Proceedings of the 2019 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics

Hong Kong, China, July 8-12, 2019

Optical Localization of a Mobile Robot Using Sensitivity-based Data
Fusion

Jason N. Greenberg and Xiaobo Tan

Abstract— Optical communication is of increasing interest as
an alternative to acoustic communication for robots operated
in underwater environments. Our previous work presented a
method for LED-based Simultaneous Localization and Com-
munication (SLAC) that uses the bearing angles, obtained in
establishing line-of-sight (LOS) between two beacon nodes and
a mobile robot for communication, for geometric triangulation
and thus localization of the robot. In this paper, we consider
the problem of optical localization in the setting of a network
of beacon nodes, and specifically, how to fuse the measurements
from multiple pairs of beacon nodes to obtain the target
location. A sensitivity metric, which represents how sensitive
the target estimate is with respect to the bearing measurement
errors, is used for selecting the desired pair of beacon nodes.
The proposed solution is evaluated with extensive simulation
and preliminary experimentation, in a setting of three beacon
nodes and one mobile node. Comparison with an average-based
fusion approach and an approach using a fixed pair of beacon
nodes demonstrates the efficacy of the proposed approach.

I. INTRODUCTION

When working in a group, an individual agent can use
the data shared among the group to localize itself relative
to the other agents in a collaborative manner. Triangulation,
which uses angles relative to several neighbors with known
positions, often referred to as beacons (or base nodes), is
one of several position-measuring techniques used in these
collaborative settings [1].

In their comprehensive review of the vast field of triangu-
lation, Pierlot and Van Droogenbroeck distinguish four gen-
eral categories, Geometric Triangulation, Geometric Circle
Intersection, Iterative methods, and Multiple Beacons Trian-
gulation, with Geometric Circle Intersection being noted one
of the more popular approaches [2]. In this particular type
of triangulation, the bearing angles between two beacons
and a target are used to describe an arc that spans the
beacons and also contains all possible positions of the target.
A second arc, created by the addition of a third beacon,
allows for an intersecting point to be deduced. However,
this approach often has conditions in terms of various angles
and orientations of the beacons as well as numerous other
conditions for the procedure to work [2], [3].

Group-based localization approaches have the benefit of
being operational in typical GPS-denied environments such
as indoors and underwater. Underwater implementations tra-
ditionally rely on acoustic signals which are notorious for
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low data rates and low signal reception reliability due to their
limited bandwidth, long propagation delays, and multipath
effect [4]-[7]. Optical communication systems such as those
based on Light-Emitting Diodes (LEDs) are becoming viable
alternatives to acoustic-based methods. However, LED-based
approaches require a near line of sight (LOS) between trans-
mitter and receiver, though this has been addressed in several
ways, including the use of redundant transmitters/receivers
[8]-[11] and active alignment [12]-[14].

In our earlier work, [15] and [16], an LED-based optical
system was proposed as a solution to Simultaneous Localiza-
tion and Communication (SLAC). Localization was achieved
by using two base nodes (or beacons) with known positions
to capture the bearing angles needed to establish optical
LOS between these base nodes and a mobile robot. These
angles were then used to triangulate the robot’s coordinates.
To help maintain LOS between the two sides despite the
mobility of the robot, a Kalman filter was implemented to
predict the robot’s future positions, allowing the system to
localize dynamically. A noticeable limitation of this two-
base-node method is the singularity issue when the mobile
node approaches a collinear configuration with the base
nodes.

In this paper we consider the problem of optically lo-
calizing a mobile robot with a group (more than two) of
base nodes. This problem is motivated by not only the
aforementioned singularity issue, but also the scenario of
sensor networks, where the locations of multiple nodes
(stationary or mobile) are known, which provides redundancy
in localization. A key question is how to effectively fuse
the bearing angle information available from these multiple
base nodes. We propose to exploit a sensitivity metric to
select the best (most robust) pair of base nodes for trian-
gulation at each time. In particular, the metric describes
how sensitive the triangulated position is with respect to
the bearing measurement errors. The chosen pairing is then
used to compute the target’s position using the corresponding
measured bearings, which is then fed into a Kalman filter for
prediction of the robot’s next position. The latter prediction is
critical for facilitating the LOS establishment for next round
of communication and localization [15] and [16].

The proposed method is evaluated with extensive simu-
lation and preliminary experimentation using a three-base-
node implementation. Simulation compares the performance
of the proposed approach against two alternative methods
when the measurement angles are subject to varying levels
of noise. The alternative approaches include the two-base-
node approach from [15] and [16] and a method that uses
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the average of triangulated target positions based on bearing
measurements from all possible pairs of base nodes. Results
show that the proposed sensitivity metric-based approach
outperforms both alternatives and achieves an average es-
timated position error of roughly 1 grid unit across all levels
of measurement noise. Preliminary experimentation results
support the success noticed in simulation and illustrates the
proposed method’s implementation in hardware.

The remainder of this paper is organized as follows.
Section II reviews the position triangulation technique and
Kalman filtering for the setting of two base nodes and one
mobile node (target). Section III details the sensitivity metric
and the proposed fusion approach. Simulation results are pro-
vided in Section IV, followed by experimental evaluation in
Section V. Finally, conclusion and future work are discussed
in Section VL.

II. REVIEW OF THE TWO-BASE-NODE LOCALIZATION
APPROACH

A. Measurement Process

The proposed approach considers the two-dimensional
(2D) setting. Although extension to 3D is conceptually
straightforward, hardware implementation is more involved.
For the two-base-node approach, the network is composed of
one pair of base nodes (with known locations, BN and BN5)
and a mobile node (MN) to be localized, as illustrated in Fig.
1. Bearing angles #; and 65, are captured by the respective
base node via LOS measurement. With these angles and
the locations of the base nodes, the values of the x and y
coordinates of the mobile node are computed as:

[nw} _ |:Blm + |V1|00591]

Ty By + |Va|sin 6y M

where [n,, ny]T is the position vector of the mobile node
MN, By, and By, are the respective z— and y— coordinate
for BNy and |V;]| is the magnitude of vector V; shown in
Fig. 1 and is obtained using the Laws of Sines. In particular,

d sin(fs)
sin(6,,)

where the value of d is the distance between BN; and BN»,
0, is the complement of 6y, O = 180° — 6y, and 6, is the
angle corresponding to the side BN{-BNy within the MN-
BN;-BNj, triangle, 6,, = 65 — 6.

It is assumed that each node in the network is equipped
with an optical transceiver comprised of an LED transmitter
and a photodiode receiver, and that this transceiver is able to
rotate a full 360°. Furthermore, the node is able to identify
at any particular moment the angle at which its transceiver is
facing with respect to a reference direction such as the east
axis identified by a magnetic compass.

Although this process seems straightforward, it is par-
ticularly challenging when the target is mobile, since this
often results in insufficient synchronization and coordination
among all of the nodes to produce proper LOS measure-
ments. There is also the inherent trouble of dealing with
errors in the measurement angles, which is problematic since
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Fig. 1. TIllustration of the geometric triangulation used in the two-base-node
approach.

the position is obtained via pure algebraic calculation (1)
and the noise in the angles will lead to highly variable
(instead of smooth) estimated trajectories for the mobile
node MN. This issue is addressed with Kalman filtering,
by exploiting the predicted positions of the MN it generates
from measurements computed by (1), to significantly reduce
the effort of searching for the LOS and thus enabling efficient
and accurate localization. The Kalman filtering algorithm is
presented next.

B. The Kalman Filtering Algorithm

The mobile node’s dynamics are assumed to be adequately
represented with a constant velocity model corrupted with
Gaussian noise, as it is unlikely that the base nodes would
have precise knowledge of mobile node’s movement be-
forehand. Although other filtering schemes could have been
potentially used, this assumption on the dynamics enables
the use of computationally efficient Kalman filtering for
predicting the mobile node’s coordinates. These dynamics
for the mobile node can be represented as:

Npt1 = Ny + VAg + w1k 3)
V1 = Vg + Wk 4)
T T
where n, = [ng g, Ny g and vy = [Vgk, vy k| are the

position and velocity vectors of the mobile node at the k—th
iteration, wy , and ws j are independent, zero-mean, white
Gaussian noises, and Ay, is the k—th sampling interval. The
noise-corrupted location observation, zg, is represented as:

Zp = Ny + W3k, (5)

where ws j, is assumed to be a white, zero-mean Gaussian
noise, and independent of the process noises wi ; and wa k.
The Kalman filter can then be used to predict and estimate
the state vector, consisting of the position and velocity of the
mobile node [16].

At time k, each of the base nodes in the system performs
a search for the angular location of the mobile node. The
captured angles are combined to generate the observation
z), to be used in the state estimate update. The angular
search process for each ¢—th base node is centered about
an anticipated value of that nodes’ angular location 6; to
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Fig. 2. Tllustration of the spatial sensitivity of the two-base-node measure-

ment function.

the MN (recall Fig. 1). The anticipated angle for the i—th
base node, 6; ) is computed from the position component,

T 7t , of the predicted state estimate X, as follows:
5 Vi - Vin,
Oik = cos™! () (6)
Vo[ [Vin. |
where,
. 1 B ﬁ; _ B,
il Rt I

Here [B;,, Biy]T are the position coordinates of the ¢—th
base node BN;. The mobile node, in the meantime, will use
its predicted position to calculate the angular locations of the
base nodes relative to itself, and focus its light along these
angles during the angular search.

III. SENSITIVITY METRIC

When there are more than 2 base nodes (in the 2D setting),
the question arises as to how to best utilize the information
available from all base nodes. This paper proposes the use
of a sensitivity metric that is able to characterize the level
of uncertainty of a computed position in terms of the level
of uncertainty in the measured bearing angles. In particular,
the infinity norms of the Jacobian in the z and y direction,
[|J2]|oo and ||Jy||oo, respectively, of the measurement equa-
tion (1) with respect to angles #; and 6, are used to construct
the sensitivity metric. ||J; || and ||Jy || are computed from
fz (61,02) and f, (61, 02), which represent the measurement
equation (1) in terms of the measurement angles, as follows:

elloo = || 35 552

001 005
2 (Isin 20, [sin261]) (8)
= — | max bln bln
sin (02 —61) 2 !
_ ||of of
||Jy||oo—HaT§f o
1

) )
7sin2(02 ) max(|s1n 02|, ’sm 91|) 9)

These functions characterize how small changes in the
measurement angles for a given pair of base nodes result
in changes to the computed position. A visual representation
of this for a range of positions within € [—10,10] and
€ [0, —20] is shown in Fig. 2 for the (BN, BNy) pair. In this
plot the z-axis indicates the level of sensitivity, calculated as
the Euclidean norm of (||Jz]|oc, [|Jy]]oc)-

During system implementation, after all of the base nodes
are finished with their scans, each base node pair combi-
nation uses their captured angles to evaluate the magnitude
of J = (||Jz|lses ||ylloc), which is the sensitivity metric.
The base node pairing with angles that produce the lowest
sensitivity level is used to compute the value of z;, which
is subsequently used in the Kalman filtering for position
estimation and prediction.

IV. SIMULATION RESULTS

Extensive simulation was conducted to examine robustness
of the proposed approach and two alternative schemes when
dealing with various levels of angle measurement noise.
The alternative methods included an averaging approach
where the measured locations by all base node pairings are
averaged, and an approach that uses a fixed pair of base
nodes.

A. Simulation Setup

Although our approach applies to a network of arbitrary
number of base nodes, the simulation presented here used a
setting with 3 base nodes. The locations of the three base
nodes, BNy, BNy, and BN3, were [—3,—3]%, [0,0]7, and
[3, —3]7, respectively. This configuration is illustrated in Fig.
3, along with the mobile node’s planned trajectory for the
simulation. The trajectory consists of 235 position points
represented in the figure by the small circles, with the first
and last points overlapping at [—1,—6]7. In the figure, the
base nodes are represented by the three square shapes in
the center, and the mobile node is represented by a larger
shaded-in circle and is located at the first position of the
trajectory.

In the absence of physical LED and photodiode com-
ponents, certain aspects of the experiment were emulated
in the simulation. In particular, techniques were developed
for detecting when two nodes can establish LOS for com-
munication and angle measurement, emulating occlusions
due to another base node blocking the LOS, and simulating
measurement angle errors. In particular, angle measurement
errors were mimicked by adding independent, zero-mean,
white Gaussian noises to each of the ground truth angles,
corresponding to the base nodes that were able to establish
LOS with the MN during the measurement sequence. The
level of angle error was controlled by changing the standard
deviation of the Gaussian noise.

B. Simulation Results: Impact of Angle Measurement Error

The localization performance was analyzed under different
levels of angle measurement error by ranging the standard
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Fig. 3. Base Node configuration and Mobile Node trajectory used in
simulation.

deviation of the Gaussian noise from 0.5° to 5.0° in incre-
ments of 0.5°. For each level of standard deviation, 100 trials
were conducted, with 100 random seeds chosen to ensure
the randomness was consistent across each level of standard
deviation.

Fig. 4 shows the average measured and estimated errors
among all of the trials under each level of standard deviation.
The measured (resp., estimated) error is the magnitude of the
error obtained by comparing the measured (resp., estimated)
positions with the corresponding ground truth position. The
average errors shown in Fig. 4 were computed using the
mean errors from each trial, which were obtained in each
trial by averaging the measured and estimated errors from all
of the steps of the trajectory the system had reached during
that trial. A noticeable trend in the simulation results is that
the average number of consecutive positions in the trajectory
that the system was able to reach decreases as the amount of
standard deviation in the Gaussian noise increases. This is
reflected in Fig. 5, which shows for each standard deviation,
the average number of consecutive positions the system was
able to reach over the 100 trials. This behavior correlates
with the increase in position error relative to the increase in
standard deviation to the Gaussian noise as shown in Fig. 4.

Collectively the graphs show that all three methods per-
form better when the angular measurement error has a lower
level of standard deviation. However, each method has a
different critical level of standard deviation at which point
there is a sharp increase in the position error and sharp
decrease in how long the system can track the mobile
node. Most notably, the proposed algorithm, which uses the
sensitivity metric for data fusion in its measurement scheme,
outperforms the two alternative methods, maintaining rela-
tively low levels of position error and is able to reach on
average more consecutive trajectory points than the other
methods.
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Fig. 4. Average position errors computed among all of the trials for varying
amounts of standard deviation in the Gaussian noise added to the angular
measurements of the base nodes. Subplot a) shows the average measured
error, which is the difference between the observed positions z and ground
truth. Subplot b) shows the average estimated error which is difference
between the ground truth and the position from the Kalman filter’s state
vector X = [z, Ty] after processing the observed position zg.

Another important observation to make, is that the aver-
age number of position points the two-base-node approach
reaches for all values of the standard deviation is significantly
less than the two approaches which used three base nodes.
In particular, the average value is capped off at around 60
consecutive points or less. A closer look at the trajectory
would indicate that this is roughly the number steps into the
trajectory that would take the mobile node to the x-axis and
thus is collinear with its only base node pair.

V. EXPERIMENTAL RESULTS
A. Setup

Each node used in the experiment made use of the circular
PCB board that housed the transceiver circuitry developed
by Al-rubaiai in [13] for processing the light intensity
received by the photodiode into a readable analog voltage
and enabling quick switching of the LED so to modulate
transmitting baud rate of serial communication. The LED
(CREE XRE 1 Watt Blue LED, transmitter) and photodiode
(Blue Enhanced photodiode, receiver) were connected to the
PCB via a removable header-board. The PCB board was
mounted to the extended shaft of a stepper motor that passed
through the hollow center of a slip ring, thus enabling the
transceiver to achieve 360° rotation and still allow the wires
connecting the PCB circuit to the embedded controller board
to move freely with the rotations. The motor and slip ring
were mounted together via a 3D-printed base structure [16].

Each node had an Intel® Edison Board with an Arduino®
Expansion Board for the main processing unit. It controlled
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Fig. 5. Line graph showing the average number of consecutive trajectory
positions the system is able to reach over the 100 trials for each of
the different levels of standard deviation of the Gaussian noise added to
the angular measurements of the base nodes, when using each of the
measurement scheme: a) the proposed approach using sensitivity metric for
data fusion within a three-base node system, b) the alternative three-base
node method using position averaging for data fusion c) the two-base node
system developed in our previous work.

the rotation of the stepper motor, transmission and reception
of the LED signals as well as the processing of the Kalman
filter data. A Sparkfun® Big Easy Driver, set to the quarter
step mode (i.e. each step rotated the shaft 0.225°), was
used to control the stepper motors by translating step pulses
from the Inte]l® Edison Board to signals readable by the
motor step. The orientation of the node’s transceiver was
maintained by Intel® Edison Board by keeping count of the
number steps and their direction that were sent to the driver.

The 3D-printed base was mounted on the top of a
Lynxmotion® Aluminum 4WDI Rover Kit and a 80/20®
metal beam, to help maintain the fixed positions, for the
mobile node and base nodes, respectively. The mobile node
and base nodes are shown in Fig. 6, where they were spread
out on the grid structure used for conducting the experiments.
The grid structure was laid out on the floor with blue
painters tape, where the side length of each square in the
grid was approximately 23 cm. While the experiments were
conducted in this particular grid, all of the computations
relied on the relative grid units. Therefore our method would
be generalizable to different physical dimensions due to the
scalability of the relative grid units.

St ]f _f_ _. ael
Fig. 6. Overhead view of the grid floor used in experiments.
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Fig. 7. Experimental results comparing the MN’s estimated position against
the ground truth.

The Kalman filter computations were done solely on BNg;
however, because each base nodes captured its own angles
independently, the data collected by BN; and BN, were
transmitted back to BN3 via a physical three-wire Universal
Asynchronous Receiver/Transmitter (UART) network. In ad-
dition to exchanging angle data, the UART network enabled
BNj3 to orchestrate the actions of the other base nodes as
well as supply them with the updated state estimates of the
MN so each node could search in the appropriate area for
the next measurement angle.

The value of the systems’ measurement noise covariance
matrix, Ry, was calculated prior to the experiments by having
the system try to scan the angles of the mobile node’s
position while the mobile node remained at a fixed location.
The = and y errors generated from comparing the base node’s
measured position against this fixed position were used to

782



=
n

> Estimated > | |

i
f
i
i
i
i
i
i
H

[y
N
wn

=
T

g v —

SREN ik 3

l:u}%;éﬁ A " T,

0 | | |
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Trajectory Position Numbers

o
4]

—v

% .

o
¥
[

Position error (grid units)
o
]
(4]

Fig. 8. Experimental results showing MN’s estimated position error against
trajectory step numbers.

compute the covariance matrix. Because the implementation
used in the experiment had 3 base nodes, and then 3 base
node pairs, a fixed position in which each pair was forced
to measure the location were chosen, with a set of 50
measurements captured for each location. The errors from
each of these locations were fused together when generating
the covariance matrix so to best characterize the error of this
approach.

B. Results

One preliminary experimental trial of the system was
conducted with a trajectory designed to loop around the base
nodes in 79 steps. The results of the experiment are shown
in Figs. 7 and 8 which compare the estimated and ground
truth positions of the mobile node relative to their location
within the trajectory and show the estimated position error
over the trajectory position number, respectively. Although
this single trial only was able to reach 55 of the 79 positions,
the results show promise as it is able to use the sensitivity
metric to maintain tracking beyond the several instances of
being collinear with a pair of the base nodes.

VI. CONCLUSION

This paper has presented a mobile robot optical localiza-
tion system that uses a network of multiple beacon nodes.
In particular, each node pairing measures bearing angles
relative to the robot to compute its position. To optimize the
positioning process a sensitivity metric has been proposed,
for data fusion of the captured bearing angles from all base
nodes. This approach overcomes the limitations of the two-
base-node approach and enables a high level of localization
accuracy.

Simulated and experimental evaluations were conducted
in a two-dimensional terrestrial setting, so to validate the
proposed design without the numerous overhead concerns
associated with three-dimensions (3D). For future work, we
will expand this concept to the 3D setting and explore
using more realistic dynamics of the mobile node (rigid-
body dynamics instead of point mass dynamics) to enhance

the system performance. Correspondingly, the system hard-
ware will be improved and waterproofed for experimental
evaluation in the underwater setting.
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