
Appears in the Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018

Harmonizing Speculative and Non-Speculative

Execution in Architectures for Ordered Parallelism

Mark C. Jeffrey∗ Victor A. Ying∗ Suvinay Subramanian∗ Hyun Ryong Lee∗ Joel Emer∗† Daniel Sanchez∗

∗Massachusetts Institute of Technology †NVIDIA

{mcj, victory, suvinay, hrlee, emer, sanchez}@csail.mit.edu

Abstract—Multicore systems should support both speculative
and non-speculative parallelism. Speculative parallelism is easy
to use and is crucial to scale many challenging applications,
while non-speculative parallelism is more efficient and allows
parallel irrevocable actions (e.g., parallel I/O). Unfortunately,
prior techniques are far from this goal. Hardware transactional
memory (HTM) systems support speculative (transactional) and
non-speculative (non-transactional) work, but lack coordination
mechanisms between the two, and are limited to unordered
parallelism. Prior work has extended HTMs to avoid the lim-
itations of speculative execution, e.g., through escape actions and
open-nested transactions. But these mechanisms are incompatible
with systems that exploit ordered parallelism, which parallelize
a broader range of applications and are easier to use.

We contribute two techniques that enable seamlessly compos-
ing and coordinating speculative and non-speculative work in
the context of ordered parallelism: (i) a task-based execution
model that efficiently coordinates concurrent speculative and
non-speculative ordered tasks, allowing them to create tasks
of either kind and to operate on shared data; and (ii) a safe
way for speculative tasks to invoke software-managed speculative
actions that avoid hardware version management and conflict
detection. These contributions improve efficiency and enable new
capabilities. Across several benchmarks, they allow the system to
dynamically choose whether to execute tasks speculatively or non-
speculatively, avoid needless conflicts among speculative tasks,
and allow speculative tasks to safely invoke irrevocable actions.

Index Terms—multicore, speculative parallelism, ordered par-
allelism, fine-grain parallelism, transactional memory, thread-
level speculation, speculative forwarding, synchronization.

I. INTRODUCTION

Systems that support speculative parallelism, such as thread-

level speculation (TLS) and transactional memory (TM), have

two major benefits over non-speculative systems: they simplify

parallel programming [69, 79] and uncover abundant parallelism

in many hard-to-parallelize applications [47, 89]. However, even

applications that need speculation to scale have work that is best

executed non-speculatively. For example, some tasks are well

synchronized and running them speculatively adds overhead

and needless aborts. Moreover, non-speculative parallelism is

needed to perform irrevocable actions, such as I/O, in parallel.

Ideally, systems should support composition and coordination

of speculative and non-speculative tasks, and allow those tasks

to share data. Unfortunately, prior techniques fall short of

this goal. All prior hardware techniques to combine spec-

ulative and non-speculative parallelism have been done in

hardware transactional memory (HTM) systems [16, 36, 41, 62,

73]. HTM supports both speculative (transactional) and non-

speculative (non-transactional) code. But HTM lacks shared

synchronization mechanisms, so speculative and non-speculative

code cannot easily access shared data [26, 92]. Moreover, most

HTMs provide unordered execution semantics that miss many

opportunities for parallelization.

Recent work has instead focused on using speculation to

support ordered parallelism, where parallel tasks appear to

execute in a program-specified total or partial order [47,

70]. Ordered parallelism is more general and abundant than

unordered parallelism. For example, consider the problem of

parallelizing a transactional database. Using classic HTM, each

database transaction must execute on a single thread as a long

memory transaction. By contrast, ordered parallelism allows

breaking each database transaction into many short, ordered

tasks, exploiting abundant intra-transaction parallelism [29, 89].

Classic TLS systems leveraged ordered speculation to par-

allelize sequential programs [27, 30, 35, 75, 76, 86, 87, 97],

some HTMs offer programmer-defined commit order [16, 36,

71], and the recent Swarm architecture [46, 47, 48, 89] has

a rich execution model that can parallelize more algorithms

than TLS or TM and supports tiny ordered tasks efficiently.

However, these systems disallow non-speculative parallelism:

all tasks except the earliest active one execute speculatively.

The goal of this work is to bring the benefits of non-specula-

tive execution to systems that support ordered parallelism. This

is not merely a matter of adapting HTM techniques. Unordered

and ordered speculation systems address different needs and

need different mechanisms (Sec. II). To meet our goal, we

contribute two main techniques.

Our first contribution is Espresso, an expressive execution

model for speculative and non-speculative parallelism (Sec. III).

In Espresso, all work happens within tasks, which can run

speculatively or non-speculatively. Tasks can create children

tasks that run in either mode. Because Espresso efficiently

supports fine-grain tasks of a few instructions each, many tasks

access a single piece of data, which is known when the task

is created. To exploit this, Espresso provides synchronization

mechanisms to coordinate speculative and non-speculative tasks

efficiently. Moreover, Espresso lets the system decide whether

to run certain tasks speculatively or non-speculatively, reaping

the efficiency of non-speculative parallelism when it is plentiful,

while exploiting speculative parallelism when needed to scale.

1







void ssspTask(Timestamp dist, Vertex* v) {
if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)
espresso::create<MAYSPEC >(&ssspTask,

/*timestamp=*/ dist + weight(v,n),
/*locale=*/ n->id, n);

}
}

void main() {
[...] /* Set up graph and initial values */
espresso::create<MAYSPEC >(&ssspTask ,

0, source->id, source);
espresso::run();

}
Listing 1. Espresso implementation of Dijkstra’s sssp algorithm.

Timestamps and locales have common semantics among

speculative and non-speculative tasks, allowing tasks running

in either mode to coordinate accesses to shared data.

Espresso supports three task types that control speculation:

SPEC tasks always run speculatively, NONSPEC tasks always

run non-speculatively, and MAYSPEC tasks may run in either

mode. All tasks can create children tasks of any type.

We expose these features through a simple API. Tasks create

children tasks by calling the following (inlined) function:

espresso::create<type>(taskFn,
[timestamp , locale ,] args...)

The new task will run the task function taskFn with arguments

supplied through registers. If timestamp or locale are given,

the task will be synchronized according to their semantics.

Espresso programs start by creating one or more initial

tasks with espresso::create and calling espresso::run,

which returns control after all tasks finish. Listing 1 shows

the implementation of sssp described in Sec. II-A, which we

will use to explain Espresso’s semantics. In this example, the

program creates one initial task to visit the source vertex.

A. Espresso semantics

Espresso runs all speculative tasks atomically, i.e., specu-

lative tasks never appear to interleave. Moreover, Espresso

provides strong atomicity [10, 20] between speculative and

non-speculative tasks: the effects of a speculative task are

invisible to non-speculative tasks until the speculative task

commits (containment [10]), and non-speculative writes do not

appear mid-speculative-task (non-interference [10]). Espresso

does not guarantee atomicity among non-speculative tasks.

Atomicity has implications on the allowed concurrency

between parent and child tasks. If a parent creates a speculative

child, the child appears to execute after the parent finishes. If

a speculative parent creates a non-speculative child, the child

does not run until after the parent commits (e.g., Sec. II-B).

There are no atomicity guarantees among non-speculative

tasks. The programmer must ensure non-SPEC tasks are well-

synchronized, that is, they avoid race conditions.

Espresso provides two synchronization mechanisms to con-

trol how the system executes tasks. Timestamps enforce order

among tasks, and locales enforce mutual exclusion. Timestamps

and locales have consistent semantics for both speculative and

non-speculative tasks, but have different effects on concurrency,

described below and summarized in Table I.

Timestamps: Timestamps are integers that specify a partial

order among tasks. If two tasks have distinct timestamps, the

TABLE I
THE EFFECT OF ESPRESSO’S SYNCHRONIZATION MECHANISMS.

Task mode Synchronization mechanism
Timestamps Locales

Non-speculative barriers mutual exclusion
Speculative ordered commits reduce conflicts

system ensures they appear to execute in timestamp order. To

avoid priority inversion, a timestamped task may only assign

timestamps greater than or equal to its own to its children. A

non-timestamped task cannot create timestamped children.

Timestamps impose barrier semantics among non-specula-

tive tasks. For example, a non-speculative task with timestamp

10 will not run until all tasks with timestamp < 10 have finished

and committed. However, speculative tasks can run out of order,

speculating past these barriers. Timestamps only constrain the

commit order of speculative tasks. Hence, speculation can

increase parallelism for ordered algorithms.

Listing 1 shows timestamps in action. Each sssp task has a

timestamp that corresponds to its path’s distance to the source

vertex. If all tasks had type NONSPEC instead of MAYSPEC, this

code would implement the non-speculative, one-distance-at-a-

time sssp version from Sec. II-A. If all tasks had type SPEC,

the code would implement the fully speculative sssp version.

Locales: A locale is an integer that, if specified, denotes the

data the task will access. Locales enforce mutual exclusion:

if two tasks have the same locale, Espresso guarantees that

they do not run concurrently. For tasks that only need to

acquire a single lock, locales are a more efficient alternative

to conventional shared-memory locks. Moreover, Espresso

hardware uses locales to map tasks that are likely to access

the same data to the same chip tile in order to exploit locality.

For non-speculative tasks, locales can be used as mutexes to

write safe parallel code. For speculative tasks, locales are not

necessary, since these tasks already appear to execute atomically.

Locales are still useful in reducing aborts [46] as well as

exploiting locality across speculative and non-speculative tasks.

Listing 1 shows locales in action. Each sssp task uses the

ID of the vertex it processes as its locale. For non-speculative

tasks, this implements mutual exclusion among tasks that access

the same vertex. For both speculative and non-speculative tasks,

this approach sends all tasks that operate on the same vertex to

the same chip tile, improving temporal locality. An optimization

to avoid cache ping-ponging could apply a technique from prior

work [46]: use the cache line of the vertex as the locale.

These synchronization mechanisms cover important use

cases, but are not exhaustive. For example, locales only provide

single-lock semantics, but a task may need to acquire multiple

locks. In this case, the task may either use shared-memory locks

or resort to speculative execution by marking the task SPEC.

Espresso does not support multiple locales per task because

doing so would be much more complex.

Comparison with other execution models: Espresso gen-

eralizes both Swarm and HTM. Swarm programs consist

of all-timestamped SPEC tasks. Espresso extends Swarm to

support non-speculative tasks and to make timestamps optional.

4



Locales extend Swarm’s spatial hints [46] to provide mutual

exclusion among non-speculative tasks. Espresso also subsumes

HTM. HTM programs consist of transactional (speculative)

and non-transactional (non-speculative) code blocks. These are

equivalent to non-timestamped SPEC and NONSPEC tasks.

B. MAYSPEC: Tasks that may speculate

Espresso tasks run speculatively or not. However, the

programmer must choose one of three types for each task:

SPEC, NONSPEC, or MAYSPEC. MAYSPEC lets the system decide

which mode the task should run in. This is useful as there are

times when it is safe to run a task speculatively but not non-

speculatively. If the system wants to dispatch a MAYSPEC task

that cannot yet run non-speculatively, the task runs speculatively.

Choosing between NONSPEC and MAYSPEC affects perfor-

mance but not correctness. NONSPEC and MAYSPEC tasks must

already be well-synchronized, so they are also safe to run

speculatively. If the task will be expensive to run speculatively

(e.g., the logging tasks in Sec. II-B), it should be NONSPEC.

Otherwise, MAYSPEC lets the system decide.

Listing 1 shows MAYSPEC in action. All sssp tasks are

tagged as MAYSPEC because they can run in either mode, as

locales enforce mutual exclusion among same-vertex tasks. This

implements the right strategy discussed in Sec. II-A: tasks with

the lowest unprocessed distance run non-speculatively, and if

this non-speculative parallelism is insufficient, the system runs

higher-distance (i.e., higher-timestamp) tasks speculatively.

C. Exception model

Espresso does not restrict the actions that tasks may perform.

Beyond accessing shared memory, both speculative and non-

speculative tasks may invoke irrevocable actions that cannot be

undone by a versioned memory system. That is, tasks in either

running mode can call into arbitrary code, including code that

triggers exceptions and invokes system calls.

To provide precise exception semantics and enforce strong

atomicity, a speculative task that triggers an exception or a

system call yields until it becomes the earliest active task

and is then promoted to run non-speculatively. To guarantee

promoted tasks still appear strongly atomic, a promoted task

does not run concurrently with any other non-speculative task

(Sec. V-B). Previous TLS systems used similar techniques to

provide precise exceptions [35, 87].

Promotions can be expensive but are rare in practice. To avoid

frequent and expensive promotions, tasks that frequently invoke

irrevocable actions should use the NONSPEC type. Capsules

further reduce the need for promotions.

Finally, Espresso introduces a promote instruction to expose

this mechanism. If called from a speculative task, promote

triggers an exception that will, in the absence of conflicts,

eventually promote the task. If called from a non-speculative

task, promote has no effect. promote has two uses. First, it

can be invoked by tasks that detect an inconsistency and know

they must abort, similar to transactional retry [38]. Second,

promote lets code that must perform an expensive action avoid

doing so speculatively (e.g., Listing 2 in Sec. IV).

IV. CAPSULES

Although hardware version management is more efficient

than a software-only equivalent, hardware-only speculation

can cause more serialization. For example, Espresso supports

irrevocable actions in speculative tasks by promoting them

to run non-speculatively, an expensive process that limits

parallelism. Irrevocable actions cannot run under the control

of hardware speculation, since hardware cannot undo their

effects. This is limiting, because letting speculative tasks

invoke system calls in parallel has many legitimate uses [6].

Beyond system calls, tasks may wish to perform software-

managed speculative actions that exploit application-specific

parallelization strategies, such as commutativity [18, 52, 65,

77]. As we saw in Sec. II-C, prior work proposed escape

actions to achieve this goal [13, 63, 100]. But escape actions

are incompatible with systems for ordered parallelism that need

speculative forwarding. Forwarding makes speculative tasks

lose data and control-flow integrity, making it impossible for

software to dependably undo speculative actions.

Specifically, escape actions suffer from two problems with

forwarding. First, a mispeculating task that has lost control-flow

integrity may jump to malformed or invalid code that initiates

an escape action and performs an unintended system call, such

as overwriting a file or exiting the program, that cannot be

undone. Second, mispeculating tasks may clobber state used

by escape actions, causing them to misbehave when they read

this uncommitted data. For example, consider an escape action

that allocates memory from a free list. A mispeculating task

can temporarily clobber the free list, causing the escape action

to return invalid data or crash.

To address these issues, we present Capsules, a technique

to enable safe software-managed speculative actions in any

speculative system. Capsules are a powerful tool for systems

programmers. Similar to escape actions, Capsules can avoid the

overheads of hardware conflict detection, perform irrevocable

actions, and undo speculative actions by registering abort han-

dlers. Capsules enable programmers to guarantee safety even

if a mispeculating task attempts to use Capsules incorrectly. It

does this through two mechanisms. First, it provides untracked

memory that is protected from mispeculating tasks. Second,

it uses a vectored-call interface that guarantees control-flow

integrity within a capsule. We add three new instructions to the

ISA, capsule call, capsule ret, and capsule abort -

handler. We explain their semantics below.

A. Untracked memory

We allow memory segments or pages in the application’s

address space to be classified as untracked. Untracked memory

is neither conflict-checked nor versioned in hardware, eliminat-

ing speculation overheads for accesses to untracked data. We

use standard virtual memory protection mechanisms to prevent

speculative tasks from accessing untracked memory without

entering a capsule (Sec. V-C). This is analogous to how OS

kernel memory is protected from userspace code.

Software-managed speculative state should be maintained in

untracked memory both to avoid the overhead of hardware

5



conflict detection as well as to ensure it is not corrupted

by speculative tasks. Accesses to untracked data can be

synchronized conventionally (e.g., with locks) to ensure safety.

B. Safely entering a capsule

Since a speculative task can lose control-flow integrity, we

need a way to enter a capsule that guarantees the integrity of

capsule code. To achieve this, we use a vectored-call interface,

similar to that of system calls.

We require that all capsule code is wrapped into capsule func-

tions placed in untracked memory. A capsule-call vector stored

in untracked memory contains pointers to all capsule functions.

Since speculative tasks cannot access untracked memory, they

can only call capsule functions with the capsule call

instruction. capsule call is similar to an ordinary call

instruction, but it takes an index into the capsule-call vector

as an operand instead of a function address. capsule call

looks up the index in the vector. If the index is within bounds, it

jumps to its corresponding function and disables hardware spec-

ulation; if the index is out of bounds, it triggers an exception.

capsule ret is used to return from a capsule function.

The vectored-call interface retains safety even when specu-

lative tasks lose control-flow integrity. A task can only enter a

capsule through a capsule call instruction, which can only

jump to the beginning of a known capsule function.

C. Capsule execution

A capsule may access untracked memory and perform

irrevocable actions such as system calls without triggering

a promotion. It typically operates on untracked memory, but

may also access tracked memory (e.g., to make data such as

file contents available to non-capsule speculative tasks). Its

accesses to tracked memory use the normal conflict detection

and resolution mechanisms. This ensures loads from tracked

memory return valid data if the capsule is running non-

speculatively, and that the enclosing task will eventually abort

if a capsule reads invalid data while running speculatively.

Like a system call, a capsule function cannot trust its caller

to be well behaved, as the caller could be mispeculating. A

speculatively running capsule may receive invalid data through

arguments or tracked memory, or perhaps should not have

been called due to control mispeculation. To handle these, it

may register an abort handler to compensate for its actions. It

uses the capsule abort handler instruction, which takes a

function pointer and arguments as operands. The given function

will run non-speculatively if the capsule’s enclosing task aborts.

A capsule function running speculatively must ensure it only

performs actions for which it can safely compensate. It must

check its arguments and data read from tracked memory before

using the data in an unsafe way. To avoid performing rare

actions that would be very expensive or unsafe to perform

speculatively, it may use the promote instruction, which is a

no-op if running non-speculatively, but causes the enclosing

task to abort if it was speculative and immediately exits the

capsule. Thus, code following a promote instruction will only

run non-speculatively, is guaranteed to be in a consistent state,

and any abort handlers it registers will not run.

void* malloc(size_t bytes) {
if (BAD_STACK()) promote;
if (bytes > (16 << 20)) promote;
if (bytes == 0) capsule_ret(nullptr);
void* ptr = do_alloc(bytes);
capsule_abort_handler(&do_dealloc , ptr);
capsule_ret(ptr);

}
Listing 2. malloc implemented as a capsule function.

D. Capsule programming example

Listing 2 shows how malloc can be written as a capsule

function. malloc first checks that its stack pointer is valid

and has sufficient space, using promote otherwise. malloc

also checks whether the requested allocation is very large,

using promote if the program wants to allocate more than

16 MB. This avoids wasting excessive space to satisfy large

requests from mispeculating tasks. After these checks, malloc

calls do alloc, which allocates the requested chunk. Finally,

malloc uses capsule abort handler to register a call to

do dealloc as the abort handler. In this example, do alloc

and do dealloc are thread-safe functions that use conven-

tional synchronization (e.g., locks) to perform allocation and

deallocation of heap memory. All allocator metadata (e.g., free

lists) are stored in untracked memory. If the calling task aborts,

the call to do dealloc runs, freeing the allocated memory.

V. IMPLEMENTATION

We implement Espresso and Capsules by extending

Swarm [2, 46, 47, 48, 89], a recent architecture for speculative

parallelization. We choose Swarm as a baseline because it

already provides most of the mechanisms needed for Espresso:

it efficiently supports fine-grain tasks, implements scalable

ordered speculation using timestamps, and performs locality-

aware execution [46]. However, Espresso could be implemented

over classic TLS systems as well, and Capsules are a general

technique that could be applied to any speculative system,

including HTM, TLS, Swarm, or Espresso. We first present

Swarm’s main features (see prior work [46, 47] for details),

then describe how they are extended to implement Espresso,

and finally describe the implementation of Capsules.

A. Baseline Swarm microarchitecture

The Swarm microarchitecture introduces modest changes

to a tiled, cache-coherent multicore, shown in Fig. 5. Each

tile has a group of simple cores, each with its own private L1

cache. All cores in a tile share an L2 cache, and each tile has

a slice of a fully shared L3 cache. Each tile is augmented with

a task unit that queues, dispatches, and commits tasks.

64-tile, 256-core chip

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 sliceRouter

Tile organization

Task unit
Mem / IO

M
e
m

/ 
IO

Mem / IO

M
e
m

/ IO

Tile

Fig. 5. 256-core chip and tile configuration.

6



T
im

e

(b) Speculative parent creates

speculative child, then aborts

LTU RTU

(c) Non-speculative

parent creates child

RTULTU

(d) Speculative parent keeps non-

speculative child locally until commit

TASK

LTU RTU

(a) Speculative parent creates 

speculative child, ends, then commits

LTU RTUCore

Fig. 6. Swarm (a,b) and Espresso (a,b,c,d) enqueue protocol between a local task unit (LTU) and a remote task unit (RTU), as a parent task creates a child.

Unlike Espresso, Swarm programs consist exclusively of

speculative timestamped tasks. Swarm uncovers parallelism

by executing tasks speculatively and out of order. To uncover

enough parallelism, Swarm can speculate thousands of tasks

ahead of the earliest active task. Swarm efficiently supports

fine-grain tasks and a large speculation window through five

techniques: hardware task management, large task queues,

scalable speculation, high-throughput ordered commits, and

locality-aware execution.

Hardware task management: Each task unit queues runnable

tasks and stores the speculative state of finished tasks until

they commit. Each task is represented by a task descriptor that

contains its function pointer, timestamp, and arguments.

Tasks are created using a create task instruction with ar-

guments passed through registers. The local task unit asynchro-

nously enqueues tasks to remote tiles. The parent’s speculative

state tracks where each child is enqueued. This enables parent

commit or abort notifications to be sent to those children, as

shown in Fig. 6(a) and Fig. 6(b). A parent abort notification

aborts and discards the child, while a parent commit notification

permits mechanisms to relieve queue pressure (see below).

To uncover enough parallelism, a task unit can dispatch

any task to a core, even if its parent is still speculative. Cores

dequeue tasks for execution by timestamp priority from the local

task unit. A successful dequeue initiates speculative execution

at the task’s function pointer and makes the task’s arguments

available in registers. A core stalls if there is no task to dequeue.

This support minimizes task creation and dispatch costs,

enabling tiny tasks: a single instruction creates each task, and

arguments are copied from/to registers, without stack accesses.

Large task queues: The task unit has two main structures:

(i) a task queue that holds task descriptors for every task in the

tile, and (ii) a commit queue that holds the speculative state

of tasks that have finished execution but cannot yet commit.

Together, these queues implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks

per core (e.g., 64 task queue entries and 16 commit queue

entries per core) to implement a large window of speculation

(e.g., 16 thousand tasks in the 256-core chip). Nevertheless,

task and commit queues can fill up. This requires some simple

actions to ensure forward progress. Specifically, tasks that

receive parent-commit notifications can be spilled to memory

to free task queue entries. If no tasks can be spilled, queue

resource exhaustion is handled by either stalling task creation

or aborting higher-timestamp tasks to free space [47].

Scalable speculation: Swarm enhances previously proposed

speculation mechanisms to support a large number of spec-

ulative tasks. Swarm uses eager (undo-log-based) version

management and eager conflict detection using Bloom filters,

similar to LogTM-SE [94]. Swarm forwards still-speculative

data read by a later task. When a task aborts, Swarm selectively

aborts only its descendants and data-dependent tasks.

Swarm detects conflicts at cache line granularity, and lever-

ages the cache hierarchy to substantially reduce the number of

conflict checks and their cost [47]: L1 caches are managed so

that L1 hits need not be conflict-checked, and L2 caches are

managed so that L2 hits need only be conflict-checked against

tasks in the same tile. The L3 directory maintains metadata so

that L2 misses are conflict-checked only against tiles where

uncommitted tasks may have accessed the same cache line.

To perform speculative forwarding and commits, Swarm

dynamically produces a total order among tasks. Each task is

given a unique virtual time (VT) when it is dispatched. VTs are

128-bit integers that extend each 64-bit programmer-assigned

timestamp with a unique 64-bit tiebreaker. Swarm only allows

tasks to access speculative data written by lower-VT tasks, and

commits tasks in VT order to preserve correctness.

High-throughput ordered commits: Swarm adapts the virtual

time algorithm [45] to achieve high commit throughput. Tiles

periodically communicate with an arbiter (e.g., every 200 cycles)

to discover the VT of the earliest (lowest-VT) active (unfinished)

task in the system. All tasks with lower VTs can then commit.

This scheme uses a hierarchical min reduction and can commit

many tasks per cycle, thus scaling to hundreds of cores with

tasks as short as a few instructions.

Locality-aware execution: Finally, Swarm leverages a tech-

nique called spatial hints [46] to perform locality-aware

execution. A hint is an optional 64-bit integer that, much like

a locale, abstractly denotes the data the task is likely to access.

Swarm exploits hints by running same-hint tasks in the

same tile and serializing them. The hint is stored in the task’s

descriptor. When a core creates a new task, the task unit hashes

its 64-bit hint to a tile ID, then enqueues the task to the selected

tile. Thus, same-hint tasks run on the same tile. Tasks without

hints are enqueued to random tiles. Then, the dispatch logic at

each tile serializes same-hint tasks to avoid conflicts.

B. Espresso microarchitecture

Espresso generalizes Swarm’s microarchitecture to (i) sup-

port non-speculative tasks, (ii) handle their interactions with

speculative tasks, and (iii) implement exceptions.

Tasks use the same hardware task descriptor format as

in Swarm, with two additional bits to store the type (SPEC,

NONSPEC, or MAYSPEC). The dispatch, queuing, speculation

mechanisms, and commit protocol of SPEC tasks are unchanged

from those of Swarm in Sec. V-A.

7



Non-speculative tasks require simple changes to the dispatch

and queuing logic. A NONSPEC task may run only when (i) its

parent is non-speculative or committed, (ii) it is not timestamped

or its timestamp matches that of the earliest active task, (iii) it

has no locale or its locale does not match that of any running

task, and (iv) the system is not satisfying a promotion.

The tile’s dispatch logic performs all these checks using

local state. It picks the lowest-timestamp task available to

run, but excludes NONSPEC tasks that are not yet runnable.

Locales regulate task dispatch in the same way as spatial hints:

tasks with the same locale are enqueued to the same tile and

serialized, providing mutual exclusion.

A non-speculative task frees its task queue entry when

dispatched and does not use a commit queue entry. This reduces

queue pressure. Since the task can never abort, it does not track

its children or send them any notifications, as shown in Fig. 6(c).

This reduces traffic and allows non-speculative tasks to create

an unbounded number of children; their children can always

be spilled to memory.

Mixing non-speculative and speculative tasks requires chan-

ging the dispatch, conflict detection, and commit mechanisms:

1. Speculative NONSPEC enqueue: If a speculative task creates

a NONSPEC child destined to a remote tile, since the child cannot

run before its parent commits, the task is buffered locally and

enqueued to the remote tile only when the parent commits

(Fig. 6(d)). This avoids needless abort and commit notifications.

2. MAYSPEC dispatch: A MAYSPEC task is always speculatively

runnable, but may exploit non-speculative execution for effi-

ciency. The dispatch logic checks if the task meets the same

conditions for a NONSPEC task to run. If so, the task executes

non-speculatively; otherwise, it executes speculatively.

3. Conflicts: A non-speculative task does not track read/write-

sets. However, to implement strong atomicity, its accesses are

conflict-checked against speculative tasks. A non-speculative

access that conflicts with a running speculative task’s read/write

set aborts the speculative task.

If a non-speculative task N conflicts with a finished spec-

ulative task S, S may be unsafe to abort. Recall that tiles

periodically communicate to find the virtual time (VT) of the

earliest active task, and all finished tasks whose VTs precede

that earliest active VT must then commit. If the tile has sent a

locally earliest active VT to the commit arbiter that is higher

than S’s VT, S may be declared committed by the arbiter. To

handle this race, N stalls until the arbiter replies and S’s fate

is known. This race is very rare.

4. Commit protocol: When tiles send their earliest active VT

to the arbiter, the timestamps of non-speculative tasks are

included for consideration. This prevents any speculative task

with a higher timestamp from committing, while allowing same-

timestamp speculative tasks to commit.

Exceptions: Any attempt by a speculative task to perform

an irrevocable action (e.g., a system call or segmentation

fault) causes a speculative exception. There are two causes

for speculative exceptions: either the task legitimately needs

to execute an irrevocable action, or it is a mispeculating task

performing incorrect execution.

Whereas TLS schemes stall the core running the exceptioned

task [35, 87], Espresso leverages commit queues to avoid

holding up a core. The exceptioned task is immediately stopped

and its core becomes available to run another task. Its writes

are rolled back, and its children tasks are aborted and discarded.

Espresso then keeps the task’s read set active in the commit

queue. If the read set detects a conflict with an earlier task, the

exceptioned task was mispeculating, so it becomes runnable

again for speculative execution. However, if the task becomes

the earliest active task without having suffered a conflict, it

legitimately needs to perform an irrevocable action.

After an exceptioned task becomes the earliest active task

in the system, it is promoted to re-run non-speculatively. This

proceeds as follows. First, the task’s tile sends a promotion

request to the virtual time arbiter. The arbiter forbids other tiles

from dispatching further non-speculative tasks. This is because

the promoted task was speculative, so it must run isolated from

all other tasks. After all currently running non-speculative tasks

have finished, the exceptioned task is promoted and allowed

to run. Although the promoted task cannot run concurrently

with other non-speculative tasks, other speculative tasks can

continue execution, ordered after the promoted task. Though

expensive, this process happens rarely.

In summary, Espresso requires simple extensions to Swarm,

and in return substantially improves performance and pro-

grammability, as we will see in Sec. VI.

C. Capsules implementation

Capsules extend the system to implement untracked memory

and a vectored-call interface to capsule functions.

Untracked memory: Our implementation of untracked mem-

ory makes simple extensions to standard virtual memory

protection mechanisms. In addition to the standard read, write,

and execute permissions bits, we add an untracked permission

bit to each page table entry and TLB entry. An access to an

untracked page from a speculative task that is not in a capsule

causes a memory-protection exception. Programs can request

tracked or untracked memory using the mmap system call, and

change a page’s permissions with the mprotect system call.

Alternatively, untracked memory could be implemented as a

new virtual memory segment.

To track whether the current task is in a capsule, each core

has a capsule depth counter, initialized to zero at task start to

indicate that the task is not yet in a capsule. capsule call

increments the capsule depth counter by one, and capsule -

ret decrements it by one. This allows capsule functions to call

other capsule functions, while tracking when the task finally

exits the outermost capsule.

Safely entering a capsule: The capsule-call vector contains

pointers to all capsule functions and is stored at a fixed location

in untracked memory. It would be cumbersome to manually

assign unique IDs to capsule functions and build the call vector.

However, the linker and loader can automate this process,

similarly to how they handle position-independent code [42].

Capsule aborts: If a task aborts, any registered abort handlers

must run non-speculatively. After an abort, we enqueue each

abort handler as a NONSPEC task with no timestamp.

8



Special handling is required to abort a task while it is

still executing a capsule. Normally, a task is immediately

stopped after detecting a conflict. A capsule, however, cannot

be stopped arbitrarily—it must be allowed to complete, and

then its abort handlers run, to guarantee a consistent state in

untracked memory. Nonetheless, to avoid priority inversion,

our implementation always handles conflicts immediately upon

detection. If the task is in a capsule when it needs to be aborted,

all the task’s side-effects to tracked memory are rolled back

immediately, so other tasks can proceed to use the recovered

state in tracked memory. Abort notifications are sent to its

children. The capsule is then marked as doomed and allowed

to continue execution. A doomed capsule’s writes to tracked

memory are not performed, nor are its enqueues. Its accesses to

untracked memory are performed normally. The core becomes

available to run another task after the doomed capsule exits.

VI. EVALUATION

We evaluate Espresso and Capsules on a diverse set of

applications. We find that non-speculative execution brings

modest performance and efficiency gains when non-speculative

parallelism is plentiful, but forcing non-speculative execution

with NONSPEC can dramatically hurt parallelism. By contrast,

MAYSPEC achieves the best of both worlds and can be applied

indiscriminately without hurting parallelism, making it easy to

use. We find that Capsules yields order-of-magnitude speedups

in important use cases, which we show through two case studies

on memory allocation and disk-based key-value stores.

A. Experimental methodology

Modeled system: We use a cycle-level, execution-driven

simulator based on Pin [57, 68] to model systems of up to 256

cores, as shown in Fig. 5, with parameters in Table II. Swarm

parameters match those of prior work [46, 47, 48]. We use

detailed core, cache, network, and main memory models, and

simulate all task and speculation overheads (e.g., task traffic,

running mispeculating tasks until they abort, simulating conflict

check and rollback delays and traffic, etc.). Our 256-core con-

figuration is similar to the Kalray MPPA [23]. We also simulate

TABLE II
CONFIGURATION OF THE 256-CORE SYSTEM.

Cores
256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA;
single-issue in-order, scoreboarded (stall-on-use) [46]

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
64 MB, shared, static NUCA [51] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
8×8 mesh, 128-bit links, X-Y routing, 1 cycle/hop when
going straight, 2 cycles on turns (like Tile64 [93])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (16384 total),
16 commit queue entries/core (4096 total)

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [14]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Virtual time
128-bit virtual times, tiles send updates to
virtual time arbiter every 200 cycles

Spills Spill 15 tasks when task queue is 85% full

TABLE III
BENCHMARKS: SOURCE IMPLEMENTATIONS AND INPUTS; RUN TIME,

AVERAGE TASK LENGTH, AND SERIAL-RELATIVE PERFORMANCE ON A

SINGLE-CORE SYSTEM.

Application Input
1-core cycles 1-core perf.
total per task vs. serial

sssp [70]
cage14 [22] 1.6 B 53 0.93×
East USA roads [1] 2.4 B 299 1.74×

cf [84, 98] movielens-1m [37] 1.5 B 59500 0.98×
triangle [84] R-MAT [17] 59.5 B 1240 1.02×
kmeans [61] m40 n40 n16384 d24 c16 8.6 B 6500 1.02×
color [39] netflix [8] 11.1 B 163 1.42×
bfs [55] hugetric-00020 [5, 22] 3.3 B 139 0.93×
mis [85] R-MAT [17] 1.7 B 121 0.80×
astar [47] Germany roads [67] 1.6 B 458 1.37×

genome [61] g4096 s48 n1048576 2.3 B 850 1.01×
des [70] csaArray32 1.7 B 506 1.82×

nocsim [3] 16x16 mesh, tornado 19.3 B 979 1.79×
silo [90] TPC-C, 4 whs, 1 Ktxns 0.1 B 3380 1.13×

smaller systems with square meshes (K ×K tiles for K ≤ 8).

Our 1-core system always runs all tasks non-speculatively. We

keep per-core L2/L3 sizes and queue capacities constant across

system sizes. This captures performance per unit area. As a

result, larger systems have higher queue and cache capacities,

which sometimes cause superlinear speedups.

Benchmarks: Table III reports the benchmarks and inputs

used to evaluate Espresso and the Capsules-based allocator. We

consider 17 ordered and unordered benchmarks.

We ported 15 benchmarks from Swarm [46, 47, 89], (all

except those that need Fractal [89] to scale). Eight of the 15

benchmarks have tasks that can be well-synchronized with

timestamps and locales: sssp, color, bfs, mis, astar, and

des are ordered applications, and genome and kmeans are

unordered transactional applications.

We also port bulk-synchronous cf (collaborative filtering)

and triangle (triangle counting) from Ligra [84, 98]. Their

tasks are well-synchronized: they perform lock-free atomic

updates and use barriers, which we replace with timestamps.

Sec. VI-B compares Espresso versions by declaring all

well-synchronized tasks as SPEC, NONSPEC, or MAYSPEC. The

source code is otherwise identical. Swarm runs all tasks

speculatively, and is thus equivalent to Espresso’s SPEC. We

also evaluate state-of-the-art software-only parallel versions as

in prior work [46, 47, 89] (except for genome and kmeans,

which lack a non-transactional parallel version, and astar, for

which software-parallel versions yield no speedup [47]).

Four of the benchmarks have a significant amount of dynamic

memory allocation: genome, des, nocsim, and silo. Sec. VI-C

compares the effect of different allocators on the SPEC (Swarm)

version of these applications.

We report speedups relative to tuned 1-core Swarm imple-

mentations. Due to hardware task management, 1-core Swarm

versions are competitive with (and often faster than) tuned

software-only serial implementations, as shown in Table III.

We fast-forward each benchmark to the start of its parallel

region and run the entire parallel region. We perform enough

runs to achieve 95% confidence intervals ≤ 1%.

Memory allocation: Only two of the benchmarks used in

Sec. VI-B (genome and des) allocate memory within tasks.

To separate concerns, we study the impact of allocators in

9







We evaluate both strategies on a 256-core system with an

NVMe SSD.3 Fig. 10(a) shows how disk bandwidth grows with

miss rate (which we control by varying the memory footprint).

spec tops out at 63 MB/s, far below the disk’s bandwidth, due

to its serialized I/O. By contrast, capsule fully saturates disk

bandwidth, achieving 1671 MB/s. Fig. 10(b) shows that, with

a 2% miss rate (where both variants are I/O-bound), capsule

achieves 24× the throughput of spec. These results show that

concurrent system calls can be highly beneficial, and Capsules

successfully unlock this benefit for speculative tasks.

VII. ADDITIONAL RELATED WORK

Espresso is most closely related to Swarm, but draws from

prior HTM and TLS systems as well. Table IV summarizes

the capabilities of these systems.

A. Task scheduling and synchronization

Prior work has investigated hardware support for scheduling

and synchronization of either speculative or non-speculative

tasks. On the speculative side, prior techniques enable threads to

speculate past barriers [36, 58, 82], and avoid aborts on known

dependences by stalling [96] or pipelining [91]. On the non-

speculative side, prior work has proposed hardware-accelerated

task-stealing [53, 81] and dataflow [15, 28, 33, 66] schedulers.

The lack of shared synchronization mechanism hinders HTM,

where mixing transactional and conventional synchronization is

unsafe [26, 92]. Prior work has crafted software primitives that

bypass transactional mechanisms [26, 92] or toggle between

transactional and lock-based synchronization [78].

By contrast, Espresso’s timestamps and locales facilitate

coordination across speculative and non-speculative tasks.

This opens the door to MAYSPEC, which allows the system

to dynamically choose to execute tasks speculatively or non-

speculatively. Moreover, timestamps and locales offer more

performance for non-speculative tasks than shared-memory

barriers and locks. Timestamps are essentially hardware-

accelerated barriers [7, 50, 83]. Locales are handled by the

task dispatch logic, so they are more efficient than hardware-

accelerated locks [49, 56, 99], as they eliminate spinning within

a task. Locales also enable locality-aware task mapping.

B. Restricted vs. unrestricted speculative tasks

TLS systems are unrestricted: their tasks can run arbitrary

code, although only the earliest active task may run a system

call or exception handler. Most HTMs are restricted: they

forbid transactions from invoking irrevocable actions, which

hinders programmability. OneTM [9] and TCC [36] permit

unrestricted transactions. Our promotion technique lies between

OneTM-serialized, which pauses all other threads, and OneTM-

concurrent, which keeps all other threads running but requires

in-memory metadata to support unbounded read/write sets. By

contrast, Espresso keeps only speculative tasks running through

a promotion. TCC, like TLS, does not support non-speculative

parallelism (all code runs speculatively except the transaction

with commit permission).

3 We model a Samsung 960 PRO, which supports 440K/360K IOPS for
random 4 KB reads/writes, with minimum latencies of 70/20 µs [80].

TABLE IV
COMPARISON OF PRIOR SYSTEMS AND ESPRESSO.

Capability HTM TLS Swarm Espresso

Ordered parallelism [
a

✔ ✔ ✔

Non-speculative parallelism ✔ ✘ ✘ ✔

Shared synchronization mechanisms ✘ ✘ ✘ ✔

Locality-aware ✘ ✘ ✔ ✔

Unrestricted speculative code [
b

✔ ✘ ✔
a Most HTMs are unordered (Sec. VII-D).
b Most HTMs are restricted (Sec. VII-B).

C. Open-nested transactions

Some speculative tasks must perform operations that would

be expensive or incompatible with their hardware speculation

mechanisms. Escape actions (Sec. II-C) are one prior solu-

tion for HTMs, as are open-nested transactions [59, 63, 64],

which run within another transaction and commit immediately

after finishing, before its enclosing transaction commits. Like

Capsules, open-nested transactions still use ordinary conflict

detection to preserve atomicity when accessing data shared

by other transactions. Like escape actions and Capsules, open-

nested transactions use abort handlers to undo their effects.

Unfortunately, open-nested transactions are also unsafe with

speculative forwarding because open-nested transactions may

lose data and control-flow integrity and then perform harmful

writes and commit.

D. Transactional memory and order

Some hardware [16, 36, 71] and software [12, 32] TMs let

programmers control the commit order among transactions,

bridging the gap between TM and TLS. Other TMs order

transactions internally, either to avoid pathologies [11, 62] or

to implement conflict serializability [4, 29, 44, 72, 74]. However,

this order is not controllable by programmers.

VIII. CONCLUSION

We have presented two techniques that bring the benefits of

non-speculative parallelism to systems with ordered speculation.

First, the Espresso execution model efficiently supports specula-

tive and non-speculative tasks, provides shared synchronization

mechanisms to all tasks, and lets the system adaptively run tasks

speculatively or non-speculatively to achieve the best of both

worlds. Second, Capsules let speculative tasks safely invoke

software-managed speculative actions, bypassing hardware

version management and conflict detection. We have shown

that these techniques improve performance and enable new

capabilities, such as scaling memory allocation and allowing

speculative tasks to safely perform parallel I/O.

ACKNOWLEDGMENTS

We sincerely thank Nosayba El-Sayed, Anurag Mukkara,

Po-An Tsai, Guowei Zhang, and the anonymous reviewers for

their helpful feedback. This work was supported in part by NSF

grants CAREER-1452994 and SHF-1814969, NSF/SRC grant

E2CDA-1640012, and C-FAR, one of six SRC STARnet centers

by MARCO and DARPA. Mark C. Jeffrey was supported by

a Facebook Fellowship and Hyun Ryong Lee was supported

in part by a Kwanjeong Educational Foundation scholarship.

12



REFERENCES

[1] “9th DIMACS Implementation Challenge: Shortest Paths,” http://www.
dis.uniroma1.it/∼challenge9, archived at https://perma.cc/5KYT-YM36,
2006.

[2] M. Abeydeera, S. Subramanian, M. C. Jeffrey, J. Emer, and D. Sanchez,
“SAM: Optimizing multithreaded cores for speculative parallelism,” in
Proc. PACT-26, 2017.

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proc. ISPASS,
2009.

[4] U. Aydonat and T. S. Abdelrahman, “Hardware support for relaxed
concurrency control in transactional memory,” in Proc. MICRO-43,
2010.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., 10th
DIMACS Implementation Challenge Workshop, 2012.

[6] L. Baugh and C. Zilles, “An analysis of I/O and syscalls in critical
sections and their implications for transactional memory,” in Proc.
ISPASS, 2008.

[7] C. J. Beckmann and C. D. Polychronopoulos, “Fast barrier synchro-
nization hardware,” in Proc. SC90, 1990.

[8] J. Bennett and S. Lanning, “The Netflix prize,” in KDD Cup and
Workshop, 2007.

[9] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin, “Making
the fast case common and the uncommon case simple in unbounded
transactional memory,” in Proc. ISCA-34, 2007.

[10] C. Blundell, E. C. Lewis, and M. M. K. Martin, “Subtleties of
transactional memory atomicity semantics,” IEEE Computer Architecture
Letters, vol. 5, no. 2, 2006.

[11] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance pathologies in hardware transactional
memory,” in Proc. ISCA-34, 2007.

[12] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Speculative out-of-
order event processing with software transaction memory,” in Proc. of
the 2nd intl. conf. on Distributed Event-Based Systems, 2008.

[13] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le,
“Robust architectural support for transactional memory in the Power
architecture,” in Proc. ISCA-40, 2013.

[14] J. L. Carter and M. Wegman, “Universal classes of hash functions
(extended abstract),” in Proc. STOC-9, 1977.

[15] E. Castillo, L. Alvarez, M. Moreto, M. Casas, E. Vallejo, J. L. Bosque,
R. Beivide, and M. Valero, “Architectural support for task dependence
management with flexible software scheduling,” in Proc. HPCA-24,
2018.

[16] L. Ceze, J. Tuck, J. Torrellas, and C. Caşcaval, “Bulk disambiguation
of speculative threads in multiprocessors,” in Proc. ISCA-33, 2006.

[17] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proc. SDM, 2004.

[18] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler, “The scalable commutativity rule: Designing scalable software
for multicore processors,” in Proc. SOSP-24, 2013.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. SoCC-1,
2010.

[20] L. Dalessandro and M. L. Scott, “Strong isolation is a weak idea,” in
TRANSACT, 2009.

[21] L. Dalessandro and M. L. Scott, “Sandboxing transactional memory,”
in Proc. PACT-21, 2012.

[22] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM TOMS, vol. 38, no. 1, 2011.

[23] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, “A clustered manycore processor architecture for embedded
and accelerated applications,” in Proc. HPEC, 2013.

[24] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proc. SPAA,
2017.

[25] D. Dice, Y. Lev, V. J. Marathe, M. Moir, D. Nussbaum, and M. Olszewski,
“Simplifying concurrent algorithms by exploiting hardware transactional
memory,” in Proc. SPAA, 2010.

[26] P. Dudnik and M. M. Swift, “Condition variables and transactional
memory: Problem or opportunity?” in TRANSACT, 2009.

[27] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, “A survey on
thread-level speculation techniques,” ACM CSUR, vol. 49, no. 2, 2016.

[28] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task Superscalar: An out-of-order task
pipeline,” in Proc. MICRO-43, 2010.

[29] J. Fix, N. P. Nagendra, S. Apostolakis, H. Zhang, S. Qiu, and D. I.
August, “Hardware multithreaded transactions,” in Proc. ASPLOS-XXIII,
2017.

[30] M. J. Garzarán, M. Prvulovic, J. M. Llaberı́a, V. Viñals, L. Rauchwerger,
and J. Torrellas, “Tradeoffs in buffering speculative memory state for
thread-level speculation in multiprocessors,” in Proc. HPCA-9, 2003.

[31] S. Ghemawat and P. Menage, “TCMalloc: Thread-caching malloc,”
https://gperftools.github.io/gperftools/tcmalloc.html, archived at https:
//perma.cc/EK9E-LBYU, 2007.

[32] M. A. Gonzalez-Mesa, E. Gutierrez, E. L. Zapata, and O. Plata,
“Effective transactional memory execution management for improved
concurrency,” ACM TACO, vol. 11, no. 3, 2014.

[33] J. P. Grossman, J. S. Kuskin, J. A. Bank, M. Theobald, R. O. Dror, D. J.
Ierardi, R. H. Larson, U. B. Schafer, B. Towles, C. Young, and D. E.
Shaw, “Hardware support for fine-grained event-driven computation in
Anton 2,” in Proc. ASPLOS-XVIII, 2013.

[34] R. Guerraoui and M. Kapalka, “On the correctness of transactional
memory,” in Proc. PPoPP, 2008.

[35] L. Hammond, M. Willey, and K. Olukotun, “Data speculation support
for a chip multiprocessor,” in Proc. ASPLOS-VIII, 1998.

[36] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” in Proc. ISCA-31,
2004.

[37] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and
context,” ACM TiiS, vol. 5, no. 4, 2015.

[38] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in Proc. PPoPP, 2005.

[39] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in Proc. SPAA, 2014.

[40] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: A
comparison of parallelism and work-efficiency in irregular algorithms,”
in Proc. PPoPP, 2011.

[41] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. ISCA-20, 1993.

[42] J. Hubicka, A. Jaeger, and M. Mitchell, “System V application binary
interface,” AMD64 Architecture Processor Supplement, 2013.

[43] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg,
“McRT-Malloc: A scalable transactional memory allocator,” in Proc.
ISMM, 2006.

[44] S. A. R. Jafri, G. Voskuilen, and T. N. Vijaykumar, “Wait-n-GoTM:
improving HTM performance by serializing cyclic dependencies,” in
Proc. ASPLOS-XVIII, 2013.

[45] D. R. Jefferson, “Virtual time,” ACM TOPLAS, vol. 7, no. 3, 1985.
[46] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez,

“Data-centric execution of speculative parallel programs,” in Proc.
MICRO-49, 2016.

[47] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A
scalable architecture for ordered parallelism,” in Proc. MICRO-48, 2015.

[48] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,
“Unlocking ordered parallelism with the Swarm architecture,” IEEE
Micro, vol. 36, no. 3, 2016.

[49] A. Kägi, D. Burger, and J. R. Goodman, “Efficient synchronization: Let
them eat QOLB,” in Proc. ISCA-24, 1997.

[50] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang, and
W. S. Lee, “Exploiting fine-grain thread level parallelism on the MIT
multi-ALU processor,” in Proc. ISCA-25, 1998.

[51] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in Proc. ASPLOS-X,
2002.

[52] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali, “Ex-
ploiting the commutativity lattice,” in Proc. PLDI, 2011.

[53] S. Kumar, C. Hughes, and A. Nguyen, “Carbon: architectural support
for fine-grained parallelism on chip multiprocessors,” in Proc. ISCA-34,
2007.

[54] B. C. Kuszmaul, “SuperMalloc: A super fast multithreaded malloc for
64-bit machines,” in Proc. ISMM, 2015.

[55] C. Leiserson and T. Schardl, “A work-efficient parallel breadth-first
search algorithm,” in Proc. SPAA, 2010.

[56] B. Lucia, J. Devietti, T. Bergan, L. Ceze, and D. Grossman, “Lock
prediction,” in 2nd USENIX Workshop on Hot Topics in Parallelism,
2010.

13



[57] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proc. PLDI,
2005.

[58] J. F. Martı́nez and J. Torrellas, “Speculative synchronization: Applying
thread-level speculation to explicitly parallel applications,” in Proc.
ASPLOS-X, 2002.

[59] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun, “Architectural semantics for practical
transactional memory,” in Proc. ISCA-33, 2006.

[60] U. Meyer and P. Sanders, “Delta-stepping: A parallelizable shortest
path algorithm,” Journal of Algorithms, vol. 49, no. 1, 2003.

[61] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
transactional applications for multi-processing,” in Proc. IISWC, 2008.

[62] K. Moore, J. Bobba, M. Moravan, M. D. Hill, and D. Wood, “LogTM:
Log-based transactional memory,” in Proc. HPCA-12, 2006.

[63] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit,
M. M. Swift, and D. A. Wood, “Supporting nested transactional memory
in LogTM,” in Proc. ASPLOS-XII, 2006.

[64] J. E. B. Moss, “Open nested transactions: Semantics and support,” in
Workshop on Memory Performance Issues, 2006.

[65] N. Narula, C. Cutler, E. Kohler, and R. Morris, “Phase Reconciliation
for Contended In-Memory Transactions.” in Proc. OSDI-11, 2014.

[66] M. Noakes, D. Wallach, and W. Dally, “The J-Machine multicomputer:
An architectural evaluation,” in Proc. ISCA-20, 1993.

[67] OpenStreetMap, “http://www.openstreetmap.org.”

[68] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk, “Controlling program
execution through binary instrumentation,” SIGARCH Comput. Archit.
News, vol. 33, no. 5, 2005.

[69] V. Pankratius and A.-R. Adl-Tabatabai, “A study of transactional memory
vs. locks in practice,” in Proc. SPAA, 2011.

[70] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Proc. PLDI, 2011.

[71] L. Porter, B. Choi, and D. Tullsen, “Mapping out a path from hardware
transactional memory to speculative multithreading,” in Proc. PACT-18,
2009.

[72] X. Qian, B. Sahelices, and J. Torrellas, “OmniOrder: Directory-based
conflict serialization of transactions,” in Proc. ISCA-41, 2014.

[73] R. Rajwar and J. R. Goodman, “Transactional lock-free execution of
lock-based programs,” in Proc. ASPLOS-X, 2002.

[74] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” in Proc. MICRO-41,
2008.

[75] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas,
“Thread-level speculation on a CMP can be energy efficient,” in Proc.
ICS’05, 2005.

[76] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas, “Tasking
with out-of-order spawn in TLS chip multiprocessors: Microarchitecture
and compilation,” in Proc. ICS’05, 2005.

[77] M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis
technique for parallelizing compilers,” ACM TOPLAS, vol. 19, no. 6,
1997.

[78] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya,
and E. Witchel, “TxLinux: Using and managing hardware transactional
memory in an operating system,” in Proc. SOSP-21, 2007.

[79] C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional
programming actually easier?” in Proc. PPoPP, 2010.

[80] Samsung, “Samsung SSD 960 PRO M.2 Data Sheet,” 2017.
[81] D. Sanchez, R. Yoo, and C. Kozyrakis, “Flexible architectural support

for fine-grain scheduling,” in Proc. ASPLOS-XV, 2010.
[82] T. Sato, K. Ohno, and H. Nakashima, “A mechanism for speculative

memory accesses following synchronizing operations,” in Proc. IPDPS,
2000.

[83] S. L. Scott, “Synchronization and communication in the T3E multipro-
cessor,” in Proc. ASPLOS-VII, 1996.

[84] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013.

[85] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The problem
based benchmark suite,” in Proc. SPAA, 2012.

[86] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,”
in Proc. ISCA-22, 1995.

[87] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation,” in Proc. ISCA-27, 2000.

[88] J. G. Steffan and T. C. Mowry, “The potential for using thread-level data
speculation to facilitate automatic parallelization,” in Proc. HPCA-4,
1998.

[89] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying,
J. Emer, and D. Sanchez, “Fractal: An execution model for fine-grain
nested speculative parallelism,” in Proc. ISCA-44, 2017.

[90] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proc. SOSP-24,
2013.

[91] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August, “Speculative decoupled software pipelining,” in Proc.
PACT-16, 2007.

[92] H. Volos, N. Goyal, and M. M. Swift, “Pathological interaction of locks
with transactional memory,” in TRANSACT, 2008.

[93] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, 2007.

[94] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling hardware
transactional memory from caches,” in Proc. HPCA-13, 2007.

[95] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of Intel R© transactional synchronization extensions for high-performance
computing,” in Proc. SC13, 2013.

[96] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Compiler opti-
mization of memory-resident value communication between speculative
threads,” in Proc. CGO, 2004.

[97] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for speculative
run-time parallelization in distributed shared-memory multiprocessors,”
in Proc. HPCA-4, 1998.

[98] Y. Zhang, V. Kiriansky, C. Mendis, S. P. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in Proc. IEEE BigData, 2017.

[99] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization state
buffer: supporting efficient fine-grain synchronization on many-core
architectures,” in Proc. ISCA-34, 2007.

[100] C. Zilles and L. Baugh, “Extending hardware transactional memory to
support non-busy waiting and non-transactional actions,” in TRANSACT,
2006.

14


	Introduction
	Background and Motivation
	Speculation benefits are input-dependent
	Combining speculative and non-speculative tasks
	Software-managed speculation improves parallelism

	Espresso Execution Model
	Espresso semantics
	MAYSPEC: Tasks that may speculate
	Exception model

	Capsules
	Untracked memory
	Safely entering a capsule
	Capsule execution
	Capsule programming example

	Implementation
	Baseline Swarm microarchitecture
	Espresso microarchitecture
	Capsules implementation

	Evaluation
	Experimental methodology
	Espresso evaluation
	Capsules case study: Dynamic memory allocation
	Capsules case study: Disk-backed key-value store

	Additional Related Work
	Task scheduling and synchronization
	Restricted vs. unrestricted speculative tasks
	Open-nested transactions
	Transactional memory and order

	Conclusion
	References

