Σ̃j \B1

is smooth and satisfies

|AΣ̃j
|(x)|x| ≤ η (4)
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for x ∈ Σ̃j \ B1. Note also that |HΣ̃j
| ≤ δj

H0

10 → 0. The area bounds and weak stability 

imply, by the regularity and compactness theorems in [6] (recalled in Theorem 9, Ap-

pendix B below), that Σ̃j converge in the varifold sense to Ṽ , which is stationary, weakly 

stable, has smoothly embedded support outside of a co-dimension 7 singular set, and 

satisfies ‖Ṽ ‖(BR(0)) ≤ Λ̃Rn. Furthermore, by the curvature estimates (4), the support 

of Ṽ is a smooth hypersurface Σ̃∞ outside of B1(0) satisfying

|AΣ̃∞

|(x)|x| ≤ η

and the convergence is smooth on compact sets outside B1(0). Thus, by Proposition 4, 

each connected component of the support of Ṽ is a hyperplane and so the support of 

‖Ṽ ‖ is made up of finitely many parallel hyperplanes.

Now, we again appeal to Theorem 10 to conclude that the convergence of Σ̃j to Ṽ

occurs smoothly (possibly with multiplicity) away from some fixed point z̃ ∈ spt ‖Ṽ ‖ (if 

the sheeting actually occurs everywhere, we simply set z̃ = 0). Note that the curvature 

estimates (4) imply that |z̃| ≤ 1.

Define ẑj = zj + δj z̃ and let δ̂j := δ(Σj , ̂zj). Since δ̂j ≥ δj/2 (by the definition of δj), 

there is wj ∈ Σj \Bδj/2(ẑj) so that either (i) wj ∈ sing Σj , or (ii) |AΣj
|(wj)|wj − ẑj | > η. 

We note that in either case we have that

lim inf
j→∞

δ−1
j |wj − ẑj | = ∞. (5)

(For if not, then defining w̃j = δ−1
j (wj − zj), we find that, in the scale of Σ̃j discussed 

above,

|z̃ − w̃j | = δ−1
j |(ẑj − zj) − (wj − zj)| = δ−1

j |wj − ẑj |

is bounded above (after passing to a subsequence) and bounded below by 1
2 (since wj /∈

Bδj/2(ẑj)), but because Σ̃j sheets away from z̃, we find that either (i) or (ii) would be a 

contradiction.) Finally, we define

Σ̌j := |wj − ẑj |−1(Σj − ẑj)

and set

w̌j := |wj − ẑj |−1(wj − ẑj), žj := |wj − ẑj |−1(zj − ẑj) = −δj |wj − ẑj |−1z̃.

Note that it follows from (3), (i) and (ii) that wj → y and hence (since zj → y) that 

|wj − ẑj | → 0. We have already shown that outside of Bδj
(zj), Σj is smooth and satisfies 

(4). This implies that Σ̌j is smooth outside of Bδj |wj−ẑj |−1(žj) and additionally satisfies

|AΣ̌j
|(x)|x − žj | ≤ η.
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By (5), and recalling that |z̃| ≤ 1, we have that δj |ẑj − wj |−1 → 0 and žj → 0. As 

before, we may take the varifold limit V̌ of Σ̌j , and the curvature estimates we have just 

established show that this limit occurs smoothly (possibly with multiplicity) outside of 

B1/2(0). The curvature estimates pass to the limit so by Proposition 4 each connected 

component of spt ‖V̌ ‖ is a hyperplane. Thus, since |w̌j | = 1, we find that w̌j /∈ sing Σ̌j

and |AΣ̌j
|(w̌j) → 0, so

|AΣ̌j
|(w̌j)|w̌j | → 0.

Rescaling to the original scale, this contradicts both (i) and (ii) above (concerning wj). 

This contradiction establishes that δj = 0 for j sufficiently large.

We have now shown that Σj is smooth away from zj and satisfies

|AΣj
|(x)|x − zj | ≤ η

for all x ∈ Σj \ {zj}. If zj /∈ Σj there is nothing further to show. Else, arguing as in the 

beginning of the proof of Proposition 3, we see that for fixed j and any small ball Bρ(zj), 

the hypersurface Σj is strongly stable either in Bρ(zj) or in B9 \ Bρ(zj); it follows from 

this fact that for each fixed j, there is ρ > 0 such that Σj is strongly stable in the annulus 

Bρ(zj) \ {zj}, and hence in the ball Bρ(zj). Moreover, by the curvature estimates and 

Lemma 5, any tangent cone Σj at zj must be supported on a hyperplane. Thus, Σj is 

smooth at zj by [6, Theorems 3.1 and 3.3]. This completes the proof of Proposition 6. ✷

Completion of the proof of Theorem 2. As discussed in the beginning of this section, 

Σj converge in the sense of varifolds to the hyperplane {xn+1 = 0} with multiplicity k. 

We claim that the curvature of Σj is uniformly bounded on Σj ∩ B9(0). Let λj =

maxΣj∩B9(0) |AΣj
| and assume for a contradiction (upon extracting a subsequence that 

we do not relabel) that λj → ∞ as j → ∞. By applying Proposition 6 iteratively we 

may find a further subsequence (not relabeled) so that Σj is a smooth immersion in the 

whole ball B9(0) and there is zj ∈ B6(0) and ηj → 0 so that Σj satisfies the curvature 

estimates

|AΣj
|(x)|x − zj | ≤ ηj (6)

for all x ∈ B9(0). Note that since zj ∈ B6(0), it follows from (6) that |AΣj
| is uniformly 

bounded in the annulus B9(0) \B8(0) and therefore the maximum of |AΣj
| in Σj ∩B9(0)

is achieved at a point yj ∈ B8(0). We set

Σ̃j = λj(Σj − yj).

By construction we have |AΣ̃j
|(0) = 1 and that |AΣ̃j

| is uniformly bounded on compact 

subsets of Rn+1, so Σ̃j converges smoothly on compact subsets of Rn+1 to a non-flat 
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smooth hypersurface Σ̃∞. On the other hand, the estimate (6) is scale invariant, so for 

z̃j = λj(zj − yj), we see that

|AΣ̃j
|(x)|x − z̃j | ≤ ηj .

Considering x = 0 here, we find that z̃j → 0, since ηj → 0. Hence, passing this inequality 

to the limit, we find that

|AΣ̃∞

|(x)|x| = 0,

contrary to the fact that Σ̃∞ is non-flat.

This implies that the curvature of Σj (in the original scale, for the original sequence) 

was uniformly bounded in B8(0). Since Σj converges to a hyperplane, the uniform cur-

vature bounds and standard elliptic estimates conclude the proof. ✷

Remark 7. It is possible to conclude in a slightly different manner, by using the curvature 

estimates from Proposition 6 with η < 1 to prove that the function fj(x) := |x −
zj |2 is strictly convex (for any j large enough). From this, if we assume sheeting of 

Σj away from a point y (second alternative of Theorem 10), it is not hard to argue 

(using a max-min argument) that distinct sheets of Σj ∩
(

B9(0) \ B1/2(y)
)

cannot be 

connected in B1/2(y) (endowing Σj with the topology of the immersion, not of the 

embedding); therefore each connected component of Σj in B9(0) contains exactly one 

sheet of Σj ∩
(

B9(0) \ B1/2(y)
)

. Theorem 2 then follows from Allard’s regularity theorem 

applied to each connected component individually, since standard arguments show that 

each component converges to the hyperplane with multiplicity 1 in the sense of varifolds. 

This alternative argument seems to be necessary for the applications to bounded-index 

surfaces mentioned in Section 1.3 (cf. [10]).

Appendix A. Weakly stable minimal hypersurfaces have only one end

In this appendix we review a result of Cheng–Cheung–Zhou [8] for weakly stable 

complete, non-compact minimal hypersurfaces immersed in Rn+1 that generalized earlier 

work of Cao–Shen–Zhu [11] establishing the same result for strongly stable complete, 

non-compact minimal hypersurfaces. We include their proof here, since for our purposes 

we need to extend (as we do below) the argument to the case where the hypersurfaces 

are allowed to have a small singular set. We recall that we write ∇ to denote the intrinsic 

gradient on a hypersurface, and will specify ∇R
n+1

if we refer to the ambient gradient.

Theorem 7 ([8, Theorem 3.2]). A complete connected oriented weakly stable minimal 

hypersurface immersed in Rn+1, n ≥ 2, has only one end.

Proof. In R3, a complete oriented weakly stable minimal surface is a plane, by [12], so 

we need only consider n ≥ 3.
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Suppose that Σ is a complete oriented weakly stable minimal hypersurface in Rn+1

with at least two ends. By [11, Lemma 2], there exists a non-constant bounded harmonic 

function u with finite Dirichlet energy, 
∫

Σ
|∇u|2 < ∞.

Consider ϕ ∈ C1
0 (Σ) so that 

∫

Σ
ϕ|∇u| = 0 (we will choose a specific ϕ below). Plugging 

ϕ|∇u| into the stability inequality for Σ yields

∫

Σ

|A|2ϕ2|∇u|2 ≤
∫

Σ

|∇(ϕ|∇u|)|2

=

∫

Σ

|∇|∇u||2ϕ2 +
1

2
∇|∇u|2 · ∇ϕ2 + |∇u|2|∇ϕ|2

=

∫

Σ

|∇|∇u||2ϕ2 − 1

2
∆|∇u|2ϕ2 + |∇u|2|∇ϕ|2

=

∫

Σ

(|∇|∇u||2 − |D2u|2)ϕ2 − RicΣ(∇u, ∇u)ϕ2 + |∇u|2|∇ϕ|2,

where we have integrated by parts and used the Bochner formula on Σ

1

2
∆|∇u|2 = |D2u|2 + RicΣ(∇u, ∇u).

The Gauss equations (and minimality of Σ) imply that

RicΣ(∇u, ∇u) = −|A(∇u, ·)|2 ≥ −|A|2|∇u|2.

Moreover, because u is harmonic, we have the improved Kato inequality

|D2u|2 − |∇|∇u||2 ≥ 1

n − 1
|∇|∇u||2.

Combined with the stability inequality as above, this yields

∫

Σ

|∇|∇u||2ϕ2 ≤ (n − 1)

∫

Σ

|∇u|2|∇ϕ|2.

We now choose ϕ appropriately. First, we argue that 
∫

Σ
|∇u| = ∞. Let p ∈ Σ such 

that |∇ u|(p) > 0. Write BΣ
r (p) for the intrinsic ball of radius r around p in Σ. For almost 

every R ≥ 1, we have

0 < ‖∇u‖2
L2(BΣ

1 (p)) ≤ ‖∇u‖2
L2(BΣ

R(p)) =

∫

BΣ
R(p)

|∇u|2 =

∫

∂BΣ
R(p)

u
∂u

∂ν
≤ ‖u‖L∞

∫

∂BΣ
R(p)

|∇u|,

so because u is bounded, there is some constant C = C(u, p) > 0 so that



152 C. Bellettini et al. / Advances in Mathematics 352 (2019) 133–157

∫

∂BΣ
R(p)

|∇u| ≥ C > 0.

Hence, by the co-area formula

∫

BΣ
R(p)\BΣ

1 (p)

|∇u| ≥
R

∫

1

∫

∂BΣ
r (p)

|∇u| ≥ C(R − 1),

which tends to infinity as R → ∞.

For a, b, R to be chosen with R > a > 0, we define (for t ∈ [0, 1])

ϕt(x) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 dΣ(x, p) < a

(a + R − dΣ(x, p))/R a ≤ dΣ(x, p) < a + R

t(a + R − dΣ(x, p))/R a + R ≤ dΣ(x, p) < a + 2R

−t a + 2R ≤ dΣ(x, p) < a + 2R + b

t(dΣ(x, p) − (a + 3R + b))/R a + 2R + b ≤ dΣ(x, p) < a + 3R + b

0 dΣ(x, p) ≥ a + 3R + b.

For ǫ > 0 fixed, choose R so that (n − 1)R−2
∫

Σ
|∇u|2 < ǫ. Then,

∫

Σ

ϕ0|∇u| ≥
∫

BΣ
a (p)

|∇u| > 0

and
∫

Σ

ϕ1|∇u| ≤
∫

BΣ
a+R(p)

|∇u| −
∫

BΣ
a+2R+b(p)\Ba+2R

|∇u|.

Since we have seen that 
∫

Σ
|∇u| = ∞, we may take b = b(a, ǫ) sufficiently large so that

∫

Σ

ϕ1|∇u| < 0.

Thus, there is some t = t(b, ǫ) ∈ (0, 1) so that

∫

Σ

ϕt|∇u| = 0.

Choosing ϕt in the above computation, we note that |∇ϕt| ≤ R−1, so

∫

Σ

|∇|∇u||2ϕ2
t ≤ (n − 1)

∫

Σ

|∇u|2|∇ϕt|2 ≤ (n − 1)R−2

∫

Σ

|∇u|2 < ǫ.
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Thus, we find that

∫

BΣ
a (p)

|∇|∇u||2 < ǫ.

Since a and ǫ were arbitrary, we find that ∇|∇u| = 0 along Σ, so |∇u| is constant. Since 

Σ has infinite volume and |∇u| ∈ L2(Σ), we find that |∇u| = 0. Thus, u is constant, 

a contradiction. This completes the proof. ✷

We now explain how the preceding argument generalizes to the case where the minimal 

hypersurface is allowed to have a small singular set.

Theorem 8. For n ≥ 3, suppose that V is a stationary integral n-varifold in Rn+1 with 

spt ‖V ‖ connected, dimH (sing V ) ≤ n − 7 and with sing V ⊂ B1(0). Assume that the 

regular part spt ‖V ‖ \sing V is weakly stable. Then spt ‖V ‖ has exactly one end at infinity.

Proof. Let M = spt ‖V ‖ \ sing V and suppose that M has two (or more) ends at infinity. 

The proof proceeds as in the smooth case (Theorem 7 above) with a few additional argu-

ments. First we note that by [15, Theorem A (ii)], sing V does not disconnect spt ‖V ‖, so 

M is connected. This is needed at the end of the proof in order to have that the identical 

vanishing of ∇u implies the global constancy of u (and not just the local constancy), 

which provides the desired contradiction.

The next argument concerns the existence of a non-constant bounded harmonic 

function u with finite energy on M . This is proved in the case sing V = ∅ in 

[11, Lemma 2] (and is used, as noted, in Theorem 7 above). The completeness assump-

tion in [11, Lemma 2] is not necessarily fulfilled by M , so it does not seem possible to 

simply invoke that result. We note, however, that completeness is used in [11] only to 

infer that each end has infinite volume ([11, Lemma 1]); this fact on the other hand 

follows directly from the monotonicity formula. Then we can follow verbatim the argu-

ments in [11, Lemma 2], only with the following additional care. When we exhaust the 

hypersurface with domains Di we should remove, from the Di constructed in [11], the 

closure of a smooth tubular neighborhood of sing V (whose size shrinks as i → ∞). This 

will produce further boundary components, in addition to those in [11], on which we will 

set boundary value 0 when solving the Dirichlet problem [11, (2)].

One more additional argument is needed in view of the fact that the test function 

ϕt|∇u| constructed in Theorem 7 might fail, a priori, to be an admissible function for 

the stability inequality. Indeed, ϕt|∇u| is not compactly supported on M and we do 

not have sufficient control of |∇u| near sing V . (If e.g. |∇u| were bounded near sing V , 

a straightforward capacity argument would suffice.) In order to overcome this difficulty, 

we first observe an energy growth estimate for u in balls centered on sing V (inequality 

(7) below) which is obtained as follows: Since ∆u = 0 on M , we see by integrating by 

parts and using the Cauchy–Schwarz inequality that for any φ ∈ C1
c (M),
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∫

M

|∇u|2φ2 = −
∫

M

2φu∇u∇φ ≤ 2

⎛

⎝

∫

M

φ2|∇u|2
⎞

⎠

1/2 ⎛

⎝

∫

M

u2|∇φ|2
⎞

⎠

1/2

,

from which we immediately get (using also the bounds −1 ≤ u ≤ 1)

∫

M

|∇u|2φ2 ≤ 4

∫

M

u2|∇φ|2 ≤ 4

∫

M

|∇φ|2.

Consequently, a standard capacity argument that only needs that the 2-capacity of sing V

is 0 (true in view of Hn−2(sing V ) = 0) gives that the inequality

∫

M

|∇u|2φ2 ≤ 4

∫

M

|∇φ|2

holds for all φ ∈ C1
c (Rn+1). In particular, choosing any p ∈ spt V and φ ∈ C1

c (B2r(p))

to be a standard bump function that is identically equal to 1 on Br(p) and identically 

equal to 0 on the complement of B2r(p) with |∇R
n+1

φ| ≤ 2
r , the preceding inequality 

and the monotonicity formula give

∫

Br(p)∩M

|∇u|2 ≤ Crn−2, (7)

where C is independent of r.

With this we proceed as follows: Let δ > 0 and let {Bri
(xi)}N

i=1 be a cover of sing V

(compact since sing V ⊂ B1(0)) with 
∑N

i=1 rn−4
i ≤ δ (possible since dimH (sing V ) ≤

n − 7). Defining a cutoff function ζδ = mini∈{1,...,N} ζi, where ζi ∈ C1(Rn+1) with 

0 ≤ ζi ≤ 1, ζi = 0 in Bri
(xi), ζ = 1 in Rn+1 \ B2ri

(xi) and |Dζi| ≤ 2r−1
i , in view of (7)

we see that

∫

M

|∇ζδ|2|∇u|2 ≤ 2
N

∑

i=1

∫

B2ri

|∇ζi|2|∇u|2 ≤ 8
N

∑

i=1

r−2
i

∫

B2ri

|∇u|2 ≤ 8C
N

∑

i=1

rn−4
i ≤ 8Cδ

whence
∫

M

|∇ζδ|2|∇u|2 → 0 (8)

as δ → 0. We can now adapt the arguments in Theorem 7: let ǫ > 0 be arbitrary 

and choose R > 0 so that (n − 1)R−2
∫

Σ
|∇u|2 < ǫ. For every δ > 0 choose a compactly 

supported function ϕt,δ that is constructed in the manner ϕt is constructed in Theorem 7

so as to ensure 
∫

ζδϕt,δ|∇u| = 0 (one can work with the function ϕt defined above and 

set a ≥ 1 so that ϕt is 1 on the singular set and ζδ|∇u| = |∇u| on BΣ
a+2R+b(p) \
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BΣ
a+2R(p); the t for which the zero-average condition is met will depend however on δ, 

hence the dependence of ϕt,δ on δ). As δ → 0, since |ϕt,δ| ≤ 1 and |∇ϕt,δ| ≤ 1
R are 

uniformly bounded, and moreover b(ǫ, a) can be chosen independently of δ, we get for a 

sequence δj → 0+ that ϕt,δj
→ ϕ̃ for a compactly supported Lipschitz function satisfying 

∫

ϕ̃|∇u| = 0 and ϕ̃ identically 1 on BΣ
a (p).

Plugging the (admissible) test function ζδϕt,δ|∇u| in the stability inequality we get, 

arguing as in the proof of Theorem 7 by means of Bochner’s formula and Gauss equations,

∫

M

|∇|∇u||2(ζδϕt,δ)2

≤ (n − 1)

∫

M

|∇u|2|∇(ζδϕt,δ)|2

= (n − 1)

∫

M

|∇ζδ|2ϕ2
t,δ|∇u|2 + 2ϕt,δζδ|∇u|2∇ζδ · ∇ϕt,δ + ζ2

δ |∇ϕt,δ|2|∇u|2;

using the Cauchy–Schwarz inequality for the middle term on the right-hand side, setting 

δ = δj and letting j → ∞ we obtain (recalling (8)) that the first and second term on 

the right-hand side vanish in the limit; moreover, with the choices of ǫ and R recalled 

above, using that ζδj
↑ 1, ϕt,δj

→ ϕ̃ as δj → 0, and that |∇ϕt,δj
| ≤ 1

R , we get

∫

M

|∇|∇u||2ϕ̃2 ≤ ǫ,

which allows us to conclude, in view of the arbitrariness of ǫ, that |∇u| = 0 on Σ and 

obtain the desired contradiction with the non-constancy of u. ✷

Appendix B. Results from [6]

We recall here the regularity/compactness results from [6] that are used in the proof 

of Theorem 2. The first one is a combination of [6, Theorem 2.1] and [6, Theorem 2.3].

Theorem 9 (regularity/compactness for weakly stable CMC hypersurfaces). Let n ≥ 2, 

R, K0, H0 ∈ (0, ∞) be fixed. Denote by SH0,K0
(Bn+1

R (0)) the class of all hypersurfaces 

M in Bn+1
R (0) such that

• M is an immersed, smooth, weakly stable, CMC hypersurface (not necessarily com-

plete) in Bn+1
R (0), with integer multiplicity (constant on every connected component 

of the immersion);

• Hn−7+α
(

M \ M
)

= 0 for all α > 0 (i.e. M is allowed to have a singular set of 

co-dimension at least 7);
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• M has no transverse points; equivalently (by the strong maximum principle), at every 

p ∈ M where M is not embedded, there exists ρ > 0 such that M ∩ Bn+1
ρ (p) is the 

union of exactly two embedded complete smooth CMC hypersurfaces in Bn+1
ρ (p) that 

intersect only tangentially;

• the modulus H of the mean curvature of M is ≤ H0;

• Hn(M) ≤ K0.

Then SH0,K0
(Bn+1

R (0)) is a compact family in the varifold topology. Moreover, if Vn ∈
SH0,K0

and Vn ⇀ V the (constant) mean curvature of V is given by limn→∞ Hn, where 

Hn is the (constant) mean curvature of Vn.

The next result is a synthesis of [6, Theorem 2.1], [6, Theorem 3.1], [6, Theorem 3.3]

and [6, Lemma 8.1].

Theorem 10 (sheeting away from a point for weakly stable CMC hypersurfaces). Let 

Vj → V , where Vj ∈ SH0,K0
(Bn+1

R (0)) (with the notations from the previous statement) 

and V is a sum of parallel hyperplanes, each with a constant integer multiplicity. Then, 

up to a rotation of coordinates

• either, for every k large enough, we have

spt Vk restricted to
(

Bn
R
2

(0) × R

)

= ∪q
j=1graph uj ,

where uj ∈ C2,α (Bn
R
2

(0); R), uj are separately smooth CMC graphs (possibly with 

tangential intersections) with small gradients and u1 ≤ u2 ≤ . . . ≤ uq,

• or there exists a point y ∈ spt ‖V ‖ ∩
(

B
n

R/2(0) × R

)

and a subsequence Vj′ such 

that, for any r > 0, the following holds: for j′ large enough (depending on r) Vj′ is 

strongly stable in (Bn
R(0) × R) \ Bn+1

r (y) and moreover Vj′ converges smoothly (with 

sheeting and possibly with multiplicity) to V away from y, in the following sense. 

With the notation V =
∑

qi|Wi| (where each Wi is one of the parallel hyperplanes 

of supp V ), 
∑

i qi = q and y ∈ W1, if r < dist(W1, Wi) for i �= 1, then for j′ large 

enough (depending on r), the following decomposition holds:

spt Vj′ restricted to
(

Bn
9R
10

(0) × R

)

\ Bn+1
r (y) = ∪q1

j=1graph uj

⋃

∪q
j=q1+1graph uj

where uj ∈ C2,α (Bn
9R
10

(0) \ Bn
r (y); R) for j = 1, ..., q1, uj ∈ C2,α (Bn

9R
10

(0); R) for 

j = q1+1, ..., q and the uj are separately smooth CMC graphs (possibly with tangential 

intersections) with small gradients and u1 ≤ u2 ≤ . . . ≤ uq.
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