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Extended Kalman Filter-Based Active Alignment
Control for LED Optical Communication

Pratap Bhanu Solanki

Abstract—Light-emitting diode (LED)-based optical com-
munication is emerging as a low-power, low-cost, and high-
data rate alternative to acoustic communication for mobile
applications underwater. However, it requires a close-to-
line-of-sight (LOS) link between the transmitter and the re-
ceiver. Alignment for maintaining LOS is challenging due
to the constant movement of underlying mobile platforms
caused by propulsion and unwanted disturbances. In this
paper, we present a novel, compact LED-based commu-
nication system with active alignment control, in a two-
dimensional setting, that maintains the LOS despite the
underlying platform movement. An extended Kalman filter-
based algorithm is proposed to estimate the angle between
the receiver orientation and the receiver—transmitter line,
which is used subsequently to adjust the receiver orienta-
tion. The algorithm uses only the measured light intensity
from a single photodiode, where successive measurements
are obtained via a scanning technique. A simple propor-
tional controller is designed for alignment that also ensures
the observability of the system. The effectiveness of the
proposed active alignment algorithm is verified in simula-
tion and experiments. In particular, its robustness in the
presence of measurement noise is demonstrated via com-
parison with two alternative algorithms that are based on
hill-climbing and three-point-averaging.

Index Terms—Active alignment control, estimation and
control, extended Kalman filter (EKF), light-emitting diode
(LED) communication.

|. INTRODUCTION

UTONOMOUS underwater robots are used increasingly

in marine sciences, environmental monitoring, and oil/gas
exploration among other applications. Due to the heavy attenu-
ation of radio frequency signals in water [1], acoustic commu-
nication has been the dominant method for underwater robots
to communicate with each other and/or base stations. How-
ever, acoustic communication suffers from low data rates, high
latency, and high power consumption [2]. Over the past few
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years, light-emitting diode (LED)-based optical communication
has been proposed as a promising low-power, low-cost, high-
rate solution for low-to-medium range underwater data transfer
[3]-[5]. Several studies focused on increasing the range and
data rates of LED communication. Brundage reported an opti-
cal communication system using a Titan blue lighting LED [6],
which performed error-free communication over 1 Mb/s at dis-
tances up to 13 m. Doniec and Rus demonstrated a bidirectional
underwater wireless communication system called AquaOpti-
cal II [7], which used 18 Luxeon Rebel LEDs and an avalanche
photodiode and operated over a distance of 50 m at a data rate
of 4 Mb/s.

An inherent challenge associated with the wireless optical
communication is to establish and maintain close-to-line-of-
sight links, as the light signals are highly directional. For many
potential applications involving mobile platforms (in particular,
underwater robots), maintaining a line-of-sight (LOS) is diffi-
cult due to movement of the platform caused by propulsion or
ambient disturbances. Several approaches have been proposed
to address the LOS requirement in optical communication sys-
tems. Pontbriand ef al. used large-area photomultiplier tubes,
to increase the field of view of the receiver [8]. Multiple LEDs
and/or multiple photodiodes have been used to avoid the need
of active pointing during optical-communication [7], [9]-[12].
These systems achieved the LOS through redundancy in trans-
mitters and/or receivers, which resulted in a larger footprint,
higher cost, and higher complexity.

In this paper, we present a compact LED communication sys-
tem for a two-dimensional (2-D) setting, where a transceiver
consists of a single LED and a single photodiode, and a ro-
tating base for the transceiver enables the establishment and
maintenance of the LOS between the communicating parties
independent of the motions of the underlying robotic platforms.
Furthermore, we propose an extended Kalman filter (EKF) for
estimating the angle between the receiver orientation and the
line connecting the receiver and the transmitter, which is then
used to adjust the receiver orientation toward LOS. We note
that Kalman filter and EKF have been proposed in optical beam
steering in the context of laser-based free space optical com-
munication, where the laser beam is considered as a single line
and, thus, simple geometric relationships can be used to re-
late the measurement to the receiver/transmitter configuration
[13], [14]. For example, in their simulation study, Soysal and Efe
considered a quadrant photodetector as the measurement device,
which was assumed to produce the signals directly proportional
to azimuth and elevation errors [13]. Yoshida and Tsujimura
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used a 2-D position-sensitive device and the detected beam spot
position was geometrically related to the relative position and
orientation between the transmitter and the receiver [14]. These
approaches do not apply to our setting because of the diffu-
sive nature of LED and the use of single photodetector in the
proposed work.

We now briefly summarize our EKF-based alignment control
approach. Based on a light intensity model, we first formulate
an estimation problem, where the receiver estimates both its
relative orientation to the transmitter and a quantity related to
the overall light intensity at the receiver site. The rotating base
is then instructed to move toward the alignment based on the
estimated relative orientation. Due to the nonlinear nature of the
observation function, an EKF is adopted for the state estima-
tion. In order to ensure convergence of the EKF, light intensity
measurements taken at two consecutive steps in the scanning
motion are used in each state update. The feedback control al-
gorithm then updates the orientation bias in the angular scan
motion based on the state estimate.

Preliminary versions of parts of this paper were presented at
the 2016 American Control Conference [15] and the 2016 IEEE
International Conference on Advanced Intelligent Mechatronics
[16], [17]. In addition to providing a comprehensive treatment
of the system design, algorithm development, and simulation
and experimental evaluation, this paper improves over the con-
ference papers [15]-{17] in a number of ways. First, an analysis
is presented for the design of the proportional control gain that
ensures the nonsingularity of the observability matrix. Second,
while the results in the previous conference versions were lim-
ited to a preliminary setup with a static receiver, in this paper,
the performance of the proposed algorithm is evaluated with
extensive simulation and experiments in a setting involving a
mobile transmitter and a stationary receiver. Third, in these
evaluations, we also compare the tracking performance of the
EKF approach with two alternative schemes: hill-climbing and
three-point averaging. Hill-climbing is a widely used, computa-
tionally efficient algorithm for optimization that locally updates
the solution in the direction of higher objective function [18].
Since better alignment between the receiver and the LED leads
to higher measured light intensity, the hill-climbing algorithm
simply directs the receiver to keep moving in the direction of
higher light intensity. The three-point-averaging algorithm, on
the other hand, was first proposed in our earlier work [16], and
it computes the next orientation of the receiver based on the
weighted-average of three orientations: no change, a fixed rota-
tion to the right, and a fixed rotation to the left, where the mea-
sured intensities at these orientations are used as weights. A per-
formance metric is designed to evaluate and compare the three
algorithms in terms of tracking effectiveness, where a range of
measurement noise levels is considered. For each of the noise
levels, multiple runs of simulation and the corresponding exper-
iments have been performed to assess the average performance
and simultaneously alleviate the effects of stochasticity on the
results. It is found that the EKF algorithm significantly outper-
forms the alternatives in the presence of measurement noise.

The rest of this paper is organized as follows. In
Section II, the design and hardware implementation of the LED

communication system is described. In Section III, the model
for the received light intensity is presented, followed by a state-
space reformulation for the purpose of algorithm development.
In Section IV, the estimation and tracking control algorithms
are described. Simulation setup and results are presented in
Section V, while experimental setup and results are discussed
in Section VL. Finally, concluding remarks are provided in
Section VIL

[l. SYSTEM DESIGN AND IMPLEMENTATION

An LED-based optical communication system mainly con-
sists of two parts, the transmitter and the receiver. The trans-
mitter converts the electrical signal into an optical signal. That
signal passes through the medium and is picked up by the re-
ceiver. The receiver detects the optical signal and converts it
back into an electrical signal for data processing. In addition to
the transmitter and the receiver, the proposed system includes a
mechanism for rotating the transmitter/receiver, to maintain the
communication despite the movement of the underlying robotic
platform. Considering the intended applications, small footprint
and low power consumption are among the major design con-
straints.

A. System Components

The role of the optical transmitter is to convert the electrical
signal into light pulses. Since the signal attenuation underwater
is minimum in the wavelength range of 400-500 nm [19], an
off-the-shelf blue LED (Cree XR-E Series LED from Cree Inc)
is chosen, which provides 30.6 Im at 1 A and requires 3.3 V.
It comes assembled with a heat sink. A circuit is designed to
modulate the LED (turning it ON and OFF) in correlation with bi-
nary data. A photodiode from Advanced Photonix (part number
PDB-V107) is chosen for the receiver, and it has high quan-
tum efficiency at 410 nm, low dark current, and fast rise time
(20 ns). A 12-V reverse bias across the photodiode is used to
increase the bandwidth and quantum efficiency [20]. A tran-
simpedance amplifier is used to convert the photodiode current
signal into a voltage signal, which then goes through a filter for
noise reduction.

The components of the transmitter and the receiver are placed
on two printed-circuit boards (PCBs). The first PCB board is
2 inches in diameter and has two holes in the middle to attach
set screw hubs for connecting to a motor shaft. The second PCB
board has a rectangular shape with size of 1 inch x 2 inch,
which holds the LED and the photodiode, and it is mounted
perpendicularly to the first circular board by using four 90°
header pins (see Fig. 1).

There are eight pins in the PCB circuits involving the power
supply, the transmitted signal, and the received signal. These
pins are connected by wires, which would be twisted when the
PCBs are rotated. To address this problem, a slip ring (MTO07
from MOFLON), an electromechanical device that allows the
transmission of power and electrical signals from a stationary
to a rotating structure, is adopted. A motor is used to rotate the
device. We initially used a mini-dc motor equipped with a shaft
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Fig. 1. Prototype of LED optical communication module with a rota-
tional base.

encoder, but later switched to a stepper motor due to the higher
control precision of the latter.

B. Characterization of Optical Communication Link
Performance Underwater

We have conducted experiments in a swimming pool to ex-
amine the performance of the optical communication link when
the transmitter and the receiver are aligned. The pool length
is 23 m. The transmitter and the receiver are encapsulated in
10-cm-diameter PVC tubes (with a transparent window at the
front) during the underwater experiments. Each of these tubes
is then attached to another PVC tube that fixes the transmitter
and receiver depth to 25 cm.

The light emitted from an LED spreads over a hemisphere
shape. Conditioning optics are required to redistribute the LED
light for specific requirements. Lenses are used for that purpose
and currently, the most commonly used LED lens is the total in-
ternal retractor lens [21]. In our experiments, we use a 5° lens for
the transmitter and the receiver. For each distance, experiments
are performed five times to mitigate the impact of experimen-
tal errors. Fig. 2 shows that the signal strength declines when
the distance between the receiver and the transmitter increases;
however, there is an adequate signal strength (greater than 1 V)
throughout the full length of the pool.

In addition to the signal strength measurements, we have also
examined the data transmission performance of the system un-
derwater. In the experiments, we use two computers to emulate
two underwater robots and we connect them to the transmit-
ter and the receiver, respectively, from the USB port using an
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Fig. 2. Measured signal strength versus the transmitter—receiver dis-
tance in swimming pool experiments for the case of 5° lens for the
transmitter. Vertical bars denote the standard deviations at each point of
measurement.
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Fig. 3. Sample signal waveform captured during the communication
bit error tests at a baud rate = 115 200 b/s.

FT232R USB-TTL level serial converter cable. The cable uses
an FT232RQ chip, housed in the USB connector, to convert the
USB data into asynchronous serial data at TTL levels. We send
over 270 000 bytes five times at a distance of 22 m and receive
those bytes on another computer. We confirm that the system
is able to transmit and receive at a speed of 115.2 Kb/s with a
bit error rate of zero. Fig. 3 shows an example of the received
signal waveform.

The experimental results here are for the case when the trans-
mitter and the receiver are stationary and aligned with each
other. Clearly, this is not the case in the dynamic situation. In
the rest of the paper, we focus on the problem of active alignment
control between the receiver and the transmitter when there is a
relative motion between them.

[ll. MODELING

In this section, we first review a light intensity model and
then formulate the state-space model for an estimation problem,
where, without the loss of generality, a scenario of two robots
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transmitter and the receiver.

is considered. In addition, in this paper, we consider that the
communicating parties are on the same plane.

A. Light Intensity Model

The model adopted here largely follows [22] with minor ad-
justments to suit the experimental prototype used in this paper.
The model takes into account all stages of the transmitter and
receiver circuits, including LED, lens, photodiode, and ampli-
fiers. The model mainly describes the effect of relative position
and orientation between the transmitter and the receiver on the
signal strength. See Fig. 4 for an illustration of the variables of
interest, including transmission angle f, transmission distance
d, and the angle of incidence ¢.

The transmitter LED has an angular intensity distribution
which is rotationally symmetric about the LED’s normal (6 =
0°). Thus, if we know the intensity of the LED along the normal,
we can compute the intensity at other points at the same radial
distance based on spatial intensity curve I, which represents the
light intensity at a unit distance for different transmitter angles.
Iy ismaximum at § = 0° and it rolls off as € increases. Typically,
Iy can be obtained either directly from the LED vendor or
measured experimentally.

To describe the extinction of the light signal we will adopt
Beer’s Law [23], which is used in understanding the attenua-
tion in physical optics. Let ¢ be the attenuation coefficient for
the medium in which the light transmits. We assume that the
coefficient is uniform across the entire length of transmission.
Beer’s law gives the exponential signal degradation at distance
d caused by absorption

A=¢e"°4 (1)

By combining the effect of spherical spreading with expo-
nential decay, we get the equation of the irradiance reaching the
receiver site

Ey(d) = Iye**/d>. )

Finally, we need to consider the effect of angle of incidence
¢, which is basically the angle made by the receiver normal with
the line connecting the receiver to the transmitter. From [24],
the power incident on the detector can be computed based on

Receiver incidence angle ¢ (degree).

Fig. 5. Gaussian curve fitting for the function g for the photodiode used
in this paper.

the signal irradiance at the detector position

Py = Ey(d)Aog (o) 3)

where A, denotes the detector area and g(¢) characterizes the
dependence of the received light intensity on the incidence angle
¢. The term g(¢) is setup dependent. For the receiver used in
this paper, we have found the function g(¢) using Gaussian
curve fitting of the normalized measurement data (see Fig. 5)
collected at different orientations of the receiver. The resulting
g(o) takes the form of a bimodal Gaussian function

9(¢) = ale_(%)z + aze_(%z)z 4)

where a; = 0.6682, by = 7.752, ¢ = 148.8, a; = 0.3340, b,
= — 13.57, c; = 325.8 are the curve fitting parameters. The
parameters by and b; are relatively close to each other (over the
range of [—180°, 180°]), so the resulting sum of the two modes
has a single peak, as shown in Fig. 5. The curve fitting could
be done using a single Gaussian mode but having one extra
Gaussian mode gives significantly better fitting.

As the light arrives on the receiver photodiode, the photodiode
produces a current, which gets filtered and amplified, to be
processed by an analog—digital converter. After all the stages,
the full signal strength model can be summarized as

Vi = Cplye™g(9)/d? (5)

where V; is the voltage signal and C), is a constant of pro-
portionality, which depends on the area of receiver photodiode
and various parameters associated with the filter and amplifier
circuits.

B. Siate-Space Problem Formulation

From Fig. 4 and (5), we can see that there are three indepen-
dent variables 6, d, and ¢ that characterize the received light
intensity. One could take these three variables as the states to be
estimated by the system, and then try to drive them toward their
desired values through control, if that is possible. However, of-
ten times the underlying robotic platforms are engaged in other
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tasks and may not constrain or modify their motions to accom-
modate communication. For example, it may not be possible
to change the distance d in a desirable way for communication
since that would involve the movement of the robots. What is
much more practical is to control the receiver angle ¢, since it is
a completely local decision due to the independent rotation base
for the transceiver. In a two-way communication setting, since
the transmitter and the receiver on each robot are pointing in the
same direction, adjusting ¢ to zero on each robot automatically
aligns each transmitter with the line connecting two robots. In
light of this discussion, we can combine terms involving ¢ and
d in a single variable and define the state variables as

A I A Cpfgﬁ_{‘d/dl
X = T3 = ¢ e

The value of x; is dependent on the distance and the trans-
mission angle. In a typical scenario, the receiver does not have
information about how the transmitter and its underlying robotic
platform move. So in our case, we will assume that the rela-
tive dynamics between the two communicating robots is slow
enough (quasi-static) that it can be captured with a Gaussian
process. In particular, the dynamics of the states defined in (6)
can be represented in the discrete-time domain as

(6)

= A [Tue | Ty k-1 + Wi k-1 @
B T2k l Ty k-1 T Up + Wa k1

where k is the time index and w;; and w,; are the pro-
cess noises assumed to be independent, white, Gaussian noises.
These noise terms, to some extent, account for the slow dynam-
ics of = and z,, which are not modeled explicitly. The term wu;,
is the control input through which the receiver angle is changed.
The kth measurement V; ;. can be expressed in terms of the
state variables, where an additive white Gaussian noise vy, as-
sumed to be independent from the process noises, is included

Var = z1e9(zo k) + v (8)

Given the measurement, the goal is to estimate z; ; and z,
based on which the control u; is designed to drive =5 toward
0°, which is the orientation with the maximum light intensity.

IV. ESTIMATION AND ALIGNMENT ALGORITHMS

Given that the measurement model (8) is nonlinear, a discrete
time EKF [25] is explored for solving the estimation problem.
From the (linear) state equation (7), the A and B matrices are

1 0
A=y 1

©
lol |
Bi= :
1
So that the system dynamics can be written as
Xp = AXp_1 + Bug_1 + Wi (10)

with wi = [w &, T.Ug‘k]T. Given that the output function in (8) is
nonlinear, denoting the system’s linearized output matrix at kth

X1k I

Receiver’s actual
Orientation:

Xk + Yk

Receiver’s dynamics |
Eq.(7) J X2k

Scanning

—#

erm:

-

Measurement:
2169 (x20) + vk

Motor Command:

Y
1 U+ Wgsa — Wi

Controller:

Uy = _sz,k

Y

" EKF

R go Xk
Fig. 6. Block diagram illustrating the proposed method.

time instant as Cy = C(x;), one can express the observability
matrix at that time instant as [25]

Cr
Cr1A

Cr

= Cr+i

. (11)

If the observability matrix O has a full rank of 2, the state
estimation error under the EKF will be exponentially bounded
in mean square and bounded with probability one under proper
conditions [25]. A sufficient condition for ;. to be full rank
is to make Cy a rank 2 matrix, which is only possible with at
least two independent measurements of the light intensity. One
could use two receivers with different orientations to address
this problem, but that would increase the complexity and cost of
the system. Instead, we introduce a scanning technique, where
the motor of the rotating base is commanded to oscillate around
a mean position. This mean position, which is what the control
input modulates, is considered to be the state variable z; from
here on.

Fig. 6 provides an outline of the proposed method. At each
iteration, the states = and x; are updated according to the system
dynamics. The scanning term is added to account for the actual
orientation of the receiver. The light intensity measured by the
receiver is used by the EKF to update the state estimates. Next,
the estimate 7 is used to compute the control term. We note
that the focus of this paper is on the use of nonlinear estimation
and basic feedback concepts to enable active alignment between
the receiver and the LED. Therefore, exploration of advanced
controllers is beyond the scope of this paper; for simplicity
of implementation and presentation, a proportional controller
is adopted. The final command sent to the motor is the sum of
control term and the difference between the last two consecutive
scanning terms.

Fig. 7 illustrates the scanning technique. The receiver oscil-
lates through a defined array of angles ¥ = { v, 9, ¥3 .1, },
which contains predefined angles used for scanning. In our case
=27, —4%. 67, =87, —10°, —8%, —87, —4°, —2°,0°, 2%
4°, 6°, 8°, 10°, 8°, 6°, 4°, 2°, 0° }. In each iteration, one 1, is
chosen from this array sequentially. The measurement is taken
at each v, and the last two measurements at v and v, _, form
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The term uy_; would be expressed in terms of the state
To variables later. Now, the linearized observation matrix C}
can be computed as
ah(iﬁlf‘k:f{,k) Cri1 Cka2 an
P — e ==
6)‘{{ Cr21 Crpa2
where
Cran = g(f{k + ¥x)
Cr12= :E{_Ikg!{‘%ék + )
Crpn = g(ff{,k — ug—1 + k1)
Crpp = :E{kg!{i{k —up_1 + Pr_1)
Fig. 7. lllustration of the receiver scanning sequence, with mean z; with ¢'(-) being the derivative of g(-) with respect to its

and last two angles of scanning ;. and v _.

our output vector y

T1rg(T2k + Ur) + vk

12)
1 k—19(T2,6-1 + Yr—1) + Uk—1 (

¥e =
Using the dynamics equation (7) and the measurement equation
(12), an EKF can be implemented. The complete algorithm is
explained as follows.

There are three covariance matrices, namely, P, @@ and R,
associated with an EKF. P is the conditional error covariance
matrix and P/ represents the forecast of the covariance matrix.
P7 needs to be initialized as a positive definite matrix. The initial
value of the estimate of x; can be taken as 0°. The initial value
of the estimate of x; depends on the maximum possible value
of intensity. A good choice of the initial estimate x; would be
from one-third to two-third of the maximum intensity value. @
is the process noise covariance matrix and R is the measurement
noise covariance matrix. At step &,

1) Prediction phase: Both state estimates () and error co-
variance matrix (P7) are predicted

nf B

oF A [Tk | _ T1,k-1

b= = | % 13
. :E:{J\ lIz.k—l+'Uk—l [

Pg‘ = AP, AT +Q (14)

where I; . denotes the estimate of the mth state at kth
interval ancl the superscript f stands for “forecast.”

2) Estimated output: From (12), the estimated output can be
written as

~ é yAlsk é :‘E{,kg(i\:g,k + "‘bi‘) (15)
Ik Yok T k-19(L2, k-1 +¥r-1) |
With (13), one can write
Ve = h(:ﬁ{.kv‘%i,k)
o B9+ )
i{.kg(i{,k — w1+ %) |
(16)

argument.
3) Update/analysis phase:

Ky, = P/ CT (C P/ CT + R)™! (18)
X =X + Ki(yx — 9%) 19)
P, = (I - KxCy)PL. (20)

It is to be noted that P, and X; without any superscripts
denote the updated values after the analysis phase.
4) Finally, the control is computed as

21

where G is a positive gain, which, motivated by the goal
of driving the mean of scan x; to zero. The final rotation
angle sent to the motor is uy + 1 — %, which will
be used to update the receiver angle at time k + 1.

Since the algorithm is based on EKF, the convergence de-
pends mainly on two factors: the full rank condition of the ob-
servability matrix Oy, of the linearized system [recall (11)], and
the initial conditions of the state estimates, which were already
discussed earlier. Since the full rank condition of (O}, is ensured
by the nonsingularity of the output matrix C}., we consider the
determinant of C}.

Ck| = 2] cg(&] x + ¥e)g' (85 — wk—1 + Ye1)

up = —Gizp

- 'j:{‘kg(jik —Up_y + "!f’k—l)g’(:i{,k + ).
Using (13) and (21), we obtain

Gz,
Up_| = — :
k-1 —a
which implies
i
Tk
Vo Wl TR o

and thus

|Cy| = I] J.g(-ggk +¢k)g (

e

= i{kg (— + Y 1) g {i‘{k + o).
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Since x; represents the light intensity at the receiver site
(which is in general different from the measured intensity by
the receiver), it is always positive—if =; were zero, there would
not be any measured signal even if the receiver is perfectly
pointing at the transmitter and the algorithm would be stopped.
Therefore, it is reasonable to assume .?:‘]f > 0. Thus, the only
possibility for |Cy| = 0 is then

a f
I
9(;%£,k +¢r)g (I ikG -+ lﬁk—l)

~ f

L2k 4
9\ 1= T ¥ 9’(1‘3{,;: +1) =0
or
g (&, +ve) ¢ (25 +¢Pe) 22)
9@, +) gtk '
Hk 9(r=g + k1)
One can show that the function G = L is monotonously de-

creasing in our domain of interest: (—180°, 180°). Hence, (22)
would be true if and only if

af
L
B+ = T+ i (23)
which implies
” 1-G
I{J.- = %(Tbk — Pp_1)- (24)

Since
|2 | < 180 and ¢ — e 1| =2

a sufficient condition for guaranteeing that (24) does not hold
and thus Cy, is nonsingular is

1-G

1
90, or G > —.
<90, or G > o1

Here, we get a very relaxed criterion on G. Thus, for our simu-
lation and experiments, we used G = 0.5.

V. SIMULATION RESULTS

In this section, we verify the effectiveness of our algorithm
through MATLAB simulation. In addition, we introduce two
alternative algorithms, followed by a comparison of EKF with
the two algorithms.

To further explore the effect of unmodeled system dynamics
(which were ignored in the algorithm development, considering
that the receiver typically would not have access to the motion
information of the transmitter), we have included some arbitrary
dynamics for the system in the simulation. Specifically, the
system state evolves according to the following:

Tk = T1k—1 + Wi k-1 25)
Tk = T2p-1+ O+ -1 + Wok—1
where [ is an unknown constant disturbance. The term /3 corre-
sponds to the relative angular movement between the transmitter
and the receiver, and it simulates the scenario where the trans-
mitter revolves around the receiver while shining directly at it.

TABLE |
PARAMETERS ASSOCIATED WITH EKF IMPLEMENTATION IN THE SIMULATION

Parameter  Description Value
%o Initial state estimate [2,0"
f N L : [100 0
Fy Initial error covariance matrix K 1000
‘ ; . [0.0025 0 }
Qsys System’s process noise covariance
i 0 0.01
mairix e
&
Q EKF’s process noise covariance 0‘3‘) (1}:|
matrix L
Rsys System’s measurement noise co- 0.04 0
: } 0 0.04
variance matrix ot
; y . 1 0
R EKF’s measurement noise covari- 0 1
ance matrix L
G Proportional controller gain 0.5
51 ——Original State (z1)
2« 4+ -—-EKF (."3'1)
(g ‘;
- 2
9
i5
£ 1
L*
=2
a0
@3
{3; ol ——0Original State (z2)
E ----EKF (%2)
0 , : : . . " g
= 0 5 10 15 20 25 30 i5
g 5. —Simulated measurement (y1)
E 4l -—Estimated measurement (31)
2 3
S 2
0 5 10 15 20 25 30 35
Time (s)
Fig. 8. Simulation results of EKF when the x2 dynamics contains an

unknown constant disturbance 3 = 1.2°/s.

Based on the model and the algorithms described earlier, the
simulation is conducted with parameters listed in Table 1. Note
that we have used different ) and R values for EKF, than the
system’s noise covariance matrices, as it is shown earlier [15]
that using scaled-up noise covariance matrices for EKF imple-
mentation gives an improvement in convergence performance.
Fig. 8 shows the results obtained from a simulation run with
3 = 1.2. From Fig. 8, it can be seen that the estimated states
converge to the neighborhood of the original states in about 2 s
and remain there throughout the run. We note that the estimated
value for the state z, is slightly lower than the actual. Most
likely this can be attributed to the positive bias term /3 in the
system dynamics, which constantly produces a shift of receiver
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Fig. 9. Simulation results of EKF method’s failure when the unknown
constant rate disturbance /3 is increased to 8°/s.

orientation in the positive direction. Note that the oscillations in
the measurements are attributed to the scanning motion of the
receiver. And we note that the actual mean (state x>) converges
to the neighborhood of zero in about 2-3 s. This corresponds
to the alignment of the mean direction of the receiver to the
direction that faces the transmitter.

To explore the limit of algorithm’s assumption on quasi-static
dynamics, the constant disturbance term (3 is increased to an
extent where the tracking fails. Fig. 9 shows the states when
the EKF algorithm stops working and the angle of incidence
T, starts going unbounded. This corresponds to the receiver’s
direction moving away from the transmitter-facing direction.

Next, we compare the performance of the EKF-based algo-
rithm with two alternative algorithms: hill-climbing and three-
point averaging. In particular, we explore the performance of
the algorithms in the presence of measurement noises. In hill-
climbing, the receiver starts with an orientation, measures the
light intensity, and rotates by angle v = 2° in either the clock-
wise or counterclockwise direction. It then measures the new
light intensity. If the latter is higher than the previous value, it
will rotate by - again in the same direction; otherwise it will
rotate in the opposite direction.

For the three point-averaging algorithm [24], the receiver per-
forms a clockwise rotation and then a counterclockwise rotation
by an angle + from the original location. Meanwhile, it takes the
light intensity measurements at each step (V1, V3, V3), where V;,
V5, V; represent the voltages at the clockwise rotation, counter-
clockwise rotation, and original location (y = 0), respectively.
The new turning angle -y, of the rotating base is calculated by
taking a weighted average of these signals at three steps

W1 — V2

VIR &)

mance for the three methods, for different levels of measurement noise,
when system states are evolved according to (25) with 4 = 1.2. Vertical
bars denote the down-scaled standard deviations at each point. “Hill
represents the hill-climbing algorithm, and “3Point” represents the three-
point-averaging algorithm.

The algorithm is implemented in MATLAB for simulation, with
turning angle v = 2°. To quantify the alignment control per-
formance, two metrics are considered based on the angle of
incidence ¢ and the clean light intensity measurement (light
intensity value uncorrupted by noise vy, defined as “clean mea-
surement™), respectively. Note that the algorithms use the noise-
corrupted measurement for alignment control, and the clean
measurement is used only for performance evaluation. We de-
fine the “tracking percentage”™ as the fraction of time when the
system is in the tracking zone, where the latter could be de-
termined based on either the angle of incidence or the clean
measurement. In particular, we consider a threshold of 15° for
the angle of incidence ¢ : if ¢ is outside the range [—15, 15]°,
it would be considered out of the tracking zone. From Fig. 5,
we can see that this angular threshold corresponds to about 20%
of the maximum level of the intensity, which we will use as a
threshold for the “clean measurement” for determining whether
the receiver orientation is in the tracking zone. For a maximum
intensity of 3 V, the corresponding intensity threshold for track-
ingis 0.6 V.

For the comparison of alignment control performance, each
algorithm is run with a series of noise levels for the measure-
ment. As the noise level increases, the stochasticity in the track-
ing percentage increases. Hence in simulation, for each noise
level, results of 1000 runs have been combined. In each run, the
tracking percentage is computed and then the average over the
1000 runs is obtained to get an estimate of the expected value.
The standard deviation in each case is also computed to capture
the variation among the runs. Fig. 10 shows the plots for the
mean of each algorithm with standard deviation as error bars.
For clarity, the standard deviation in error bars is scaled down by
five times. For each of the algorithm, the tracking percentage is
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Fig. 11. Complete setup: Receiver(left) on a rotation base and trans-
mitter LED on a mobile robot (right).

computed by the two methods (based on the angle of incidence
(¢), legend “-angular,” and the light intensity measurement, leg-
end “measure”) mentioned earlier.

The purpose of using two methods to compute tracking is
to show that there is a high amount of correlation between the
tracking percentages computed by these two methods. So that
in the case of experiments, even if the angular data are not
available, we can confidently rely on the tracking percentage
generated by the intensity measurement data. From Fig. 10, one
can easily see that the tracking performance of the EKF-based
algorithm is much better than that of the other two. The tracking
remains 100% even at the noise level of 1.0 and it decreases
gradually after that, which gives a good range of operation. The
other two algorithms perform well under low noise levels, but
their performance degrades faster than the EKF at higher noise
levels. It can also be observed that the standard deviation under
the EKF-based algorithm is also much lower than the other
two algorithms, which further proves its reliability under higher
noise levels.

VI. EXPERIMENTAL RESULTS

In this section, we verify the efficacy of our algorithm by im-
plementing cases similar to the simulation on an experimental
setup. While the LED communication hardware design allows
us to use both the receiver and the transmitter in the same mod-
ule at once, so that two robots, each equipped with such a
module, can communicate with each other both-ways, in this
particular work we are focused on implementation of tracking
algorithm on the receiver. Therefore, a separate light source is
used as a transmitter. Fig. 11 shows such a transmitter—receiver
pair used in the experiments. The transmitter is mounted on
a mobile robot to facilitate the relative motion with respect to
the receiver. It is to be noted that the receiver in Fig. 11 is a
modified version of the device shown in Fig. 1. Here, as men-
tioned earlier, a stepper motor is used instead of a dc motor. The
stepper motor has a precise control over the angular position.
For the real-time onboard implementation of all computations,

Fig. 12. Experimental setup: Transmitter robot moving around static
receiver, following the marker lines.

Intel Edison mini-computer board is used. It is equipped with
500-MHz Atom 2-Core CPU and 1 GB of LPDDR3 RAM. The
hardware specifications are sufficient for the real-time compu-
tation required for our algorithm, and each EKF iteration takes
about 50 ms to complete.

A mobile robot equipped with the transmitter revolves around
the static receiver at a distance of 1.25 m while facing the
receiver (see Fig. 12). Here, the transmitter robot is hard-coded
to follow the circular path centered around the receiver, which
not only ensures the distance d to be constant but also enables
the transmitter to focus light on the receiver throughout the run
(6 =~ 0°). The robot’s speed is fixed in such a way so that it
revolves around the receiver at 1°/s. On the receiver’s end, an
averaging filter is implemented on the on-board measurement
of the light intensity. Currently, our experiments are conducted
in the air so the noise is relatively small and can be removed by
averaging. The averaged output of the filter is termed as “clean
measurement” for the experiments. Moreover, to implement a
range of noises, an extra artificial Gaussian noise term is added
to the clean measurement.

Fig. 13 shows the evolution of state estimates and measure-
ment output for a particular run with the additional, artificial
noise level of 1.0 when the EKF-based algorithm is imple-
mented. Here, we can see that the estimate of the mean of the
scan () goes to a bounded neighborhood of zero as well. It is
to be noted that we do not have access to the original states of
the system, hence only the estimates are plotted. However, while
running the experiment, we have visually observed that after a
few iterations, the mean angular position of the receiver-scan
starts aligning itself with the line connecting the transmitter to
the receiver, which implies that the real x; also converges to the
neighborhood of 0°. Moreover, the estimate z; stays within a
relatively narrow range (according to our design of experiment),
which should be close to the actual ;. Hence, according to these
observations, the estimates remain within a close range around
the original states.

To conduct a comparison between the three algorithms, we
further perform multiple runs in the experiment. However,
unlike simulation, it is not practical to do 1000 runs in the
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Fig. 13. Experimental results when the transmitter robot moves around

the receiver with an angular rate of about 1 °/s. The measurements are
corrupted with the noise level of 1.0.
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Fig. 14. Experimental results on comparison of alignment control per-
formance for the three methods, for different levels of measurement
noise when the constant disturbance (3) is 2.8° /s. Vertical bars denote
the downscaled standard deviations at each point.

experiments for each case, and we limit the number of experi-
ments to 10 runs. Moreover, when the transmitter robot moves
along the circular path, its trajectory is not always consistent.
For instance, sometimes it goes a little closer to the receiver
and sometimes further. The data generated by this motion is
good for qualitative demonstration, but to have a fair quantita-
tive comparison between the algorithms, we need a consistent
system. Hence, we choose to keep the transmitter robot static
and introduce an unknown constant disturbance term, similar to
3 in (25) in the onboard program. This disturbance term forces
the receiver to rotate away from the transmitter facing direction.
Fig. 14 shows the plot of the tracking percentage with scaled-
down standard deviation error-bars over the range of noise level.

It is to be noted that since the angular data is not available, the
tracking is computed by thresholding of light intensity mea-
surements. As we can see, the behaviors of the algorithms in the
experiment are similar to those observed in simulation and the
EKF algorithm has higher tracking performance with gradual
degradation as compared to other two algorithms. The variance
in the tracking percentage of EKF is also lower than the other
two alternative algorithms. Other than the comparative perfor-
mance evaluation, if we consider the noise level of 1.0, which
is one-third of the maximum intensity or 22 dB signal to noise
ratio, we have more than 95% of tracking.

VIl. ConcLusioN AND FUTURE WORK

In this paper, a compact LED-based communication system
using a single receiver with active alignment control has been
presented. For tracking, we have tested the applicability of sim-
pler algorithms like the hill-climbing and the three-point aver-
aging methods. These methods are good for low noise environ-
ments, but their performance degrades steeply at higher noise
scenarios. Whereas a principled approach using state estimation
and control like our proposed EKF-based alignment control al-
gorithm not only gives comparable results in lower noise cases,
but performs robustly in the case of higher noise environment.
In our approach, the motion of the transmitter was assumed to
be unknown and captured as part of a white Gaussian noise. A
scanning technique is implemented to satisfy the observability
criterion required for the EKF. A simple proportional controller
is used for active alignment.

As mentioned in Section I'V, the main focus of this paper was
to demonstrate the instrumental role of nonlinear estimation
and feedback control in the active alignment of the LED and
the receiver. In particular, this approach uses the measurement
history to estimate the state variables and subsequently applies
a control action based on the state estimate. It outperforms algo-
rithms that simply react to the current measurement (such as the
hill-climbing and three-point-averaging algorithms) in the pres-
ence of measurement noises, at a modest cost of implementation
complexity. While the EKF was adopted for state estimation, it
was not meant to be the only or best possible choice. Other
tools, such as the unscented Kalman filter [26] and the moving
horizon estimator [27], could also work well for this problem.
Similarly, while a simple proportional controller showed rea-
sonably good performance, we anticipate that more advanced
controllers, such as PID control or sliding mode control, could
deliver even better performance at the cost of complexity.

For future work, we plan to explore the effectiveness of the
proposed system in the underwater setting, which motivated the
LED-based optical communication in the first place. In particu-
lar, we will mount the communication modules on two underwa-
ter robots, and investigate the improvement of the algorithm to
address additional challenges introduced by water disturbances
and robot motion. Moving forward, we will also extend the sys-
tem to the 3-D setting, where the robots can move underwater in
any direction and the transceivers of robots need to align them-
selves a in 3-D spatial setting, to establish and maintain the line
of sight for communication.
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