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Abstract: Let (M, g) be a complete Riemannian 3-manifold asymptotic to
Schwarzschild-anti-deSitter and with scalar curvature R ≥ −6. Building on work of
A. Neves and G. Tian and of the first-named author, we show that the leaves of the
canonical foliation of (M, g) are the unique solutions of the isoperimetric problem for
their area. The assumption R ≥ −6 is necessary. This is the first characterization result
for large isoperimetric regions in the asymptotically hyperbolic setting that does not
assume exact rotational symmetry at infinity.

1. Introduction

The systematic study of stable constant mean curvature spheres in initial data sets for
the Einstein equations has been pioneered in the work of D. Christodoulou and S.-T. Yau
[11] and of G. Huisken and S.-T. Yau [18]. The existence of the canonical foliation of
the end of initial data asymptotic to Schwarzschild-anti-deSitter has been established
by R. Rigger [25]. A. Neves and G. Tian [22,23] have shown that the leaves of this
foliation are the unique stable constant mean curvature spheres that enclose the center
of the manifold and which satisfy a pinching condition that relates their inner and their
outer radius. We refer the readers to “Appendix A” for notation and to “Appendix C” for
a more detailed discussion of these results.

In Theorem 1.1, we observe that the pinching condition used in [22], stated here as
(C.1), may be replaced by an integral condition in the form of an a priori bound on their
Hawking mass.

Theorem 1.1. Let (M, g) be asymptotic to Schwarzschild-anti-deSitter with mass m >

0. Let � > 0. There is a constant r0 > 1 with the following property. Every stable

constant mean curvature sphere � in (M, g) that encloses Br0 and with Hawking mass

m H (�) ≤ � is a leaf of the canonical foliation.

Assume now that R ≥ −6 where R is the scalar curvature of (M, g). The existence
of isoperimetric surfaces in (M, g) for every sufficiently large area has been proven
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by the first-named author [7]. Moreover, it is shown in [7] that the Hawking mass
of these isoperimetric surfaces is a priori bounded. In conjunction with ideas from
[10,19], we obtain from Theorem 1.1 our second main result in this paper: A fully global

characterization of the leaves of the canonical foliation as the unique large solutions of

the isoperimetric problem.

Theorem 1.2. Let (M, g) be a complete Riemannian 3-manifold with R ≥ −6 that is

asymptotic to Schwarzschild-anti-deSitter with mass m > 0. We also assume that ∂ M

is connected and the only closed H = 2 surface in (M, g). There is V0 > 1 with the

following property. Let � ⊂ M be an isoperimetric region of volume V where V ≥ V0.

Then � is bounded by ∂ M and a leaf of the canonical foliation.

When (M, g) is exactly Schwarzschild-anti-deSitter, this result was proven by
J. Corvino, A. Gerek, M. Greenberg, and B. Krummel in [12] building on the pio-
neering work of H. Bray [1]. When (M, g) is isometric to Schwarzschild-anti-deSitter
outside of a compact set, Theorem 1.2 was proven by the first-named author in [7]. It
is shown in Section 10 of [7] that Theorem 1.2 fails when the condition R ≥ −6 is
dropped. Indeed, there are rotationally symmetric (M, g) with outermost H = 2 bound-
ary that are equal to Schwarzschild-anti-deSitter outside of a compact set and in which
no large centered coordinate sphere is isoperimetric. Finally, we note that S. Brendle has
shown in [2] that in exact Schwarzschild-anti-deSitter (or Schwarzschild), the centered
coordinate spheres are the unique embedded closed constant mean curvature surfaces.

We conclude with a brief account of the available results in the asymptotically flat
setting.

The optimal, global uniqueness result for stable constant mean curvature spheres in
initial data asymptotic to Schwarzschild has recently been established by the first- and
the second-named authors in [8,9]. Their result builds on earlier work of G. Huisken and
S.-T. Yau [18], of J. Qing and G. Tian [24], of J. Metzger and the second-named author
[14], of S. Brendle and the second-named author [4], as well as that of A. Carlotto
and the first- and second-named authors [5]. We refer to the introduction of [8] for
a comprehensive account and more detailed description of these and other important
contributions in this context.

The global uniqueness of large isoperimetric surfaces in asymptotically flat manifolds
with non-negative scalar curvature has been established in recent joint work [10] of H. Yu
and the first-, second-, and third-named authors. Building on the work of H. Bray [1] for
metrics which are exactly Schwarzschild outside of a compact set, global uniqueness
of large solutions of the isoperimetric problem in (M, g) asymptotic to Schwarzschild
with mass m > 0 has been shown by J. Metzger and the second-named author in any

dimension and with no assumption on the scalar curvature [15,16]. These results in
[10,15,16] resolve a long-standing conjecture of G. Huisken.

Finally, we note that there are very few geometries where we have complete un-
derstanding of the isoperimetric problem in the large. To our knowledge, the results in
[10,15,16] and Theorem 1.2 above are the only examples with no exact symmetries.

2. Proof of Theorem 1.1

Throughout this section, we let (M, g) be a Riemannian 3-manifold that is asymptotic
to Schwarzschild-anti-deSitter with mass m > 0.

We assume that � is a stable constant mean curvature sphere in (M, g). The mean
curvature of � with respect to its outward pointing unit normal ν is denoted by H . We
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also assume that � and ∂ M together bound a compact region � in M and that Br0 ⊂ �

where r0 > 1 is a large numerical constant that depends only on (M, g).

Fix � > 1. We assume that

m H (�) ≤ � (2.1)

where

m H (�) =
|�|

1
2

(16 π)
3
2

(

16 π − (H2 − 4) |�|
)

is the Hawking mass of �. Note that (2.1) is equivalent to either one of the bounds

16 π − (H2 − 4)|�| ≤ O(|�|−1/2) or
4 π

|�|
≤ (H − 2) + O(|�|−3/2). (2.2)

Lemma 2.1. We have

ˆ

�

|h̊|2 = O(1)

ˆ

�

e−5 r + O(|�|−1/2). (2.3)

Proof. This follows from (A.3) and (B.2). ⊓⊔

Lemma 2.2. We have

ˆ

�

e−3 r = O(|�|−1/2). (2.4)

Proof. Integrating (B.5) and using the Gauss–Bonnet formula, we obtain

16 π − (H2 − 4) |�| = −2
ˆ

�

|h̊|2 + (8 m + o(1))

ˆ

�

e−3 r .

The estimate follows in conjunction with (2.3), using that m > 0. ⊓⊔

Lemma 2.3. We have

16 π − (H2 − 4) |�| = O(|�|−1/2) and
4 π

|�|
= (H − 2) + O(|�|−3/2).

(2.5)

Proof. Combining (B.2) with (2.4), we obtain the bound m H (�) ≥ −o(1) as r0(�) →
∞. ⊓⊔

Lemma 2.4. We have

ˆ

�

4 e−2 r ≥ 4 π + O(|�|−1/2). (2.6)
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Proof. We use (2.4) to sharpen the steps leading to Proposition 4.2 (iii) in [22]: We
denote by �δ ⊂ B1(0) the surface with 	(�δ) = � and by �δ the compact region
enclosed by it. (We recall this notation in “Appendix A”.) From (2.4), we obtain

ˆ

�

4 e−2 r d μ̄ = areaδ(�δ) + O(|�|−1/2), (2.7)

where we have also used (A.1) and

(1 + cosh r)−2 = 4 e−2 r + O(e−3 r ).

Moreover,

volδ(�δ) =
4 π

3
− O(|�|−1/2). (2.8)

Indeed,

4 π

3
= volδ(�δ) + volδ(B1(0)\�δ)

and

volδ(B1(0)\�δ) = O(1)

ˆ

�δ

(1 − s2) = O(1)

ˆ

�

e−3 r = O(|�|−1/2).

The claim follows from the Euclidean isoperimetric inequality

areaδ(�δ) ≥ 4 π

(
3 volδ(�δ)

4 π

) 2
3

.

⊓⊔

Corollary 2.5. We have

ˆ

�

(1 − 〈ν,∇r〉)2 = O(|�|−1/2) (2.9)
ˆ

�

e−2 r |∇�r |2 = O(|�|−1/2) (2.10)
ˆ

�

4 e−2 r = 4 π + O(|�|−1/2). (2.11)

Proof. We use our stronger estimates to sharpen the steps leading to Proposition 4.2 in
[22].

Integrating (B.3), but using (2.2) and (2.4) to bound the error, we obtain
ˆ

�

(

4 − 2 |∇�r |2
)

e−2 r +
4 π

|�|

ˆ

�

(1 − 〈ν,∇r〉) +
ˆ

�

(1 − 〈ν,∇r〉)2

= 4 π + O(|�|−1/2). (2.12)

Using (2.6), we conclude

−2
ˆ

�

|∇�r |2 e−2 r +
4 π

|�|

ˆ

�

(1 − 〈ν,∇r〉) +
ˆ

�

(1 − 〈ν,∇r〉)2 ≤ O(|�|−1/2).
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Using the pointwise estimates

4 π

|�|
|1 − 〈ν,∇r〉| ≤

1

4
(1 − 〈ν,∇r〉)2 + O(|�|−2)

2 e−2 r |∇�r |2 ≤
1

4
(1 − 〈ν,∇r〉)2 + O(e−4 r )

and (2.4), we obtain (2.9). Estimate (2.10) now follows from the Cauchy-Schwarz in-
equality. We obtain (2.11) from (2.12) using (2.9) and (2.10). ⊓⊔

Corollary 2.6. We have

areaδ(�δ) = 4 π + O(|�|−1/2),

volδ(�δ) =
4 π

3
+ O(|�|−1/2)

where we use the notation explained in “Appendix A”.

Proof. The Euclidean area estimate follows from (2.7) together with (2.11) and (2.4).
The Euclidean volume estimate is a restatement of (2.8). ⊓⊔

We now rescale � homothetically,

ĝ� =
(

sinh r̂
)−2

ḡ|�

where r̂ > 0 is the hyperbolic area radius

areaḡ(�) = 4 π (sinh r̂)2.

The same rescaling is studied by A. Neves and G. Tian in Section 5 of [22]. They use
their pinching estimate (C.1) to estimate the Gaussian curvature of ĝ� to obtain a good
conformal parametrization. We follow the same strategy below, but use our bound (2.1)
on the Hawking mass instead of (C.1).

Lemma 2.7. Let p be such that 1 < p < 3/2. As r(�) → ∞,

‖K̂ − 1‖L p(μ̂) = o(1).

Proof. First, by (B.5),

K̄ = K + O(e−3 r ) =
1

4
(H2 − 4) −

1

2
|h̊|2 + O(e−3 r ).

In conjunction with (2.5), we obtain

K̂ = (sinh r̂)2 K̄ = (sinh r̂)2
(

1

4
(H2 − 4) −

1

2
|h̊|2 + O(e−3 r )

)

= (sinh r̂)2
(

4 π

|�|
−

1

2
|h̊|2 + O(e−3 r̂ ) + O(e−3 r )

)

= 1 + O(e−r̂ ) + |h̊|2 O(e2 r̂ ) + O(e2 r̂ e−3 r ).
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The assertion follows from
ˆ

�

(e2 r̂ e−3 r )p dμ̂ = O(e2 (p−1) r̂ )

ˆ

�

e−3 p r = O(e2 (p−1) r̂ )

ˆ

�

e−3 r

= O(e(2 p−3) r̂ )

and
ˆ

�

e2 r̂ p |h̊|2 p dμ̂ = O(e2 (p−1) r̂ )

ˆ

�

|h̊|2 p = o(e2 (p−1) r̂ )

ˆ

�

|h̊|2

= o(e(2 p−3) r̂ )

where we have used (B.4). ⊓⊔

The following is now an immediate consequence of [21, (35)].

Corollary 2.8. Fix p with 1 < p < 3/2. There is a diffeomorphism ϕ̂ : S
2 → � with

ϕ̂∗ĝ� = e2 β̂gS2

where, as r(�) → ∞,

‖β̂‖W 2,p(S2) = o(1). (2.13)

We also consider the conformal rescaling

g̃� = ψ−2 ḡ|� (2.14)

where

ψ = 2 cosh2 r

2
= 1 + cosh r.

Note that � with the Riemannian inner product g̃� is isometric to the Euclidean
surface �δ ⊂ B1(0). Here we use the notation explained in “Appendix A”.

The conformal rescaling (2.14) is also considered by A. Neves and G. Tian in Section
6 of [23]. They use it in conjunction with a result of C. De Lellis and S. Müller [13]
to show that � is close to a coordinate sphere in the chart at infinity. In Proposition
2.9 below, we apply results from [13] quite differently to obtain a suitable conformal
parametrization of g̃� .

Proposition 2.9. There is a diffeomorphism ϕ̃ : S
2 → � with

ϕ̃∗g̃� = e2 β̃gS2

where

‖β̃‖2
L∞ + ‖β̃‖2

W 1,2(S2)
= O(|�|−1/2). (2.15)
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Proof. We have that

ḡ� = g� + O(e−3 r ) and h̄ = h + O(e−3 r ).

Here we use the bound

sup
x∈�

|h(x)| = O(1)

from (B.4) to obtain the second estimate. Using also (2.3) and (2.4), we find
ˆ

�

|h̊|2ḡ dμ̄ =

ˆ

�

|h̊|2 + O(|�|−1/2) = O(|�|−1/2).

By conformal invariance,
ˆ

�δ

|h̊δ|
2 dμδ =

ˆ

�

|h̊|2ḡ dμ̄ = O(|�|−1/2).

By Corollary 2.6,

areaδ(�δ) = 4 π + O(|�|−1/2).

The result now follows from Proposition 3.2 in [13]. ⊓⊔

We recall from [22, p. 929], cf. [6, Lemma 1], the definition of the functional

S(u) =

ˆ

S2
|∇S2 u|2 − 2

ˆ

S2
u

and its conformal invariance:

S(u) = S(v)

whenever ψ : S
2 → S

2 is a conformal diffeomorphism and

ψ∗(e−2 u gS2) = e−2 vgS2 .

A straightforward computation gives that

e−2 ξ e2 β̂gS2 = (ϕ̃−1 ◦ ϕ̂)∗(e2 β̃gS2) (2.16)

where

ξ = w − log(1 − e−2 r̂ ) + log(1 − e−2 (r◦ϕ̂)) + log coth
r ◦ ϕ̂

2

and

w = (r ◦ ϕ̂) − r̂ .

Note that the conclusion of Theorem 1.1 is equivalent to the bound

w = O(1).

We establish this bound in three strides.
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Lemma 2.10. As r(�) → ∞,

S(w) = o(1). (2.17)

Proof. In view of (2.16), we have

S(ξ) = S(−β̃ + β̂ ◦ ψ−1)

where ψ = ϕ̃−1 ◦ ϕ̂ : S
2 → S

2. Using conformal invariance and (2.10), we get
ˆ

S2
e−2 (r◦ϕ̂)|∇S2(r ◦ ϕ̂)|2 = o(1),

which in turn implies
ˆ

S2
|∇S2(ξ − w)|2 = o(1).

Since

‖ξ − w‖L∞(�) = o(1),

we obtain

S(w) = S(ξ) + o(1).

Using conformal invariance of energy as well as estimates (2.13) and (2.15), we find
ˆ

S2
|∇S2(−β̃ + β̂ ◦ ψ−1)|2 = o(1).

Finally, the estimate

‖ − β̃ + β̂ ◦ ψ−1‖L∞(S2) = o(1)

follows from (2.13) and (2.15). Putting these estimates together, we obtain (2.17). ⊓⊔

Lemma 2.11. Fix p with 1 < p < 3/2. Then

‖�S2w‖L p(S2) = O(1).

Proof. Note that

��r = �ḡ|�r + O(e−3 r ).

Combining (B.3) and (2.5), we deduce

�ḡ|�r = (4 − 2|∇�r |2)e−2 r −
4 π

|�|
+

4 π

|�|
(1 − 〈ν,∇r〉) + (1 − 〈ν,∇r〉)2

+ O(e−3 r ) + O(e−3 r̂ )

= O(e−2 r ) + O(e−2 r̂ ) + (1 − 〈ν,∇r〉)2. (2.18)

From the conformal invariance of the Laplace-Beltrami operator on surfaces, we obtain

(

�ḡ|�r
)

◦ ϕ̂ = �ϕ̂∗ ḡ|�w = �
(sinh r̂)2 e2 β̂ g

S2
w = (sinh r̂)−2 e−2 β̂ �S2w.
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From this, we verify the asserted bound term by term. First, note that

e2 β̂ = 1 + o(1)

by (2.13) and Sobolev embedding. Using (2.4) and Hölder’s inequality, we obtain
ˆ

S2
e−2 p (r◦ϕ̂) e2 p r̂ = O(e2 p r̂ e−2 r̂ )

ˆ

�

e−2 p r = O(1).

This bounds the contribution of the first term in (2.18) to ‖�S2w‖L p(S2). To estimate the
contribution of the third term, we apply (2.9) to obtain

ˆ

�

(1 − 〈ν,∇r〉)2 p ≤

ˆ

�

(1 − 〈ν,∇r〉)2 = O(e−r̂ ).

Here we also use that 〈ν,∇r〉 > 0, which follows from Lemma B.5. The bounds for the
other terms follow from these. ⊓⊔

Proposition 2.12. Let p be such that 1 < p < 3/2. Then

‖w‖W 2,p(S2) = O(1). (2.19)

In particular, w is bounded.

Proof. By Lemma 2.10 and Lemma 2.11, we have that

|S(w)| = O(1) and ‖�S2w‖L p(S2) = O(1).

Let

f = �S2w and v = w −

 

S2
w.

Testing the equation

�S2v = f

with v and using Cauchy-Schwarz and the Poincaré inequality, we obtain

‖∇S2v‖2
L2(S2)

≤ ‖ f ‖L p(S2) ‖v‖Lq (S2) ≤ O(1) ‖∇S2v‖L2(S2).

It follows that

‖∇w‖L2(S2) = O(1).

In conjunction with S(w) = O(1), we find
 

S2
w = O(1).

Putting these estimates together, we obtain

‖w‖L2(S2) = O(1)

from the Poincaré inequality. Standard elliptic theory now gives (2.19). ⊓⊔

Since w is bounded, the pinching condition (C.1) is satisfied, and Theorem 1.1 follows
from the uniqueness results in [22].
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3. Proof of Theorem 1.2

In this section, we assume that (M, g) is a complete Riemannian 3-manifold asymptotic
to Schwarzschild-anti-deSitter with mass m > 0, that R ≥ −6, and that ∂ M is connected
and the only closed H = 2 surface in (M, g).

We need a large amount of area to bound a large amount of volume in (M, g). This
follows by comparison with hyperbolic space in the chart at infinity and cut-and-paste
arguments. Comparison with hyperbolic space also gives that

lim
A→∞

Vg(A) = ∞.

We may thus use either area or volume to specify large solutions to the isoperimetric
problem.

We recall from Lemma E.3 that every large enough isoperimetric region has a unique

large component. The residue is a small collar about ∂ M by Lemma E.4.
The crucial ingredient for the proof of Theorem 1.2 is the characterization of isoperi-

metric spheres as leaves of the canonical foliation given in the following proposition.

Proposition 3.1. There is A0 > 1 with the following property. Let � be the unique

large component of an isoperimetric region for area A ≥ A0. Its outer boundary � =
(∂�)\(∂ M) is connected. If � is a sphere, then it is a leaf of the canonical foliation and

� coincides with the original isoperimetric region.

Proof. The connectedness of � follows from the discussion in “Appendix D”. By Lemma
F.1 and Lemma F.3, there is r0 > 1 such that � ∩ Br0 �= ∅ and m H (�) ≤ 4 m provided
that V > 0 is sufficiently large. Taking r0 > 1 larger, if necessary, Theorem 1.1 shows
that � is a leaf of the canonical foliation if Br0 ⊂ �. Theorem 4.3 from [19] rules out
the scenario � ∩ Br0 �= ∅. Finally, Lemma E.4 shows that � and ∂ M bound the original
isoperimetric region. ⊓⊔

We can now complete the proof of Theorem 1.2 following the strategy of Section
9 in [7], which in turn develops an idea of H. Bray [1]. We sketch the full argument
from [7], where (M, g) is assumed to be exactly Schwarzschild-anti-deSitter outside of
a compact set, below, including the minor but necessary adaptations to our more general
setting. Since the strategy is technical, we begin with an outline.

Let {�A}A>A0 be the canonical foliation of (M, g). We use �A to denote the compact
region bounded by �A together with ∂ M .

The derivative of

A �→ volg(�A)

is the inverse of the mean curvature HA of �A. We obtain an explicit estimate for HA

from the expansion

m H (�A) =
A

1
2

(16 π)
3
2

(

16 π + 4 A − H2
A A

)

= m + O(A−1) (3.1)

of the Hawking mass along the canonical foliation discussed in Lemma C.1. Assume
now that I ⊂ (A0,∞) is an open interval such that, for every A ∈ I , there is an
isoperimetric region the boundary of whose unique large component has non-zero genus.
The derivative of the isoperimetric profile on such an interval I is appreciably smaller
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than anticipated by (3.1). Integrating up and comparing with the volume enclosed by the
centered coordinate sphere Sr(A) of area A,

volg(Br(A)) =
1

2
A − π log A + O(1), (3.2)

cf. Lemma F.4, it follows that the interval I is bounded. From this, we conclude that a
maximally extended such interval I far out has the form (A1, A2) where �A1 , �A2 are
isoperimetric. We can rule out the existence of such intervals by studying the derivative
of the isoperimetric profile at the endpoins A1, A2.

We now proceed to make this argument precise.
It follows from standard compactness properties of isoperimetric regions that

I = {A > A0 : �A is not isoperimetric}

is open. Let A ∈ I. By Proposition 3.1, the unique large component of an isoperimetric
region for area A has boundary of non-zero genus. Using this input, we estimate the
derivative of the isoperimetric profile on connected components of I.

Lemma 3.2 (Cf. Lemma 9.1 and Proposition 9.3 in [7]). There is A0 > 1 with the

following property. Let (A1, A2) ⊂ [A0,∞) be such that, for every A ∈ (A1, A2),

there exists an isoperimetric region for area A and the boundary of whose unique large

component has non-zero genus. Then

(Vg(A2)
′
−)−2 − 23 π A−1

2 ≤ (Vg(A1)
′
+)−2 − 23 π A−1

1 . (3.3)

Proof Assume first that the isoperimetric profile is smooth on [A1, A2]. Fix A ∈ (A1, A2)

and let� be the boundary of the unique large component of an isoperimetric region whose
boundary has area A. Following the proof of Lemma 9.1 in [7], using Lemma F.3 instead
of Proposition 8.3 in [7], we obtain

2 V ′′
g (A) V ′

g(A)−3 (A − c)2 ≥ 24 π +
ˆ

�

(R + 6 + |h̊|2) − 6 (A − c)−
1
2 (16 π)

3
2 m

(3.4)

where

c = A − areag(�) = O(1).

Recall from the discussion in “Appendix D” that the isoperimetric profile is increasing.
Dropping the non-negative second term on the right-hand side and absorbing the third
term into the first, we arrive at

2 V ′′
g (A) V ′

g(A)−3 A2 ≥ 23 π.

Equivalently, the function

A �→ V ′
g(A)−2 − 23 π A−1

is non-increasing on (A1, A2). This gives (3.3) in the special case when the isoperimetric
profile is smooth. In the general case, we can argue using weak derivatives exactly as in
the proof of Proposition 6.3 in [7] to arrive at the same conclusion. ⊓⊔
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Lemma 3.3 (Cf. Proposition 3.3 in [7]). For every A0 > 1 there is A ≥ A0 with the

following property. There does not exist an isoperimetric region for area A such that the

boundary of its unique large component has non-zero genus.

Proof Assume that the conclusion fails. It follows from Lemma 3.2 that there is A0 > 1
large such that

4 ≤ (Vg(A)′+)−2 − 23 π A−1 (3.5)

for all A ≥ A0. Indeed, we have (3.5) for all A1, A2 with A0 < A1 < A2. We now take
A2 → ∞ in (3.3) and use (D.1) and (E.2) to conclude (3.5). Using that A �→ Vg(A) is
strictly increasing and absolutely continuous, we conclude that

Vg(A) ≤
1

2
A −

23

16
π log A + O(1)

for all A ≥ A1. This estimate contradicts (3.2). ⊓⊔

Lemma 3.4 (Cf. [7, p. 433]). There can be no A1, A2 as in Lemma 3.2 such that the

leaves �A1 and �A2 of the canonical foliation both bound isoperimetric regions.

Proof Assume, for a contradiction, that such A1 < A2 exist. Then

H2
A2

− 23 π A−1
2 ≤ (Vg(A2)

′
−)−2 − 23 π A−1

2

≤ (Vg(A1)
′
+)−2 − 23 π A−1

1 ≤ H2
A1

− 23 π A−1
1

from (D.1) and (3.3). This, however, contradicts (C.3). ⊓⊔

Proof (Proof of Theorem 1.2).

Lemma 3.3 shows that I ⊂ (A0,∞) is not connected at infinity. On the other hand,
Lemma 3.4 gives that I has no bounded components provided that A0 > 0 is sufficiently
large. It follows that I is empty as long as A0 > 1 is taken sufficiently large. Thus every
leaf of the canonical foliation �A bounds an isoperimetric region. Thus

Vg(A) = volg(�A)

for all A > A0. In particular, the isoperimetric profile is a smooth function on (A0,∞).
Using the estimates for the lapse function of the canonical foliation and the geometry of
the leaves from Section C, we compute that

2 V ′′
g (A) V ′

g(A)−3 A2 = 16 π + o(1)

as A → ∞. Assume that there exists another isoperimetric region �̃A for area A > A0.
We know from Proposition 3.1 that the boundary of its unique large component has
non-zero genus. From (3.4), we obtain the estimate

2 V ′′
g (A) V ′

g(A)−3 A2 ≥ 24 π + o(1).

This contradiction shows that �A is the unique isoperimetric region for area A. ⊓⊔
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Appendix A. Asymptotically hyperbolic initial data

Just as A. Neves and G. Tian do in [22], we work with two different standard models
for three-dimensional hyperbolic space. We use ḡ to denote the hyperbolic metric on R

3

given by

ḡ = d r ⊗ d r + sinh2 r gS2

in polar coordinates. We will also use the disk model for hyperbolic space with metric
tensor

4

(1 − s2)2

(

d s ⊗ d s + s2 gS2

)

in polar coordinates on B1(0). The radial map

s �→ r(s) = log
1 + s

1 − s

induces an isometry 	 : B1(0) → R
3 between these models. In particular,

	∗
(

(1 + cosh r)−2 ḡ
)

= d s ⊗ d s + s2 gS2 . (A.1)

When � ⊂ R
3 is a surface, we use �δ ⊂ B1(0) to denote the Euclidean surface with

	(�δ) = �.

We say that a Riemannian 3-manifold (M, g) is asymptotic to Schwarzschild-anti-

deSitter of mass m > 0 if it is connected and if there exist a bounded open set U ⊂ M

and a diffeomorphism

M\U ∼=x R
3\B1(0)

such that, in polar coordinates,

g = dr ⊗ dr +

(

sinh2 r +
2 m

3 sinh r

)

gS2 + Q (A.2)

http://creativecommons.org/licenses/by/4.0/
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where

|Q|ḡ + |∇̄Q|ḡ + |∇̄2 Q|ḡ = O(e−5 r ).

Note that

R + 6 = O(e−5 r ) (A.3)

where R is the scalar curvature of (M, g).
Our convention here differs from that used in [22] by a factor of 2 for the mass.
We usually require in addition that (M, g) is complete and such that ∂ M is connected

and the only closed H = 2 surface in (M, g). It can be shown1 that, in this case, M

itself is diffeomorphic to R
3\B1(0).

Of course, Schwarzschild-anti-deSitter initial data itself satisfies these conditions.
We recall that a closed form of the Schwarzschild-anti-deSitter metric (with boundary
H = 2) is given by

M = {x ∈ R
3 : |x | ≥ 2 m} and g =

1

1 + s2 − 2 m s−1 d s ⊗ d s + s2 gS2 .

We also recall that (M, g) is said to be asymptotically hyperbolic if in place of (A.2)
we have that

g = ḡ + P where |P|ḡ + |∇̄ P|ḡ + |∇̄2 P|ḡ = O(e−3 r ).

We use Sr ⊂ M to denote the image of the centered coordinate sphere Sr (0) under
this diffeomorphism, and let Br be the bounded component of M\Sr .

Let � ⊂ M be a closed surface. We let

r(�) = sup{r > 1 : � encloses Br } and r(�) = inf{r > 1 : � ⊂ Br }.

Appendix B. Estimates for stable CMC spheres

In this section, we recall several estimates for stable constant mean curvature surfaces
� in Riemannian 3-manifolds (M, g) that are used throughout the paper. Let H denote
the mean curvature of � with respect to the (designated or natural) outward pointing
unit normal ν.

The Christodoulou-Yau estimate for stable constant mean curvature spheres stated
as (B.2) below is derived in [11]. The proof of the weaker estimate (B.1) for surfaces
of non-zero genus follows the same lines, using in addition the Brill-Noether theorem
exactly as in the proof of Theorem 6 in [26].

Lemma B.1 (Cf. [11,26]). We have

2

3

ˆ

�

|h̊|2 +
2

3

ˆ

�

(R + 6) +
ˆ

�

(H2 − 4) ≤
64

3
π. (B.1)

The bound on the right-hand side can be sharpened to 16 π if � has genus zero, so in

this case

2

3

ˆ

�

|h̊|2 +
2

3

ˆ

�

(R + 6) ≤ 16 π −

ˆ

�

(H2 − 4) = 16 π − (H2 − 4) |�|. (B.2)

1 This follows exactly as in the asymptotically flat case, cf. e.g Section 4 in [17]. The area functional is
replaced by the appropriate brane functional as in [7, Proposition 3.1].
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For the remaining results included in this section, we assume that (M, g) is asymptotic
to Schwarzschild-anti-deSitter with mass m > 0, that � is a stable constant mean
curvature sphere, and that � encloses the centered coordinate ball B2.

Lemma B.2 (Cf. Proposition 3.4 in [22]). We have

��r = (4−2 |∇�r |2)e−2 r −(H −2)+(H −2) (1−〈ν,∇r〉)+(1−〈ν,∇r〉)2 +O(e−3 r ).

(B.3)

Lemma B.3 (Cf. Proposition 4.2 in [22]). There are constants λ > 1 and r0 > 1 that

depend only on (M, g) with the following property. Assume that r(�) ≥ r0. Then

1

λ
e2 r(�) ≤ |�| ≤ λ e2 r(�)

ˆ

�

(1 − 〈ν,∇r〉)2 ≤ λ e− r(�)

and, for every integer k ≥ 1,

k

ˆ

�

|∇�r |2 e−k r ≤ λ e−k r(�).

Lemma B.4 (Cf. e.g. Lemma 5.2 in [22]). As r(�) → ∞,

sup
x∈�

|h̊(x)| = o(1). (B.4)

Lemma B.5 (Cf. Lemma 6.7 in [22]). As r(�) → ∞,

sup
�

|∇�r | = o(1).

Lemma B.6 (Cf. Lemma 3.2 in [22]). Let K be the Gauss curvature of �. Then

4 K = (H2 − 4) − 2 |h̊|2 + 64 m e−3 r − 96 m |∇�r |2e−3 r + O(e−5 r ). (B.5)

Appendix C. Canonical foliation

Let (M, g) be asymptotic to Schwarzschild-anti-deSitter of mass m > 0.

It has been shown by R. Rigger [25] that there is a family of stable constant mean
curvature spheres

{�A}A>A0 where A = area(�A)

that foliate the complement of a compact subset of M . A. Neves and G. Tian [22] have
shown that every stable constant mean curvature sphere � in (M, g) that encloses Br0

and with

sup
x∈�

r(x) −
6

5
inf
x∈�

r(x) < −C (C.1)

is a leaf of this canonical foliation. Here, r0 > 1 and C > 0 are constants depending
only on (M, g). They also give an alternative proof of the existence of the canonical
foliation.
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We will use some of the estimates from [22] to estimate the Hawking mass along the
foliation.

For every r > 0 sufficiently large, consider the leaf � of the canonical foliation [22]
with mean curvature

Hm(r) =
d

d r
log

(

sinh2 r +
2 m

3 sinh r
+ O(e−2 r )

)

= 2 + 4 e−2 r − 16 m e−3 r + 4 e−4 r + O(e−5 r ).

From the estimates obtained in Section 8 of [22], we see that

Ric(ν, ν) = −2 − 16 m e−3 r + O(e−5 r )

h̊ = O(e−3 r ).

In particular,

Ric(ν, ν) + |h|2 = 8 e−2 r − 48 m e−3 r + 16 e−4 r + O(e−5 r ),

since clearly

H2 = 4 + 16 e−2 r − 64 m e−3 r + 32 e−4 r + O(e−5 r ).

Also, by the Gauss equation,

2 K = 8 e−2 r + 16 e−4 r + O(e−5 r ),

so that

H2 − 4 = 4 K − 64 m e−3 r + O(e−5 r ).

From this, we obtain the estimate

|�|
1
2

(16 π)
3
2

(

16 π −

ˆ

�

(H2 − 4)
)

= m + O(e−2 r )

for the Hawking mass of �.
Let v ∈ C∞(M) be the lapse function of the foliation with respect to the parametriza-

tion above. Thus

L�v =
d

d r
Hm(r) = −8 e−2 r + 48 m e−3 r − 16 e−4 r + O(e−5 r )

where

L� = −�� − (Ric(ν, ν) + |h|2)

is the stability operator of �. Note that

w = v −

 

�

v

satisfies the equation

−��w −
(

Ric(ν, ν) + |h|2
)

w = O(e−5 r ).
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Moreover,
 

�

v = 1 + O(e−3 r ).

Analyzing the spectrum of L� as in Lemma 3.13 of [18] or Section 8 of [22], we obtain
ˆ

�

w2 = O(e−2 r )

ˆ

�

|∇�w|2 = O(e−4 r ).

Indeed, the distance of 0 from the spectrum of L� is at least 48 m e−3 r (1 + o(1)).
It follows in particular that, as r → ∞,

v = 1 + o(1).

In our application below, it is natural to work with the lapse function u ∈ C∞(�) for
the original parametrization by the area A of the canonical foliation. Note that

ˆ

�

u = H−1 and
ˆ

�

|∇�u|2 = O(A−4). (C.2)

Proposition C.1. Let HA be the mean curvature of the the leaf �A in the canonical

foliation. The Hawking mass along the foliation,

A �→ F(A) = m H (�A) =
A

1
2

(16 π)
3
2

(

16 π − (H2
A − 4)A

)

,

is continuously differentiable and

F(A) = m + O(A−1) and F ′(A) = O(A−2).

Proof. From a standard computation using the first and second variation of area along
with the Gauss equation, we obtain

(16 π)
3
2 F ′(A) q2 A

1
2

=

ˆ

�

(R + 6) +
ˆ

�

|h̊|2 + 2
ˆ

�

|∇� log u|2 +
1

2
(q2 − 1) (16 π + 12 A − 3 A H2)

= O(A− 3
2 ) + O(A−2) + 2

ˆ

�

|∇� log u|2 + (q2 − 1) O(A− 1
2 )

where

q2 =

 

�

u−1
 

�

u.

Estimate (C.2) for the lapse function gives
ˆ

�

|∇� log u|2 = O(A−2) and q2 = 1 + O(A−2).

The assertion follows from this. ⊓⊔

Corollary C.2. As A1, A2 → ∞,

H2
A1

− H2
A2

= (16 π + o(1))

(

A−1
1 − A−1

2

)

. (C.3)
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Appendix D. Isoperimetric profile

For convenient reference, we collect several properties of the isoperimetric profile of
asymptotically hyperbolic Riemannian 3-manifolds (M, g). For simplicity, we assume
that ∂ M is connected and the only closed H = 2 surface in (M, g).

First, recall the definition of the isoperimetric profile

Vg : (areag(∂ M),∞) → (0,∞)

given by

A �→ Vg(A) = sup{volg(�) : � ∈ FA}

where

FA = {� a compact region in M with ∂ M ⋐ � and areag(∂�) = A}.

A region � ∈ FA with

Vg(A) = areag(∂�).

is called an isoperimetric region for area A, and its boundary an isoperimetric surface.
It is well known and discussed in e.g. [1, p. 24] or [7, p. 428] (see also [20]) that

Vg(A) is absolutely continuous, that the left derivative Vg(A)′− and the right derivative
Vg(A)′+ exist for every A > 0, and that

Vg(A)′− ≤ H−1 ≤ Vg(A)′+ (D.1)

where H is the mean curvature of any isoperimetric surface of area A.
Using the assumption on ∂ M and standard arguments, it follows that the isoperimetric

profile is strictly increasing. From this, we see that the complement of an isoperimetric
region has no bounded components. In particular, the boundary of a component of an
isoperimetric region has either two components or one component, depending on whether
or not it includes the horizon.

By Theorem 1.1 in [7], if we assume in addition that R ≥ −6, then isoperimetric
regions for area A exist provided that A > areag(∂ M) is sufficiently large.

Appendix E. General facts about large isoperimetric regions

For convenient reference, we collect several general facts about large isoperimetric
regions in asymptotically hyperbolic manifolds.

Lemma E.1 (Cf. Lemma 2.2 in [19]). Let (M, g) be a complete Riemannian 3-manifold

that is asymptotically hyperbolic. There is a constant C > 0 with the following property.

For every isoperimetric surface � ⊂ M in (M, g), we have

areag(� ∩ Br ) ≤ C e2 r .

In particular, for every p > 2,

ˆ

�

e−p r = O(1). (E.1)
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Lemma E.2. Let (M, g) be a complete Riemannian 3-manifold that is asymptotically

hyperbolic. As A → ∞,

H = 2 + o(1) (E.2)

where H is the mean curvature of an isoperimetric surface � with area A.

Proof. The assertion follows from (B.1) and (E.1). ⊓⊔

The following result has been obtained in [7]. We include an alternative, more ele-
mentary derivation below.

Lemma E.3 (Cf. Proposition 6.4 of [7]). Let (M, g) be a complete Riemannian 3-

manifold that is asymptotically hyperbolic. There is a constant A0 > 1 with the following

property. Every isoperimetric region for area A ≥ A0 has a unique component � such

that areag(∂�) ≥ A0. Moreover, (∂�)\(∂ M) is connected.

Proof Suppose that there are two components �i with Ai = areag(∂�i ) ≥ 1 where
i = 1, 2. For definiteness, we assume that A1 ≤ A2. Let x : R

3\B1(0) → M be a chart
at infinity of (M, g). We may choose regions �̄i ⊂ R

3 such that

x−1(�i ) ∪ B2(0) ⊂ �̄i

and

areag(∂�i ) = areaḡ(∂�̄i ) + O(1) and volg(�i ) = volḡ(�̄i ) + O(1)

where we have used the previous lemma for the area estimate. By the hyperbolic isoperi-
metric inequality,

volḡ(�̄i ) ≤
1

2
Ai − π log Ai + O(1).

Using that �1,�2 are components of an isoperimetric region and that (M, g) is asymp-
totically hyperbolic, we see that volg(�1) + volg(�2) is at least as large as the volume
of a ball of area A1 + A2 − areag(∂ M) in hyperbolic space. It follows that

1

2
(A1 + A2) − π log(A1 + A2) + O(1) ≤ volg(�1) + volg(�2).

From this and the previous estimate, we obtain

1

2
(A1 + A2) − π log(A1 + A2) + O(1)

≤
(1

2
A1 − π log A1 + O(1)

)

+
(1

2
A2 − π log A2 + O(1)

)

.

Put another way,

1

2
A1 ≤

A1 A2

A1 + A2
≤ O(1).

The connectedness of the outer boundary follows from the monotonicity of the isoperi-
metric profile at infinity; see Lemma 3.5 in [7]. ⊓⊔
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Lemma E.4. Let (M, g) be a complete Riemannian 3-manifold that is asymptotically hy-

perbolic. Let {�i }
∞
i=1 be a sequence of isoperimetric regions in (M, g)with areag(∂�i ) →

∞. Let �i be a component of ∂�i such that areag(�i ) < A0 where A0 > 1 is as in

Lemma E.3. The distance between �i and ∂ M tends to zero as i → ∞.

Proof. We have Hi = 2 + o(1) for the mean curvature of �i by (E.2). The diameter of
�i is a priori bounded by the monotonicity formula. If the sequence has a subsequential
limit in M , then this limit is a closed surface of constant mean curvature 2 and hence
a component of ∂ M . If the sequence is divergent, then we can follow a subsequence
(in the sense of pointed geometric convergence) to a closed surface of constant mean
curvature 2 in hyperbolic space. Such surfaces do not exist. ⊓⊔

Appendix F. Extensions of results from [7]

In this section, we collect several extensions of results in the work of the first-named
author [7] to the case where (M, g) is asymptotic to Schwarzschild-anti-deSitter, rather
than exactly Schwarzschild-anti-deSitter outside of a compact set.

Lemma F.1 (Cf. the proof of “Case 3” in Theorem 1.1 in [7] and Proposition 3.1 in [19]).
Let (M, g) be a complete Riemannian 3-manifold with R ≥ −6 that is asymptotically

hyperbolic, but not hyperbolic space, and such that ∂ M is connected and the only closed

H = 2 surface in (M, g). There are A0 > 1 and r0 > 1 with the following property. Let

� be the unique large component of an isoperimetric region �̃ for area Ã ≥ A0. Then

� ∩ Br0 �= ∅.

Proof Assume that � ∩ Br = ∅ where r > 1 is large. As r → ∞,

volg(�̃) = volg(�) + o(1),

areag(∂�̃) = areag(∂�) + areag(∂ M) + o(1),

where we have used Lemma E.3 and Lemma E.4. Similarly,

volḡ(�) = volg(�) + o(1),

areaḡ(∂�) = areag(∂�) + o(1).

Let A = areag(∂�). By the hyperbolic isoperimetric inequality, as A → ∞,

volḡ(�) ≤
1

2
A − π log A + π (1 + log π) + o(1).

Using that �̃ is isoperimetric and Lemma F.4, as A → ∞,

volg(�̃)

≥ volg(centered coordinate ball with the same boundary area as ∂�̃)

≥
1

2

(

A + areag(∂ M) + o(1)
)

− π log
(

A

+ areag(∂ M) + o(1)
)

+ π (1 + log π) + V (M, g) + o(1)

=
1

2
A − π log A + π (1 + log π) + V (M, g) +

1

2
areag(∂ M)

︸ ︷︷ ︸

(∗)

+o(1).
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The quantity (∗) is positive by Proposition 5.3 in [7] (building on the earlier work [3] of
the first-named author with S. Brendle). These estimates are not compatible. ⊓⊔

Remark F.2. We expect that the assumption that ∂ M be connected in Lemma F.1 can
be removed by using the inverse mean curvature flow with forced jumps along with
computations as in [7, p. 427].

Lemma F.3 (Cf. Proposition 8.3 in [7]). Let (M, g) be a complete Riemannian 3-

manifold with R ≥ −6 that is asymptotic to Schwarzschild-anti-deSitter with mass

m > 0. We also assume that ∂ M is connected and the only closed H = 2 surface in

(M, g). There is A0 > 1 with the following property. Assume that � is the unique large

component of an isoperimetric region for area A ≥ A0. Let � = (∂�)\(∂ M). Then �

is connected and

m H (�) ≤ 4 m.

Proof We describe the minor modifications to the proof of Proposition 8.3 in [7],
where the same result is shown under the additional assumption that (M, g) is equal to
Schwarzschild-anti-deSitter outside of a compact set. We use Lemma F.4 below instead
of Lemma A.2 in [7]. We use Lemma F.1 instead of applying S. Brendle’s characteriza-
tion of closed constant mean curvature surfaces in exact Schwarzschild-anti-deSitter in
[7, p. 427]. ⊓⊔

Lemma F.4 (Cf. Lemma A.2 in [7]). Let (M, g) be a complete Riemannian 3-manifold

that is asymptotic to Schwarzschild-anti-deSitter with mass m > 0. For A > 0 large, let

r(A) > 0 be such that the centered coordinate sphere Sr(A) has area A. Denoting the

renormalized volume of (M, g) by V (M, g), we have the expansion

volg(Br(A)) =
1

2
A − π log A + π (1 + log π) + V (M, g) − 8 π

3
2 m A− 1

2 + O(A−1).

Proof The proof of Lemma A.2 in [7] for (M, g) equal to Schwarzschild-anti-deSitter
outside of a compact set extends to the present generality. ⊓⊔

References

1. Bray, H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar
curvature, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), Stanford University (1997)

2. Brendle, S.: Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes
Études Sci. 117, 247–269 (2013)

3. Brendle, S., Chodosh, O.: A volume comparison theorem for asymptotically hyperbolic manifolds,. Com-
mun. Math. Phys. 332(2), 839–846 (2014)

4. Brendle, S., Eichmair, M.: Large outlying stable constant mean curvature spheres in initial data sets. Invent.
Math. 197(3), 663–682 (2014)

5. Carlotto, A., Chodosh, O., Eichmair, M.: Effective versions of the positive mass theorem, . Invent.
Math. 206(3), 975–1016 (2016)

6. Chang, S.-Y. A.: The Moser–Trudinger Inequality and Applications to Some Problems in Conformal

Geometry, Nonlinear Partial Differential Equations in Differential Geometry (Park City, UT, 1992),
IAS/Park City Mathematics Series, vol. 2, pp. 65–125. American Mathematical Society, Providence, RI
(1996)

7. Chodosh, O.: Large isoperimetric regions in asymptotically hyperbolic manifolds. Commun. Math.
Phys 343(2), 393–443 (2016)

8. Chodosh, O., Eichmair, M.: Global uniqueness of large stable CMC surfaces in asymptotically flat 3-
manifolds, preprint, arXiv:1703.02494 (2017)

9. Chodosh, O., Eichmair, M.: On far-outlying CMC spheres in asymptotically flat Riemannian 3-manifolds,
preprint, arXiv:1703.09557 (2017)

http://arxiv.org/abs/1703.02494
http://arxiv.org/abs/1703.09557


798 O. Chodosh, M. Eichmair, Y. Shi, J. Zhu

10. Chodosh, O., Eichmair, M., Shi, Y., Yu, H.: Isoperimetry, scalar curvature, and mass in asymptotically
flat Riemannian 3-manifolds, preprint, arXiv:1606.04626 (2016)

11. Christodoulou, D., Yau, S.-T.: Some Remarks on the Quasi-Local Mass, Mathematics and General Rel-

ativity (Santa Cruz, CA, 1986), Contemporary Mathematics, vol. 71, pp. 9–14, American Mathematical
Society, Providence, RI (1988)

12. Corvino, J., Gerek, A., Greenberg, M., Krummel, B.: On isoperimetric surfaces in general relativity. Pac.
J. Math. 231(1), 63–84 (2007)

13. De Lellis, C., Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ.
Geom. 69(1), 75–110 (2005)

14. Eichmair, M., Metzger, J.: On large volume preserving stable CMC surfaces in initial data sets. J. Differ.
Geom. 91(1), 81–102 (2012)

15. Eichmair, M., Metzger, J.: Large isoperimetric surfaces in initial data sets. J. Differ. Geom. 94(1), 159–
186 (2013)

16. Eichmair, M., Metzger, J.: Unique isoperimetric foliations of asymptotically flat manifolds in all dimen-
sions. Invent. Math. 194(3), 591–630 (2013)

17. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J.
Differ. Geom. 59(3), 353–437 (2001)

18. Huisken, G., Yau, S.-T.: Definition of center of mass for isolated physical systems and unique foliations
by stable spheres with constant mean curvature. Invent. Math. 124(1-3), 281–311 (1996)

19. Ji, D., Shi, Y., Zhu, B.: Exhaustion of isoperimetric regions in asymptotically hyperbolic manifolds with
scalar curvature R ≥ −6. Commun. Anal. Geom. 26(3), 627–658 (2018)

20. Nardulli, S.: Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and
applications to the isoperimetric profile. Asian J. Math. 18(1), 1–28 (2014)

21. Nerz, C.: Geometric characterizations of asymptotic flatness and linear momentum in general relativity. J.
Funct. Anal. 269(12), 3812–3867 (2015)

22. Neves, A., Tian, G.: Existence and uniqueness of constant mean curvature foliation of asymptotically
hyperbolic 3-manifolds. Geom. Funct. Anal. 19(3), 910–942 (2009)

23. Neves, A., Tian, G.: Existence and uniqueness of constant mean curvature foliation of asymptotically
hyperbolic 3-manifolds. II. J. Reine Angew. Math. 641, 69–93 (2010)

24. Qing, J., Tian, G.: On the uniqueness of the foliation of spheres of constant mean curvature in asymptot-
ically flat 3-manifolds. J. Am. Math. Soc 20(4), 1091–1110 (2007)

25. Rigger, R.: The foliation of asymptotically hyperbolic manifolds by surfaces of constant mean curvature
(including the evolution equations and estimates). Manuscr. Math. 113(4), 403–421 (2004)

26. Ritoré, M., Ros, A.: Stable constant mean curvature tori and the isoperimetric problem in three space
forms. Comment. Math. Helv. 67(2), 293–305 (1992)

Communicated by P. Chrusciel

http://arxiv.org/abs/1606.04626

	Characterization of Large Isoperimetric Regions in Asymptotically Hyperbolic Initial Data
	Abstract:
	1 Introduction
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.2
	Acknowledgements.
	References


