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ABSTRACT
User demand for increasing amounts of wireless capacity continues
to outpace supply, and so to meet this demand, significant progress
has been made in new MIMO wireless physical layer techniques.
Higher-performance systems now remain impractical largely only
because their algorithms are extremely computationally demanding.
For optimal performance, an amount of computation that increases
at an exponential rate both with the number of users and with the
data rate of each user is often required. The base station’s computa-
tional capacity is thus becoming one of the key limiting factors on
wireless capacity. QuAMax is the first large MIMO centralized radio
access network design to address this issue by leveraging quantum
annealing on the problem. We have implemented QuAMax on the
2,031 qubit D-Wave 2000Q quantum annealer, the state-of-the-art
in the field. Our experimental results evaluate that implementation
on real and synthetic MIMO channel traces, showing that 10 µs
of compute time on the 2000Q can enable 48 user, 48 AP antenna
BPSK communication at 20 dB SNR with a bit error rate of 10−6

and a 1,500 byte frame error rate of 10−4.
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1 INTRODUCTION
A central design challenge for future generations of wireless net-
works is to meet users’ ever-increasing demand for capacity and
throughput. Recent advances in the design of wireless networks
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to this end, including the 5G efforts underway in industry and
academia, call in particular for the use of Large and Massive multi-
ple input multiple output (MIMO) antenna arrays to support many
users near a wireless access point (AP) or base station sharing the
wireless medium at the same time.1

Much effort has been and is currently being dedicated to large
and massive MIMO, and these techniques are coming to fruition,
yielding significant gains in network throughput. An apropos ex-
ample is Massive MIMO: in LTE cellular and 802.11ac local-area
networks, up to eight antennas are supported at the AP spatially
multiplexing [65] parallel information streams concurrently to mul-
tiple receive antennas. The technique is also known as multi-user
MIMO (MU-MIMO) and can be used both in the uplink and the
downlink of multi-user MIMO networks: in the uplink case, several
users concurrently transmit to a multi-antenna AP, while over the
downlink, the AP multiplexes different information streams to a
number of mobile users.

From a design standpoint, one of the most promising and cost
effective architectures to implement 5G technologies is the central-
ized radio access network (C-RAN) architecture [48, 60]. C-RAN
pushes most of the physical-layer processing that currently takes
place at the AP to a centralized data center, where it is aggregated
with other APs’ processing on the same hardware. The C-RAN
concept has undergone several iterations since its inception, with
more recent work treating the unique demands of small cells [63],
centralizing most of the computation and supporting hundreds or
thousands of the APs from a centralized data center.

To fully realize Massive MIMO’s potential throughput gains,
however, the system must effectively and efficiently demultiplex
mutually-interfering information streams as they arrive. Current
large MIMO designs such as Argos [62], BigStation [76], and SAM
[64] use linear processing methods such as zero-forcing and min-
imum mean squared error (MMSE) filters. These methods have
the advantage of very low computational complexity, but suffer
when the MIMO channel is poorly-conditioned [50], as is often the
case when the number of user antennas approaches the number
of antennas at the AP [50, 76]. Sphere Decoder-based maximum
likelihood (ML) MIMO decoders/detectors [10, 50] can significantly
improve throughput over such linear filters, but suffer from in-
creased computational complexity: compute requirements increase
exponentially with the number of antennas [30], soon becoming
prohibitive (Section 2.1).

The problem of limited computational capacity stems from the
requirement that a receiver’s physical layer finish decoding a frame
before the sender requires feedback about its decoding success or
failure. For Wi-Fi networks, e.g., this quantity is on the order of
1We use the terms "access point" and "base station" interchangeably in this paper.
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tens of µs, the spacing in time between the data frame and its ac-
knowledgement. More sophisticated physical layers, such as 4G
LTE, require the receiver to give feedback in the context of incre-
mental redundancy schemes, for the same reason; the processing
time available is 3 ms for 4G LTE and 10 ms for WCDMA [19, 76].
As a result, most current systems adopt linear filters, accepting a
drop in performance.
Newapproach:Quantumcomputation in the data center. This
paper explores the leveraging of quantum computation (QC) to
speed up the computation required for the ML MIMO decoder. We
place our ideas in the context of the QC currently already realized
in experimental hardware, and in the context of the dominant C-
RAN architecture. Here we imagine a future quantum computer,
co-located with C-RAN computational resources in a data center,
connected to the APs via high-speed, low-latency fiber or millime-
ter-wave links.

Optimization is one of the key applications the quantum commu-
nity has identified as viable in the short-term (i.e. before quantum
processors become scalable devices capable of error correction
and universality). While their potential in optimization is largely
unproven, it is believed that it may be possible for Noisy Inter-
mediate-Scale Quantum (NISQ) devices to achieve polynomial or
exponential speedups over the best known classical algorithms [56].
It is, however, important to leverage understanding from current
prototypes in order to inform the design of real-world systems,
since performance cannot be predicted or simulated efficiently,
especially in the presence of device-specific noise. This is the ap-
proach we therefore advocate here. Two main approaches have
been identified for quantum optimization in NISQs: Quantum An-
nealing (QA) and Quantum Approximate Optimization Algorithms
(QAOA). The former approach is a form of analog computation
that has been developed theoretically in the early nineties [25], but
realized experimentally in a programmable device only in 2011 by
D-Wave Systems. We focus on QA here, discussing QAOA briefly
in Section 6.
This paper presents QuAMax, the first system to apply QA to the
computationally challenging ML MIMO wireless decoding problem
in the context of a centralized RAN architecture where a QA is
co-located in a data center serving one or more wireless APs. The
contributions of our paper can be summarized as follows: Firstly,
we present the first reduction of the ML MIMO decoding problem
to a form that a QA solver can process. Secondly, we introduce
a new, communications-specific evaluation metric, Time-to-BER
(TTB), which evaluates the performance of the QA as it aims to
achieve a target bit error rate (BER) on the decoded data. Finally, we
evaluate QuAMax with various scenarios and parameter settings
and test their impact on computational performance. To achieve
a BER of 10−6 and a frame error rate of 10−4, ML MIMO detec-
tion on the D-Wave 2000Q quantum annealer requires 10–20 µs of
computation time for 48-user, 48-AP antenna binary modulation or
30–40 µs for 14 × 14 QPSK at 20 dB SNR, and with the real-world
trace of 8×8 MIMO channel, the largest spatial multiplexing MIMO
size publicly available for experiments [61], QuAMax requires 2 µs
for BPSK and 2–10 µs for QPSK.

Table 1: Sphere Decoder visited node count [50], complexity over 10,000
instances, and practicality on a Skylake Core i7 architecture.

BPSK QPSK 16-QAM Complexity (Visited Nodes)

12 × 12 7 × 7 4 × 4 ≈ 40 (feasible)
21 × 21 11 × 11 6 × 6 ≈ 270 (borderline)
30 × 30 15 × 15 8 × 8 ≈ 1,900 (unfeasible)

Paper roadmap. The next section is a background primer on ML
detection and QA. Section 3 details our programming of the ML
problem on the QA hardware. Section 4 describes QuAMax imple-
mentation in further detail, followed by our evaluation in Section 5.
We conclude with a review of related work (Section 6), discussion of
current status of technology and practical considerations (Section 7),
and final considerations (Section 8).

2 BACKGROUND
In this section, we present primer material on the MIMO ML De-
tection problem (§2.1), and Quantum Annealing (§2.2).

2.1 Primer: Maximum Likelihood Detection
Suppose there are Nt mobile users, each of which has one antenna,
each sending data bits to a multi-antenna (Nr ≥ Nt ) MIMO AP
based on OFDM, the dominant physical layer technique in broad-
band wireless communication systems [49]. Considering all users’
data bits together in a vector whose elements each comprise a
single user’s data bits, the users first map those data bits into a
complex-valued symbol v̄ that is transmitted over a radio channel:
v̄ = [v̄1, v̄2, . . . , v̄Nt ]

⊺ ∈ CNt . Each user sends from a constellation
O of size |O| = 2Q (Q bits per symbol). The MIMO decoding prob-
lem, whose optimal solution is called the ML solution, consisting
of a search over the sets of transmitted symbols, looking for the set
that minimizes the error with respect to what has been received at
the AP:

v̂ = arg min
v∈ONt

∥y − Hv∥2 . (1)

The ML decoder then “de-maps” the decoded symbols v̂ to decoded
bits b̂. In Eq. 1, H ∈ CNr×Nt = HI + jHQ is the wireless channel2 on
each OFDM subcarrier and y ∈ CNr (= Hv̄ + n) is the received set
of symbols, perturbed by n ∈ CNr , additive white Gaussian noise
(AWGN). This solution minimizes detection errors, thus maximizing
throughput (i.e., throughput-optimal decoding).

The Sphere Decoder [1, 20] is a ML detector that reduces com-
plexity with respect to brute-force search by constraining its search
to only possible sets v that lie within a hypersphere of radius

√
C

centered around y (i.e., Eq. 1 with constraint ∥y − Hv∥2 ≤ C).
It transforms Eq. 1 into a tree search [71] by QR decomposition
H = QR, whereQ is orthonormal andR upper-triangular, resulting
in v̂ = argminv∈ONt ∥ȳ − Rv∥2, with ȳ = Q∗y. The resulting tree
has a height of Nt , branching factor of |O|, and 1+

∑Nt
i=1 |O|i nodes.

ML detection becomes the problem of finding the single leaf among
|O|Nt with minimum metric; the corresponding tree path is the

2The channel changes every channel coherence time, and is practically estimated and
tracked via preambles and/or pilot tones. Typical coherence time at 2 GHz and a
walking speed is ca. 30 ms [67].
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Figure 1: A D-Wave 2000Q (DW2Q) machine at NASA Ames Research
Center, which hosts aWhistler processor manufactured with 2,048 qubits
and 5,019 qubit-coupling parameters. The chip is hosted in a high-vacuum,
magnetically shielded enclosure at a temperature of about 13 milliKelvin.

ML solution. Thus, the min in Eq. 1 is a search in an exponentially-
large space of transmitted symbols {v}, despite Sphere Decoder
reductions in the search space size [71].

Table 1 shows the average number of tree nodes visited to per-
form ML Sphere decoding, with clients transmitting modulation
symbols on 50 subcarriers over a 20 MHz, 13 dB SNR (Signal to
Noise Ratio) Rayleigh channel. The table is parameterized on the
number of clients and AP antennas, and the modulation, highlight-
ing the exponential increase in computation. For 8 clients with
16-QAM symbols, 15 clients with QPSK symbols, or 30 clients send-
ing binary (BPSK) symbols, the Sphere Decoder visits close to 2,000
tree nodes, saturating, for example, Intel’s Skylake core i7 architec-
ture, whose arithmetic subsystem achieves an order of magnitude
less computational throughput [32]. Since traditional silicon’s clock
speed is plateauing [14], the problem is especially acute.

2.2 Primer: Quantum Annealing
Quantum Annealers [37, 45] are specialized, analog computers
that solve NP-complete and NP-hard optimization problems on
current hardware, with future potential for substantial speedups
over conventional computing [46]. Many NP-hard problems can
be formulated in the Ising model [42] (cf. §3.2), which many QA
machines use as input [6, 18]. NP-complete and NP-hard problems
other than MLMIMO detection in the field of (wireless) networking
that potentially benefit fromQA includeMIMO downlink precoding
[44], channel coding [36, 75], network routing [11], security [26],
and scheduling [27, 41].
Quantum Annealing hardware. Compared to simulated anneal-
ing, the classical algorithm from which QA inherits its name, QA
aims to exploit quantum effects such as tunneling, many-body de-
localization and quantum relaxation to circumvent computational
bottlenecks that would otherwise trap Monte Carlo methods in
local minima of the solution landscape. While exploiting QA is
technologically challenging, with the appearance of the D-Wave
quantum annealer (Fig. 1), the research community is now able to
run experiments, and critically, to study under what conditions a
noisy-intermediate-scale-quantum (NISQ) machine [56] can use
quantum resources to deliver a speedup [34]. For instance, recently
Boixo et al. [5] and Denchev et al. [22] have found evidence that

tunneling under ideal conditions can be exploited on an earlier
model of the D-Wave 2000Q (DW2Q) machine, delivering many or-
ders of magnitude speedup against CPU-based simulated annealing,
which is considered to be one of the best classical competitions to
Quantum Processing Units (QPUs). QPUs also outperform GPU im-
plementations by several orders of magnitude in random problems
whose structure is related to real world optimization problems [38].

The DW2Q is an analog optimizer, meaning that it computes
continuously rather than in discrete clock cycles, and that it repre-
sents numerical quantities as analog instead of digital quantities.
The hardware initializes each of its N constituent quantum bits, or
qubits, to begin in a superposition state 1/

√
2 (|0⟩ + |1⟩) that has no

classical counterpart. In concrete terms, these qubits are metallic
circuits in a chip that are maintained in a superconducting state
by low temperature and subjected to the influence of tailored mag-
netic fluxes. The collection of N qubits at this point in time encodes
all the possible 2N outputs in a single state. This initial setting
is achieved by exposing all the qubits in the chip to a signal A(t)
whose magnitude at this point in time is maximal. Then the system
implements an objective function which is represented by another
signal B(t) and is ramped up from zero, while A(t) is decreased pro-
gressively at the same time. The synchronized sequence of signals
A and B and their time dependence is the annealing schedule. The
schedule is essentially the QA algorithm, and has to be optimized
so that at the end of the run (B(t) = max and A(t) = 0), each qubit
in the chip assumes either a value of |0⟩ or |1⟩, corresponding to
classical bit values, 0 or 1, respectively. This final state of these
qubits collectively represents a candidate solution of the problem,
ideally the ground state of the system (i.e., the minimum of the
optimization objective function) [24, 35].
In practice, at the end of the run, the ground state will be found
with a probability that depends on the degree to which the sched-
ule is optimal for the problem at hand, as well as on the effect of
uncontrollable QA noise and environmental interference on the
annealer. While the quantum community is investigating physics
principles to guide schedule parameters, most clearly-understood
theoretical principles do not apply to current, imperfect experimen-
tal systems [34]. Hence the empirical approach, which we take in
this paper, represents current state-of-the-art [58]. Three degrees
of freedom are specifically investigated in this work.

• First, there are many ways of mapping a problem to an equiva-
lent Ising formulation that runs on the machine (we investigate
one such mapping in Section 3).

• Second, the user may accelerate or delay A(t)/B(t) evolution,
thus determining annealing time (1–300 µs), the duration of the
machine’s computation.

• Finally, the user may introduce stops (anneal pause) in the an-
nealing process, which have been shown to improve perfor-
mance in certain settings [43].

3 DESIGN
Starting from the abstract QA problem form (§3.1), QuAMax’s de-
sign reduces ML detection to form (§3.2), then compiles it on actual
hardware, a process called embedding (§3.3).
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3.1 QA Problem Formulation
The first step in leveraging QA for any problem is to define the prob-
lem of interest as an objective function to be minimized, consisting
of a quadratic polynomial of binary variables. We now introduce
two equivalent forms of this objective functions, as is customary in
the QA application literature.
1. Ising spin glass form. In this form the solution variables are
traditionally referred to as spins si ∈ {+1,−1}.

ŝ1, . . . , ŝN = arg min
{s1, ...,sN }

©«
N∑
i<j

дi jsisj +
N∑
i

fisi
ª®¬ (2)

where N is the number of spin variables, and дi j and fi are the Ising
model parameters that characterize the problem. The fi characterize
the preference for each spin to be +1 or −1: positive indicates a
preference for −1 while negative indicates a preference for +1, with
the magnitude corresponding to the magnitude of the preference for
either state. The дi j capture preferred correlations between spins:
positive causes the QA to prefer si , sj , while negative causes the
QA to prefer si = sj in its optimization outcome. Analogously to fi ,
the magnitude of дi j corresponds to the magnitude of its preference.
2. QUBO form. The Quadratic Unconstrained Binary Optimization
(QUBO) has solution variables qi that are classical binary bits (zero-
or one-valued):

q̂1, . . . , q̂N = arg min
{q1, ...,qN }

N∑
i≤j

Qi jqiqj , (3)

where N is the qubit count and Q ∈ RN×N is upper triangular. The
off-diagonal matrix elements Qi j (i , j) correspond to дi j in Eq. 2,
and the diagonal elements correspond to fi .
The two forms are equivalent, their solutions related by:

qi ↔
1
2 (si + 1), (4)

leading toдi j ↔ 1
4Qi j and fi ↔

1
2Qii+

1
4
∑i−1
k=1 Qki+

1
4
∑N
k=i+1 Qik .

3.2 ML-to-QA Problem Reduction
We now explain our process for transforming the ML detection
problem into the QUBO and Ising forms. Since QuAMax also as-
sumesOFDMwhere thewireless channel is subdivided intomultiple
flat-fading orthogonal subcarriers [49], this ML-to-QA reduction is
required at each subcarrier.

3.2.1 ML-to-QUBO problem reduction. Let’s first consider the
transformation of the ML problem into QUBO form—the key idea is
to find a variable-to-symbol transform function T(·) that represents
the “candidate” vector v in the ML search process (Eq. 1 on p. 2)
instead with a number of QUBO solution variables. Specifically,
we represent each of the Nt senders’ candidate symbols vi ∈ O

(1 ≤ i ≤ Nt ), with log2(|O|) QUBO solution variables, naturally
requiring N = Nt · log2(|O|) QUBO variables for Nt transmitters,
and form these QUBO variables into a vector qi for each sender
i: qi =

[
q(i−1)·log2( |O |)+1, . . . , qi ·log2( |O |)

]
. For example, T recasts

a 2 × 2 QPSK (|O| = 4) problem into a QUBO problem with four
solution variables, split into two vectors q1 = [q1 q2] and q2 =

[q3 q4]. In general, the transform recasts the ML problem of Eq. 1
into the form

q̂1, . . . , q̂Nt = arg min
q1, ...,qNt

∥y − He∥2 , (5)

where e = [T(q1), . . . , T(qNt )]
⊺ . Then, the resulting Nt vectors

q̂1, . . . , q̂Nt correspond to the N QUBO solution variables, q̂1, . . . ,
q̂N . Continuing our 2 × 2 QPSK example, e = [T(q1),T(q2)]

⊺ =

[T([q1,q2]), T([q3,q4])]⊺ . Then, Eq. 5 results in two ML-decoded
vectors q̂1, q̂2 (noting that T(q̂1), T(q̂2) corresponds to the ML so-
lution v̂ = [v̂1, v̂2]⊺ in Eq. 1, the nearest symbol vector around
received y). The decoded vectors q̂1,q̂2 correspond to the four de-
coded QUBO variables q̂1, q̂2, q̂3, q̂4 in Eq. 3. If the transmitter’s
bit-to-symbol mapping and QuAMax’s variable-to-symbol trans-
form are equivalent, then the decoded q̂1, q̂2, q̂3, q̂4 are the directly
de-mapped bits, b̂ from the ML solution in Eq. 1.

When transform T is linear the expansion of the norm in Eq. 5
yields a quadratic polynomial objective function, since q2

i = qi
for any 0 or 1-valued qi . Then the ML problem (Eq. 1) transforms
directly into QUBO form (Eqs. 3 and 5). Our task, then, is to find
variable-to-symbol linear transform functions T for each of BPSK,
QPSK, and 16-QAM.
Binary modulation. If the two mobile transmitters send two sig-
nals simultaneously, each with one of two possible information
symbols, their transmissions can be described with a two-vector
of symbols v̄ = [v̄1, v̄2]⊺ ∈ [{±1} , {±1}]⊺ . This type of data trans-
mission is called binary modulation, of which one popular kind is
binary phase shift keying (BPSK). The ML problem applied to the
BPSK case where symbolsvi are represented byvi = T(qi) = 2qi −1
thus results in a QUBO form (a detailed derivation can be found in
Appendix A).

We next consider higher-order modulations, which send one
ofM possible information symbols with each channel use (where
M > 2), resulting in higher communication rates.
QPSK modulation. In the case of quadrature phase shift keying
(QPSK), each sender transmits one of four possible symbols v̄i
∈ {±1 ± 1j}. Since it can be viewed as a two-dimensional BPSKvi =

v Ii +jv
Q
i , we represent each possibly-transmitted QPSK information

symbol with the linear combination of one QUBO variable, plus
the other QUBO variable times the imaginary unit. Transforming
q2i−1 and q2i to v Ii and v

Q
i respectively leads to the transform

vi = T(qi) = (2q2i−1 − 1) + j(2q2i − 1).
Higher-order modulation. 16 quadrature amplitude modulation
(16-QAM) and higher-ordermodulations increase spectral efficiency,
but utilize multiple amplitudes (levels) so require a T that inputs
more than one (binary) solution variable per I or Q dimension. First
consider a transform T for the simplest multi-level 1-D constella-

tion: t t t t00 01 10 11 . T = 4q1 + 2q2 − 3 maps these bits to
the values −3,−1,+1,+3. Now to generalize this to 2-D, let the first
two arguments of T, q4i−3,q4i−2, represent the I part and the next
two, q4i−1,q4i represent the Q part. We call this transform, shown
in Fig. 2(a), the 16-QAM QuAMax transform. It has the desirable
property that it maps solution variables to symbols linearly, viz.
vi = T(qi) = (4q4i−3+2q4i−2 −3)+ j(4q4i−1+2q4i −3), thus results
in a QUBO form.
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(a) QuAMax transform
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(d) Gray code

Figure 2: QuAMax’s bitwise post-translation for 16-QAM (64-QAM and higher-order modulations follow an analogous translation).

However, transmitters in practical wireless communication sys-

tems use a different bit-to-symbol mapping, the Gray code shown in

Fig. 2(d), which minimizes bit errors. This means that the QuAMax

receiver’s bit to symbol mapping differs from the sender’s. Thus

one further step remains so that we may map the decoded QUBO

variables into the correct Gray-coded transmitted bits.

A naïve approach is simply for QuAMax to use the Gray-coded

bit-to-symbol mapping as its transform T. The Gray-coded mapping

results in a one-dimensional 4-PAM constellation � � � �
00 01 11 10

assuming bits 00, 01, 11, and 10 are transformed to −3, −1, +1, and
+3 without loss of generality. The transform v Ii = 2(2q4i−3 − 1) +
2(q4i−3 − q4i−2)2 − 1 would map between a 4-PAM symbol v Ii and
two QUBO variables q4i−3,q4i−2, but the resulting expansion of

the ML norm would yield cubic and quartic terms qrqkql (qp ) for
r � k � l(� p), requiring quadratization with additional variables
to represent the problem in QUBO form [8, 33].

Instead, we retain Gray coding at the transmitter and the QuA-

Max transform at the receiver. To correct the disparity, we develop

a bitwise post-translation that operates on QuAMax-transformed

solution output bits at the receiver, translating them back into Gray-

coded bits (i.e., moving from Fig. 2(a) to Fig. 2(d)). Starting with the

QuAMax transform shown in Figure 2(a), if the second bit q̂4i−2
of the QUBO solution bits q̂4i−3, q̂4i−2, q̂4i−1, q̂4i is 1, then the

translation flips the third bit q̂4i−1 and the fourth bit q̂4i (e.g. 1100
to 1111), otherwise it does nothing. This can be generalized to

22n -QAM (n ≥ 2) as an operation that flips even numbered columns

in the constellation upside down. We term the result b ′ an inter-

mediate code, shown in Figure 2(b). Next, we apply the differential

bit encoding transformation of Figure 2(c) to the intermediate code

b ′ to obtain the Gray-coded bits b̂ in Figure 2(d) (e.g. translating
1111 to 1000).

QuAMax decoding example. To clarify processing across all

stages, here we present a complete QuAMax decoding example.

Suppose a client maps a bit string b1,b2,b3,b4 onto v̄1, one of the
Gray-coded 16-QAM symbols in Figure 2(d), and sends v̄ = [v̄1] to
an AP through wireless channelH. The AP receives y = Hv̄+n, the

transmitted signal perturbed by AWGN. The steps of QuAMax’s

decoding are:

(1) Form theMLQUBO equation usingH, y, and v = [v1] = [T(q1)],
where T(q1) = (4q1+2q2−3)+j(4q3+2q4−3), a linear transform
based on the QuAMax transform in Figure 2(a).

(2) Solve the QUBO form of the ML detection problem on the

QA machine, resulting an ML-decoded vector q̂1, comprised of

QUBO variables q̂1, q̂2, q̂3, q̂4.

(3) Apply the above bitwise translation from the decoded QUBO so-

lution output q̂1, q̂2, q̂3, q̂4 to Gray-coded received bits b̂1, b̂2, b̂3, b̂4
(from Figure 2(a) to Figure 2(d)).

If b̂1, b̂2, b̂3, b̂4 = b1,b2,b3,b4, decoding is done successfully, not-
ing that in the case of a symbol error, we preserve the aforemen-

tioned advantage of Gray coding.

3.2.2 ML-to-Ising problem reduction. The Ising spin glass form

of the ML problem can be obtained by simply transforming the

resulting QUBO form (§3.2.1) into the Ising form by Eq. 4. Due to

the fact that DW2Q implements an Ising model, QuAMax works

by using the following generalized Ising model parameters:

BPSK modulation. Given a channel matrix H and vector of re-

ceived signals y, we obtain the following Ising model parameters:

fi (H, y) = −2
(
HI
(:,i) · yI

)
− 2

(
H
Q

(:,i) · y
Q
)
,

дi j (H) = 2
(
HI
(:,i) · HI

(:, j)
)
+ 2

(
H
Q

(:,i) · H
Q

(:, j)
)
, (6)

where H(:,i) denotes the ith column of channel matrix H.

QPSK modulation. In the case of QPSK, the following is the re-

sulting Ising parameter fi for QPSK:

fi (H, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
if i = 2n,

−2
(
HI
(:,i/2) · yQ

)
+ 2

(
H
Q

(:,i/2) · yI
)
,

otherwise,

−2
(
HI
(:, �i/2) · yI

)
− 2

(
H
Q

(:, �i/2) · yQ
)
.

(7)

Since the real and imaginary terms of each symbol are independent,

the coupler strength between s2n−1 and s2n (or q2n−1 and q2n ) is 0.
For other si and sj , the Ising coupler strength for QPSK is:

дi j (H) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
if i + j = 2n,

2
(
HI
(:, �i/2) · HI

(:, �j/2)
)
+ 2

(
H
Q

(:, �i/2) · H
Q

(:, �j/2)
)
,

otherwise,

±2
(
HI
(:, �i/2) · H

Q

(:, �j/2)
)
∓ 2

(
HI
(:, �j/2) · H

Q

(:, �i/2)
)
,

(8)

where i < j and the sign of the latter case of Eq. 8 is determined by
whether i = 2n (when i = 2n, then ‘+’ and ‘−’).
16-QAMmodulation. Ising parameters follow the same structure

as BPSK and QPSK and can be found in Appendix C.
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In summary, the process to obtain the Ising spin glass form can
be simplified with these generalized Ising model parameters; a QuA-
Max system simply inserts the given channel H and received signal
y at the receiver into these generalized forms accordingly, not re-
quiring any computationally expensive operations (i.e. directly con-
sidering the expansion of the norm in Eq. 5). Thus, computational
time and resources required for ML-to-QA problem conversion are
insignificant and can be neglected.

Table 2: Logical (physical) number of qubits required for various configu-
rations of the elementary adiabatic quantum ML decoder. For each configu-
ration, bold font indicates non-feasibility on the current (2,031 physical
qubit) D-Wave machine with Chimera connectivity.

Config. BPSK QPSK 16-QAM 64-QAM

10 × 10 10 (40) 20 (120) 40 (440) 60 (1K )

20 × 20 20 (120) 40 (440) 80 (2K ) 120 (4K)
40 × 40 40 (440) 80 (2K ) 160 (7K) 240 (15K)
60 × 60 60 (1K ) 120 (4K) 240 (15K) 360 (33K)

3.3 Embedding into QA hardware
Once the ML detection problem is in quadratic form, we still have
to compile the corresponding Ising model onto actual QA hardware.
The D-Wave machine works by implementing an Ising model objec-
tive function energetically hardcoded into the chip, so the problem
(Eq. 2 on p. 4) can support a certain coefficient дi j to be non-zero
only if variables si and sj are associated to physical variables (qubits
or physical qubits) located on the chip in such a way that the qubits
are energetically coupled. In the case of the DW2Q machine we
use the coupling matrix is a Chimera graph, shown in Figure 3(a),
with each node corresponding to a qubit. Once Ising coefficients are
passed to the annealer, the hardware assigns them to the edges of
the Chimera graph, which are divided (along with their connected
nodes) into unit cells. Note however that, while the Ising problem
generated from Eq. 1 is almost fully connected (i.e., дi j , 0 for most
(i, j) pairs), the Chimera graph itself has far from full connectivity,
and so a process of embedding the Ising problem into the Chimera
graph is required.

One standard method of embedding is to “clone” variables in
such a way that a binary variable becomes associated not to a
single qubit but to a connected linear chain of qubits instead: a
logical qubit, as shown in Figure 3(b).3 We show an embedding of a
fully-connected graph of 12 nodes. Each unit cell on the diagonal
holds four logical qubits (a chain of two qubits), while the other
unit cells are employed in order to inter-connect the diagonal cells.
Specifically, suppose unit cell [1, 1] includes logical qubits 1–4 and
unit cell [2, 2] includes logical qubits 5–8. The left side of unit cell
[2, 1] has a vertical clone of qubits 5–8 and the right side has a
horizontal clone of logical qubits 1–4. Then, logical qubits 1–4
and 5–8 are all connected by means of the single unit cell [2, 1].
The unit cell hosting the next four logical qubits 9–12 is placed at
coordinates [3, 3]. Two unit cells below, [3, 1] and [3, 2], are used for
connections between 9–12 and 1–4, and 9–12 and 5–8 respectively.
3The optimal assignment problem, in the general case, is equivalent to the NP-Hard
“minor embedding” problem of graph theory [13], however for fully-connected graphs
very efficient embeddings are known [7, 39, 69].

(a) DW2Q qubit connections: A 32 × 32
BPSK problem is shown embedded in the
chip’s substrate.

Unit cell:

1 2 3
Unit cell coordinate

Unit cell 
coordinate

1

2

3

Logical
qubit:

(b) Logical qubits and unit
cells in the QuAMax de-
coder.

Figure 3: A comparison between the quantum hardware graph of the used
machine (which misses some nodes due to manufacturing defect), and the
topology of our elementary quantumML hardware graph before embedding
into the hardware graph.

Given a numberN of spin variables (i.e., logical qubits) in Ising form,
this embedding represents each with a chain of ⌈N /4⌉ + 1 qubits,
for a total of N (⌈N /4⌉ + 1) qubits. Recall that N = Nt · log2(|O|).

Table 2 summarizes the size of the embedding in both logical
and physical qubits, as a function of the MIMO detection problem’s
parameters—number of users and AP antennas, and modulation
type. Color coding and bold font indicate whether or not the given
parameters fit into the number of qubits available on current D-
Wave machines.
The embedded version of the Ising problem. After embedding
into Chimera graph we need to recast the Ising problem into an
equivalent problem that has the same ground state, but also satisfies
the Chimera graph constraints.We also need to introduce a constant
penalty term (JF ) to quantify the relatively large coupling that
constrains all physical qubits belonging to the same logical qubit
to prefer the same state. Appendix B contains additional detail, but
we discuss important experimental considerations for choosing JF
in Section 5.3.
Unembedding with majority voting. The bit string that the
DW2Q returns is expressed in terms of the embedded Ising prob-
lem, and so must be unembedded in order to have the values of the
bits expressed in terms of our ML Ising problem. This is done by
checking that all the qubits of a logical chain are either +1 or −1.
Should not all spins be concordant, the value of the corresponding
logical variable is obtained by majority voting (in case of a vote tie,
the value is randomized). Once the logical variables are determined,
each configuration yields the corresponding energy of the Ising
objective function by substituting it into the original Ising spin
glass equation (Eq. 2).

4 IMPLEMENTATION
This section describes our implementation on the D-Wave 2000Q
quantum annealer (DW2Q), explaining the API between the an-
nealer’s control plane and its quantum substrate, machine parame-
ters, and their tuning to the problem at hand.
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Figure 4: Empirical QA results from six different decoding problems, illustrating relationships between Ising energy, solution rank, BER.

Each anneal cycle on the DW2Q yields a configuration of spins
(i.e., one decoded bit string). The user programs the annealer to
run a batch of Na annealing cycles (one QA run) with the same
parameters to accumulate statistics, which means that we have a
set of Na configurations from a DW2Q job submission. The lowest
energy configuration among Na anneals is the best answer found.
Parallelization. Multiple instances (identical or not) can be run
physically alongside each other, reducing run time by the par-
allelization factor4 Pf ≃ Ntot /(N (⌈N /4⌉ + 1))—a small 16-qubit
problem employing just 80 physical qubits (e.g. 16-user BPSK, 8-
user QPSK, and 4-user 16-QAM) could in fact be run more than 20
times in parallel on the DW2Q.
Precision Issues. As analog devices, the desired embedded Ising
coefficients (Eqs. 10-12 in Appendix B) do not perfectly match their
real energy values once hardcoded in the real machine, and hence
give rise to intrinsic control errors (ICE), an uncontrollable shift
in the actual programmed values of the objective function. ICE is
appropriately modeled as a noise fluctuating at a time scale of the
order of the anneal time, i.e., on each anneal, Ising coefficients are
perturbed: fi −→ fi + ⟨δ fi⟩, gij −→ gij + ⟨δgij⟩. where the noise is
Gaussian with mean and variance measured ⟨δ fi⟩ ≃ 0.008±0.02 and
⟨δgij⟩ ≃ −0.015 ± 0.025 in the most delicate phase of the annealing
run [16]. The impact of ICE on performance depends on the problem
at hand [12, 78], but it is clear that precision issues will arise if the
largest energy scale squeezes the value of the coefficients (in Eqs. 11–
12 in Appendix B) to a level where ICE is likely to erase significant
information of the problem’s ground state configuration.
Annealer Parameter Setting. As discussed in Section 3.3, the
|JF | that enforces a chain of qubits to return a series of values
which are all in agreement (either all +1 or −1), and the annealing
time Ta are both key performance parameters that determine the
net time to find a solution, and hence overall QA performance. We
also introduce 1, 10, and 100 µs pause time Tp in the middle of
annealing (Ta = 1 µs) with various pause positions sp , to see the
effect of pausing [43] on our problems. Setting |JF | too large would
wash out the problem information due to ICE, however |JF | on
average should increase with the number of logical chains in fully-
connected problems in the absence of ICE [69]. Due to the lack of a
first-principles predictive theory on the correct value for a given

4While asymptotically the parallelization factor is just the ratio of used physical qubits
after embedding to the number of qubits in the chip Ntot , in finite-size chips, chip
geometry comes into play.

instance, we present in Section 5.3 an empirical investigation of the
best embedding parameters, employing the microbenchmarking
methodologies generally accepted [52, 57, 69]. Below we perform
a sensitivity analysis on JF , Ta , Tp , and sp (§5.3.1) over the ranges
JF ∈ {1.0 − 10.0 (0.5)} , Ta ∈ {1, 10, 100 µs}, Tp ∈ {1, 10, 100 µs},
and sp ∈ {0.15 − 0.55 (0.02)}.
Improved coupling dynamic range. The dynamic range of cou-
pler strengths is defined as the ratio between the maximum and
minimum values that can be set (дi j in Eq. 2). To strengthen inter-
actions between embedded qubits, the DW2Q is able to double the
magnitude of valid negative coupler values, effectively increasing
the precision of embedded problems and reducing ICE. However,
this improved range option, when enabled, breaks the symmetry
of the Ising objective function (substituting the opposite signs for
connected coefficients and their couplings, into the same problem),
and hence precludes averaging over these symmetrical instances
as the DW2Q does without the improved range option, to mitigate
leakage errors [4]. It is thus unclear whether the use of this fea-
ture is beneficial in the end without experimentation, and so we
benchmark in Section 5 both with and without improved range.

5 EVALUATION
We evaluate QuAMax on the DW2Q Quantum Annealer machine
shown in Figure 1. We consider the same number of antennas at
the clients and AP (i.e., Nt = Nr ). Section 5.1 introduces QA results,
while Section 5.2 explains our experimental methodology. After
that in Section 5.3 we present results under only the presence of
the annealer’s internal thermal noise (ICE). Sections 5.4 and 5.5 add
wireless AWGN channel noise and trace-based real-world wireless
channels, respectively, quantifying their interactions with ICE on
end-to-end performance. Over 8 × 1010 anneals are used in our
performance evaluation.

5.1 Understanding Empirical QA Results
We begin with a close look at two runs of the QAmachine, to clarify
the relationships between Ising energy, Ising energy-ranked solu-
tion order, and BER. Figure 4 shows six QA problem instances (all
of which require 36 logical qubits), corresponding to two different
wireless channel uses for each of varying modulation and number
of users. The solutions are sorted (ranked) by their relative Ising
energy difference ∆E from the minimum Ising energy (blue numbers
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atop selected solutions), where red bars show each solution’s fre-
quency of occurrence (in the rare case of two or more tied distinct
solutions, we split those solutions into multiple solution ranks).
The number of bit errors associated with each solution appears as a
green curve. For statistical significance, this data summarizes 50,000
anneals, more than QuAMax’s practical operation. As modulation
order increases and number of users decreases (from left to right
in Figure 4), the probability of finding the ground state tends to
be lower, while the search space size remains constant, leading
eventually to higher BER and FER.5 The relative Ising energy gap
also trends smaller,6 and is likely to be inversely correlated with
the impact of ICE on the problem instance [2, 78].

5.2 Experimental methodology
In this section, we introduce performance metrics and figures of
merit that give insight into the operation of the QA machine as it
solves the ML MIMO decoding problem.

We note that in our performance evaluation we exclude from
consideration programming time and post-programming time of
the Ising coefficients on the chip, and readout latency of the qubit
states after a single anneal. Currently, these times dominate the
pure computation time (i.e. total anneal time) by several orders of
magnitude (milliseconds), due to engineering limitations of the tech-
nology. However, these overheads do not scale with problem size
and are not fundamental performance factors of the fully integrated
QuAMax system, and so this is in accordance with experimental
QA literature convention. We discuss these overheads in Section 7.

5.2.1 Metric: Time-to-Solution (TTS). Supposewe find the ground
state (corresponding to the minimum energy solution within the
search space of 2N bit strings, where N is the variable count)
with probability P0. In the absence (but not presence) of chan-
nel noise, this ground state corresponds to a correct decoding. Each
anneal is an independent, identically-distributed random process,
meaning that the expected time to solution, or TTS(P), is the an-
neal time of each anneal Ta multiplied by the expected number
of samples to be able to find the ML solution with probability P:
TTS(P) = Ta · log(1 − P)/log(1 − P0). TTS is commonly used in
the QA literature, setting P = 0.99 [58].

5.2.2 Our Metrics: BER and Time-to-BER (TTB). TTS reflects the
expected time to find the ground state, but does not characterize the
expected time our system takes to achieve a certain Bit Error Rate
(BER, averaged across users), the figure of merit at the physical layer.
This quantity differs from TTS, because TTS only considers the
ground state, and as illustrated in the example shown in Figure 4,
solutions with energy greater than the ground state may also have
(rarely) no or relatively few bit errors, while wireless channel noise
may induce bit errors in the ground state solution itself. Hence we
introduce a metric to characterize the time required to obtain a
certain BER p, Time-to-BER: TTB(p). This is preferred in our setting,
since a low but non-zero bit error rate is acceptable (error control
coding operates above MIMO detection).

5See section 5.2.2. Frame error rate FER is computed as 1 − (1 − BER)frame size .
6The energy distribution of the Ising objective function (Eq. 2) corresponds to the
distribution of ML decoder Euclidean distances (Eq. 1).

TTB for a single channel use. Since one QA run includes multi-
ple (Na ) anneals, we return the annealing solution with minimum
energy among all anneals in that run. We show an example of this
process for one instance (i.e., channel use, comprised of certain trans-
mitted bits and a certain wireless channel) in Fig. 4. The annealer
finds different solutions, with different Ising energies, ranking them
in order of their energy. Considering this order statistic, and the
fact that QuAMax considers only the best solution found by all the
anneals in a run, the expected BER of instance I after Na anneals
can be expressed as

E(BER(Na )) =

L∑
k=1


(
L∑

r=k

pI (r )

)Na
−

(
L∑

r=k+1
pI (r )

)Na  · FI (k )/N , (9)

where N is qubit count, L (≤ Na ) is the number of distinct solu-
tions, r (1 ≤ r ≤ L) is the rank index of each solution, p(r ) is the
probability of obtaining the r th solution, and FI (k) is the number
of bit errors of the kth solution against ground truth.7 To calculate
TTB(p), we replace the left hand side of Eq. 9 with p, solve for Na ,
and compute TTB(p) = NaTa/Pf .
Generalizing to multiple channel uses. The preceding predicts
TTB for a fixed instance. In the following study we compute TTB
and BER across multiple instances (random transmitted bits and
randomly-selected wireless channel), reporting statistics on the
resulting sampled distributions.

5.3 Performance Under Annealer Noise
This section presents results from the DW2Q annealer for wireless
channel noise-free scenarios, in order to characterize the machine’s
performance itself as a function of time spent computing. Sec-
tions 5.4 and 5.5 experiment with Gaussian noise and trace-based
wireless channels, respectively.

In this section, we run several instances with unit fixed chan-
nel gain and average transmitted power. Each instance has a ran-
dom-phase channel, randomly chosen transmitted bit string, and
is repeated for each of three different modulations (BPSK, QPSK,
16-QAM) and varying numbers of users and AP antennas. Each
instance is reduced to Ising as described in Section 3.2, for a total
of 780 different problems per QA parameter setting. Unless other-
wise specified, this and subsequent sections use the fixed parameter
settings defined in §5.3.1. We obtain significant statistics by post-
processing up to 50,000 anneals per QA run (except 10,000 anneals
for anneal pause analysis in Figure 7).

5.3.1 Choosing Annealer Parameters. In order to isolate the ef-
fect of different parameter settings on individual problems, we
employ microbenchmarks on TTS. This section explains our choice
of parameter settings for our main performance results in §5.3.3,
§5.4, and §5.5. Note that while we plot results here only for BPSK
and QPSK to save space, our results show that the methods, argu-
ments and observations generalize to higher modulations, unless
otherwise indicated. For the purpose of setting the parameters, we
restrict the dataset to the ML problems that solve within a median
TTS(0.99) of 10 ms for which we have low uncertainty on the mea-
sured success probability. We use the determined parameters for
all instances regardless of their TTS for the performance analysis.
7Note that the metric has omniscient knowledge of ground truth transmitted bits,
while the machine does not.



LeveragingQuantum Annealing for Large MIMO Processing in

Centralized Radio Access Networks SIGCOMM ’19, August 19–23, 2019, Beijing, China

Figure 5: Time-to-Solution comparison of different strengths of ferromag-

netic coupling within logical qubits, | JF |. Upper: BPSK, lower: QPSK, left:
standard range, right: improved range; results obtained for Ta = 1 μs. Lines

report median of 10 instances; shading reports 10th. and 90th. percentiles.

Figure 6: TTS analysis of different anneal times for different numbers

of users, for QPSK. Scatter points correlate median results obtained for

different | JF |, while lines highlight the best | JF | measured from Fig. 5 and

reporting the median across 10 random instances.

Ferromagnetic couplings:We examine median TTS(0.99) versus
|JF | over 10 random instances of different sizes both with and with-

out extended dynamic range. In Fig. 5, we observe that while there is

a performance optimum that depends on the problem size for stan-

dard dynamic range, extended dynamic range shows less sensitivity

to |JF |, obtaining roughly the optimal |JF | performance of standard
dynamic range. Anneal time: As we vary Ta , we observe greater
sensitivity when we use non-optimal JF , as the scatter points next
to each data point in Fig. 6 (left) show. On the other hand, Fig. 6

(right) shows that an extended dynamic range setting achieves best

results at Ta = 1 μs regardless of problem size, showing less sensi-

tivity to different |JF |. Anneal Pause Time and Location:When

we apply improved dynamic range atTa = 1 μs, we observe a slight
independence (Fig. 7) of sp and Jf on Tp , and as Tp increases, so

does TTS. While the dynamic range setting has shown less sensitiv-

ity to |JF |, anneal pause with extended dynamic range shows more
sensitivity. Note that TTS of 18-user QPSK at Tp = 1 μs is slightly
improved, compared to the best results in Figs. 5 and 6.

Annealer Parameter Optimization. Based on the previous sen-

sitivity analysis, we select a default QA parameter setting. First, we

choose improved dynamic range since it is relatively robust to

Figure 7: TTS analysis of anneal pause time and position for 18-user QPSK.

Colored dotted lines join results obtained for different | JF |, while the thicker
black line highlights the best | JF | measured from Fig 5. Lines report the

median across 10 random instances. The red circle indicates the best sp for

chosen | Jf |.

Figure 8: BER of different optimization settings as a function of the number

of anneals (upper) and time (lower) for 18 × 18 QPSK (median across 20

instances). Error bars indicate 15th. and 85th. percentiles.

choice of |JF |, nearly equaling the best performance of the standard
dynamic range. Second, we choose Tp = 1 μs, since it shows better
results and greater pause times dominate the anneal time.

5.3.2 Choosing whether to pause. With the above default QA

parameters, we now use TTB to explore whether or not we should

use the QA pause functionality, as TTB encompasses both algo-

rithms’ BER performance as well as wall clock running time (cf.

TTS). We first define a fixed parameter setting by selecting the best

estimated choices for the non-pausing algorithm and for the paus-

ing algorithm, meaning the parameters which optimize medians

across a sample of instances belonging to the same problem class

(e.g. 18×18 QPSK). This approach is to be compared against an or-

acle that optimizes {JF , Ta } or {JF , sp } instance by instance. In the
figures, we denote the two parameter setting methods as Fix (fixed)

and Opt (optimal), respectively.

Our motivation for considering Opt is that it provides a bound to

what can be achieved by the methods that seek to optimize machine

parameter settings instance by instance [68, 70], currently under

investigation. With our traces we compute BER as a function of Na

using Eq. 9; the median result across 20 random instances is shown

in Figure 8 (upper). Figure 8 (lower) shows the corresponding BER as

a function of time (i.e., TTB). Note that the pausing algorithm has a

better performance than the non-pausing algorithm (regardless of

Opt and Fix strategy) despite the fact that each anneal in the former

(Ta +Tp ) takes twice as much time than the latter (whenTa = 1 μs).
Based on this empirical finding, we will present the results in the

following section only for the protocol that includes a pause.
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Figure 9: Time-to-BER (TTB) comparison across different user numbers

and modulations. Upper: ideal scheme using Opt. Lower: QuAMax’s perfor-

mance optimizing with Fix. Solid lines and dashed lines report median and

mean TTB across 20 instances, respectively. Shading reports 10th. and 90th.

percentiles of average BER at a certain time and each × symbol reports each

instance’s TTB (x-value) for a certain target BER.

Figure 10: TTB with target BER 10−6 for different modulations and user
numbers across 20 instances. Colored boxes report QuAMax (5th., 95th. as

whiskers, upper/lower quartiles as boxes, median as the thick horizontal

mark, and thin horizontal marks for outliers.)

Figure 11: Time-to-FER for different users, modulations, and frame sizes;

left: median Opt (idealized), right: mean Fix (QuAMax).

5.3.3 QuAMax: End-to-End performance. We now evaluate the

TTB and TTF (Time-to-FER) of QuAMax, comparing:

(1) QuAMax: Fixed-parameter, average-case performance.

(2) Oracle:Median-caseOpt performance (§5.3.2: outlier data points

have minimal influence on the median order statistic), optimiz-

ing QA parameters.8

Figure 9 shows the TTB with varying user numbers and modula-

tions at the edge of QuAMax’s performance capabilities. Solid and

8Outlier mitigation methods for QA may address such outliers in future work [40].

Figure 12: Detailed view (cf. Fig. 4) of an example wireless channel at six

different SNRs (18-user QPSK).

dashed lines report median and average BER, respectively. We note

that mean TTB dominates median TTB due to a small number of

long-running outliers. QuAMax accordingly sets a time deadline

(measured median TTB for the target BER) for decoding and after

that discards bits, relying on forward error correction to drive BER

down. Next considering the relationship between TTB and problem

size, Fig. 10 explores TTB for target BER 10−6, for each instance
that reaches a BER of 10−6 within 10 ms as well as average perfor-
mance. ML problems of these sizes are well beyond the capability

of conventional decoders (cf. Table 1), and we observe that Opt

achieves superior BER within 1–100 μs and that QuAMax achieves
an acceptable BER for use below error control coding. Note that

instances with TTB below the minimum required time (i.e., Ta +
Tp ) caused by parallelization require (an amortized) 2 μs .

Next, we consider frame error rate performance, measuringmean

and median FER QuAMax achieves. Results in Fig. 11 show that

tens of microseconds suffice to achieve a low enough (below 10−3)
FER to support high throughput communication for 60-user BPSK,

18-user QPSK, or four-user 16-QAM suffices to serve four users

with the idealized median performance of Opt. QuAMax (mean Fix)

achieves a similar performance with slightly smaller numbers of

users. Furthermore, our results show low sensitivity to frame size,

considering maximal-sized internet data frames (1,500 bytes) all

the way down to TCP ACK-sized data frames (50 bytes).

5.4 Performance under AWGN Noise

We next evaluate the impact of AWGN from the wireless channel,

testing six SNRs ranging from 10 dB to 40 dB. In order to isolate

the effect of noise, the results in this subsection fix the channel

and transmitted bit-string and consider ten AWGN noise instances.

Looking at the data in depth to begin with, the effect of AWGN

channel noise, which is itself additive to ICE, is shown in Fig. 12

for six illustrative examples. As SNR increases, the probability of

finding the ground state and the relative energy gap tend to increase.

At 10 dB SNR the energy gap between the lowest and second lowest

energy solutions narrows to just three percent, leaving minimal

room for error. In terms of overall performance, Fig. 13 (left) shows

TTB at 20 dB SNR, varying number of users and modulation. At a

fixed SNR, we observe a graceful degradation in TTB as the number

of users increases, across all modulations. Fig. 13 (right) shows TTB

at a certain user number, varying SNR and modulation. At a fixed

user number, as SNR increases, performance improves, noting that

the idealized median performance of Opt shows little sensitivity to

SNR, achieving 10−6 BER within 100 μs in all cases.
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Figure 13: TTB comparison across different user numbers, modulations,

and SNRs. Left: varying the number of users at SNR 20 dB. Right: varying

SNR at a certain number of users. Thick lines report QuAMax’s perfor-

mance (mean Fix), and same style but thin (purple) lines report the idealized

performance (median Opt).

Figure 14: QuAMax’s performance comparison against the zero-forcing

decoder across different user numbers, modulations, and SNRs. Each ×
symbol (left-to-right: 36, 48, 60 users for BPSK and 12, 14, 16 users for QPSK)

reports the zero-forcing decoder’s BER and corresponding processing time.

Fig. 14 compares QuAMax’s performance versus zero-forcing

decoder at bad SNR scenarios, showing the necessity of ML-based

MIMO decoders for large MIMO system. Linear decoders such as

zero-forcing and MMSE suffer from the effect of the poor channel

condition (when Nt ≈ Nr ), requiring Nr > Nt (i.e., more antennas)

for appropriate BER performance. In Figure 14, QuAMax reaches

the zero-forcing’s BER (or even better BER) approximately 10-1000

times faster than zero-forcing in both BPSK and QPSK modula-

tion. Here, computation times for zero-forcing are inferred from

processing time using a single core in BigStation [76], one of the

current large MIMO designs based on zero-forcing. While this pro-

cessing time can be reduced proportionally with more cores, BER

(i.e., quality of solutions) remains unchanged. The Sphere Decoder

achieves comparable BER, but processing time cannot fall below a

few hundreds of μs with the given numbers of users and SNRs.9

9Extreme levels of parallelization or GPU implementation might be able to resolve the
issue. However, practical constraints will eventually limit the increase in performance
on classical platforms [38]. Contrarily, overheads in QuAMax are apart from pure
computation, which can be resolved by engineering design.

Figure 15: Experimentally measured channel trace [61] results: upper plots

report TTB (Opt, Fix); lower plots report TTF of median Opt and mean

Fix (QuAMax). Thin and thick lines report median and mean, respectively.

TTB’s error bars indicate 15th. and 85th. percentiles.

5.5 Trace-Driven Channel Performance

We evaluate system performance with real wideband MIMO chan-

nel traces at 2.4 GHz, between 96 base station antennas and eight

static users [61]. This dataset comprises the largest MIMO trace

size currently available. For each channel use, we randomly pick

eight base station antennas to evaluate the 8 × 8 MIMO channel

use at SNR ca. 25–35 dB: Fig. 15 shows the resulting TTB and TTF.

We achieve 10−6 BER and 10−4 FER within 10 μs for QPSK. For
BPSK, considering multiple problem instances operating in parallel,

we achieve the same BER and FER within (an amortized) 2 μs pe-
riod. This implies that tens of microseconds suffice to achieve a low

BER and FER even without parallelization of identical problems,

which creates an opportunity for QuAMax to parallelize different

problems (e.g., different subcarriers’ ML decoding).

6 RELATED WORK

Applications ofQA.Despite the immaturity of software toolchains,

existing quantum annealingmachines have been already programmed

successfully to solve problems in Planning and Scheduling [57],

Databases [66], Fault Diagnostics [55], Machine Learning [54], Fi-

nance [59], Data Analysis [47], Chemistry [31], and Space Sciences/-

Aeronautics [3]. A Similar problem to ML detection, CDMA mul-

tiuser demodulation, was solved using quantum fluctuations con-

trolled by the transverse field (similar as QA) in [53]. Of particular

relevance is work on optimization of fully-connected graphs, such

as the ones used to map the ML problem [69]; the results of which

showed that QA performance could match the most highly opti-

mized simulated annealing code run on the latest Intel processors.

For further details on the logical to physical qubit embedding pro-

cess, see Venturelli et al. [69]. Efficient embeddings which do not

force the chip coverage to be a triangle are also known [7].

QAOA. Quantum Approximate Optimization Algorithms, invented

in 2014 [23], and recently generalized for constrained combinatorial

optimization [28], require digital gate-model QC, which became

available at reasonable scale only in 2017 (prototypes from IBM,

Rigetti Computing, and Google are available). While QA and QAOA

require different hardware (the former is analog, the latter digital)

they have in common that: (1) For problems that don’t have hard
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constraints, the programming step consists in defining a classical
combinatorial problemwhich is cast into QUBO [9, 72] or Ising form,
hence they both may leverage our formulation §3.2. (2) QAOA can
be seen in some parameter range as a “digitized” version of QA, and
it has been formally demonstrated that it can simulate the results
and performance of QA and outperform it, in principle [77]. The
first commonality is particularly important since it opens the door
to application of our techniques on future hardware capable of
running QAOA.
Conventional ML Detectors. Faster silicon based ML detector
strategies typically approximate and parallelize the ML computa-
tion [15, 73]. In these general directions, much progress has been
made to the point that Sphere Decoders have been realized in ASIC
hardware [10, 74] but fall short for the reasons noted in Table 1
when the setting demands more antennas at the AP (serving more
users), or when the modulation chosen increases [32, 76].

7 DISCUSSION
In this section, we discuss the current status of QA technology and
practical considerations.
Computational Power Consumption. The computation in the
DWQ2 is performed at zero energy consumption, as dictated by
reversible computing, although energy is dissipated in the initializa-
tion and readout. The DW2Q draws 16 kW of power, primarily used
by the cryogenic refrigeration unit [17]. The computational power
(per watt) for QPUs is expected to increase much more rapidly
than for conventional computing platforms since the DW2Q power
draw is not expected to change much as qubit and coupler counts
grow in future generation systems while the computational power
substantially increases.
Operating Expenses. Operating the DW2Q results in significant
electricity cost, and the dilution refrigerator requires liquid nitrogen
1-2 times a month, for a total yearly cost of about USD $17,000.
Processing Times. The scenario envisioned by QuAMax assumes
a centralized RAN architecture where a QPU, co-located with cen-
tralized RAN computational resources in a data center, is connected
to the APs via high-speed fiber or millimeter-wave links. In this
setting, a latency between the APs and data center will not be sig-
nificant. Nonetheless, QuAMax cannot be deployed today, since
additional processing times in the current QPU include approxi-
mately 30-50 ms preprocessing time, 6-8 ms programming time, and
0.125 ms readout time per anneal. These overheads are well beyond
the processing time available for wireless technologies (at most
3–10 ms). However, these overhead times are not of a fundamental
nature and can be reduced by several orders of magnitude by efforts
in system integration. By means of extrapolation of improvement
trends it is expected that quantum engineering advances in su-
perconducting qubit technology will enable QuAMax to be viable
within a decade. Moreover, QuAMax’s Ising form (in Section 3.2.2)
can be adapted to be run in other emerging physics-based optimiza-
tion devices based on photonic technologies [29] whose processing
times overhead are in principle much faster. Hence, we leave an
end-to-end evaluation in a fully centralized RAN architecture, with
more advanced hardware, as future work.

8 CONCLUSION
QuAMax is the first design, implementation and experimental eval-
uation of a quantum-computing solver for the computationally
challenging ML MIMO decoding problem. Our performance results
establish a baseline for a future fully-integrated systems in the
context of the centralized RAN architecture. We show that once
engineering efforts optimize the integration between quantum and
conventional computation, quantum computation should be consid-
ered a competitive technology for the future design of high-capacity
wireless networks.
Future Work. There are several improvements over the design we
have evaluated here. First, we anticipate that further optimization
of |JF |, Ta , and sp as well as new QA techniques such as reverse
annealing [68] may close the gap to Opt performance. Second, there
are changes in QA architecture expected in annealers due this year
[21] featuring qubits with 2× the degree of Chimera, 2× the number
of qubits and with longer range couplings. Based on similar gains
in recent results on different problem domains [29], we anticipate
this will permit ML problems of size, e.g. 175 × 175 for QPSK and
dramatically increase the parallelization opportunity of the chip
due to the reduced embedding overhead where each chain now
only requires N /12 + 1 qubits.

Going forward, we will benefit from QA technology improve-
ments from the international community manufacturing quantum
annealers with advanced capabilities. According to the develop-
ment roadmap for these next-generation quantum optimizers, it is
expected that in ca. a decade a system such as QuAMax could be
based on chips with tens of thousands of highly-connected qubits,
with annealing schedules capable of more advanced quantum ef-
fects (e.g. non-stoquasticity [51]) and engineering advances will
have order-of-magnitude improvements on the aforementioned
overhead operation times. While quantum annealers are ahead in
terms of number of qubits, gate-model systems offer additional con-
trols that may conceivably increase performance in the future. We
will investigate MIMO ML decoding on gate-model QPUs in future
work, which currently cannot support algorithms that decode more
than 4×4 BPSK.
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A QUBO FORMS

We demonstrate how to transform 2 × 2 BPSK MIMO Maximum
Likelihood (ML) detection into the QUBO form. ML detection solves
Eq. 1, where

H =

[
h11 h12
h21 h22

]
=

[
hI ,11 hI ,12
hI ,21 hI ,22

]
+ j

[
hQ,11 hQ,12

hQ,21 hQ,22

]
,

y =

[
y1
y2

]
=

[
yI ,1
yI ,2

]
+ j

[
yQ,1

yQ,2

]
and v =

[
v1
v2

]
.

The norm expansion in Eq. 1 can be expressed as

‖y − Hv‖2 =
����[y1y2] − [

h11 h12
h21 h22

] [
v1
v2

]����2 = ����y1 − h11v1 − h12v2y2 − h21v1 − h22v2

����2
=

����(yI ,1 − hI ,11v1 − hI ,12v2) + j(yQ,1 − hQ,11v1 − hQ,12v2)
(yI ,2 − hI ,21v1 − hI ,22v2) + j(yQ,2 − hQ,21v1 − hQ,22v2)

����2
= {(yI ,1 − hI ,11v1 − hI ,12v2)}2 + {(yQ,1 − hQ,11v1 − hQ,12v2)}2

+{(yI ,2 − hI ,21v1 − hI ,22v2)}2 + {(yQ,2 − hQ,21v1 − hQ,22v2)}2 .
In the case of BPSK, symbol vi ∈ {−1, 1} is represented by a
QUBO variable qi . One possible transform is 2qi − 1 where qi = 0
corresponds to vi = −1 and qi = 1 to vi = 1. This leads to v =
[v1,v2]ᵀ = [T(q1),T(q2)]ᵀ , where T(q1) = 2q1 − 1 and T(q2) =
2q2 − 1. Using these relationships, we can express the above norm
as

‖y − Hv‖2 =
����[y1y2] − [

h11 h12
h21 h22

] [
T(q1)
T(q2)

]����2
= {(yI ,1 − hI ,11(2q1 − 1) − hI ,12(2q2 − 1))}2

+{(yQ,1 − hQ,11(2q1 − 1) − hQ,12(2q2 − 1))}2

+{(yI ,2 − hI ,21(2q1 − 1) − hI ,22(2q2 − 1))}2

+{(yQ,2 − hQ,21(2q1 − 1) − hQ,22(2q2 − 1))}2 .

Thenwe obtain the objective function ofML problemwith QUBO
variables. Using q2i = qi , minimization of this objective function
becomes the QUBO form (Eq. 3):

q̂1, q̂2 = arg min
q1,q2

Q11q1 +Q22q2 +Q12q1q2, where

Q11 = −4hI ,11yI ,1 − 4hI ,21yI ,2 − 4hQ,11yQ,1 − 4hQ,21yQ,2

−4hI ,11hI ,12 − 4hI ,21hI ,22 − 4hQ,11hQ,12 − 4hQ,21hQ,22,

Q22 = −4hI ,12yI ,1 − 4hI ,22yI ,2 − 4hQ,12yQ,1 − 4hQ,22yQ,2

−4hI ,12hI ,12 − 4hI ,22hI ,22 − 4hQ,12hQ,12 − 4hQ,22hQ,22,

Q12 = 8hI ,11hI ,12 + 8hI ,21hI ,22 + 8hQ,11hQ,12 + 8hQ,21hQ,22 .

https://doi.org/10.1007/s11128-014-0892-x
https://doi.org/10.1145/2830556.2830563
https://doi.org/10.1109/TNET.2015.2419979
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.1103/PhysRevA.93.012317
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B EMBEDDED ISING

Embedding maps the Ising problem to an equivalent one that has

the same ground state, but also satisfies Chimera graph constraints.

The QuAMax compiled objective function is:

−
N∑
i=1

⎡⎢⎢⎢⎢⎣
�N /4∑
c=1

sicsi(c+1)
⎤⎥⎥⎥⎥⎦ (10)

+

N∑
i=1

����
fi

|JF |
(
�N4  + 1

) ���	
⎡⎢⎢⎢⎢⎣
�N /4+1∑
c=1

sic

⎤⎥⎥⎥⎥⎦ (11)

+

N∑
i, j=1

gij

|JF |
∑

(ci ,c j )∈δi j
sici sjc j (12)

where the original logical variables si are now associated to a chain

i of c = 1 . . . (�N /4 + 1) qubits, indexed with new spins sic . |JF |
penalizes the condition that sic � sic ′ , i.e., enforces that all qubits
in the chain assume the same value (±1). This enforcement is more
likely to happen for large values of |JF |, however the maximum
negative energy value is set to −1 by hardware design. In (11)

and (12), |JF | effectively renormalizes all terms in the objective

function by the factor |JF |−1. The linear term value fi is additionally

divided by the number of qubits in a chain (�N /4 + 1). The term in

(12) shows that the duplication of variables ensures the existence

of a pair of qubits in the chains such that a physical coupler in

the Chimera graph exists (δi j is the set of pairs of qubits that are
connected by a physical bond once the chains i and j are specified).

C 16-QAM ISING MODEL PARAMETERS

Following are the Ising parameters fi for 16-QAM:

fi (H, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case i = 4n − 3 :
−4

(
HI
(:, �i/4) · yI

)
− 4

(
H
Q

(:, �i/4) · yQ
)
,

case i = 4n − 2 :
−2

(
HI
(:, �i/4) · yI

)
− 2

(
H
Q

(:, �i/4) · yQ
)
,

case i = 4n − 1 :
−4

(
HI
(:, �i/4) · yQ

)
+ 4

(
H
Q

(:, �i/4) · yI
)
,

case i = 4n :

−2
(
HI
(:, �i/4) · yQ

)
+ 2

(
H
Q

(:, �i/4) · yI
)
.

(13)

Since real and imaginary terms of each symbol are independent,

the coupler strength between s4n−3, s4n−2 and s4n−1, s4n is 0. For
other si and sj , the Ising coupler strength дi j for 16-QAM is:

дi j (H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case i = 4n − 3 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case j = 4n′ − 3 :
8
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 8

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case j = 4n′ − 2 :
4
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 4

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case j = 4n′ − 1 :
−8

(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
+ 8

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case j = 4n′ :

−4
(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
+ 4

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case i = 4n − 2 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case j = 4n′ − 3 :
4
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 4

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case j = 4n′ − 2 :
2
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 2

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case j = 4n′ − 1 :
−4

(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
+ 4

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case j = 4n′ :

−2
(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
+ 2

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case i = 4n − 1 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case j = 4n′ − 3 :
8
(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
− 8

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case j = 4n′ − 2 :
4
(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
− 4

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case j = 4n′ − 1 :
8
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 8

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case j = 4n′ :

4
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 4

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case i = 4n :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case j = 4n′ − 3 :
4
(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
− 4

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case j = 4n′ − 2 :
2
(
HI
(:, �i/4) · H

Q

(:, �j/4)
)
− 4

(
HI
(:, �j/4) · H

Q

(:, �i/4)
)
,

case j = 4n′ − 1 :
4
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 4

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
,

case j = 4n′ :

2
(
HI
(:, �i/4) · HI

(:, �j/4)
)
+ 2

(
H
Q

(:, �j/4) · H
Q

(:, �i/4)
)
.

(14)


	Abstract
	1 Introduction
	2 Background
	2.1 Primer: Maximum Likelihood Detection
	2.2 Primer: Quantum Annealing

	3 Design
	3.1 QA Problem Formulation
	3.2 ML-to-QA Problem Reduction
	3.3 Embedding into QA hardware

	4 Implementation
	5 Evaluation
	5.1 Understanding Empirical QA Results
	5.2 Experimental methodology
	5.3 Performance Under Annealer Noise
	5.4 Performance under AWGN Noise
	5.5 Trace-Driven Channel Performance

	6 Related Work
	7 Discussion
	8 Conclusion
	References
	A QUBO Forms
	B Embedded Ising
	C 16-QAM Ising Model Parameters

