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a b s t r a c t 

Urban building energy modeling (UBEM) is becoming a proven tool to support energy efficiency programs 

for buildings in cities. Development of a city-scale dataset of the existing building stock is a critical step 

of UBEM to automatically generate energy models of urban buildings and simulate their performance. 

This study introduces data needs, data standards, and data sources to develop city building datasets for 

UBEM. First, a literature review of data needs for UBEM was conducted. Then, the capabilities of the cur- 

rent data standards for city building datasets were reviewed. Moreover, the existing public data sources 

from several pioneer cites were studied to evaluate whether they are adequate to support UBEM. The 

results show that most cities have adequate public data to support UBEM; however, the data are repre- 

sented in different formats without standardization, and there is a lack of common keys to make the data 

mapping easier. Finally, a case study is presented to integrate the diverse data sources from multiple city 

departments of San Francisco. The data mapping process is introduced and discussed. It is recommended 

to use the unique building identifiers as the common keys in the data sources to simplify the data map- 

ping process. The integration methods and workflow are applied to other U.S. cities for developing the 

city-scale datasets of their existing building stock, including San Jose, Los Angeles, and Boston. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

2  

c  

c

 

g  

o  

e  

[  

f  

e  

t  

o  

i  

a  

a  

c  

e  

o  

e  
1. Introduction 

Buildings in cities of the United States consume up to 70% of

primary energy. Reducing energy use of building stock in cities

becomes a critical strategy to achieving cities’ energy and envi-

ronmental goals. The City of San Francisco has established some

of the most competitive climate and sustainability targets in the

world, covering a broad range of sectors, including energy effi-

ciency, renewable energy, transportation, water, green infrastruc-

ture, and waste. With robust goals to measure progress, San Fran-

cisco aims to reduce greenhouse gas (GHG) emissions by 25% be-

low 1990 levels by 2017, 40% by 2025, and 80% by 2050 [1] . San

Francisco has been making great progress towards its ambitious

GHG emission reduction goal. By 2015, San Francisco’s GHG emis-

sion was 28.4% below 1990 levels, equivalent to 1.8 million met-

ric tons of carbon dioxide equivalent (CO 2 e) emission (mtCO 2 e) re-

duction. San Francisco has approximately 180,0 0 0 buildings, which

contribute to 52% of the city’s total GHG emissions [2] . The build-

ing sector holds great potential to reduce energy use and GHG

emissions through the proliferation of new, energy efficient build-
∗ Corresponding author. 
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ngs and by retrofitting existing buildings. The building sector’s

015 GHG emissions were reduced by 38%, or 1.3 million mtCO 2 e

ompared to the 1990 level, which contributed to 73% of San Fran-

isco’s total GHG emission reduction. 

San Francisco provides various incentive and financing pro-

rams to help residents and building owners save investment and

perating costs, minimize energy waste, and lower their property’s

nvironmental impact [3] . San Francisco’s Energy Watch program

4] , supported by local utility company Pacific Gas and Electric, of-

ers incentives to commercial and multifamily buildings for energy

fficiency upgrades to lighting, refrigeration equipment and con-

rols, network-level computer power management software and so

n. San Francisco’s Property Assessed Clean Energy (PACE) financ-

ng program [5] helps homeowners finance energy-saving, renew-

ble energy and water-saving home upgrades. GoSolarSF [6] , man-

ged by the San Francisco Public Utilities Commission, provides

ash incentives for installing eligible solar electric systems. The En-

rgy Upgrade California Multifamily Program [7] in San Francisco

ffers $750 per unit in rebates to help multifamily property own-

rs (5 + units) lower the cost of energy efficiency upgrades. Those

ncentive and financing programs contribute significantly to GHG

eductions in San Francisco’s buildings sector; however, they are

ainly implemented at the individual building level, which limits

https://doi.org/10.1016/j.enbuild.2018.11.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2018.11.008&domain=pdf
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heir broad adoption and requires a significant amount of staff ef-

ort to manage the programs. The incentive and financing programs

hould be analyzed and implemented on a larger scale to boost

he energy renovation rate of the building stock. Future programs

hould consider not only the technologies for individual buildings

ut also the opportunities of district-scale technologies, such as

istrict heating and cooling systems, combined heat and power

ystems, and community-scale photovoltaic (PV) systems. 

Urban building energy modeling (UBEM) refers to the applica-

ion of bottom-up physics-based building energy models to pre-

ict operational energy use, as well as indoor and outdoor envi-

onmental conditions, for groups of buildings in the urban con-

ext [8] . UBEM is an excellent tool to explore opportunities for en-

rgy conservation measures (ECMs) when applying to a large group

f buildings in the urban context. Delmastro et al. [9] leveraged

BEM to aid decision-makers in the planning process by simu-

ating and analyzing the evolution of the building stock from an

nergetic, economic, and social perspective over long-term hori-

ons. In particular, their approach: (1) identified the cost-optimal

ix of successful renovation packages; (2) identified buildings that

eed to be prioritized; and (3) considered the impact of socioe-

onomic factors on policies implementation. Chen et al. [10] pre-

ented a case study using UBEM to analyze the potential energy

nd cost savings of five individual ECMs and two measure pack-

ges for 940 office and retail buildings in San Francisco. UBEM can

lso be used to evaluate the district-scale technologies. Yamaguchi

t al. [11] presented a simulation model based on the bottom-up

BEM approach to evaluating different technology implementation

cenarios, including distributed electricity generators and district

eating and cooling systems. 

UBEM is becoming a proven tool to support energy efficiency

rograms for buildings in cities. Development of a city-scale

ataset of the existing building stock is a critical step of UBEM to

utomatically generate energy models of urban buildings and sim-

late their performance. Monteiro et al. [12] presented the process

f collecting, mapping, cleaning, and integrating data to create an

rban building dataset for 3,259 buildings with 18,484 residential

wellings and 33,659 inhabitants to support an information system

or smart cities. Davila et al. [13] collaborated with the Boston Re-

evelopment Authority to develop a citywide UBEM based on offi-

ial GIS datasets and a custom building archetype library for 83,541

uildings. 

More and more cities in the world are moving to provide open

ata via web portals to empower their use to support cities’ energy

nd environmental goals. For example, San Francisco’s open data

ortal [12] provides geographic information system (GIS) building

eometry information, including the footprint and height of each

uilding in San Francisco. It also includes building characteristics,

uch as year built, number of stories, and building type. Similar

uilding data can be found in other cities, such as Chicago [13] and

ew York City [14] . 

Cities are the main sources to provide the input data for UBEM

nd the major adopters of UBEM tools in the future. Cities spend

ots of effort to collect the data and make them publicly available.

owever, those data are not collected specifically for UBEM and

ome important information for UBEM may be ignored. For ex-

mple, San Francisco provides the permit database to record the

hanging history of buildings; however, that information is pre-

ented in “text” format without standardized description, which

akes them less useful to support UBEM. It is very important to

ake sure that cities are collecting enough data in a standardized

ormat to support UBEM in the future. 

This study first conducts a literature review to understand the

ata needs for current UBEM studies and the current data stan-

ards to represent those city building datasets. It then studies the

tatus of the public building data sources from several pioneer
ities in the United States to answer three questions: (1) Are the

xisting public data from cities adequate to support UBEM? (2) Are

here easy ways to integrate those diverse data sources? (3) How

o standardize the data for interoperability? Finally, a case study is

resented to develop a standardized city building dataset for San

rancisco by integrating publically available buildings datasets from

ultiple city departments. 

. Data needs for UBEM 

Reinhart and Davila [8] reviewed emerging simulation meth-

ds and implementation workflows for UBEM. The data inputs for

BEM were also discussed, which included the climate data and

he building data. The climate datasets in the typical meteorolog-

cal year (TMY) format for building performance simulation are

idely available for more than 2100 cities worldwide [15] . This

tudy focuses on the building data for UBEM, including the geome-

ry data and the non-geometric properties. A literature review was

onducted to understand the building data used to model the en-

rgy performance of building stocks. Table 1 provides a summary

f the building data organized into three categories: geometry, seg-

entation parameters, and energy use data. For the geometry data,

ases 1 to 8 used the GIS-based building footprint, building height

nd the number of stories to create the building geometry for each

uilding. Case 8 derived the number of stories based on the build-

ng height. Case 9 used the total floor area to scale the rectangular

ox geometry. Cases 10 to 17 used the total floor area to scale the

nergy performance results. 

None of the studies has the detailed information about the

uilding systems and their efficiencies. Instead, the information is

ssumed based on the archetype. Several segmentation parameters

re used to identify the archetypes, including the age (year built),

se type, and heating type. The shape/size of the building derived

rom the geometry is also used in several studies as segmentation

arameters. 

Energy data was available for several studies, typically at the

nnual resolution. In additional, several studies require more infor-

ation of the segmentation parameters. Cases 2, 3, and 9 require

he number of stories above ground as well as the number of sto-

ies below ground (basement). Cases 2, 9, and 16 use the heated

oor area while the other cases use the total floor area. Cases 1

nd 2 need both the year of construction and the year of refur-

ishment. 

In summary, the building data needs for UBEM typically include

he GIS footprint, building height, number of stories above ground,

umber of stories below ground, total floor area, heated floor area,

umber of dwellings, year of construction, year of refurbishment,

se type (building type), heating system type, annual electricity

se, and annual natural gas use. 

. Data standards for city building datasets 

More and more cities in the world are moving to provide open

ata via web portals to empower their use to support cities’ energy

nd environmental goals. However, there is a lack of consistency,

emantics, and standards among the shared data to enable interop-

rability for various types of urban applications. For San Francisco,

he building GIS-based footprint data are provided in the Shape-

le format, while the building characteristics are stored in multiple

les with Shapefile, fixed-width text, or comma-separated values

CSV) format. Moreover, different terms are used to represent the

ame data elements among different datasets. Table 2 lists some of

he terms used for the same data elements in the building datasets

rom San Francisco, Chicago, and Portland. In addition, the same

ata element in different datasets may represent slightly different

hings. For example, in Table 2 , the building height in San Francisco
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Table 1 

Summary of data needs for UBEM. 

Geometry Segmentation Energy Use 

Case 

ID 

Each 

Building? ∗
Building 

sector ∗∗ Footprint 

Building 

Height 

No. of 

Stories 

Floor 

area 

No. of 

dwellings Age (year built) Use type Heating type Annual Monthly Time series Other data Reference 

1 Y R 
√ √ √ √ √ √ √ √ 

[16] 

2 Y R 
√ √ √ √ √ √ √ √ ∗∗∗ [17] 

3 Y A 
√ √ √ √ √ √ √ ∗∗∗∗ [18] 

4 Y C 
√ √ √ √ √ √ 

[19] 

5 Y C 
√ √ √ √ √ 

[10] 

6 Y A 
√ √ √ √ √ 

[20] 

7 Y A 
√ √ √ √ √ 

[21] 

8 Y A 
√ √ √ √ √ √ ∗∗∗∗∗ [22] 

9 Y R 
√ √ √ √ √ √ 

[23] 

10 N R 
√ √ √ √ √ 

[24] 

11 N R 
√ √ √ √ √ 

[25] 

12 N R 
√ √ √ 

[26] 

13 N A 
√ √ √ √ √ 

[27] 

14 N R 
√ √ √ √ 

[28] 

15 N A 
√ √ √ 

[29] 

16 N A 
√ √ √ √ 

[30] 

17 N A 
√ √ √ √ √ 

[31] 

Note: 
∗ Model each building or not: Y – Yes, N – No. 
∗∗ R – Residential, C – Commercial, A – All (Residential & Commercial). 
∗∗∗ Number of staircases, attachment to other buildings. 
∗∗∗∗ Number of persons per building, volume, type of hot water supply. 
∗∗∗∗∗ Measured heat demand at the substations. 
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Table 2 

Different terms used for the same data elements among different buildings datasets 

in three U.S. cities: San Francisco, Chicago, and Portland. 

Terms San Francisco Chicago Portland 

Building Type LANDUSE Property classification BLDG_USE 

Year Built YRBUILT Year_built YEAR_BUILT 

Number of Floors STOREYNO Stories NUM_STORY 

Building Height gnd1st_delta_m N/A AVG_HEIGHT 

Table 3 

BEDES terms for the terms used in the literature. 

Terms used in the literature BEDES terms 

Building height Building Height 

Number of stories above ground Above Grade Floor Quantity 

Number of stories below ground Below Grade Floor Quantity 

Total floor area Gross Floor Area 

Heated floor area Heated Gross Floor Area 

Number of dwellings Apartment Unit Quantity 

Year of construction Completed Construction Status Date 

Year of refurbishment Completed Major Remodel Date 

Use type (building type) Occupancy Classification 

Heating system type Heating Type 

Annual electricity use Annual Electricity Resource Value 

Annual natural gas use Annual Natural Gas Resource Value 

Annual site energy use Annual Site Energy Resource Value 

Annual source energy use Annual Source Energy Source Value 
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Fig. 1. Examples of CityGML objects [44] . 

Fig. 2. Five levels of details (LODs) to represent a building in CityGML [36] . 
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ataset is the median value of the building height; while the build-

ng height in Portland dataset is the average value of the building

eight. 

It is essential to gather building asset data at the city scale from

 wide range of sources (e.g., surveys, city projects, city datasets,

nd public records) and assemble them into a single open database

ith standardized formats and terms. The primary data formats to

upport UBEM include Shapefile/FileGDB, GeoJSON, and CityGML.

he ESRI Shapefile [32] and FileGDB [33] formats are popular

eospatial vector data format used by GIS software tools. They typ-

cally include two-dimensional (2D) GIS-based building footprint

nformation and a table of building properties or attributes. Geo-

SON [34] is a data format based on JSON (JavaScript Object No-

ation) for encoding a variety of 2D GIS data structures, which is

riendly to web applications built upon JavaScript. However, the

hapefile/FileGDB and GeoJSON formats do not provide a schema

o define the building properties, leading to inconsistency among

ifferent datasets. 

Building Energy Data Exchange Specification (BEDES) [35] , de-

eloped by the U.S. Department of Energy (DOE) and Lawrence

erkeley National Laboratory (LBNL), is a dictionary of terms and

efinitions commonly used in tools and activities that help stake-

olders make energy investment decisions, track building perfor-

ance, and implement energy efficiency policies and programs.

EDES provides common terms and definitions for building energy

ata, which different tools, databases, and data formats can share.

ore than 50 projects, programs, and applications are involved in

he development of BEDES. Table 3 shows the BEDES terms for the

erms used in the literature for UBEM. For city building data in

ileGDB or GeoJSON format, BEDES can be used to provide more

tandardized terms. 

CityGML is an international Open Geospatial Consortium (OGC)

tandard that provides an open data model to represent and ex-

hange digital three-dimensional (3D) models of cities and land-

capes [36,37] . Many UBEM projects selected CityGML as the data

odel to represent and exchange 3D city models, especially for Eu-

opean research projects. CityGML was used to represent the se-

antic 3D city for predicting the photovoltaic potential and heat-

ng energy demand of urban districts [38] and analyzing strategies
or improving building standards [39] . TEASER, an open framework

or urban energy modeling of building stocks, includes a ready-

o-use interface for CityGML [40] . The Open Source City Database

CityDB) is a flexible framework to create and run city-scale build-

ng energy simulations with the building datasets in CityGML or

eoJSON formats [41] . City Building Energy Saver (CityBES) [42,43] ,

eveloped by LBNL, is a web-based data and computing platform,

ocusing on energy modeling and analysis of the building stock of a

ity to support district or city-scale building energy efficiency pro-

rams. CityBES accepts building stock data in both CityGML and

eoJSON formats. 

CityGML defines the 3-D geometry, topology, semantics, and ap-

earance of urban objects, including buildings and their compo-

ents, bodies of water, city furniture (street lighting, traffic lights),

ransportation infrastructure (streets, roads, bridges, tunnels), and

egetation. Fig. 1 shows some examples of CityGML objects. For

any of these attributes describing 3-D city models, CityGML pro-

ides its standard external code list enumerating the values for

ach attribute type, such as standard lists of land use type (Lan-

UseClassType) and building usage type (BuildingUsageType). 

CityGML enables flexible representation of objects at various

evels of detail, which is critical as data availability varies widely

or a large number of buildings and other urban infrastructure.

ig. 2 shows a building can be represented at five levels of details:

 simple 2-D footprint, a box shape, adding slope roofs, adding ex-

erior shades and windows and doors, and full details of interior

ayout and zoning. CityGML version 1.0 was released in 2008, and

n extended version 2.0 was adopted in March 2012. 

CityGML has the concept of Application Domain Extension

ADE) to model user-defined objects and attributes. The CityGML

nergy ADE extends the CityGML Standard by features and proper-

ies, which are necessary to perform an energy simulation and to

tore the corresponding results [45] . Table 4 listed the mapping of

he terms to the standardized CityGML and Energy ADE elements.

everal terms are straightforward, including building height, num-

er of stories above ground, number of stories below ground, to-

al floor area, heated floor area, year of construction, and use type
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Table 4 

CityGML elements for the terms used in the literature. 

Terms used in the literature CityGML and Energy ADE examples 

Building height < bldg:measuredHeight uom = "m" > 6.52 < /…> 

Number of stories above ground < bldg:storeysAboveGround > 2 < /…> 

Number of stories below ground < bldg:storeysBelowGround > 0 < /…> 

Total floor area < energy:FloorArea > 

< energy:type > grossFloorArea < /…> 

< energy:value uom = "m2" > 240 < /…> 

< /energy:FloorArea > 

Heated floor area < energy:FloorArea > 

< energy:type > energyReferenceArea < /…> 

< energy:value uom = "m2" > 240 < …> 

< /energy:FloorArea > 

Note: energyReferenceArea is referred as heated or cooled area in some European reports. 

Number of dwellings Not available, need to specify each unit/dwelling 

Year of construction < bldg:yearOfConstruction > 2010 < /…> 

Year of refurbishment Not available, need to specify the energy conservation measures 

Use type (building type) < bldg:usage > 10 0 0 < /…> 

Note: code 10 0 0 is for “residential building”. The codes are defined in the BuildingUsageType.xml, according to the dictionary 

concept of GML3. 

Heating system type Not available, need to specify the heating system 

Annual electricity use < energy:EnergyDemand gml:id = "…" > 

< energy:energyAmount > 

< energy:RegularTimeSeries > 

< energy:variableProperties > 

< energy:TimeValuesProperties > 

< energy:acquisitionMethod > measurement < /…> 

< energy:interpolationType > succeedingTotal < /…> 

< /energy:TimeValuesProperties > 

< /energy:variableProperties > 

< energy:temporalExtent > 

< gml:TimePeriod > 

< gml:beginPosition > 2017–01–01T0 0:0 0:0 0 < /…> 

< gml:endPosition > 2017–12–31T23:0 0:0 0 < /…> 

< /gml:TimePeriod > 

< /energy:temporalExtent > 

< energy:timeInterval unit = "year" > 1 < /…> 

< energy:values uom = "kWh" > 24,0 0 0 < /…> 

〈 /energy:RegularTimeSeries 〉 
〈 /energy:energyAmount 〉 
< energy:endUse > otherOrCombination < /…> 

< energy:energyCarrierType > electricity < /…> 

< /energy:EnergyDemand > 

Annual natural gas use Similar to Annual electricity use. Change the “electricity” to “naturalGas” in the energy:energyCarrierType element. 

Annual site energy use Not available 

Annual source energy use Not available 
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(building type). Some terms are not available in CityGML or En-

ergy ADE, as it requires the detailed systems information, including

number of dwellings, year of refurbishment, and heating system

type. The EnergyDemand element in the Energy ADE is designed

for time series data. Although the EnergyDemand element can be

used to represent the annual electricity and natural gas use, it is

too tedious. Moreover, the EnergyDemand element cannot cover

the annual site and source energy use. 

4. City building data sources 

Many cities in the United States provide public building data to

support building energy efficiency programs and research. This sec-

tion reviews the public data sources provided by six cities to check

whether those data are adequate to support UBEM. Table 5 shows

several public building data sources for the six cities, including San

Francisco (SF), Chicago (CHI), Los Angeles (LA), Boston (BOS), San

Jose (SJ), and Portland in Oregon (PDX). The public building data

are typically provided in Shapefile or GeoJSON format when the

building or parcel footprint data are available. The building charac-

teristic data are typically stored in CSV format. The detailed data

mapping among different data sources is introduced in Section 5 . 

Table 6 shows the data availability to support UBEM of the

six cities. All the cities have the data of building footprint, gross
oor area, number of dwellings, year of construction, and build-

ng type. The Chicago datasets do not include the building height,

hile the number of stories information is missing in San Jose

atasets. For UBEM, users can assume the floor-to-floor height to

erive the building height or the number of stories from each

ther. The number of stories above ground, the number of sto-

ies below ground, and the heated floor area are missing in all the

atasets. Most of the cities have energy benchmarking data for a

mall portion of the buildings. The results show that most cities

ave adequate public data to support UBEM; however, the data are

epresented in different formats without standardization and there

s a lack of common keys to map the data between datasets. 

. Case study: development of city buildings dataset for San 

rancisco 

This section presents a case study to integrate the city building

atasets from multiple city departments of San Francisco. A master

ataset was created to include all the original data, while a simpli-

cation and standardization process was performed to produce the

uilding dataset in various formats, including CityGML, GeoJSON,

nd FileGDB/Shapefile. 
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Table 5 

Public building data sources for six U.S. cities. 

City Data source name File format Records Primary key for mapping 

San Francisco, CA (SF) Building Footprints (BF) Shapefile 177,023 Building footprint 

Land Use (LU) Shapefile 155,468 Parcel ID, parcel footprint 

Assessor Record (AR) Fix-width text 207,850 Parcel ID 

Energy Benchmarking (EB) CSV 1630 Parcel ID 

Chicago, IL (CHI) Building Footprints GeoJSON 820,606 Building ID, building footprint 

Energy Benchmarking CSV 2718 Building ID 

Assessor Record Website 165,752 Parcel footprint 

Los Angeles, CA (LA) Building Footprints Shapefile 1,122,422 Building ID,Assessor ID 

Assessor Record CSV 2,397,615 Assessor ID 

Energy Benchmarking CSV 6489 Building ID 

Boston, MA (BOS) Building Footprints Shapefile 129,370 Building footprint, building ID 

Property Assessment (PA) CSV 172,841 Parcel ID 

Energy Benchmarking CSV 1800 Building ID 

San Jose, CA (SJ) Building Footprints Shapefile 324,217 Building footprint, parcel ID 

Zoning (ZO) Shapefile 12,295 Zoning district footprint 

Annexations (AN) Shapefile 2370 Annexation footprint 

Assessor Record CSV 106,452 Parcel ID 

Portland, OR (PDX) Building Footprints Shapefile 712,334 Building ID 

Energy Benchmarking CSV 410 Building ID 

Fig. 3. A sample of building footprint and parcel polygon data in San Francisco. 
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.1. Data sources 

The city of San Francisco provides many public building

atasets from multiple city departments, including Building Foot-

rint data from the Department of Technology, Land Use data from

he Department of Planning, Assessor Records from San Francisco

ounty, and Energy Disclosure data from the Department of Envi-

onment. 

.1.1. Building footprint dataset 

The Building Footprint dataset is available at the San Francisco’s

pen data portal [12] . It includes the footprints of 177,023 build-

ngs in San Francisco. Fig. 3 a shows a sample of the footprint data

n gray. There are 43 attributes associated with each footprint poly-

on. The dataset includes multiple statistical attributes (the mini-

um, maximum, range, standard deviation, variety, minority, ma-

ority, and median) related to the altitude of ground and roof and

he distances between the ground and the roof. The median value

f the distance between the roof and the ground can be used as

he building height. 

.1.2. Land use dataset 

The Land Use dataset is also available at the San Francisco’s

pen data portal [12] . There are 15 land use attributes associated

ith each parcel. The land use data records the address, the land
se category, the building gross floor area, and the year built. How-

ver, those attributes are associated with the parcel information

 Fig. 3 b) rather than the building footprint ( Fig. 3 a). 

.1.3. Assessor recorder dataset 

The Assessor Records dataset is maintained by the Office of

he Assessor-Recorder [46] . The data can be viewed at the San

rancisco’s property information map portal [47] . There are 57 at-

ributes associated with each assessor record, including the land

alue, personal property value, prior sales price, property usage

ype, number of stories, number of rooms (for residential), year

uilt, and so on. As with the land use dataset, those attributes

re associated with the parcel information rather than the build-

ng footprint ( Fig. 3 ). 

.1.4. Energy disclosure dataset 

Passed in 2011, the San Francisco’s Existing Commercial Build-

ngs Energy Performance Ordinance, referred to as the energy dis-

losure dataset, requires annual energy benchmarking, periodic en-

rgy efficiency assessment, and public disclosure of benchmark-

ng information for commercial buildings with 10,0 0 0 square feet

929 m 
2 ) or more of heated and cooled space [48] . The energy dis-

losure data for 2010 to 2016 are available at San Francisco’s open

ata portal [12] . It currently includes 1652 buildings. The address

nd parcel number of the energy ordinance results are available.

he energy ordinance results for each building include the data
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Table 6 

Public building data sources to support UBEM. 

City 

Building 

Footprint 

Building 

Height 

No. of 

Stories 

(total) 

Gross 

floor area 

No. of 

dwellings 

Year of 

Con- 

struction 

Year of 

Refur- 

bishment 

Use type 

(building 

type) 

Heating 

system 

type 

Annual 

electric- 

ity 

use 

Annual 

natural 

gas use 

Annual 

site 

energy 

use 

Annual 

source 

energy 

use 

SF BF BF AR LU, AR, 

EB 

LU, AR LU, AR AR LU, AR, 

EB 

EB EB 

CHI BF BF, AR BF, EB, 

AR 

BF, AR BF, EB, 

AR 

EB, AR EB EB EB EB 

LA BF BF BF, AR, 

EB 

AR AR AR AR, EB EB EB EB EB 

BOS BF BF PA BF, PA, 

EB 

PA PA, EB PA PA, EB PA, EB EB EB EB 

SJ BF BF BF ZO, AR AN, AR AR ZO, AR 

PDX BF BF BF BF, EB BF BF, EB BF, EB EB EB 

Note: There are no data for the three fields: number of stories above ground, number of stories below ground, and heated floor area. 
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Fig. 4. Workflow of parcel-related dataset consolidation. 
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1  
rom 2011 to 2016. Each ordinance result includes benchmark sta-

us, the reason for exemption, ENERGY STAR score, site and source

nergy use intensities (EUIs), percentage better than the national

edian site and source EUI, total GHG emissions, total GHG emis-

ion intensity, and weather-normalized site and source EUIs. 

.2. Data mapping 

The land use, assessor records, and energy disclosure databases

se the Assessor Parcel Number (APN) as parcel identifiers to store

he building data. We first consolidated the parcel-related data and

apped them with the building footprint data to create a master

uilding dataset with all the fields/attributes from each dataset.

ext, the master dataset was simplified and standardized to cre-

te 3-D city models for all the San Francisco buildings. BEDES was

hen used to standardize the terms in the building dataset. The fi-

al dataset products were produced in CityGML, GeoJSON, and Fi-

eGDB formats that can be used by various urban modeling and

nalysis tools. 

.2.1. Consolidating the parcel-related datasets 

The three parcel-related datasets were stored in three different

ormats with separated metadata files in text or Microsoft Word

ocuments. The parcel identifier appeared in each row of the three

atasets as the key to mapping them. Fig. 4 shows the workflow of

he parcel-related dataset consolidation. The land use dataset was

rovided in the Shapefile format, which includes both the parcel

eometry and the related attributes. The land use dataset was first

plit using QGIS to create parcel geometry only and the land use-

elated attributes. QGIS [49] is a free and open source GIS tool. A

cript written in Ruby [50] was developed to merge the land use

ttributes in the CSV format, the energy disclosure in the CSV for-

at, and the assessor records in a fixed-width text format. Finally,

he merged attributes and the parcel geometry were joined to-

ether using QGIS to create the parcel-related dataset in the Shape-

le format. 
.2.2. Mapping the building footprint with parcel polygon 

There is no existing unique building identifier for different city

epartments to use to link their data directly with the buildings.

he Pacific Northwest National Laboratory is currently working on

 project to create unique building identifiers for all the buildings

n the United States. Among the available data sources, most of the

uilding-related information is associated with the parcel number.

herefore, it is necessary to map the building footprint with the

arcel polygon to link the building datasets. One building footprint

ay overlap with multiple parcel polygons, while one parcel poly-

on may also overlap with multiple building footprints. It makes

he mapping procedure complicated. There are 177,023 buildings in

he San Francisco building footprint dataset. Fig. 5 shows the distri-

ution of their height and footprint area. We eliminated buildings

ith a lower than 2.5 m height and a floor area of less than 30 m 
2 ,

hich resulted in 171,474 remaining buildings. 

Two methods were used to map the building footprint with

he parcel polygon. The first method is straightforward and uses

he central point of a building to find the corresponding parcel

olygon, which contains the building’s central point. Using this

ethod, we successfully found one parcel for each building. How-

ver, it may not be accurate when the building is overlapped with

ultiple parcels. 

The second method is to do polygon clipping and find the over-

ap areas of the building with each parcel. We set the minimum

verlap percentage to 10% of the building footprint area to elimi-

ate those overlaps with small area due to the slight shifting in the

ata layer. Fig. 6 shows the number of parcels per building using

he polygon clipping method. It shows that 87.4% of the buildings

elong to only one parcel, while 12.4% of the buildings are mapped

ith two parcels. Only 0.2% of the buildings are overlapped with

ore than two parcels. For the buildings overlapped with multiple

arcels, we chose the parcel with the most significant overlap area.

The results generated by both methods are very close. The same

54,813 buildings (94.4%) were found using either method. The
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(a) Building Height

(b) Building Footprint Area
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Fig. 5. Building height and footprint area distributions of all San Francisco buildings. 

Fig. 6. Number of parcels per building using the polygon clipping method. 
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Table 7 

Reasons and examples of fields to be excluded. 

Reason for exclusion No. of fields Example fields Description Data source 

Exclude geometry statistics 36 gnd_MINcm Minimum ground elevation Building Footprint 

STDcm_1st Standard deviation of first return (roof altitude) Building Footprint 

hgt_MAXcm Maximum height Building Footprint 

More detailed data available from other sources 7 Building Address Energy Disclosure 

YRBLT Year Built Assessor Recorder 

No data and/or no field description 12 REPRIPRVAL Prior Sales Price Assessor Recorder 

LEASEHOLD Leasehold Notation Flag Assessor Recorder 

WORKFVLAND Assessor Recorder 

Exclude assessor’s closed roll (property tax) 12 ROLLYEAR Closed Roll Year Assessor Recorder 

RP1LNDVAL Closed Roll Assessed Land Value Assessor Recorder 

Exclude property sale information 9 RECURRPRIC Current Sales Price Assessor Recorder 

RECURRSALD Current Sales Date (YYMMDD) Assessor Recorder 

Specific for certain application 1 PIM Link Link to San Francisco Property Information Map Energy Disclosure 
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econd method provides more detailed information than the first

ne; however, it is much more challenging to implement. 

As a starting point, the first method was adopted by the San

rancisco Department of Technology to assign the parcel for each

uilding. For the following steps, we used the first method to

enerate the mapping between building footprints and the parcel

olygons and created the master dataset with all the properties of

ach building. 

.3. Data standardization 

.3.1. Simplifying and standardizing the dataset 

There are 183 attributes for each building in the master dataset.

o make the dataset more concise, we exclude 77 attributes in the

nal product ( Table 7 ). There are six reasons for the exclusion of

hose attributes: 

1) There are too many geometry statistics in the building foot-

print dataset. For the final products, the building height, build-

ing perimeter, and footprint floor area are included, and the

rest of 36 geometry statistics are excluded; 

2) There are several fields from different data sources for the same

data. The data fields with more detailed information are kept,

while the others are excluded; 

3) There are 12 fields without data. Those empty fields are ex-

cluded; 

4) We excluded 12 fields related to the assessor’s closed roll

(property tax); 

5) We excluded nine fields related to the property values as they

change every year and do not directly relate to energy model-

ing; and 

6) One field is used to link the energy disclosure data with the

San Francisco property information map but could not be used

for other applications. We excluded this field. 

After the simplification, there are 106 attributes left in the fi-

al dataset, including seven from the building footprint dataset, 17

rom the land use dataset, 21 from the assessor recorder dataset,

nd 61 from the energy disclosure dataset. One BEDES term is used

or each attribute. Table 8 shows a list of example attributes in the

nal master dataset. The results are stored in FileGDB and GeoJSON

ormats. 

.3.2. Creating the CityGML with energy ADE datasets 

The Shapefile/FileGDB and GeoJSON formats can standardize

he 2D building footprint data; however, there are not schemas

or the building attributes. Although the BEDES terms can make

he terms more readable, a standardized and machine-readable

ataset is still necessary. Table 4 shows the CityGML and Energy
DE elements of the data needs for the UBEM. As not every at-

ribute can be mapped to a standard CityGML or Energy ADE el-

ment, many attributes were named as CityGML generic types

gen::_GenericsAttribute) to keep the records of the collected infor-

ation. For example, the annual site energy use intensity (EUI) of

uildings in the year of 2015, available from the disclosure dataset

amed “SiteEUI_15 ′ ’, is represented using a generic attribute de-
ned in the generic schema with an element as < gen:: doubleAt-

ribute name = “SiteEUI_15 ′ ’ > . 

As a single CityGML file for San Francisco is too large (2.75 GB)

o view or edit in general GIS or city building data visualization

nd analysis tools, the master buildings dataset was transformed

nto 16 CityGML files (at various sizes from 20 MB to 368 MB) ac-

ording to the partition of the 16 planning districts of San Fran-

isco, considering the efficient management of the CityGML files.

hen compressed, the total size of these 16 files was 116 MB.

hese planning districts are groups of census tracts and are used

n various areas of the planning process, including analysis, man-

gement, and some parts of the general plan. Fig. 7 shows the

eographical locations and names of these districts and provides

n example of the 2-D visualization of three CityGML files parti-

ioned by planning districts: namely, Downtown, South of Market,

nd Mission. 

Since the CityGML files were generated and validated by the

tandard CityGML 2.0 and Energy ADE schemas, the transformed

6 files for San Francisco can generally be used by urban visualiza-

ion, analysis, modeling, and data management software. 

.4. Final products 

The final products are the San Francisco buildings dataset cover-

ng the entire existing building stock, represented in multiple for-

ats, including CityGML with Energy ADE, GeoJSON, and Shape-

le/FileGDB. The final products are freely available to the public.

n the future, the datasets could be enriched to include data from

ther building-related sources (e.g., changes/retrofits of buildings

ased on the building permits) and from other sectors (e.g., trans-

ortation, city water body, and city furniture such as light poles

nd plant pots). The methods and process used to develop the

uildings dataset for San Francisco are generic and can be adopted

y other cities. 

. Discussion 

.1. Applications of the city building dataset 

The developed city buildings dataset can be used by multiple

pplications in multiple ways. Two examples are illustrated as fol-

ows. 
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Table 8 

Example attributes in the final master dataset. 

Original filed BEDES term 

sf_MBLR Assessor parcel number 

gnd1st_delta_m Building Height 

STREET Street Name 

RESUNITS Residential Units 

BLDGSQFT Gross Floor Area 

YRBUILT Completed Construction Status Date 

RP1CLACDE Property Class Code 

CONSTTYPE Construction Type 

ZONE Zoning Code 

FBA Basement Floor Area 

STOREYNO Number of Floors 

UNITS Number of Units 

ROOMS Number of Rooms 

BEDS Number of Bedrooms 

BATHS Number of Bathrooms 

RP1LSTMOD Last Modified Date 

Benchmark 2015 Status 2015 Benchmark Compliance Status 

2015 Reason for Exemption 2015 Benchmark Reason for Exemption 

2015 ENERGY STAR Score 2015 ENERGY STAR Assessment Value 

2015 Site EUI (kBtu/ft2) 2015 Annual Site Energy Resource Intensity 

2015 Source EUI (kBtu/ft2) 2015 Annual Source Energy Resource Intensity 

2015 Total GHG Emissions Intensity (kgCO2e/ft2) 2015 Direct Annual CO 2 e Emissions Intensity 

Fig. 7. Partitioning of the CityGML files according to the 16 planning districts in San Francisco. 

 

 

 

 

 

 

 

 

i  

p  

t  

b  

g  

b  

t  

s

6

6.1.1. Urban scale energy modeling 

Chen et al. [10] presented a case study using LBNL’s CityBES 1 to

analyze the potential retrofit energy use and energy cost savings

of five indi vidual ECMs and two measure packages for 940 office

and retail buildings in six city districts in northeast San Francisco,

California. A subset of the final products (the San Francisco build-

ing dataset) was used in CityBES to perform the UBEM to evaluate

building retrofits. 

6.1.2. Visualization of energy disclosure dataset 

Fig. 8 shows the visualization feature using the San Francisco’s

energy disclosure dataset. The original energy disclosure dataset
1 https://citybes.lbl.gov 

 

t  

a  
s presented in CSV/Excel format. Through the data consolidation

rocedure, each record of the energy disclosure dataset was linked

o the associated building. The energy disclosure dataset thus can

e visualized in a better way with the color-coded 3-D building

eometry and map. Fig. 8 (a) shows the benchmark status of each

uilding in 2015, including Complied, Exempt, Pending, and Viola-

ion; while Fig. 8 (b) and (c) present the ENERGY STAR score and

ite energy use intensity of each building in 2015. 

.2. Data quality 

The quality of the building dataset needs to be improved over

ime. For example, some of the building footprints include the yard

nd garden area, which makes the median building height smaller

https://citybes.lbl.gov
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Fig. 8. Visualization of San Francisco’s energy disclosure dataset. 
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han the real median building height. The source datasets have

ommon data issues, such as missing or invalid data. 

For urban building energy modeling, some critical data are not

vailable in the dataset, e.g., window-to-wall ratio, construction

ype, and energy system type (e.g., HVAC, lighting). Advanced ur-

an sensing technologies need to be developed and applied to ob-

ain such information at the city scale. For example, we can use

rones (unmanned aerial vehicles) and cars to take photos and

ideos, use infrared images, and apply machine learning to extract

hose detailed building data. 
.3. CityGML and energy ADE data model 

CityGML is an effective way to represent 3-D geometry infor-

ation. It covers several high-level building characteristics, but it

oes not have the detailed information necessary for building en-

rgy modeling. The Energy ADE for CityGML is currently under de-

elopment, to integrate the building spatial and physics properties

or urban energy simulation [51,52] . When representing the same

mount of information for a 3-D model, the size of a CityGML file

s typically larger than the GeoJSON or FileGDB format. Therefore,
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powerful computing resources are necessary to process CityGML

files. Splitting a city into multiple CityGML files can be more feasi-

ble. 

6.4. Data sources and ownership 

The current building data are static characteristics or historical

data. With the increasing adoption of the Internet of Things, more

and more real-time dynamic sensing data are becoming available,

which are a rich data source for urban applications. 

The case study integrates the data from public sources. How-

ever, lots of private building data, e.g., Google Map, Open-

StreetMap, CoStar, are available with a different licensing policy.

Developing a system to handle the public and private data is nec-

essary for long-term data management. 

6.5. Limitations 

Although datasets of multiple U.S. cities have been developed

using the presented data sources, methods and workflow, their

application to cities in other countries still needs to be investi-

gated. Part of the authors’ on-going research is looking at other

data sources, such as building permits which can provide good in-

formation on changes to buildings. Integrating these additional ex-

isting and new sources can create new data challenges. 

7. Conclusions 

The building data needs for UBEM typically include the GIS

building footprint, building height, total number of stories, num-

ber of stories above ground, number of stories below ground, to-

tal floor area, heated floor area, number of dwellings, year of con-

struction, year of refurbishment, use type (building type), heating

system type, annual electricity use, annual natural gas use, annual

site energy sue, and annual source energy use. 

The data standards/formats used in UBEM mainly include the

Shapefile/FileGDB, GeoJSON, and CityGML. The current data stan-

dards can provide a standardized representation of the 2D or

3D building geometry information. However, the Shapefile/FileGDB

and GeoJSON files do not provide schemas for the building at-

tributes. The CityGML and Energy ADE provide the standardized

presentation for several necessary data fields and future enhance-

ments are necessary to cover more high-level building information.

The existing public data sources from several pioneer cites are

adequate to support UBEM. However, the data are represented in

different formats without standardization and there lack common

keys to map the data from diverse sources. The mapping of build-

ing footprint and parcel polygons to link multiple datasets is the

most complicated and challenging step for the data integration. In

future, city’s buildings datasets can use the standardized unique

building identifiers for indexing which makes the mapping and

linking of diverse building datasets straightforward. 

A city-scale building dataset is a key to urban building energy

modeling. Today, cities put an enormous amount of effort into col-

lecting and sharing building data via open web-based data portals.

When this is done, it is essential to provide the data in a stan-

dardized way, to enable interoperability and adoption by various

types of urban applications. CityGML, an international standard for

3-D city models, is an excellent tool for representing and exchang-

ing city data among different users and different tools. This paper

presented methods and tools that can be used to integrate city-

scale building data from multiple city departments. The data are

represented in the CityGML format, as well as in the GeoJSON and

Shapefile/FileGDB formats, to support existing urban modeling and

analysis tools, as well as future developments. 
The buildings dataset is open access and can be used by a va-

iety of urban/city applications, including retrofit analysis of ex-

sting buildings, urban planning, and visualizing the energy per-

ormance and code compliance status of building stock. The de-

eloped scripts, tools, and tutorials, although based on the city of

an Francisco, have been applied to datasets in other U.S. cities in-

luding San Jose, Los Angeles, Chicago, New York City, and Boston,

nabling researchers and city consultants to create standardized

uildings datasets for their urban applications. 
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