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Abstract—Multicore systems should support both speculative
and non-speculative parallelism. Speculative parallelism is easy
to use and is crucial to scale many challenging applications,
while non-speculative parallelism is more efficient and allows
parallel irrevocable actions (e.g., parallel 1I/0). Unfortunately,
prior techniques are far from this goal. Hardware transactional
memory (HTM) systems support speculative (transactional) and
non-speculative (non-transactional) work, but lack coordination
mechanisms between the two, and are limited to unordered
parallelism. Prior work has extended HTMs to avoid the lim-
itations of speculative execution, e.g., through escape actions and
open-nested transactions. But these mechanisms are incompatible
with systems that exploit ordered parallelism, which parallelize
a broader range of applications and are easier to use.

We contribute two techniques that enable seamlessly compos-
ing and coordinating speculative and non-speculative work in
the context of ordered parallelism: (i) a task-based execution
model that efficiently coordinates concurrent speculative and
non-speculative ordered tasks, allowing them to create tasks
of either kind and to operate on shared data; and (ii) a safe
way for speculative tasks to invoke software-managed speculative
actions that avoid hardware version management and conflict
detection. These contributions improve efficiency and enable new
capabilities. Across several benchmarks, they allow the system to
dynamically choose whether to execute tasks speculatively or non-
speculatively, avoid needless conflicts among speculative tasks,
and allow speculative tasks to safely invoke irrevocable actions.

Index Terms—multicore, speculative parallelism, ordered par-
allelism, fine-grain parallelism, transactional memory, thread-
level speculation, speculative forwarding, synchronization.

I. INTRODUCTION

Systems that support speculative parallelism, such as thread-
level speculation (TLS) and transactional memory (TM), have
two major benefits over non-speculative systems: they simplify
parallel programming [69, 79] and uncover abundant parallelism
in many hard-to-parallelize applications [47, §9]. However, even
applications that need speculation to scale have work that is best
executed non-speculatively. For example, some tasks are well
synchronized and running them speculatively adds overhead
and needless aborts. Moreover, non-speculative parallelism is
needed to perform irrevocable actions, such as I/O, in parallel.

Ideally, systems should support composition and coordination
of speculative and non-speculative tasks, and allow those tasks
to share data. Unfortunately, prior techniques fall short of
this goal. All prior hardware techniques to combine spec-
ulative and non-speculative parallelism have been done in
hardware transactional memory (HTM) systems [16, 36, 41, 62,

73]. HTM supports both speculative (transactional) and non-
speculative (non-transactional) code. But HTM lacks shared
synchronization mechanisms, so speculative and non-speculative
code cannot easily access shared data [26, 92]. Moreover, most
HTMs provide unordered execution semantics that miss many
opportunities for parallelization.

Recent work has instead focused on using speculation to
support ordered parallelism, where parallel tasks appear to
execute in a program-specified total or partial order [47,
70]. Ordered parallelism is more general and abundant than
unordered parallelism. For example, consider the problem of
parallelizing a transactional database. Using classic HTM, each
database transaction must execute on a single thread as a long
memory transaction. By contrast, ordered parallelism allows
breaking each database transaction into many short, ordered
tasks, exploiting abundant intra-transaction parallelism [29, §9].

Classic TLS systems leveraged ordered speculation to par-
allelize sequential programs [27, 30, 35, 75, 76, 86, 87, 97],
some HTMs offer programmer-defined commit order [16, 36,
71], and the recent Swarm architecture [46, 47, 48, 89] has
a rich execution model that can parallelize more algorithms
than TLS or TM and supports tiny ordered tasks efficiently.
However, these systems disallow non-speculative parallelism:
all tasks except the earliest active one execute speculatively.

The goal of this work is to bring the benefits of non-specula-
tive execution to systems that support ordered parallelism. This
is not merely a matter of adapting HTM techniques. Unordered
and ordered speculation systems address different needs and
need different mechanisms (Sec. II). To meet our goal, we
contribute two main techniques.

Our first contribution is Espresso, an expressive execution
model for speculative and non-speculative parallelism (Sec. III).
In Espresso, all work happens within tasks, which can run
speculatively or non-speculatively. Tasks can create children
tasks that run in either mode. Because Espresso efficiently
supports fine-grain tasks of a few instructions each, many tasks
access a single piece of data, which is known when the task
is created. To exploit this, Espresso provides synchronization
mechanisms to coordinate speculative and non-speculative tasks
efficiently. Moreover, Espresso lets the system decide whether
to run certain tasks speculatively or non-speculatively, reaping
the efficiency of non-speculative parallelism when it is plentiful,
while exploiting speculative parallelism when needed to scale.
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Fig. 1. Dijkstra’s single-source shortest paths algorithm (sssp).

Our second contribution is Capsules, a technique that lets
speculative tasks avoid hardware-managed speculation, enabling
scalable system services and concurrent system calls (Sec. IV).
Prior work in HTM has proposed escape actions [13, 63, 100]
and open-nested transactions [59, 63, 64] to achieve similar
goals. Unfortunately, these mechanisms are incompatible with
many modern speculative systems. Specifically, they are incom-
patible with speculative forwarding, which allows speculative
tasks to read data written by uncommitted tasks. Forwarding
is critical for ordered parallelism, but causes tasks to lose
data and control-flow integrity (Sec. II-C). Capsules solve this
problem by implementing a safe mechanism to transition out
of hardware-managed speculation and by protecting certain
memory regions from speculative accesses. Unlike prior
techniques, Capsules can be applied to any speculative system,
even if speculative tasks can lose data or control-flow integrity.

Our contributions improve performance and efficiency, and
enable new capabilities. We implement Espresso and Capsules
atop Swarm (Sec. V) and evaluate them on a diverse set of
challenging applications (Sec. VI). At 256 cores, Espresso
outperforms non-speculative-only execution by gmean 6.9x and
speculative-only execution by gmean 22%. Capsules enable
the efficient implementation of important system services, like
a scalable memory allocator that improves performance by up
to 69, and allow speculative tasks to issue concurrent system
calls, e.g., to fetch data from disk.

II. BACKGROUND AND MOTIVATION

We present three case studies that show the need to combine
speculative and non-speculative parallelism. Espresso subsumes
prior speculative execution models (HTM, TLS, and Swarm),
so these case studies use our Espresso implementation (Sec. V),
which does not penalize programs that do not use its features.

A. Speculation benefits are input-dependent

Dijkstra’s algorithm for single-source shortest paths (sssp)
aptly illustrates the tradeoffs between speculative and non-spec-
ulative parallelism. sssp finds the shortest distance between
some source vertex and all other vertices in a graph with
weighted edges. Each task visits one vertex, and tasks execute
in order of distance from the source. The first task to visit a
given vertex sets its distance and creates tasks to visit all its
neighbors; later tasks that visit the same vertex do nothing.
Fig. 1 shows code for sequential sssp, which uses a priority
queue to order tasks, and illustrates how it works.
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Fig. 2. Speedup of three versions of sssp on 1-256 cores
for two graphs. Total cache and queue capacities grow with
core count (Sec. VI), causing superlinear speedup in usa.

sssp admits a non-speculative, one-distance-at-a-time par-
allelization [24, 55, 60]. At any given time, the system only
processes tasks with the lowest unprocessed distance; these
create tasks with higher distances. After all tasks for the current
distance have finished, cores wait at a barrier and collectively
move on to the next unprocessed distance. Since multiple same-
distance tasks may visit the same vertex, each task must use
proper synchronization to ensure safety.

This non-speculative sssp works well if the graph is
shallow and there are many vertices with the same distance
to the source. However, weighted graphs often have very few
vertices per distance, so non-speculative sssp will find little
work between barriers. In this case, scaling sssp requires
exploiting ordered parallelism, processing tasks across multiple
distances simultaneously. While most tasks are independent,
running dependent (same-vertex) tasks out of order will produce
incorrect results. Hence, exploiting ordered parallelism requires
speculative execution, running tasks out of order and committing
them in order. The Swarm architecture can do this, but it runs
all tasks (except the earliest active one) speculatively [47].

Neither strategy is always the best. Fig. 2 compares the speed-
ups of the non-speculative (Non-spec) and fully speculative (All-
spec) versions of sssp on two graphs: usa, a graph of Eastern
U.S. roads, and cage, a graph arising from DNA electrophoresis.
Both versions leverage Espresso’s hardware-accelerated task
scheduling and locality-aware execution (see Sec. VI-A for
methodology). At 256 cores, on usa All-spec is 248 x faster than
Non-spec, which barely scales because there are few vertices
per distance. This is consistent with prior work [46, 47]. By
contrast, cage is a shallow unit-weight graph with about 36000
vertices per distance, so Non-spec outperforms All-spec by 21%,
as it does not incur the overheads of speculative execution.

These results show that forcing the programmer to choose
whether to use all-or-nothing speculation is undesirable. The
best way to parallelize sssp is a hybrid strategy: all lowest-
distance tasks should run non-speculatively, relying on cheaper
synchronization mechanisms to provide mutual exclusion, while
higher-distance tasks should run speculatively to exploit ordered
parallelism. But this requires the same task to be runnable in
either mode, which is not possible in current systems.

Espresso provides the mechanisms needed for this hybrid
strategy (Sec. III). First, it provides two synchronization
mechanisms, timestamps and locales, that have consistent
semantics across speculative and non-speculative tasks. Second,



it lets the system choose whether to speculate or not, based
on the amount of available parallelism. Fig. 2 shows that the
Espresso version of sssp achieves the best performance on
both graphs, because it only uses speculative parallelism when
non-speculative parallelism is insufficient.

B. Combining speculative and non-speculative tasks

Even in applications that need speculative parallelization,
some tasks are best run non-speculatively. Consider des, a
discrete event simulator for digital circuits, which we adapt
from Galois [40, 70]. Each des task evaluates the effects of
toggling a gate input at a particular simulated time; if the gate’s
output toggles, the task creates new tasks for gates connected
to this output. As with sssp, ordered speculation enables des
to scale to hundreds of cores [46, 47].

We extend des to log the waveforms of intermediate signals,
a common feature in logic simulators. Each simulation task
that causes a toggle creates a separate logging task that writes
the event to a per-core in-memory log.

While simulation tasks must use ordered speculation to
scale, there is no good reason for logging tasks to speculate.
Logging is trivial to synchronize. Prior architectures for ordered
parallelism, however, run all tasks speculatively. This causes
abort cascades: if a simulation task aborts, its child logging
task aborts, and this in turn causes all logging tasks that have
later written to the same log to abort.

The right strategy is to let each speculative simulation task
launch a non-speculative logging task. A logging task runs
only after its parent commits, avoiding mispeculation. If its
parent aborts, it is discarded. Espresso enables this approach.

Fig. 3 compares the speedups 256
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Prior work in HTM has proposed
to let transactions register commit
handlers that run only at transaction
commit [59]. Espresso generalizes this idea to let any task create
speculative or non-speculative children. Additionally, Espresso’s
implementation requirements are different: unordered HTMs
commit transactions immediately after running, while ordered
tasks can stay speculative many cycles after they finish.

Fig. 3. des speedup on 1-
256 cores, with speculative and
non-speculative logging tasks.

C. Software-managed speculation improves parallelism

When a speculative task produces output that is not im-
mediately needed, it can create a non-speculative child task
(Sec. II-B). However, a speculative task often needs to use the
results of some action, such as allocating memory, that is best
done without hardware speculation.

Prior work in HTM has proposed escape actions for this pur-
pose [13, 63, 100]. Escape actions let a transaction temporarily
turn off hardware conflict detection and version management
and run arbitrary code, including system calls. An escape
action can register an abort handler that undoes its effects if

the enclosing transaction aborts. For example, a transaction
can use escape actions to allocate memory from a conventional
thread-safe allocator, avoiding conflicts on allocator metadata.
The escape action’s abort handler frees the allocated memory.

Unfortunately, escape actions and similar mechanisms, such
as open-nested transactions [59, 63, 64], are incompatible with
architectures for ordered parallelism and many recent HTMs.
These architectures perform speculative forwarding [4, 29,
44, 71, 72, 74, 86, 88], which lets tasks access data written
by earlier, uncommitted tasks.! Speculative forwarding is
crucial because ordered tasks may take a long time to commit.
Without speculative forwarding, many ordered algorithms scale
poorly [88] (e.g., des is 5x slower at 256 cores).” However,
letting tasks access uncommitted state means they may read
inconsistent data, and lose data and control-flow integrity (e.g.,
by dereferencing or performing an indirect jump to an invalid
pointer). This makes escape actions unsafe: a mispeculating task
can begin a malformed escape action, or an escape action might
read temporarily clobbered data. Such an escape action could
perform actions that cannot be undone by an abort handler.

Without escape actions, prior 256 R ]
ordered speculative systems are : :
forced to run memory allocation
routines speculatively, and suffer
from spurious conflicts on allocator
metadata. Fig. 4 shows the perfor-
mance of des when linked with 1%
TCMalloc [31], a state-of-the-art
memory allocator that uses thread-
local structures. des scales poorly with TCMalloc, achieving
a speedup of 23x at 100 cores and declining significantly at
higher core counts, where it is overwhelmed with aborts.

Capsules (Sec. IV) solve this problem by providing a general
solution for providing protected access to software-managed
speculation. The program prespecifies a set of capsule functions,
and the system guarantees that speculative tasks can only
disable hardware speculation by invoking these functions.
This prevents mispeculating tasks from invoking arbitrary
actions. Moreover, capsule functions have access to memory
that is not conflict-checked and is protected from accesses by
speculative tasks. Fig. 4 shows the performance of capalloc,
a memory allocator similar to TCMalloc that implements all
allocation routines, such as malloc, in capsule functions and
uses lock-based synchronization. capalloc makes des scale
well, outperforming TCMalloc by 39x at 256 cores.
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Fig. 4. des speedup on 1-256
cores, with different allocators.

III. ESPRESSO EXECUTION MODEL

Espresso programs consist of tasks that run speculatively
or non-speculatively. All tasks can access shared memory and
make arbitrary system calls. Espresso provides two synchro-
nization mechanisms: timestamps to convey order requirements
and locales to convey mutual exclusion and locality information.
Each task can optionally be given a timestamp and a locale.

I We follow TLS terminology [71, 86, 88]; in software TMs, lack of
speculative forwarding is referred to as opacity [21, 34].

2 Without speculative forwarding, systems must stall [62] or abort [11, 95]
tasks that access uncommitted data.



void ssspTask(Timestamp dist, Vertex*® v) {
if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)
espresso::create<MAYSPEC>(&ssspTask,
/*timestamp=*/ dist + weight(v,n),
) /*locale=*/ n->id, n);
}

void main() {
[...] /* Set up graph and initial values */
espresso::create<MAYSPEC>(&ssspTask,
0, source->id, source);
espresso::run();

Listing 1. Espresso implementation of Dijkstra’s sssp algorithm.

Timestamps and locales have common semantics among
speculative and non-speculative tasks, allowing tasks running
in either mode to coordinate accesses to shared data.

Espresso supports three task types that control speculation:
SPEC tasks always run speculatively, NONSPEC tasks always
run non-speculatively, and MAYSPEC tasks may run in either
mode. All tasks can create children tasks of any type.

We expose these features through a simple API. Tasks create
children tasks by calling the following (inlined) function:

espresso::create<type>(taskFn,
[timestamp, locale,] args...)

The new task will run the task function taskFn with arguments
supplied through registers. If timestamp or locale are given,
the task will be synchronized according to their semantics.

Espresso programs start by creating one or more initial
tasks with espresso::create and calling espresso: :run,
which returns control after all tasks finish. Listing 1 shows
the implementation of sssp described in Sec. II-A, which we
will use to explain Espresso’s semantics. In this example, the
program creates one initial task to visit the source vertex.

A. Espresso semantics

Espresso runs all speculative tasks atomically, i.e., specu-
lative tasks never appear to interleave. Moreover, Espresso
provides strong atomicity [10, 20] between speculative and
non-speculative tasks: the effects of a speculative task are
invisible to non-speculative tasks until the speculative task
commits (containment [10]), and non-speculative writes do not
appear mid-speculative-task (non-interference [10]). Espresso
does not guarantee atomicity among non-speculative tasks.

Atomicity has implications on the allowed concurrency
between parent and child tasks. If a parent creates a speculative
child, the child appears to execute after the parent finishes. If
a speculative parent creates a non-speculative child, the child
does not run until after the parent commits (e.g., Sec. II-B).

There are no atomicity guarantees among non-speculative
tasks. The programmer must ensure non-SPEC tasks are well-
synchronized, that is, they avoid race conditions.

Espresso provides two synchronization mechanisms to con-
trol how the system executes tasks. Timestamps enforce order
among tasks, and locales enforce mutual exclusion. Timestamps
and locales have consistent semantics for both speculative and
non-speculative tasks, but have different effects on concurrency,
described below and summarized in Table I.

Timestamps: Timestamps are integers that specify a partial
order among tasks. If two tasks have distinct timestamps, the

TABLE I
THE EFFECT OF ESPRESSO’S SYNCHRONIZATION MECHANISMS.

Task mode Synchronization mechanism
Timestamps Locales
Non-speculative barriers mutual exclusion

Speculative ordered commits reduce conflicts

system ensures they appear to execute in timestamp order. To
avoid priority inversion, a timestamped task may only assign
timestamps greater than or equal to its own to its children. A
non-timestamped task cannot create timestamped children.

Timestamps impose barrier semantics among non-specula-
tive tasks. For example, a non-speculative task with timestamp
10 will not run until all tasks with timestamp < 10 have finished
and committed. However, speculative tasks can run out of order,
speculating past these barriers. Timestamps only constrain the
commit order of speculative tasks. Hence, speculation can
increase parallelism for ordered algorithms.

Listing 1 shows timestamps in action. Each sssp task has a
timestamp that corresponds to its path’s distance to the source
vertex. If all tasks had type NONSPEC instead of MAYSPEC, this
code would implement the non-speculative, one-distance-at-a-
time sssp version from Sec. II-A. If all tasks had type SPEC,
the code would implement the fully speculative sssp version.
Locales: A locale is an integer that, if specified, denotes the
data the task will access. Locales enforce mutual exclusion:
if two tasks have the same locale, Espresso guarantees that
they do not run concurrently. For tasks that only need to
acquire a single lock, locales are a more efficient alternative
to conventional shared-memory locks. Moreover, Espresso
hardware uses locales to map tasks that are likely to access
the same data to the same chip tile in order to exploit locality.

For non-speculative tasks, locales can be used as mutexes to
write safe parallel code. For speculative tasks, locales are not
necessary, since these tasks already appear to execute atomically.
Locales are still useful in reducing aborts [46] as well as
exploiting locality across speculative and non-speculative tasks.

Listing 1 shows locales in action. Each sssp task uses the
ID of the vertex it processes as its locale. For non-speculative
tasks, this implements mutual exclusion among tasks that access
the same vertex. For both speculative and non-speculative tasks,
this approach sends all tasks that operate on the same vertex to
the same chip tile, improving temporal locality. An optimization
to avoid cache ping-ponging could apply a technique from prior
work [46]: use the cache line of the vertex as the locale.

These synchronization mechanisms cover important use
cases, but are not exhaustive. For example, locales only provide
single-lock semantics, but a task may need to acquire multiple
locks. In this case, the task may either use shared-memory locks
or resort to speculative execution by marking the task SPEC.
Espresso does not support multiple locales per task because
doing so would be much more complex.

Comparison with other execution models: Espresso gen-
eralizes both Swarm and HTM. Swarm programs consist
of all-timestamped SPEC tasks. Espresso extends Swarm to
support non-speculative tasks and to make timestamps optional.



Locales extend Swarm’s spatial hints [46] to provide mutual
exclusion among non-speculative tasks. Espresso also subsumes
HTM. HTM programs consist of transactional (speculative)
and non-transactional (non-speculative) code blocks. These are
equivalent to non-timestamped SPEC and NONSPEC tasks.

B. MAYSPEC: Tasks that may speculate

Espresso tasks run speculatively or not. However, the
programmer must choose one of three types for each task:
SPEC, NONSPEC, or MAYSPEC. MAYSPEC lets the system decide
which mode the task should run in. This is useful as there are
times when it is safe to run a task speculatively but not non-
speculatively. If the system wants to dispatch a MAYSPEC task
that cannot yet run non-speculatively, the task runs speculatively.

Choosing between NONSPEC and MAYSPEC affects perfor-
mance but not correctness. NONSPEC and MAYSPEC tasks must
already be well-synchronized, so they are also safe to run
speculatively. If the task will be expensive to run speculatively
(e.g., the logging tasks in Sec. II-B), it should be NONSPEC.
Otherwise, MAYSPEC lets the system decide.

Listing 1 shows MAYSPEC in action. All sssp tasks are
tagged as MAYSPEC because they can run in either mode, as
locales enforce mutual exclusion among same-vertex tasks. This
implements the right strategy discussed in Sec. II-A: tasks with
the lowest unprocessed distance run non-speculatively, and if
this non-speculative parallelism is insufficient, the system runs
higher-distance (i.e., higher-timestamp) tasks speculatively.

C. Exception model

Espresso does not restrict the actions that tasks may perform.
Beyond accessing shared memory, both speculative and non-
speculative tasks may invoke irrevocable actions that cannot be
undone by a versioned memory system. That is, tasks in either
running mode can call into arbitrary code, including code that
triggers exceptions and invokes system calls.

To provide precise exception semantics and enforce strong
atomicity, a speculative task that triggers an exception or a
system call yields until it becomes the earliest active task
and is then promoted to run non-speculatively. To guarantee
promoted tasks still appear strongly atomic, a promoted task
does not run concurrently with any other non-speculative task
(Sec. V-B). Previous TLS systems used similar techniques to
provide precise exceptions [35, 87].

Promotions can be expensive but are rare in practice. To avoid
frequent and expensive promotions, tasks that frequently invoke
irrevocable actions should use the NONSPEC type. Capsules
further reduce the need for promotions.

Finally, Espresso introduces a promote instruction to expose
this mechanism. If called from a speculative task, promote
triggers an exception that will, in the absence of conflicts,
eventually promote the task. If called from a non-speculative
task, promote has no effect. promote has two uses. First, it
can be invoked by tasks that detect an inconsistency and know
they must abort, similar to transactional retry [38]. Second,
promote lets code that must perform an expensive action avoid
doing so speculatively (e.g., Listing 2 in Sec. IV).

IV. CAPSULES

Although hardware version management is more efficient
than a software-only equivalent, hardware-only speculation
can cause more serialization. For example, Espresso supports
irrevocable actions in speculative tasks by promoting them
to run non-speculatively, an expensive process that limits
parallelism. Irrevocable actions cannot run under the control
of hardware speculation, since hardware cannot undo their
effects. This is limiting, because letting speculative tasks
invoke system calls in parallel has many legitimate uses [6].
Beyond system calls, tasks may wish to perform software-
managed speculative actions that exploit application-specific
parallelization strategies, such as commutativity [18, 52, 65,
77]. As we saw in Sec. II-C, prior work proposed escape
actions to achieve this goal [13, 63, 100]. But escape actions
are incompatible with systems for ordered parallelism that need
speculative forwarding. Forwarding makes speculative tasks
lose data and control-flow integrity, making it impossible for
software to dependably undo speculative actions.

Specifically, escape actions suffer from two problems with
forwarding. First, a mispeculating task that has lost control-flow
integrity may jump to malformed or invalid code that initiates
an escape action and performs an unintended system call, such
as overwriting a file or exiting the program, that cannot be
undone. Second, mispeculating tasks may clobber state used
by escape actions, causing them to misbehave when they read
this uncommitted data. For example, consider an escape action
that allocates memory from a free list. A mispeculating task
can temporarily clobber the free list, causing the escape action
to return invalid data or crash.

To address these issues, we present Capsules, a technique
to enable safe software-managed speculative actions in any
speculative system. Capsules are a powerful tool for systems
programmers. Similar to escape actions, Capsules can avoid the
overheads of hardware conflict detection, perform irrevocable
actions, and undo speculative actions by registering abort han-
dlers. Capsules enable programmers to guarantee safety even
if a mispeculating task attempts to use Capsules incorrectly. It
does this through two mechanisms. First, it provides untracked
memory that is protected from mispeculating tasks. Second,
it uses a vectored-call interface that guarantees control-flow
integrity within a capsule. We add three new instructions to the
ISA, capsule call,capsule ret,and capsule abort -
handler. We explain their semantics below.

A. Untracked memory

We allow memory segments or pages in the application’s
address space to be classified as untracked. Untracked memory
is neither conflict-checked nor versioned in hardware, eliminat-
ing speculation overheads for accesses to untracked data. We
use standard virtual memory protection mechanisms to prevent
speculative tasks from accessing untracked memory without
entering a capsule (Sec. V-C). This is analogous to how OS
kernel memory is protected from userspace code.

Software-managed speculative state should be maintained in
untracked memory both to avoid the overhead of hardware



conflict detection as well as to ensure it is not corrupted
by speculative tasks. Accesses to untracked data can be
synchronized conventionally (e.g., with locks) to ensure safety.

B. Safely entering a capsule

Since a speculative task can lose control-flow integrity, we
need a way to enter a capsule that guarantees the integrity of
capsule code. To achieve this, we use a vectored-call interface,
similar to that of system calls.

We require that all capsule code is wrapped into capsule func-
tions placed in untracked memory. A capsule-call vector stored
in untracked memory contains pointers to all capsule functions.
Since speculative tasks cannot access untracked memory, they
can only call capsule functions with the capsule call
instruction. capsule call is similar to an ordinary call
instruction, but it takes an index into the capsule-call vector
as an operand instead of a function address. capsule call
looks up the index in the vector. If the index is within bounds, it
jumps to its corresponding function and disables hardware spec-
ulation; if the index is out of bounds, it triggers an exception.
capsule ret is used to return from a capsule function.

The vectored-call interface retains safety even when specu-
lative tasks lose control-flow integrity. A task can only enter a
capsule through a capsule call instruction, which can only
jump to the beginning of a known capsule function.

C. Capsule execution

A capsule may access untracked memory and perform
irrevocable actions such as system calls without triggering
a promotion. It typically operates on untracked memory, but
may also access tracked memory (e.g., to make data such as
file contents available to non-capsule speculative tasks). Its
accesses to tracked memory use the normal conflict detection
and resolution mechanisms. This ensures loads from tracked
memory return valid data if the capsule is running non-
speculatively, and that the enclosing task will eventually abort
if a capsule reads invalid data while running speculatively.

Like a system call, a capsule function cannot trust its caller
to be well behaved, as the caller could be mispeculating. A
speculatively running capsule may receive invalid data through
arguments or tracked memory, or perhaps should not have
been called due to control mispeculation. To handle these, it
may register an abort handler to compensate for its actions. It
uses the capsule abort handler instruction, which takes a
function pointer and arguments as operands. The given function
will run non-speculatively if the capsule’s enclosing task aborts.

A capsule function running speculatively must ensure it only
performs actions for which it can safely compensate. It must
check its arguments and data read from tracked memory before
using the data in an unsafe way. To avoid performing rare
actions that would be very expensive or unsafe to perform
speculatively, it may use the promote instruction, which is a
no-op if running non-speculatively, but causes the enclosing
task to abort if it was speculative and immediately exits the
capsule. Thus, code following a promote instruction will only
run non-speculatively, is guaranteed to be in a consistent state,
and any abort handlers it registers will not run.

void* malloc(size_t bytes) {
if (BAD_STACK()) promote;
if (bytes > (16 << 20)) promote;
if (bytes == 0) capsule_ret(nullptr);
void* ptr = do_alloc(bytes);
capsule_abort_handler (&do_dealloc,

ptr);
capsule_ret(ptr);

Listing 2. malloc implemented as a capsule function.
D. Capsule programming example

Listing 2 shows how malloc can be written as a capsule
function. malloc first checks that its stack pointer is valid
and has sufficient space, using promote otherwise. malloc
also checks whether the requested allocation is very large,
using promote if the program wants to allocate more than
16 MB. This avoids wasting excessive space to satisfy large
requests from mispeculating tasks. After these checks, malloc
calls do _alloc, which allocates the requested chunk. Finally,
malloc uses capsule abort handler to register a call to
do dealloc as the abort handler. In this example, do _alloc
and do dealloc are thread-safe functions that use conven-
tional synchronization (e.g., locks) to perform allocation and
deallocation of heap memory. All allocator metadata (e.g., free
lists) are stored in untracked memory. If the calling task aborts,
the call to do dealloc runs, freeing the allocated memory.

V. IMPLEMENTATION

We implement Espresso and Capsules by extending
Swarm [2, 46, 47, 48, 89], a recent architecture for speculative
parallelization. We choose Swarm as a baseline because it
already provides most of the mechanisms needed for Espresso:
it efficiently supports fine-grain tasks, implements scalable
ordered speculation using timestamps, and performs locality-
aware execution [46]. However, Espresso could be implemented
over classic TLS systems as well, and Capsules are a general
technique that could be applied to any speculative system,
including HTM, TLS, Swarm, or Espresso. We first present
Swarm’s main features (see prior work [46, 47] for details),
then describe how they are extended to implement Espresso,
and finally describe the implementation of Capsules.

A. Baseline Swarm microarchitecture

The Swarm microarchitecture introduces modest changes
to a tiled, cache-coherent multicore, shown in Fig. 5. Each
tile has a group of simple cores, each with its own private L1
cache. All cores in a tile share an L2 cache, and each tile has
a slice of a fully shared L3 cache. Each tile is augmented with
a task unit that queues, dispatches, and commits tasks.

64-tile, 256-core chip Tile organization

Mem / 10 ]
fﬁ Router L3 slice
° 2 | 2 ‘
1 2N [uyp] [Ltp] [Lnyp] [L1/p]
Q - \
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Task unit |
Mem / 10 '

Fig. 5. 256-core chip and tile configuration.
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Fig. 6. Swarm (a,b) and Espresso (a,b,c,d) enqueue protocol between a local task unit (LTU) and a remote task unit (RTU), as a parent task creates a child.

Unlike Espresso, Swarm programs consist exclusively of

speculative timestamped tasks. Swarm uncovers parallelism
by executing tasks speculatively and out of order. To uncover
enough parallelism, Swarm can speculate thousands of tasks
ahead of the earliest active task. Swarm efficiently supports
fine-grain tasks and a large speculation window through five
techniques: hardware task management, large task queues,
scalable speculation, high-throughput ordered commits, and
locality-aware execution.
Hardware task management: Each task unit queues runnable
tasks and stores the speculative state of finished tasks until
they commit. Each task is represented by a task descriptor that
contains its function pointer, timestamp, and arguments.

Tasks are created using a create task instruction with ar-
guments passed through registers. The local task unit asynchro-
nously enqueues tasks to remote tiles. The parent’s speculative
state tracks where each child is enqueued. This enables parent
commit or abort notifications to be sent to those children, as
shown in Fig. 6(a) and Fig. 6(b). A parent abort notification
aborts and discards the child, while a parent commit notification
permits mechanisms to relieve queue pressure (see below).

To uncover enough parallelism, a task unit can dispatch
any task to a core, even if its parent is still speculative. Cores
dequeue tasks for execution by timestamp priority from the local
task unit. A successful dequeue initiates speculative execution
at the task’s function pointer and makes the task’s arguments
available in registers. A core stalls if there is no task to dequeue.

This support minimizes task creation and dispatch costs,
enabling tiny tasks: a single instruction creates each task, and
arguments are copied from/to registers, without stack accesses.
Large task queues: The task unit has two main structures:
(i) a task queue that holds task descriptors for every task in the
tile, and (ii) a commit queue that holds the speculative state
of tasks that have finished execution but cannot yet commit.
Together, these queues implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks
per core (e.g., 64 task queue entries and 16 commit queue
entries per core) to implement a large window of speculation
(e.g., 16 thousand tasks in the 256-core chip). Nevertheless,
task and commit queues can fill up. This requires some simple
actions to ensure forward progress. Specifically, tasks that
receive parent-commit notifications can be spilled to memory
to free task queue entries. If no tasks can be spilled, queue
resource exhaustion is handled by either stalling task creation
or aborting higher-timestamp tasks to free space [47].
Scalable speculation: Swarm enhances previously proposed
speculation mechanisms to support a large number of spec-
ulative tasks. Swarm uses eager (undo-log-based) version

management and eager conflict detection using Bloom filters,
similar to LogTM-SE [94]. Swarm forwards still-speculative
data read by a later task. When a task aborts, Swarm selectively
aborts only its descendants and data-dependent tasks.

Swarm detects conflicts at cache line granularity, and lever-
ages the cache hierarchy to substantially reduce the number of
conflict checks and their cost [47]: L1 caches are managed so
that L1 hits need not be conflict-checked, and L2 caches are
managed so that L2 hits need only be conflict-checked against
tasks in the same tile. The L3 directory maintains metadata so
that L2 misses are conflict-checked only against tiles where
uncommitted tasks may have accessed the same cache line.

To perform speculative forwarding and commits, Swarm
dynamically produces a total order among tasks. Each task is
given a unique virtual time (VT) when it is dispatched. VTs are
128-bit integers that extend each 64-bit programmer-assigned
timestamp with a unique 64-bit tiebreaker. Swarm only allows
tasks to access speculative data written by lower-VT tasks, and
commits tasks in VT order to preserve correctness.
High-throughput ordered commits: Swarm adapts the virtual
time algorithm [45] to achieve high commit throughput. Tiles
periodically communicate with an arbiter (e.g., every 200 cycles)
to discover the VT of the earliest (lowest-VT) active (unfinished)
task in the system. All tasks with lower VTs can then commit.
This scheme uses a hierarchical min reduction and can commit
many tasks per cycle, thus scaling to hundreds of cores with
tasks as short as a few instructions.

Locality-aware execution: Finally, Swarm leverages a tech-
nique called spatial hints [46] to perform locality-aware
execution. A hint is an optional 64-bit integer that, much like
a locale, abstractly denotes the data the task is likely to access.

Swarm exploits hints by running same-hint tasks in the
same tile and serializing them. The hint is stored in the task’s
descriptor. When a core creates a new task, the task unit hashes
its 64-bit hint to a tile ID, then enqueues the task to the selected
tile. Thus, same-hint tasks run on the same tile. Tasks without
hints are enqueued to random tiles. Then, the dispatch logic at
each tile serializes same-hint tasks to avoid conflicts.

B. Espresso microarchitecture

Espresso generalizes Swarm’s microarchitecture to (i) sup-
port non-speculative tasks, (ii) handle their interactions with
speculative tasks, and (iii) implement exceptions.

Tasks use the same hardware task descriptor format as
in Swarm, with two additional bits to store the type (SPEC,
NONSPEC, or MAYSPEC). The dispatch, queuing, speculation
mechanisms, and commit protocol of SPEC tasks are unchanged
from those of Swarm in Sec. V-A.



Non-speculative tasks require simple changes to the dispatch
and queuing logic. A NONSPEC task may run only when (i) its
parent is non-speculative or committed, (ii) it is not timestamped
or its timestamp matches that of the earliest active task, (iii) it
has no locale or its locale does not match that of any running
task, and (iv) the system is not satisfying a promotion.

The tile’s dispatch logic performs all these checks using
local state. It picks the lowest-timestamp task available to
run, but excludes NONSPEC tasks that are not yet runnable.
Locales regulate task dispatch in the same way as spatial hints:
tasks with the same locale are enqueued to the same tile and
serialized, providing mutual exclusion.

A non-speculative task frees its task queue entry when
dispatched and does not use a commit queue entry. This reduces
queue pressure. Since the task can never abort, it does not track
its children or send them any notifications, as shown in Fig. 6(c).
This reduces traffic and allows non-speculative tasks to create
an unbounded number of children; their children can always
be spilled to memory.

Mixing non-speculative and speculative tasks requires chan-
ging the dispatch, conflict detection, and commit mechanisms:
1. Speculative NONSPEC enqueue: If a speculative task creates
a NONSPEC child destined to a remote tile, since the child cannot
run before its parent commits, the task is buffered locally and
enqueued to the remote tile only when the parent commits
(Fig. 6(d)). This avoids needless abort and commit notifications.
2. MAYSPEC dispatch: A MAYSPEC task is always speculatively
runnable, but may exploit non-speculative execution for effi-
ciency. The dispatch logic checks if the task meets the same
conditions for a NONSPEC task to run. If so, the task executes
non-speculatively; otherwise, it executes speculatively.

3. Conflicts: A non-speculative task does not track read/write-
sets. However, to implement strong atomicity, its accesses are
conflict-checked against speculative tasks. A non-speculative
access that conflicts with a running speculative task’s read/write
set aborts the speculative task.

If a non-speculative task N conflicts with a finished spec-
ulative task S, S may be unsafe to abort. Recall that tiles
periodically communicate to find the virtual time (VT) of the
earliest active task, and all finished tasks whose VTs precede
that earliest active VT must then commit. If the tile has sent a
locally earliest active VT to the commit arbiter that is higher
than S’s VT, S may be declared committed by the arbiter. To
handle this race, N stalls until the arbiter replies and S’s fate
is known. This race is very rare.

4. Commit protocol: When tiles send their earliest active VT
to the arbiter, the timestamps of non-speculative tasks are
included for consideration. This prevents any speculative task
with a higher timestamp from committing, while allowing same-
timestamp speculative tasks to commit.

Exceptions: Any attempt by a speculative task to perform
an irrevocable action (e.g., a system call or segmentation
fault) causes a speculative exception. There are two causes
for speculative exceptions: either the task legitimately needs
to execute an irrevocable action, or it is a mispeculating task
performing incorrect execution.

Whereas TLS schemes stall the core running the exceptioned
task [35, 87], Espresso leverages commit queues to avoid
holding up a core. The exceptioned task is immediately stopped
and its core becomes available to run another task. Its writes
are rolled back, and its children tasks are aborted and discarded.
Espresso then keeps the task’s read set active in the commit
queue. If the read set detects a conflict with an earlier task, the
exceptioned task was mispeculating, so it becomes runnable
again for speculative execution. However, if the task becomes
the earliest active task without having suffered a conflict, it
legitimately needs to perform an irrevocable action.

After an exceptioned task becomes the earliest active task
in the system, it is promoted to re-run non-speculatively. This
proceeds as follows. First, the task’s tile sends a promotion
request to the virtual time arbiter. The arbiter forbids other tiles
from dispatching further non-speculative tasks. This is because
the promoted task was speculative, so it must run isolated from
all other tasks. After all currently running non-speculative tasks
have finished, the exceptioned task is promoted and allowed
to run. Although the promoted task cannot run concurrently
with other non-speculative tasks, other speculative tasks can
continue execution, ordered after the promoted task. Though
expensive, this process happens rarely.

In summary, Espresso requires simple extensions to Swarm,
and in return substantially improves performance and pro-
grammability, as we will see in Sec. VI.

C. Capsules implementation

Capsules extend the system to implement untracked memory

and a vectored-call interface to capsule functions.
Untracked memory: Our implementation of untracked mem-
ory makes simple extensions to standard virtual memory
protection mechanisms. In addition to the standard read, write,
and execute permissions bits, we add an untracked permission
bit to each page table entry and TLB entry. An access to an
untracked page from a speculative task that is not in a capsule
causes a memory-protection exception. Programs can request
tracked or untracked memory using the mmap system call, and
change a page’s permissions with the mprotect system call.
Alternatively, untracked memory could be implemented as a
new virtual memory segment.

To track whether the current task is in a capsule, each core

has a capsule depth counter, initialized to zero at task start to
indicate that the task is not yet in a capsule. capsule call
increments the capsule depth counter by one, and capsule -
ret decrements it by one. This allows capsule functions to call
other capsule functions, while tracking when the task finally
exits the outermost capsule.
Safely entering a capsule: The capsule-call vector contains
pointers to all capsule functions and is stored at a fixed location
in untracked memory. It would be cumbersome to manually
assign unique IDs to capsule functions and build the call vector.
However, the linker and loader can automate this process,
similarly to how they handle position-independent code [42].
Capsule aborts: If a task aborts, any registered abort handlers
must run non-speculatively. After an abort, we enqueue each
abort handler as a NONSPEC task with no timestamp.



Special handling is required to abort a task while it is
still executing a capsule. Normally, a task is immediately
stopped after detecting a conflict. A capsule, however, cannot
be stopped arbitrarily—it must be allowed to complete, and
then its abort handlers run, to guarantee a consistent state in
untracked memory. Nonetheless, to avoid priority inversion,
our implementation always handles conflicts immediately upon
detection. If the task is in a capsule when it needs to be aborted,
all the task’s side-effects to tracked memory are rolled back
immediately, so other tasks can proceed to use the recovered
state in tracked memory. Abort notifications are sent to its
children. The capsule is then marked as doomed and allowed
to continue execution. A doomed capsule’s writes to tracked
memory are not performed, nor are its enqueues. Its accesses to
untracked memory are performed normally. The core becomes
available to run another task after the doomed capsule exits.

VI. EVALUATION

We evaluate Espresso and Capsules on a diverse set of
applications. We find that non-speculative execution brings
modest performance and efficiency gains when non-speculative
parallelism is plentiful, but forcing non-speculative execution
with NONSPEC can dramatically hurt parallelism. By contrast,
MAYSPEC achieves the best of both worlds and can be applied
indiscriminately without hurting parallelism, making it easy to
use. We find that Capsules yields order-of-magnitude speedups
in important use cases, which we show through two case studies
on memory allocation and disk-based key-value stores.

A. Experimental methodology

Modeled system: We use a cycle-level, execution-driven
simulator based on Pin [57, 68] to model systems of up to 256
cores, as shown in Fig. 5, with parameters in Table II. Swarm
parameters match those of prior work [46, 47, 48]. We use
detailed core, cache, network, and main memory models, and
simulate all task and speculation overheads (e.g., task traffic,
running mispeculating tasks until they abort, simulating conflict
check and rollback delays and traffic, etc.). Our 256-core con-
figuration is similar to the Kalray MPPA [23]. We also simulate

TABLE 11
CONFIGURATION OF THE 256-CORE SYSTEM.

256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA;

Cores single-issue in-order, scoreboarded (stall-on-use) [46]
L1 caches 16KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency
64 MB, shared, static NUCA [51] (1 MB bank/tile),
L3 cache ¢ Gy inclusive, 9-cycle bank lat
y, inclusive, 9-cycle bank latency
Coherence  MESI, 64 B lines, in-cache directories
NoC 8x8 mesh, 128-bit links, X-Y routing, 1 cycle/hop when
going straight, 2 cycles on turns (like Tile64 [93])
Main mem 4 controllers at chip edges, 120-cycle latency
64 task queue entries/core (16384 total),
Queues 16 commit queue entries/core (4096 total)
2 Kbit 8-way Bloom filters, H3 hash functions [14]
Conflicts  Tile checks take 5 cycles (Bloom filters) + 1 cycle per

timestamp compared in the commit queue
128-bit virtual times, tiles send updates to
virtual time arbiter every 200 cycles

Spill 15 tasks when task queue is 85% full

Virtual time

Spills

TABLE III
BENCHMARKS: SOURCE IMPLEMENTATIONS AND INPUTS; RUN TIME,
AVERAGE TASK LENGTH, AND SERIAL-RELATIVE PERFORMANCE ON A
SINGLE-CORE SYSTEM.

S 1-core cycles  1-core perf.
Application Input total ;er task vs. sleJrial
cagel4 [22] 1.6 B 53 0.93x

sssp [70] Exst USA roads [ 24B 299 1.74x
cf [84, 98] movielens-1m [37] 1.5B 59500 0.98x
triangle [84] R-MAT [17] 59.5B 1240 1.02x
kmeans [61] m40 n40 n16384 d24 cl16 8.6B 6500 1.02x
color [39] netflix [8] 11.1 B 163 1.42x
bfs [55] hugetric-00020 [5, 22] 33B 139 0.93x
mis [85] R-MAT [17] 1.7B 121 0.80x
astar [47] Germany roads [67] 1.6 B 458 1.37x
genome [61]  g4096 s48 n1048576 23B 850 1.01x
des [70] csaArray32 1.7 B 506 1.82x
nocsim [3] 16x16 mesh, tornado 193 B 979 1.79x
silo [90] TPC-C, 4 whs, 1 Ktxns 0.1 B 3380 1.13x

smaller systems with square meshes (K x K tiles for K < 8).
Our 1-core system always runs all tasks non-speculatively. We
keep per-core L2/L3 sizes and queue capacities constant across
system sizes. This captures performance per unit area. As a
result, larger systems have higher queue and cache capacities,
which sometimes cause superlinear speedups.

Benchmarks: Table III reports the benchmarks and inputs
used to evaluate Espresso and the Capsules-based allocator. We
consider 17 ordered and unordered benchmarks.

We ported 15 benchmarks from Swarm [46, 47, 89], (all
except those that need Fractal [89] to scale). Eight of the 15
benchmarks have tasks that can be well-synchronized with
timestamps and locales: sssp, color, bfs, mis, astar, and
des are ordered applications, and genome and kmeans are
unordered transactional applications.

We also port bulk-synchronous cf (collaborative filtering)
and triangle (triangle counting) from Ligra [84, 98]. Their
tasks are well-synchronized: they perform lock-free atomic
updates and use barriers, which we replace with timestamps.

Sec. VI-B compares Espresso versions by declaring all
well-synchronized tasks as SPEC, NONSPEC, or MAYSPEC. The
source code is otherwise identical. Swarm runs all tasks
speculatively, and is thus equivalent to Espresso’s SPEC. We
also evaluate state-of-the-art software-only parallel versions as
in prior work [46, 47, 89] (except for genome and kmeans,
which lack a non-transactional parallel version, and astar, for
which software-parallel versions yield no speedup [47]).

Four of the benchmarks have a significant amount of dynamic
memory allocation: genome, des, nocsim, and silo. Sec. VI-C
compares the effect of different allocators on the SPEC (Swarm)
version of these applications.

We report speedups relative to funed 1-core Swarm imple-
mentations. Due to hardware task management, 1-core Swarm
versions are competitive with (and often faster than) tuned
software-only serial implementations, as shown in Table III.

We fast-forward each benchmark to the start of its parallel
region and run the entire parallel region. We perform enough
runs to achieve 95% confidence intervals < 1%.

Memory allocation: Only two of the benchmarks used in
Sec. VI-B (genome and des) allocate memory within tasks.
To separate concerns, we study the impact of allocators in
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Sec. VI-C and use an ideal memory allocator in Sec. VI-B.
The ideal allocator is implemented within the simulator, and
allocates and deallocates heap memory from per-core pools
with zero overhead. Memory freed by a speculative task is
not reused until the task commits. For fairness, software-only
implementations also use this allocator.

B. Espresso evaluation

Fig. 7 compares the performance of Swarm, Espresso’s
NONSPEC and MAYSPEC variants, and the software-only parallel
versions as the system scales from 1 to 256 cores. Because
most applications are hard to parallelize, MAYSPEC always
matches or outperforms the software-only versions, which
scale poorly in all cases except sssp-cage, cf, triangle,
and color. Thus, we do not consider software-only versions
further. Among the other schemes, Swarm works poorly on
cf and triangle, and sacrifices some performance on sssp-
cage, genome, and color; NONSPEC scales well in sssp-cage,
cf, triangle, genome, kmeans, and bfs, but performs poorly
in other applications because it forgoes opportunities to exploit
speculative parallelism; and MAYSPEC always performs best.

Fig. 8 gives more insight into these results by showing core
cycle and network traffic breakdowns at 256 cores for the
Swarm, NONSPEC, and MAYSPEC versions. Each group of bars
shows breakdowns for a different application. The height of
a bar in Fig. 8(a) is the execution time relative to Swarm.
Each bar shows a breakdown of how cores spend these cycles,
executing (i) non-speculative tasks, or (ii) speculative tasks that
later commit or (iii) later abort; (iv) spilling tasks to memory;
(v) stalled on a full task or commit queue; or (vi) idle because
there are no tasks available to run. Each bar of Fig. 8(b) reports
the total bytes injected into the NoC relative to Swarm, broken
down into four categories: (i) memory accesses from running
tasks (between L2s and L3, or L3 and main memory), (ii) abort
traffic (parent abort notifications and rollback memory accesses),
(iii) task enqueues and parent commit notifications, (iv) virtual
time updates (for ordered commits and barriers).

For sssp, as discussed in Sec. II-A, neither Swarm nor
NONSPEC perform best across inputs. MAYSPEC outperforms
the best of Swarm and NONSPEC by using speculation op-
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Fig. 8. Breakdowns at 256 cores, using Swarm (SPEC), and Espresso’s NONSPEC,
and MAYSPEC variants. Each bar is normalized to Swarm. Lower is better.

portunistically. In the shallow graph (cage), MAYSPEC runs
almost all tasks non-speculatively. Meanwhile, in the deep graph
(usa), MAYSPEC runs almost all tasks speculatively, overlapping
the processing of vertices at multiple distances to extract
enough parallelism. NONSPEC and MAYSPEC spend fewer cycles
executing tasks than Swarm’s committed cycles because non-
speculative execution is more efficient: it reduces cache pressure
(no undo log) and network traffic (less cache pressure, no aborts,
and no parent commit notifications).

cf and triangle show the largest difference between
Swarm and Espresso variants. Both applications have plentiful
non-speculative parallelism, but some tasks are large. When
tasks run speculatively in cf they fill their Bloom filters and
yield false conflicts, whereas in triangle, the long tasks
prevent short tasks from committing, leading to full queues.
NONSPEC and MAYSPEC are up to 2.6x (cf) faster than Swarm,



and have up to 8.0x (cf) lower network traffic.

genome (sequencing), kmeans (clustering), color (vertex
coloring), and bfs (breadth-first search) show similar trends as
sssp-cage. genome has a phase with little parallelism; non-
speculative execution runs faster in this phase, reducing no-task
stalls. Though STAMP’s kmeans is nominally transactional,
locales and timestamps non-speculatively synchronize it, so
NONSPEC and MAYSPEC perform equally. Nearly all traffic is
virtual time updates because locales effectively localize accesses
to shared data, resulting in a high L2 hit rate.

The final three benchmarks show similar trends as sssp-
usa: mis (maximal independent set), astar (A* pathfinding),
and des have little non-speculative parallelism, even though
nearly all their tasks can be safely declared NONSPEC. Therefore,
NONSPEC performance is terrible, up to 142 x worse than Swarm
(des). NONSPEC is dominated by no-task stalls as only a few
same-timestamp tasks run at a time. MAYSPEC addresses this
pathology and matches Swarm.

These results show that Espresso both improves performance
and efficiency while also aiding programmability. Across the
11 results, NONSPEC achieves 29x gmean speedup at 256 cores,
Swarm (SPEC) 162 x, and MAYSPEC scales to 198 x. Without
MAYSPEC, programmers would need to know how much non-
speculative parallelism is available to decide whether to use
NONSPEC or SPEC. MAYSPEC lets them declare any task that may
run non-speculatively as such without performance concerns.

C. Capsules case study: Dynamic memory allocation

We design a scalable speculation-friendly memory allocator
using Capsules. As discussed in Sec. II-C, simply calling
memory allocation routines within speculative tasks introduces
needless conflicts that limit parallelism. Prior work has pro-
posed allocators for software TM [43], and used HTM to
accelerate allocators for non-speculative parallel programs [25,
54]. TMs without forwarding can avoid false conflicts on
allocator metadata by using escape actions or open-nested
transactions [100], but as far as we know, no memory allocator
has been implemented for systems with speculative forwarding.

To this end, we implement capalloc, a memory allocator
built with Capsules. All allocation calls (malloc, calloc,
etc.) are capsule functions, implemented following the pattern
in Listing 2. To avoid reusing memory freed by tasks that
later abort, each deallocation call (free, cfree) creates a non-
speculative child with no timestamp to perform the deallocation.
Thus, memory is deallocated only after the caller commits.

capalloc’s internal design mimics TCMalloc [31], a state-
of-the-art and widely used memory allocator. Small allocations
(<16KB in our implementation) are served by a per-core
software cache. These caches hold a limited amount of memory,
and allocate from a set of central freelists. Large allocations
are served from a centralized page heap that prioritizes space
efficiency. The central freelists, large heap, and system-wide
page allocator use spinlocks to avoid data races.

The key difference between capalloc and TCMalloc is
that capalloc keeps all its metadata in untracked memory.
TCMalloc implements freelists as linked lists using the free
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chunks themselves. The free chunks cannot be placed in
untracked memory as they are used by speculative tasks.

As explained in Sec. VI-A, we evaluate capalloc on the
four Swarm applications with frequent dynamic allocation. We
compare capalloc with TCMalloc and the ideal allocator.

Fig. 9(a) shows single-core results, which let us examine
work efficiency without concern for parallelism. Each group of
bars shows execution times for one application, normalized to
the ideal allocator. capalloc and TCMalloc perform similarly,
adding gmean slowdowns of 11% and 8%, respectively.

Fig. 9(b) shows 256-core results. TCMalloc suffers spurious
conflicts among tasks that access the same allocator metadata,
and is gmean 25X slower than the ideal allocator. By contrast,
capalloc is only gmean 30% slower than the ideal allocator.
These overheads are in line with those in the single-core system,
demonstrating capalloc’s scalability. capalloc is gmean
20x faster than TCMalloc—from 3 x (nocsim) to 69x (silo).

D. Capsules case study: Disk-backed key-value store

The previous case study showed that Capsules avoid needless
conflicts; we now show the benefits of letting speculative tasks
perform controlled parallel I/O. We implement a simple disk-
backed key-value store that runs the YCSB [19] benchmark
with 4 KB tuples and 80/20% read/write queries. Each query
runs within a single speculative task. The key-value store keeps
only some of the tuples in main memory. If the requested tuple
is not in main memory, it must be fetched from disk and another
tuple must be evicted, writing it back to disk if it is dirty.

We implement two miss-handling strategies. First, spec
performs the disk fetch and eviction directly in speculative tasks,
without Capsules. Because this requires read (and possibly
write) system calls, tasks that suffer a miss are promoted and run
serially. Second, capsule performs each fetch from a capsule
function invoked within the speculative task, and performs
each eviction from a follow-up non-speculative task. This lets
capsule perform parallel I/O.

g1600— 016 —
= 1200] | 812

- capsule B

5 800} — oo £ 5

3 400/ 2

S 63 MB/s O 4

o Q0 04 o8 T2 16 20 = | .

Miss rate (%) spec capsule
(a) Disk bandwidth usage (b) Performance at 2% miss rate

Fig. 10. Disk utilization of spec and capsule variants of a key-value store.



We evaluate both strategies on a 256-core system with an
NVMe SSD.3 Fig. 10(a) shows how disk bandwidth grows with
miss rate (which we control by varying the memory footprint).
spec tops out at 63 MB/s, far below the disk’s bandwidth, due
to its serialized 1/0. By contrast, capsule fully saturates disk
bandwidth, achieving 1671 MB/s. Fig. 10(b) shows that, with
a 2% miss rate (where both variants are I/O-bound), capsule
achieves 24 x the throughput of spec. These results show that
concurrent system calls can be highly beneficial, and Capsules
successfully unlock this benefit for speculative tasks.

VII. ADDITIONAL RELATED WORK

Espresso is most closely related to Swarm, but draws from
prior HTM and TLS systems as well. Table IV summarizes
the capabilities of these systems.

A. Task scheduling and synchronization

Prior work has investigated hardware support for scheduling
and synchronization of either speculative or non-speculative
tasks. On the speculative side, prior techniques enable threads to
speculate past barriers [36, 58, 82], and avoid aborts on known
dependences by stalling [96] or pipelining [91]. On the non-
speculative side, prior work has proposed hardware-accelerated
task-stealing [53, 81] and dataflow [15, 28, 33, 66] schedulers.
The lack of shared synchronization mechanism hinders HTM,
where mixing transactional and conventional synchronization is
unsafe [26, 92]. Prior work has crafted software primitives that
bypass transactional mechanisms [26, 92] or toggle between
transactional and lock-based synchronization [78].

By contrast, Espresso’s timestamps and locales facilitate
coordination across speculative and non-speculative tasks.
This opens the door to MAYSPEC, which allows the system
to dynamically choose to execute tasks speculatively or non-
speculatively. Moreover, timestamps and locales offer more
performance for non-speculative tasks than shared-memory
barriers and locks. Timestamps are essentially hardware-
accelerated barriers [7, 50, 83]. Locales are handled by the
task dispatch logic, so they are more efficient than hardware-
accelerated locks [49, 56, 99], as they eliminate spinning within
a task. Locales also enable locality-aware task mapping.

B. Restricted vs. unrestricted speculative tasks

TLS systems are unrestricted: their tasks can run arbitrary
code, although only the earliest active task may run a system
call or exception handler. Most HTMs are restricted: they
forbid transactions from invoking irrevocable actions, which
hinders programmability. OneTM [9] and TCC [36] permit
unrestricted transactions. Our promotion technique lies between
OneTM-serialized, which pauses all other threads, and OneTM-
concurrent, which keeps all other threads running but requires
in-memory metadata to support unbounded read/write sets. By
contrast, Espresso keeps only speculative tasks running through
a promotion. TCC, like TLS, does not support non-speculative
parallelism (all code runs speculatively except the transaction
with commit permission).

3 We model a Samsung 960 PRO, which supports 440K/360K IOPS for
random 4 KB reads/writes, with minimum latencies of 70/20 us [80].
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TABLE IV
COMPARISON OF PRIOR SYSTEMS AND ESPRESSO.
Capability HTM TLS Swarm Espresso

Ordered parallelism a v (4 v
Non-speculative parallelism v X b 4 4
Shared synchronization mechanisms X b 4 X v
Locality-aware X b 4 (4 v
Unrestricted speculative code b v X v

4 Most HTMs are unordered (Sec. VII-D).
b Most HTMs are restricted (Sec. VII-B).

C. Open-nested transactions

Some speculative tasks must perform operations that would
be expensive or incompatible with their hardware speculation
mechanisms. Escape actions (Sec. II-C) are one prior solu-
tion for HTMs, as are open-nested transactions [59, 63, 64],
which run within another transaction and commit immediately
after finishing, before its enclosing transaction commits. Like
Capsules, open-nested transactions still use ordinary conflict
detection to preserve atomicity when accessing data shared
by other transactions. Like escape actions and Capsules, open-
nested transactions use abort handlers to undo their effects.
Unfortunately, open-nested transactions are also unsafe with
speculative forwarding because open-nested transactions may
lose data and control-flow integrity and then perform harmful
writes and commit.

D. Transactional memory and order

Some hardware [16, 36, 71] and software [12, 32] TMs let
programmers control the commit order among transactions,
bridging the gap between TM and TLS. Other TMs order
transactions internally, either to avoid pathologies [11, 62] or
to implement conflict serializability [4, 29, 44, 72, 74]. However,
this order is not controllable by programmers.

VIII. CONCLUSION

We have presented two techniques that bring the benefits of
non-speculative parallelism to systems with ordered speculation.
First, the Espresso execution model efficiently supports specula-
tive and non-speculative tasks, provides shared synchronization
mechanisms to all tasks, and lets the system adaptively run tasks
speculatively or non-speculatively to achieve the best of both
worlds. Second, Capsules let speculative tasks safely invoke
software-managed speculative actions, bypassing hardware
version management and conflict detection. We have shown
that these techniques improve performance and enable new
capabilities, such as scaling memory allocation and allowing
speculative tasks to safely perform parallel 1/O.
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