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For 3 ≤ n ≤ 7, we prove that a bumpy closed Riemannian n-manifold contains a

sequence of connected embedded closed minimal surfaces with unbounded area.

1 Introduction

The goal of this note is to prove the following result.

Theorem 1.1. For 3 ≤ n ≤ 7, suppose that (Mn, g) is a connected, closed Riemannian

n-manifold with a bumpy metric. Then, there is a sequence �j ⊂ (Mn, g) of connected,

embedded, closed minimal surfaces with area(�j) → ∞.

We recall here the following standard definition.

Definition 1.2. We say that a metric g on a Riemannian manifold Mn is bumpy if there

is no immersed closed minimal hypersurface �n−1 with a non-trivial Jacobi field.

By work of White [21, 22], bumpy metrics are generic in the sense of Baire

category. Here, “generic” will always mean in the Baire category sense.

The key quantifier in Theorem 1.1 is connected. Indeed, thanks to the resolution

of Marques–Neves’s multiplicity-one conjecture by the authors [3] for n = 3 and recently

by Zhou [23] for 3 ≤ n ≤ 7, if one does not require that the �j are connected, then
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2 O. Chodosh and C. Mantoulidis

Theorem 1.1 would be an immediate consequence of the following statement concerning

the existence of minimal surfaces �p realizing the p-widths (note that if (Mn, g) does

not satisfy the Frankel property, then it is not clear that the number of connected

components of �p is uniformly bounded).

Theorem 1.3 (n = 3 [3], 3 ≤ n ≤ 7 [14, 23]). For 3 ≤ n ≤ 7, suppose that (Mn, g)

is a closed Riemannian n-manifold with a bumpy metric. Then, there is a constant

C = C(M, g) > 0 so that for each positive integer p, there is a smooth embedded closed

minimal surface �p so that

• each component of �p is two sided,

• the area of �p satisfies C−1p
1
n ≤ areag(�p) ≤ Cp

1
n , and

• the index of �p is satisfies ind(�p) = p.

We emphasize that the p-widths were introduced by Gromov, Guth, and Mar-

ques–Neves [7, 10, 13] in the Almgren–Pitts setting (as considered in the work of Zhou

[23]) and were understood in the Allen–Cahn setting (as considered in the work of the

authors [3]) by Gaspar–Guaraco [6, 8].

Recently, there has been exciting progress on the existence and behavior of min-

max minimal hypersurfaces in Riemannian manifolds; besides those works already

mentioned, we point out that Liokumovich–Marques–Neves [12] have proven a Weyl

law for the p-widths. This a key component of the proof by Irie–Marques–Neves that

minimal surfaces are generically dense [11]. These results were extended to the Allen–

Cahn setting by Gaspar–Guaraco [9]. Marques–Neves–Song have proven that, generically,

there is an equidistributed set of minimal hypersurfaces [15]. Song has proven Yau’s

conjecture on infinitely many minimal surfaces in all cases [20]. Finally, we note that

Zhou–Zhu’s min-max theory for prescribed mean curvature [24] was instrumental in the

proof of Zhou’s multiplicity-one result.

Theorem 1.1 is a consequence of the following statement.

Theorem 1.4. For 3 ≤ n ≤ 7, suppose that (Mn, g) is a connected Riemannian n-

manifold with a bumpy metric. Then, either:

1. there exists a sequence of connected closed embedded stable minimal

hypersurfaces �j ⊂ (Mn, g) with areag(�j) → ∞ or

2. the hypersurfaces �p from Theorem 1.3 have at least one connected compo-

nent �′
p with areag(�′

p) ≥ Cp
1
n for some C = C(M, g)>0 independent of p.
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Minimal Hypersurfaces with Arbitrarily Large Area 3

We note that for (M3, g) with a bumpy metric of positive scalar curvature, the

first case never occurs by [1, 2], and moreover, we can conclude that ind(�′
p) → ∞. On

the other hand, Colding–Minicozzi have shown that any 3-manifold admits a (bumpy)

metric in which the first alternative occurs [4].

We further note that in [3] we have shown how to use the monotonicity formula

find a component �′′
p of �p with genus(�′′

p) ≥ C−1ind(�′′
p) ≥ p

2
3 (the genus bound follows

from the work of Ejiri–Micallef [5]). The same argument applies in higher dimensions to

find �′′
p ⊂ (Mn, g) with ind(�′′

p) ≥ Cp1− 1
n . It is not clear to us, however, that �′

p and �′′
p

can be taken to be the same.

2 Proof of Theorem 1.4

Lemma 2.1. For 3 ≤ n ≤ 7, consider (Mn, g) a closed Riemannian n-manifold with a

bumpy metric. Then for A0 > 0, there are finitely many closed embedded stable minimal

hypersurfaces with area at most A0.

Proof. This follows from curvature estimates [16–18] and the proof of [4] (see also the

proof of [19]). Namely, if there is a sequence �j of stable embedded minimal hypersur-

faces with uniformly bounded area, then they have uniformly bounded curvature. Thus,

after passing to a subsequence, they converge smoothly (possibly with multiplicity) to

a stable minimal hypersuface �∞. Passing to a double cover if �∞ is one sided, we can

thus find—for j sufficiently large—graphs uj : �∞ → R so that the exponential normal

graph of uj is some component of �j. We have that uj → 0 in C∞(�∞). After normalizing

by ‖uj‖C2,α(�∞), it is standard to pass to a further subsequence to find a non-trivial

Jacobi field on (a cover of) �∞. This contradicts the bumpyness of (Mn, g).

Alternatively, the implicit function theorem guarantees that any strictly stable

minimal surface has a (strictly) mean convex tubular neighborhood (as before, passing

to a double cover if the surface is one sided). No minimal surface (besides the original

one) can be completely contained in this neighborhood by the maximum principle.

However, if there were infinitely many embedded stable minimal surfaces with bounded

area, then curvature estimates and area bounds would allow one to find a sequence of

such surfaces converging (possibly with multiplicity) to a limiting such surface. This

cannot occur by considering the aforementioned mean convex neighborhood. �

Lemma 2.2. For 3 ≤ n ≤ 7, consider (Mn, g) a connected closed Riemannian n-

manifold. Assume there are at most N stable minimal surfaces in (Mn, g). Then M

contains at most max{2N, 1} disjoint closed embedded unstable minimal hypersurfaces.
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4 O. Chodosh and C. Mantoulidis

Proof of Lemma 2.2. Suppose there are Q ≥ 2 disjoint unstable embedded minimal

hypersurfaces �1, . . . , �Q. Consider

M̃ := metric completion of M \

Q⋃

i=1

�i.

We can give M̃ the structure of a compact Riemannian manifold with boundary ∂M̃.

Observe that each component of ∂M̃ is isometric to either one of the two-sided �i or

the two-sided double cover of one of the one-sided �i. Each �i (or its double cover) will

correspond to at most two components of ∂M̃ in this way. Note that each component of

∂M̃ is unstable (for the components that correspond to two-sided �j, this is clear; in the

one-sided case, this follows by lifting an unstable variation to the double cover). Write

M̃ = M̃1 ∪ M̃2, where M̃1 is the union of the connected components of M̃ with exactly

one boundary component and M̃2 is the union of components of M̃ with at least two

boundary components.

We claim that ∂M̃2 has at least Q components. Indeed, consider some �i.

Suppose first that �i is two sided and separating. Consider �± the components of M̃

containing �i in their boundary. Suppose that �− ∪ �+ ⊂ M̃1. In this case, it is clear

that Q = 1, and �i was the only unstable surface in the family, contradicting our

assumption that Q ≥ 2. Thus, at least one of the �± is contained in M̃2. This determines

at least one element of ∂M̃2. Now, suppose that �i is two sided but not separating.

It is clear that any component of ∂M̃ associated to �i cannot bound a component

of M̃1 (otherwise �i would be separating). Finally, if �i was one sided and some

component of ∂M̃ bounded a component of M̃1, then as before, we would have Q = 1, a

contradiction.

Given this, Lemma 2.2 is a consequence of the following claim.

Claim 2.3. For 3 ≤ n ≤ 7, consider (M̌n, g) a connected compact Riemannian manifold

with J ≥ 2 boundary components that are all unstable minimal hypersurfaces. Then,

there are at least J/2 connected closed embedded stable minimal surfaces in the interior

of M̌.

�

Proof of the claim . Write the components of ∂M̌ as Ŵ1, . . . , ŴJ . Because J ≥ 2,

[Ŵi] �= 0 ∈ Hn−1(M̌; Z2).
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Minimal Hypersurfaces with Arbitrarily Large Area 5

Find Ŵ′
1 ∈ [Ŵ1] minimizing area in the homology class. Because each component of the

boundary is an unstable minimal surface, Ŵ′
1 is contained in the interior of M̌. There

is thus an open set �̌1 ⊂ M̌ so that ∂�̌1 = Ŵ1 ∪ Ŵ′
1. Set M̌1 := M̌ \ �̌1. This manifold

has J − 1 unstable boundary components and at least one stable boundary component.

For Ŵ2 one of the unstable boundary components minimizes area in homology to get Ŵ′
2.

Each component of Ŵ′
2 is contained in the interior of M̌1 or coincides with one of the

stable components of ∂M̌1. In either case, we can repeat this process J times. We thus

consider the stable minimal surfaces Ŵ′
1, . . . , Ŵ′

J in M̌. We note that, by construction, the

sets �̌1, . . . , �̌J are all disjoint, but that some of the connected components of ∪J
j=1Ŵ′

j

might be repeated; the claim will follow once we show each connected component

occurs at most twice in this union. Indeed, consider the set B of pairs (Ŵ, �̌i), where

�̌i is as above for some i ∈ {1, . . . , J} and Ŵ is a connected component of ∪J
j=1Ŵ′

j with

Ŵ ⊂ ∂�̌j. On one hand, for each i ∈ J, there is at least one Ŵ with (Ŵ, �̌i) ∈ B.

On the other hand, for any Ŵ, there are at most two distinct indices a, b so that

(Ŵ, �̌a), (Ŵ, �̌b) ∈ B. Putting these two facts together, there must be at least J/2 distinct

components Ŵ. �

This completes the proof of Lemma 2.2.

Proof of Theorem 1.4. If the first possibility fails, then there is a uniform area bound

for embedded stable minimal hypersurfaces. Thus, Lemma 2.1 implies that there are

finitely many stable embedded minimal hypersurfaces in (Mn, g). Call this number N.

Applying Lemma 2.2, we find that there are at most N + max{2N, 1} pairwise disjoint

embedded minimal surfaces in (M, g). Applied to �p, there is at least one component �′
p

with area(�′
p) ≥ Cp

1
n . �
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