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Abstract

Neural networks in real-world applications have to satisfy
critical properties such as safety and reliability. The anal-
ysis of such properties typically requires extracting infor-
mation through computing pre-images of the network trans-
formations, but it is well-known that explicit computation
of pre-images is intractable. We introduce new methods for
computing compact symbolic abstractions of pre-images by
computing their overapproximations and underapproxima-
tions through all layers. The abstraction of pre-images en-
ables formal analysis and knowledge extraction without af-
fecting standard learning algorithms. We use inverse abstrac-
tions to automatically extract simple control laws and com-
pact representations for pre-images corresponding to unsafe
outputs. We illustrate that the extracted abstractions are inter-
pretable and can be used for analyzing complex properties.

1 Introduction

Neural networks have significant potential as a key building
block of intelligent systems. However, characterizing the ex-
act behaviors of complex neural networks is an extremely
difficult task, which poses a major challenge to their use
in safety-critical systems. Recent work on verifying neu-
ral networks such as (Zakrzewski 2001; Bunel et al. 2018;
Katz et al. 2017) has focused on developing faster algo-
rithms for validating or falsifying formal properties of whole
neural networks directly through their encoding as constraint
satisfaction problems. These approaches are designed for
generating counter-examples to (or for verifying) specific
properties for piecewise-linear neural networks. An alter-
native approach for analysis is to decompose the large net-
works and perform the analysis in a modular way, which
is a standard practice in software program analysis (Hoare
1969). Such decomposition often provides more informa-
tion than simple monolithic analysis and enables us to verify
complex properties in a tractable manner. A crucial task for
enabling such modular analysis is that we must be able to
represent and manipulate pre-images of programs, or com-
putable functions in general. On neural networks, this trans-
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lates to being able to propagate sets of the network out-
puts backwards through individual neural layers (as real-
valued functions), eventually to the input domain. However,
this is in principle harder than direct constraint solving, be-
cause of the requirement of representing and manipulating
high-dimensional geometric shapes that often do not have
polynomial-size representations. Thus, the important ques-
tion is how to efficiently compute approximate representa-
tions (abstractions) of such pre-image sets, so that they are
both compact and precise enough for enabling formal anal-
ysis, interpretation and knowledge/policy extraction.

In this paper, we develop algorithms for computing sym-
bolic abstractions of pre-images of neural networks. We
bypass the difficulty of representing the exact pre-images,
by maintaining both overapproximations and underapprox-
imations that can be compactly represented as symbolic
constraints. We leverage a recent algorithm for computing
symbolic interpolants (Albarghouthi and McMillan 2013),
where an extension of Farkas’ lemma is used to learn inter-
polants that have simple structures. The techniques are ap-
plicable because the concepts that are learned by neural net-
works are often simple (Ba and Caruana 2014). We exploit
the network structures and propagate pre-images of subsets
of the output space through each layer to the input space.
We enhance scalability of the algorithms on piecewise-linear
neural networks by designing heuristics for the specific sym-
bolic forms of the abstractions.

In experiments, we focus on knowledge/policy analy-
sis and extraction for two control environments: cart-pole
and swimmer. We show that for the multilayer perceptron
(MLP) network policies trained through standard reinforce-
ment learning algorithms, we can extract knowledge in the
form of compact abstractions. For cart-pole, the extracted
policy achieves a perfect score. Using the extracted policy
we are able to formally verify/falsify certain complex safety
properties. For swimmer, we show how high torque outputs
are mapped to a compact representation in the input space.
We believe these techniques will be important for analyzing
learning-enabled components in control applications.

Related Work Model Extraction: There has been recent
work in extracting verifiable and explainable models from
trained networks. In this direction, (Bastani, Pu, and Solar-
Lezama 2018) introduce an imitation learning-based ap-



proach to generate data to train a decision tree that allows for
easier verification. In (Verma et al. 2018), the authors use a
trained neural network to guide a local search over program-
matic policies that are human-readable and more verifiable
than the complex neural networks themselves. In contrast to
both of the above described approaches that focus on rein-
forcement learning, our work introduces a general tool for
the analysis of neural networks by computing abstractions.
Additionally, our approach does not rely on learning simpler
models or modifying the training process, and extracts sym-
bolic abstractions completely algorithmically for the origi-
nal neural network. In (Mahendran and Vedaldi 2015), the
authors propose a framework for inverting representations.
They reconstruct the input image given an encoding of the
image. This is different from our work, where given a set of
outputs we compute (approximately) the entire pre-image.
Interpolants have frequently been used to help improve the
scalability of software verification, automated theorem prov-
ing, and constraint solving (Bonacina and Johansson 2015;
Dathathri et al. 2017; Kroening and Weissenbacher 2011).

Input-Output Abstraction: There has been considerable
progress in the direction of computing forward abstractions
i.e. ranges of outputs for a given set of inputs and using
them to verify simple reachability/robustness properties. In
(Wang et al. 2018), symbolic-interval analysis coupled with
heuristics for tightening the computed bounds is used to
compute approximate output sets corresponding to a set of
box-constrained inputs. In (Gehr et al. 2018), in a similar
spirit, abstract-interpretation is leveraged to compute ap-
proximate output sets for a given set of inputs. Both of
these abstraction-based approaches approaches are able to
certify robustness/reachability properties significantly faster
than solver-based approaches, such as (Katz et al. 2017).
However, reasoning about complex properties (for e.g., gen-
eral specifications in linear-arithmetic over the inputs and
outputs of the neural network) is still not possible with
these output abstractions. Additionally, these abstractions
are also not well suited for policy/knowledge extraction. For
instance, for a cart-pole controller, it is not directly possible
to answer the question: What makes the cart go left? with
the above discussed techniques. In contrast, our inverse ab-
stractions can be used for extracting such knowledge from
trained networks (see Section 5.2), and the computed com-
pact abstractions can then be used with other solvers for fur-
ther complex analysis. However, if only a few simple robust-
ness/reachability properties are to be verified, direct verifica-
tion is preferable instead of our approach that has to repre-
sent and manipulating complex symbolic sets.

2 Preliminaries

2.1 Neural Networks and Constraints

Consider a neural network f with n layers. That is, f(x) =
h.gn.gn−1. . . . .g1(x) where gr is the transfer function repre-
senting the map from the input to the output space for layer
r and h : Rk → Y is a map from the logits to the k class-
labels (e.g. argmax). For example, if a network has n − 1

layers with ReLU activation and a final linear layer:

gr(z) = max(Wrx+ br, 0) ∀r ∈ 1, 2, . . . , n− 1

gr(z) = Wrx+ br r = n.

For simplicity, we only discuss neural networks that map to
a discrete set of outputs but the approach is valid even when

the network produces a continuous set of outputs. By y
f
i (x),

we refer to the output from the ith layer of the neural net-

work i.e y
f
i (x) = gi.gi−1. . . . .g1(x). Often, in classification

tasks, the outputs from the layer gn are fed through a soft-
max layer to normalize the scores. Here, in our analysis, we
do not consider the softmax layer as it preserves the ordering
amongst scores corresponding to the different classes. For a
vector z ∈ R

m, argmax
i

{zi} = argmax
i

{softmax(z)i}.

Piecewise-linear neural networks (without the softmax
layer) can be expressed as constraints in the theory of quan-
tifier free linear rational arithmetic (QFLRA). This includes
neural networks with activation functions that are piecewise-
linear (e.g. ReLU, Leaky ReLU, MaxOut, MaxPool). We
follow the encoding described in (Ehlers 2017). For exam-
ple, a ReLU node y = max(0, x) is written as:

(y = 0 ∧ x ≤ 0) ∨ (y = x ∧ x ≥ 0).

The entire network is similarly encoded into QFLRA.
As a slight abuse of notation we interchangeably use g(z)

to represent the map of z through the function g, and the
first-order logic constraint that enforces the same. For ex-
ample, consider the function g(x) = max(0, wTx). We in-
terchangeably use y = g(x) to also represent the constraint
(y = wTx∧wTx ≥ 0)∨ (y = 0∧wTx < 0). For a satisfy-
ing assignment (y, x) for this constraint, we have y = g(x).
For a formula ϕ that has a vector of free variables s, we write
x |= ϕ if ϕ interprets to True when we set s = x.

Definition 1 (Pre-images) Consider a neural network f .
Let X be the domain and Y be the codomain. The preim-
age of a set S ⊂ Y for the neural network f is the set
{x ∈ X|f(x) ∈ S}.

For example, consider a neural network based cart-pole
controller with the action space {left,right}. The pre-
image corresponding to S = {right} is the set of observa-
tions that cause the controller to output right as the action.
In the remainder of this work, we refer to this pre-image of
set S for the neural network f as Pref (S). The exact pre-
image of the network for a given set S, in the worst case, can
have exponentially many linear regions. To overcome this
we consider abstractions that provably (over) underapprox-
imate the exact pre-image Pref (S). The restriction on the
structure of S for our work is that it has to be expressible in
QFLRA, which includes all constraints that have half-spaces
as atoms combined with Boolean operators.

2.2 Symbolic Interpolation

Symbolic interpolation is a well-studied concept in propo-
sitional and first-order logic (Craig 1957). Given two
quantifier-free first-order formulas A and B, such that A∧B
is unsatisfiable, a Craig Interpolant I is a formula satisfying:



• A =⇒ I;

• B ∧ I =⇒ ⊥;

• I only contain variables that are shared by A and B.

Intuitively, the interpolant I provides an overapproximation
of A that is still precise enough to exhibit its conflict with
B, and does not contain redundant information that involves
any variable that is not shared by both A and B.

Definition 2 (Overapproximation) We call α(x) an over-
approximator of A(x) if ∀x.A(x) =⇒ α(x).

Definition 3 (Underapproximation) Conversely, we call
β(x) the underapproximator of A(x) if ∀x.β(x) =⇒
A(x).

When A∧B is not satisfiable, Craig’s interpolation theorem
guarantees the existence of an interpolant I such that I over-
approximates A and ¬I overapproximates B. These inter-
polants have found application in compositional approaches
to program-verification and SMT solving. In our work, we
build on the algorithm from (Albarghouthi and McMillan
2013) for computing interpolants, as opposed to other ap-
proaches based on lazy SMT that produces complex inter-
polants. The intuition behind this choice is that simpler in-
terpolants are more likely to provide general explanations
corresponding to the neural network’s parameters and the
task for which the network was trained, rather than complex
ones that may overfit the specific instantiation. Further, sim-
pler interpolants provide the added advantage of being easier
to reason over using automated reasoning engines (e.g. z3).

3 Inverse Abstraction of Neural Networks
We seek to compute approximations for the pre-image that
closely approximate the pre-image, but are provable (super)
subsets of the pre-image. The fact that these are provable
(over) underapproximations (unlike the approximated mod-
els in (Bastani, Pu, and Solar-Lezama 2018; Verma et al.
2018)) allows us to prove properties that hold for the neu-
ral network itself. For example, suppose we wish to prove
a property that for every input from some set W , the corre-
sponding output from the neural network does not belong
to the set S. By computing an overapproximation O for
Pref (S) and showing that O ∧W is not satisfiable we have
verified the property. Similarly, if the property was that every
output belongs to some set S, then by computing the under-
approximation U for Pref (S) and showing that W =⇒ U
is valid, we have verified the property.

Here, we give a brief overview of the algorithm for com-
puting the overapproximation of the pre-image for set S.

Consider the neural network described earlier. Let p
(f,S)
n be

the set of inputs to layer gn of the neural network that lead

to the output being in set S. Similarly, let p
(f,S)
n−1 be the set

of inputs to layer gn−1 of the neural network that result in

outputs in S. Note that p
(f,k)
n is the set of assignments to s

that satisfy:
h(gn(s)) |= S.

For the other layers (r < n), we can iteratively define p
(f,S)
r

as assignments to s that satisfy:

p(f,S)
r = {s |gr(s) |= p

(f,S)
r+1 } (1)

The core idea is to begin by computing an approximate

representation of p
(f,k)
n , and using this to then compute the

approximations for p
(f,k)
n−1 . And, then by iterating through the

layers of the network we can compute an approximation for
Pref (S). Computing these approximations involves prov-
ing the interpolation condition (See Section 3.1). We could
compute the approximation across the entire network, but
proving the interpolation condition for the entire network is
computationally expensive. This is because the worst-case
complexity of proving properties for piecewise-linear net-
works scales exponentially in the number of nodes under
consideration (Katz et al. 2017). The layer-wise approach
breaks down the problem, where we compute approxima-
tions for each layer. This requires proving properties across
one layer at a time – can be further simplified to computing
approximations over sets of nodes instead of entire layers.

3.1 Computing Overapproximations

Here we outline how to compute a useful over-

approximation of p
(f,S)
r , assuming we have the over-

approximation of p
(f,S)
r+1 . Denote the over-approximation of

p
(f,S)
r+1 as O

(f,S)
r+1 with O

(f,S)
n+1 = S. First, consider a set of

randomly chosen points X̄ , either by sampling from the in-
put domain or from the training data. Let XS ⊆ X̄ be the
set of points such that for every x ∈ XS , f(x) 6∈ S. Intro-
duce the auxiliary free variable vector p̄r and construct the
formula:

φr−1 :=
∨

x̄∈XS

(

p̄r = y
f
r−1 (x̄)

)

. (2)

This formula allows p̄r to assume the value of the output
at layer gr−1 corresponding to inputs from XS . Recall that

y
f
r−1(x) = gr−1.gr−2 . . . g1(x) i.e. y

f
r−1(x) is the vector of

activation values corresponding to x from layer r − 1 of the
network. Now, consider the formula:

ξr := gr(p̄r) |= O
(f,S)
r+1 . (3)

Note that the set of valid assignments for p̄r represents an

overapproximation of the set p
(f,S)
r . This is because:

(

gr (p̄r) |= p
(f,S)
r+1

)

=⇒
(

gr (p̄r) |= O
(f,S)
r+1

)

,

which follows from O
(f,S)
r+1 overapproximating p

(f,S)
r+1 and as

a consequence of equation (1).

Lemma 4 If O
(f,S)
r+1 ∧ φr is unsatisfiable, then the formula

ξr ∧ φr−1 is unsatisfiable for each r ∈ {1, 2, . . . , n}.

Proof Assume O
(f,S)
r+1 ∧φr is unsatisfiable. Suppose ∃p̄r sat-

isfying φr−1 and ξr. By definition of φr, we have gr(p̄r) |=

φr and by eq. (3), gr(p̄r) |= O
(f,S)
r+1 . This results in a contra-

diction since O
(f,S)
r+1 ∧ φr is unsatisfiable.

Lemma 5 If O
(f,S)
r+1 ∧ φr is unsatisfiable, ∃Ir that satisfies

the following:

p(f,S)
r =⇒ ξr =⇒ Ir, (4)

Ir =⇒ ¬φr−1. (5)







Algorithm 2 Splitting Heuristic

1: procedure SPLIT ROUTINE

Require: SA = {A1, . . . , Ac} (Polytopes satisfying A),
SB = {B1, . . . , Bd} (Polytopes satisfying B)

2: Set Acount = 1,Bcount = 1
3: Compute (w, b):〈w, x〉+ b = 0 separates A1, B1

4: Asat-set = ∅, Bsat-set = ∅, Unsat-Set = ∅
5: while Acount ≤ c ∨Bcount ≤ d do
6: Aold-count = Acount, Bold-count = Bcount

7: for i = Aold-count, . . . , c do
8: Acount = Acount + 1
9: if Ai 6∈ Asat-set then

10: if 〈w, x〉+ b < 0 =⇒ A then
11: Asat−set = Asat−set ∪ {Ai}
12: else
13: S̄A = Asat−set ∪ {Ai}
14: try Find (w, b) to sep. S̄A, Bsat-set

15: catch Unsat-Set = Unsat-Set∪{Ai}
16: break
17: for i = Bold-count, . . . , d do
18: Bcount = Bcount + 1
19: if Bi 6∈ Asat-set then
20: if 〈w, x〉+ b > 0 =⇒ B then
21: Bsat−set = Bsat−set ∪ {Bi}
22: else
23: S̄B = Bsat−set ∪ {Bi}
24: try Find (w, b) to sep. S̄B , Asat-set

25: catch Unsat-Set = Unsat-Set∪ {Bi}
26: break

return Unsat-Set

5 Experiments

In this section, we implement and test our approach with
neural networks trained on multiple tasks.

5.1 2D toy-example

We use the simple 2D-example introduced in Section 3.3 to
study the scalability of the approach. On the same task, we
train networks of varying sizes and measure the run-times
for computing underapproximations of the third quadrant,
as classified by the neural network. Figure 3 depicts the run-
times for different network sizes.

Robustness We use the computed underapproximations to
verify the robustness of the classifier. Robustness has been
extensively studied for classifiers, particularly in image-
processing (Szegedy et al. 2013; Carlini and Wagner 2017).
For a given input x and the corresponding output-label k, we
say the classifier f is ǫ robust if

∀x̄ : ‖x̄− x‖∞ ≤ ǫ, f(x̄) = k.

To measure the robustness of the networks trained on this
task, we compute both an underapproximation Uf,S and an
overapproximation Of,S of the pre-image corresponding to
third quadrant for a network with 4-hidden layers and 16
nodes per hidden layer. For a set of 50 points from the third
quadrant and ε = 0.5 (recall the problem domain is [−1, 1]
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Figure 3: Runtimes for computing abstractions. Left: Vary-
ing number of nodes in every hidden layer. Right: Varying
depth of the trained neural network. The run-time scales ex-
ponentially with increasing number of nodes, this is because
the worst case complexity of checking the interpolation con-
dition scales exponentially in the size of the hidden layer.
The run-time scales almost linearly with increasing depth.

along each dimension), we check with z3 for each point if
there exists a counter-example satisfying:

‖x̄− x‖∞ ≤ ǫ, x̄ 6∈ Uf,S , and ‖x̄− x‖∞ ≤ ǫ, x̄ 6∈ Of,S .

If a counter-example is found for both conditions, the point
is not robust, and if a counter-example is found for the un-
derapproximation but not the overapproximation, the point’s
robustness is unknown. If no counter-example is found for
both conditions, the point is robust. We are able to vali-
date/invalidate the robustness of 49 points and for one point,
the result is unknown, and verifying these set of properties
using the computed abstractions takes 1.4s. This shows that
the approximations are quite accurate for this task. The com-
putations were performed on a 2.40GHz Quadcore machine
with 16 GB of RAM.

5.2 Cart-pole Control

We consider the classical control problem introduced in
(Barto, Sutton, and Anderson 1983). The inputs to the
network are observations from a four dimensional state
space comprising of the position of the cart (x), the velocity
of the cart(ẋ), the angle of the pole (θ) and the angular

velocity of the pole (θ̇). We train a neural network with
2-hidden layers for the problem with Deep-Q learning
using the environment in (OpenAI-CartPole-v0 2018). The
neural-network achieves a reward of perfect score of 200.0,
averaged over 100 episodes. The output from the network
maps to the discrete actions {left,right}. For both the
output actions, we compute the overapproximations of the
pre-image and computing each abstraction takes under 5
minutes. Note that since there are just two output classes,
the negation of the overapproximation of one output action
results in an underapproximation of the other output action.
Both the overapproximations consists of a union of two
half-spaces, which implies that the underapproximations
are just one single polytope.

On replacing the neural network controller with a con-
troller based on the overapproximation corresponding to
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