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Abstract— Optical communication is of increasing interest as
an alternative to acoustic communication for robots operated
in underwater environments. Our previous work presented a
method for LED-based Simultaneous Localization and Com-
munication (SLAC) that uses the bearing angles, obtained in
establishing line-of-sight (LOS) between two beacon nodes and
a mobile robot for communication, for geometric triangulation
and thus localization of the robot. In this paper, we consider
the problem of optical localization in the setting of a network
of beacon nodes, and specifically, how to fuse the measurements
from multiple pairs of beacon nodes to obtain the target
location. A sensitivity metric, which represents how sensitive
the target estimate is with respect to the bearing measurement
errors, is used for selecting the desired pair of beacon nodes.
The proposed solution is evaluated with extensive simulation
and preliminary experimentation, in a setting of three beacon
nodes and one mobile node. Comparison with an average-based
fusion approach and an approach using a fixed pair of beacon
nodes demonstrates the efficacy of the proposed approach.

I. INTRODUCTION

When working in a group, an individual agent can use

the data shared among the group to localize itself relative

to the other agents in a collaborative manner. Triangulation,

which uses angles relative to several neighbors with known

positions, often referred to as beacons (or base nodes), is

one of several position-measuring techniques used in these

collaborative settings [1].

In their comprehensive review of the vast field of triangu-

lation, Pierlot and Van Droogenbroeck distinguish four gen-

eral categories, Geometric Triangulation, Geometric Circle

Intersection, Iterative methods, and Multiple Beacons Trian-

gulation, with Geometric Circle Intersection being noted one

of the more popular approaches [2]. In this particular type

of triangulation, the bearing angles between two beacons

and a target are used to describe an arc that spans the

beacons and also contains all possible positions of the target.

A second arc, created by the addition of a third beacon,

allows for an intersecting point to be deduced. However,

this approach often has conditions in terms of various angles

and orientations of the beacons as well as numerous other

conditions for the procedure to work [2], [3].

Group-based localization approaches have the benefit of

being operational in typical GPS-denied environments such

as indoors and underwater. Underwater implementations tra-

ditionally rely on acoustic signals which are notorious for
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low data rates and low signal reception reliability due to their

limited bandwidth, long propagation delays, and multipath

effect [4]–[7]. Optical communication systems such as those

based on Light-Emitting Diodes (LEDs) are becoming viable

alternatives to acoustic-based methods. However, LED-based

approaches require a near line of sight (LOS) between trans-

mitter and receiver, though this has been addressed in several

ways, including the use of redundant transmitters/receivers

[8]–[11] and active alignment [12]–[14].

In our earlier work, [15] and [16], an LED-based optical

system was proposed as a solution to Simultaneous Localiza-

tion and Communication (SLAC). Localization was achieved

by using two base nodes (or beacons) with known positions

to capture the bearing angles needed to establish optical

LOS between these base nodes and a mobile robot. These

angles were then used to triangulate the robot’s coordinates.

To help maintain LOS between the two sides despite the

mobility of the robot, a Kalman filter was implemented to

predict the robot’s future positions, allowing the system to

localize dynamically. A noticeable limitation of this two-

base-node method is the singularity issue when the mobile

node approaches a collinear configuration with the base

nodes.

In this paper we consider the problem of optically lo-

calizing a mobile robot with a group (more than two) of

base nodes. This problem is motivated by not only the

aforementioned singularity issue, but also the scenario of

sensor networks, where the locations of multiple nodes

(stationary or mobile) are known, which provides redundancy

in localization. A key question is how to effectively fuse

the bearing angle information available from these multiple

base nodes. We propose to exploit a sensitivity metric to

select the best (most robust) pair of base nodes for trian-

gulation at each time. In particular, the metric describes

how sensitive the triangulated position is with respect to

the bearing measurement errors. The chosen pairing is then

used to compute the target’s position using the corresponding

measured bearings, which is then fed into a Kalman filter for

prediction of the robot’s next position. The latter prediction is

critical for facilitating the LOS establishment for next round

of communication and localization [15] and [16].

The proposed method is evaluated with extensive simu-

lation and preliminary experimentation using a three-base-

node implementation. Simulation compares the performance

of the proposed approach against two alternative methods

when the measurement angles are subject to varying levels

of noise. The alternative approaches include the two-base-

node approach from [15] and [16] and a method that uses
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the average of triangulated target positions based on bearing

measurements from all possible pairs of base nodes. Results

show that the proposed sensitivity metric-based approach

outperforms both alternatives and achieves an average es-

timated position error of roughly 1 grid unit across all levels

of measurement noise. Preliminary experimentation results

support the success noticed in simulation and illustrates the

proposed method’s implementation in hardware.

The remainder of this paper is organized as follows.

Section II reviews the position triangulation technique and

Kalman filtering for the setting of two base nodes and one

mobile node (target). Section III details the sensitivity metric

and the proposed fusion approach. Simulation results are pro-

vided in Section IV, followed by experimental evaluation in

Section V. Finally, conclusion and future work are discussed

in Section VI.

II. REVIEW OF THE TWO-BASE-NODE LOCALIZATION

APPROACH

A. Measurement Process

The proposed approach considers the two-dimensional

(2D) setting. Although extension to 3D is conceptually

straightforward, hardware implementation is more involved.

For the two-base-node approach, the network is composed of

one pair of base nodes (with known locations, BN1 and BN2)

and a mobile node (MN) to be localized, as illustrated in Fig.

1. Bearing angles θ1 and θ2, are captured by the respective

base node via LOS measurement. With these angles and

the locations of the base nodes, the values of the x and y
coordinates of the mobile node are computed as:

[

nx

ny

]

=

[

B1x + |V1| cos θ1
B1y + |V1| sin θ1

]

(1)

where [nx, ny]
T

is the position vector of the mobile node

MN, B1x and B1y are the respective x− and y− coordinate

for BN1 and |V1| is the magnitude of vector V1 shown in

Fig. 1 and is obtained using the Laws of Sines. In particular,

|V1| =
d sin(θ̄2)

sin(θn)
(2)

where the value of d is the distance between BN1 and BN2,

θ̄2 is the complement of θ2, θ̄2 = 180◦ − θ2, and θn is the

angle corresponding to the side BN1-BN2 within the MN-

BN1-BN2 triangle, θn = θ2 − θ1.

It is assumed that each node in the network is equipped

with an optical transceiver comprised of an LED transmitter

and a photodiode receiver, and that this transceiver is able to

rotate a full 360◦. Furthermore, the node is able to identify

at any particular moment the angle at which its transceiver is

facing with respect to a reference direction such as the east

axis identified by a magnetic compass.

Although this process seems straightforward, it is par-

ticularly challenging when the target is mobile, since this

often results in insufficient synchronization and coordination

among all of the nodes to produce proper LOS measure-

ments. There is also the inherent trouble of dealing with

errors in the measurement angles, which is problematic since

Fig. 1. Illustration of the geometric triangulation used in the two-base-node
approach.

the position is obtained via pure algebraic calculation (1)

and the noise in the angles will lead to highly variable

(instead of smooth) estimated trajectories for the mobile

node MN. This issue is addressed with Kalman filtering,

by exploiting the predicted positions of the MN it generates

from measurements computed by (1), to significantly reduce

the effort of searching for the LOS and thus enabling efficient

and accurate localization. The Kalman filtering algorithm is

presented next.

B. The Kalman Filtering Algorithm

The mobile node’s dynamics are assumed to be adequately

represented with a constant velocity model corrupted with

Gaussian noise, as it is unlikely that the base nodes would

have precise knowledge of mobile node’s movement be-

forehand. Although other filtering schemes could have been

potentially used, this assumption on the dynamics enables

the use of computationally efficient Kalman filtering for

predicting the mobile node’s coordinates. These dynamics

for the mobile node can be represented as:

nk+1 = nk + vk∆k + w1,k (3)

vk+1 = vk + w2,k (4)

where nk = [nx,k, ny,k]
T

and vk = [vx,k, vy,k]
T

are the

position and velocity vectors of the mobile node at the k−th

iteration, w1,k and w2,k are independent, zero-mean, white

Gaussian noises, and ∆k is the k−th sampling interval. The

noise-corrupted location observation, zk, is represented as:

zk = nk + w3,k, (5)

where w3,k is assumed to be a white, zero-mean Gaussian

noise, and independent of the process noises w1,k and w2,k.

The Kalman filter can then be used to predict and estimate

the state vector, consisting of the position and velocity of the

mobile node [16].

At time k, each of the base nodes in the system performs

a search for the angular location of the mobile node. The

captured angles are combined to generate the observation

zk to be used in the state estimate update. The angular

search process for each i−th base node is centered about

an anticipated value of that nodes’ angular location θi to
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Fig. 2. Illustration of the spatial sensitivity of the two-base-node measure-
ment function.

the MN (recall Fig. 1). The anticipated angle for the i−th

base node, θ̂i,k is computed from the position component,

n̂−

x , n̂
−

y , of the predicted state estimate x̂
−

k as follows:

θ̂i,k = cos−1

(

Vb · Vmi

|Vb| |Vmi
|

)

(6)

where,

Vb =

[

1
0

]

, Vmi
=

[

n̂−

x

n̂−

y

]

−

[

Bix

Biy

]

(7)

Here [Bix, Biy]
T

are the position coordinates of the i−th

base node BNi. The mobile node, in the meantime, will use

its predicted position to calculate the angular locations of the

base nodes relative to itself, and focus its light along these

angles during the angular search.

III. SENSITIVITY METRIC

When there are more than 2 base nodes (in the 2D setting),

the question arises as to how to best utilize the information

available from all base nodes. This paper proposes the use

of a sensitivity metric that is able to characterize the level

of uncertainty of a computed position in terms of the level

of uncertainty in the measured bearing angles. In particular,

the infinity norms of the Jacobian in the x and y direction,

||Jx||∞ and ||Jy||∞, respectively, of the measurement equa-

tion (1) with respect to angles θ1 and θ2 are used to construct

the sensitivity metric. ||Jx||∞ and ||Jy||∞ are computed from

fx (θ1, θ2) and fy (θ1, θ2), which represent the measurement

equation (1) in terms of the measurement angles, as follows:

||Jx||∞ =
∥

∥

∥

∂fx
∂θ1

∂fx
∂θ2

∥

∥

∥

∞

=
2

d

∣

∣

∣

∣

1

sin2(θ2 − θ1)

∣

∣

∣

∣

max(|sin 2θ2| , |sin 2θ1|) (8)

||Jy||∞ =
∥

∥

∥

∂fy
∂θ1

∂fy
∂θ2

∥

∥

∥

∞

= d

∣

∣

∣

∣

1

sin2(θ2 − θ1)

∣

∣

∣

∣

max(
∣

∣sin2 θ2
∣

∣ ,
∣

∣sin2 θ1
∣

∣) (9)

These functions characterize how small changes in the

measurement angles for a given pair of base nodes result

in changes to the computed position. A visual representation

of this for a range of positions within x ∈ [−10, 10] and

∈ [0,−20] is shown in Fig. 2 for the (BN1, BN2) pair. In this

plot the z-axis indicates the level of sensitivity, calculated as

the Euclidean norm of (||Jx||∞, ||Jy||∞).
During system implementation, after all of the base nodes

are finished with their scans, each base node pair combi-

nation uses their captured angles to evaluate the magnitude

of J = (||Jx||∞, ||Jy||∞), which is the sensitivity metric.

The base node pairing with angles that produce the lowest

sensitivity level is used to compute the value of zk, which

is subsequently used in the Kalman filtering for position

estimation and prediction.

IV. SIMULATION RESULTS

Extensive simulation was conducted to examine robustness

of the proposed approach and two alternative schemes when

dealing with various levels of angle measurement noise.

The alternative methods included an averaging approach

where the measured locations by all base node pairings are

averaged, and an approach that uses a fixed pair of base

nodes.

A. Simulation Setup

Although our approach applies to a network of arbitrary

number of base nodes, the simulation presented here used a

setting with 3 base nodes. The locations of the three base

nodes, BN1, BN2, and BN3, were [−3,−3]T , [0, 0]T , and

[3,−3]T , respectively. This configuration is illustrated in Fig.

3, along with the mobile node’s planned trajectory for the

simulation. The trajectory consists of 235 position points

represented in the figure by the small circles, with the first

and last points overlapping at [−1,−6]T . In the figure, the

base nodes are represented by the three square shapes in

the center, and the mobile node is represented by a larger

shaded-in circle and is located at the first position of the

trajectory.

In the absence of physical LED and photodiode com-

ponents, certain aspects of the experiment were emulated

in the simulation. In particular, techniques were developed

for detecting when two nodes can establish LOS for com-

munication and angle measurement, emulating occlusions

due to another base node blocking the LOS, and simulating

measurement angle errors. In particular, angle measurement

errors were mimicked by adding independent, zero-mean,

white Gaussian noises to each of the ground truth angles,

corresponding to the base nodes that were able to establish

LOS with the MN during the measurement sequence. The

level of angle error was controlled by changing the standard

deviation of the Gaussian noise.

B. Simulation Results: Impact of Angle Measurement Error

The localization performance was analyzed under different

levels of angle measurement error by ranging the standard
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Fig. 3. Base Node configuration and Mobile Node trajectory used in
simulation.

deviation of the Gaussian noise from 0.5◦ to 5.0◦ in incre-

ments of 0.5◦. For each level of standard deviation, 100 trials

were conducted, with 100 random seeds chosen to ensure

the randomness was consistent across each level of standard

deviation.

Fig. 4 shows the average measured and estimated errors

among all of the trials under each level of standard deviation.

The measured (resp., estimated) error is the magnitude of the

error obtained by comparing the measured (resp., estimated)

positions with the corresponding ground truth position. The

average errors shown in Fig. 4 were computed using the

mean errors from each trial, which were obtained in each

trial by averaging the measured and estimated errors from all

of the steps of the trajectory the system had reached during

that trial. A noticeable trend in the simulation results is that

the average number of consecutive positions in the trajectory

that the system was able to reach decreases as the amount of

standard deviation in the Gaussian noise increases. This is

reflected in Fig. 5, which shows for each standard deviation,

the average number of consecutive positions the system was

able to reach over the 100 trials. This behavior correlates

with the increase in position error relative to the increase in

standard deviation to the Gaussian noise as shown in Fig. 4.

Collectively the graphs show that all three methods per-

form better when the angular measurement error has a lower

level of standard deviation. However, each method has a

different critical level of standard deviation at which point

there is a sharp increase in the position error and sharp

decrease in how long the system can track the mobile

node. Most notably, the proposed algorithm, which uses the

sensitivity metric for data fusion in its measurement scheme,

outperforms the two alternative methods, maintaining rela-

tively low levels of position error and is able to reach on

average more consecutive trajectory points than the other

methods.

Fig. 4. Average position errors computed among all of the trials for varying
amounts of standard deviation in the Gaussian noise added to the angular
measurements of the base nodes. Subplot a) shows the average measured
error, which is the difference between the observed positions zk and ground
truth. Subplot b) shows the average estimated error which is difference
between the ground truth and the position from the Kalman filter’s state
vector x̂k = [n̂x, n̂y ] after processing the observed position zk .

Another important observation to make, is that the aver-

age number of position points the two-base-node approach

reaches for all values of the standard deviation is significantly

less than the two approaches which used three base nodes.

In particular, the average value is capped off at around 60

consecutive points or less. A closer look at the trajectory

would indicate that this is roughly the number steps into the

trajectory that would take the mobile node to the x-axis and

thus is collinear with its only base node pair.

V. EXPERIMENTAL RESULTS

A. Setup

Each node used in the experiment made use of the circular

PCB board that housed the transceiver circuitry developed

by Al-rubaiai in [13] for processing the light intensity

received by the photodiode into a readable analog voltage

and enabling quick switching of the LED so to modulate

transmitting baud rate of serial communication. The LED

(CREE XRE 1 Watt Blue LED, transmitter) and photodiode

(Blue Enhanced photodiode, receiver) were connected to the

PCB via a removable header-board. The PCB board was

mounted to the extended shaft of a stepper motor that passed

through the hollow center of a slip ring, thus enabling the

transceiver to achieve 360◦ rotation and still allow the wires

connecting the PCB circuit to the embedded controller board

to move freely with the rotations. The motor and slip ring

were mounted together via a 3D-printed base structure [16].

Each node had an Intelr Edison Board with an Arduinor

Expansion Board for the main processing unit. It controlled
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Fig. 5. Line graph showing the average number of consecutive trajectory
positions the system is able to reach over the 100 trials for each of
the different levels of standard deviation of the Gaussian noise added to
the angular measurements of the base nodes, when using each of the
measurement scheme: a) the proposed approach using sensitivity metric for
data fusion within a three-base node system, b) the alternative three-base
node method using position averaging for data fusion c) the two-base node
system developed in our previous work.

the rotation of the stepper motor, transmission and reception

of the LED signals as well as the processing of the Kalman

filter data. A Sparkfunr Big Easy Driver, set to the quarter

step mode (i.e. each step rotated the shaft 0.225◦), was

used to control the stepper motors by translating step pulses

from the Intelr Edison Board to signals readable by the

motor step. The orientation of the node’s transceiver was

maintained by Intelr Edison Board by keeping count of the

number steps and their direction that were sent to the driver.

The 3D-printed base was mounted on the top of a

Lynxmotionr Aluminum 4WD1 Rover Kit and a 80/20r

metal beam, to help maintain the fixed positions, for the

mobile node and base nodes, respectively. The mobile node

and base nodes are shown in Fig. 6, where they were spread

out on the grid structure used for conducting the experiments.

The grid structure was laid out on the floor with blue

painters tape, where the side length of each square in the

grid was approximately 23 cm. While the experiments were

conducted in this particular grid, all of the computations

relied on the relative grid units. Therefore our method would

be generalizable to different physical dimensions due to the

scalability of the relative grid units.

Fig. 6. Overhead view of the grid floor used in experiments.

Fig. 7. Experimental results comparing the MN’s estimated position against
the ground truth.

The Kalman filter computations were done solely on BN3;

however, because each base nodes captured its own angles

independently, the data collected by BN1 and BN2 were

transmitted back to BN3 via a physical three-wire Universal

Asynchronous Receiver/Transmitter (UART) network. In ad-

dition to exchanging angle data, the UART network enabled

BN3 to orchestrate the actions of the other base nodes as

well as supply them with the updated state estimates of the

MN so each node could search in the appropriate area for

the next measurement angle.

The value of the systems’ measurement noise covariance

matrix, Rk, was calculated prior to the experiments by having

the system try to scan the angles of the mobile node’s

position while the mobile node remained at a fixed location.

The x and y errors generated from comparing the base node’s

measured position against this fixed position were used to
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Fig. 8. Experimental results showing MN’s estimated position error against
trajectory step numbers.

compute the covariance matrix. Because the implementation

used in the experiment had 3 base nodes, and then 3 base

node pairs, a fixed position in which each pair was forced

to measure the location were chosen, with a set of 50
measurements captured for each location. The errors from

each of these locations were fused together when generating

the covariance matrix so to best characterize the error of this

approach.

B. Results

One preliminary experimental trial of the system was

conducted with a trajectory designed to loop around the base

nodes in 79 steps. The results of the experiment are shown

in Figs. 7 and 8 which compare the estimated and ground

truth positions of the mobile node relative to their location

within the trajectory and show the estimated position error

over the trajectory position number, respectively. Although

this single trial only was able to reach 55 of the 79 positions,

the results show promise as it is able to use the sensitivity

metric to maintain tracking beyond the several instances of

being collinear with a pair of the base nodes.

VI. CONCLUSION

This paper has presented a mobile robot optical localiza-

tion system that uses a network of multiple beacon nodes.

In particular, each node pairing measures bearing angles

relative to the robot to compute its position. To optimize the

positioning process a sensitivity metric has been proposed,

for data fusion of the captured bearing angles from all base

nodes. This approach overcomes the limitations of the two-

base-node approach and enables a high level of localization

accuracy.

Simulated and experimental evaluations were conducted

in a two-dimensional terrestrial setting, so to validate the

proposed design without the numerous overhead concerns

associated with three-dimensions (3D). For future work, we

will expand this concept to the 3D setting and explore

using more realistic dynamics of the mobile node (rigid-

body dynamics instead of point mass dynamics) to enhance

the system performance. Correspondingly, the system hard-

ware will be improved and waterproofed for experimental

evaluation in the underwater setting.
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