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Abstract—Location information of workers are usually required for optimal task allocation in mobile crowdsensing, which however
raises severe concerns of location privacy leakage. Although many approaches have been proposed to protect the locations of users,
the location protection for task allocation in mobile crowdsensing has not been well explored. In addition, to the best of our knowledge,
none of existing privacy-preserving task allocation mechanisms can provide personalized location protection considering different
protection demands of workers. In this paper, we propose a personalized privacy-preserving task allocation framework for mobile
crowdsensing that can allocate tasks effectively while providing personalized location privacy protection. The basic idea is that each
worker uploads the obfuscated distances and personal privacy level to the server instead of its true locations or distances to tasks. In
particular, we propose a Probabilistic Winner Selection Mechanism (PWSM) to minimize the total travel distance with the obfuscated
information from workers, by allocating each task to the worker who has the largest probability of being closest to it. Moreover, we
propose a Vickrey Payment Determination Mechanism (VPDM) to determine the appropriate payment to each winner by considering its
movement cost and privacy level, which satisfies the truthfulness, profitability and probabilistic individual rationality. Extensive
experiments on the real-world datasets demonstrate the effectiveness of the proposed mechanisms.
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1 INTRODUCTION

Nowadays, the ubiquity of mobile devices equipped with
various functional built-in sensors (e.g., camera, micro-
phone, accelerometer, GPS) and the increasingly powerful
wireless network have enabled the prosperity of mobile
crowdsensing. The new computing paradigm that lever-
ages the power of the crowd supports mobile users to
opportunistically perform tasks according to their interests
and schedule. Specifically, the mobile crowdsensing system-
s mainly collect spatio-temporal data from environments,
social and others. A typical mobile crowdsensing system
consists of data requesters, a server and mobile users (work-
ers), where the server publishes spatio-temporal tasks out-
sourced by data requesters to mobile users, and then mobile
users use their mobile devices to complete the published
tasks and upload the collected data to the server. Mobile
crowdsensing has a wide range applications in environmen-
tal sensing [1], journalism [2], crisis response [3] and urban
planning [4]. As a representative, the commercial app Waze
[5], is a popular traffic monitoring and route navigation
system that collects real-time traffic data from mobile users
in a crowdsourcing way.
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Task allocation is one of the most important problem in
mobile crowdsensing, which relies on the distances between
tasks and mobile users to assign tasks appropriately. How-
ever, the location information may be disclosed during the
task allocation process, especially when the server cannot
be trusted (e.g., the server may be benefited by selling
the location information to third parties). Adversaries who
obtain the locations can stage extensive attacks such as
physical surveillance, stalking, identity theft, and breach
of sensitive information (e.g., health status, political and
religious views). Hence, disclosing true locations to the serv-
er may be harmful to workers, which further discourages
them from engaging in crowdsensing. This problem is more
severe for the mobile users who are not allocated with any
task at all, since their locations are disclosed to the server
without receiving any payoff. Therefore, location privacy
should be carefully considered in task allocation of mobile
crowdsensing systems.

Existing works on mobile crowdsensing mainly focus
on maximizing utility of task allocation and designing in-
centive mechanisms to improve user participation, while
privacy protection has not been extensively explored. Re-
cently, several works begin to address the problem of task
allocation in mobile crowdsensing with location privacy
protection. Liu et al. [6] applied the economic model for
location privacy preserving and proposed a mechanism to
leave out the bids and tasks assignment processes which
have a risk of privacy leakage. However, this mechanism
can only protect the location privacy against the eavesdrop-
pers and hackers over the communication channel while
the malicious sever was out of its scope. Spatial cloaking
is the most straightforward technique that blurs a user’s
exact location into a spatial region in order to preserve the
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Fig. 1. The proposed framework of personalized privacy-preserving task
allocation in mobile crowdsensing with obfuscated distance.

location privacy [7]-[9]. However, the privacy guarantees
can be easily downgraded if adversaries hold certain prior
knowledge, which is known as inference attack. In contrast,
the authors in [10], [11] introduced differential privacy into
task allocation in mobile crowdsensing, providing theo-
retically guaranteed location privacy protection regardless
of adversaries” prior knowledge. However, To et al. [10]
assumed that there is a trusted third party (cellular service
providers) to play the coordination role between the server
and workers, while in practice the cellular service providers
have no motivation to participate. As for [11], the proposed
geo-obfuscation function is related to the task locations and
need to be updated if the task distribution is transformed,
which may discourage the workers who need to download
the function before obfuscating their actual locations. Most
importantly, both of them employ the same level of privacy
protection for all workers, which cannot satisfy the different
privacy demands of workers. Consequently, some workers
may get insufficient privacy protection, while others get
over-protected.

In this paper, we propose a personalized privacy-
preserving task allocation framework for mobile crowdsens-
ing that can allocate tasks effectively while providing per-
sonalized location privacy protection. As shown in Figure 1,
the basic idea is that, each worker utilizes Laplace Mechanis-
m [12] to obfuscate the distances between itself to tasks with
its personal privacy protection level, and uploads the obfus-
cated distances as well as its personal privacy protection
level to the server, instead of uploading its true location or
true distances to tasks. The server further selects the winner
for each task and determines the appropriate payment for
the winners. In particular, we propose a Probabilistic Winner
Selection Mechanism (PWSM) to minimize the total travel
distance with the obfuscated information from workers,
by allocating each task to the worker who has the largest
probability of being closest to it and eliminating the winner
conflict problem. Moreover, we propose a Vickrey Payment
Determination Mechanism (VPDM) to determine the appro-
priate payment to each winner by considering its movement
cost and privacy leakage, which satisfies the truthfulness,
profitability and probabilistic individual rationality.

The contributions of this paper are summarized as fol-

e To the best of our knowledge, this is the first work
that realizes personalized location privacy protection
for task allocation in mobile crowdsensing, which
enables users to balance the payoff and privacy leak-
age, and encourages users to participate in mobile
crowdsensing with theoretical guarantee of location
privacy preservation.

o We propose a Probability Compare Function (PCF) to
determine which worker has a higher probability of
being closer to a task for two workers. Based on the
PCF, we further propose the PWSM to minimize the
total travel distance with the obfuscated information
and personal privacy levels from workers.

e We propose the VPDM to determine the appropriate
payment to each winner by considering its move-
ment cost and privacy level, which satisfies the truth-
fulness, profitability and probabilistic individual ra-
tionality.

e We conduct extensive experiments on the real-world
check-ins datasets and compare the proposed PWS-
M with two benchmarks. The experimental results
demonstrate the effectiveness of the proposed mech-
anisms.

The remainder of this paper is organized as follows. We
discuss the related works in Section 2. We present a high-
level overview of our framework and formulate the prob-
lems in Section 3. The proposed winner selection mechanism
and payment determination mechanism are presented in
Section 4 and 5, respectively. We evaluate the performance of
the proposed mechanisms in Section 7 and finally conclude
the paper in Section 8.

2 RELATED WORK

We briefly discuss the related work from the following
aspects: task allocation, location privacy and personalized
privacy.

2.1 Task Allocation

Spatial tasks require the workers to be at a specific place
in order to fulfill a task. The locations of the workers play
an important role in task allocation as the workers need
to travel to locations of interested tasks to perform sensing
jobs. There have been several works on minimizing the
travel distance in task allocation. Guo et al. [13] proposed
a framework for optimizing tasks allocation considering the
time-sensitive tasks and delay-tolerant tasks, respectively. In
[14], the authors proposed a task allocation framework for
multi-task environments with the objective of minimizing
the travel distance. Moreover, there are also some works
focusing on the sensing data quality, rewards, budget and
social costs. In [15], the authors proposed a novel framework
called CCS-TA to dynamically select a minimum number
of sub-areas for sensing task allocation in each sensing
cycle while guaranteeing the quality of sensing data. In
[16], the authors considered the sparse crowdsensing and
proposed a task allocation framework with the objective of
maximizing the quality of sensing data. He et al. [17] con-
sidered sensing tasks with different requirements of quality



IEEE TRANSACTIONS ON MOBILE COMPUTING

and proposed a mechanism which allocates tasks to mobile
users who are constrained by time budgets with the objec-
tive of maximizing total rewards of platform. Wang et al.
[18] considered the time-sensitive and location-dependent
crowdsensing systems with random arrivals and proposed
a task allocation mechanism for maximizing profits of par-
ticipants. In [19] [20], the authors considered the piggyback
crowdsensing and proposed to allocate tasks for maximiz-
ing the coverage quality of the sensing task while satisfying
the incentive budget constraints. A demand-based dynamic
task allocation mechanism was proposed in [21] to balance
the participation among location-dependent tasks. Lin et
al. [22] considered the bid privacy of users and proposed
two privacy-preserving task allocation frameworks which
protect the privacy of bids while achieving approximate
social cost minimization.

2.2 Location Privacy

Originating from the spatio-temporal privacy mechanisms
in the location based service (LBS), the spatial cloaking
technique can also be used for privacy-preserving task al-
location. Spatial cloaking hides the worker’s location inside
a cloaked region so that the adversary cannot attain the
actual location of the worker [7]-[9]. In practice, there are
many mobile crowdsensing applications that do not require
exact locations, such as air quality monitoring. However, he
privacy guarantee can be easily downgraded if adversaries
hold certain prior knowledge. Regardless of the adversaries’
prior knowledge, differential privacy [23] was applied for
the location privacy protection in spatial task allocation. The
method was adopted in [24] [25] to protect the publishing of
statistical information about location-based datasets guar-
anteeing that individual location information disclose does
not occur. Andres proposed a location perturbation method
based on a notion of geo-indistinguishability [26], which is a
special application of differential privacy. In [27], the authors
used the Markov model to denote the possible locations and
protect the exact location with differential privacy.

Recently differential privacy was adopted for task allo-
cation [10], [11] in mobile crowdsensing. In [10], differential
privacy mainly protected the aggregated number of workers
in a location. However, the trusted third party that computes
the aggregated counts of workers has no motivation to par-
ticipate in practice. Wang et al. [11] avoided involving any
third party in the process but the proposed geo-obfuscation
function is related to the task locations and need to be
updated if the task distribution is transformed, which may
discourage the workers who need to download the function
before obfuscate their actual locations. Most importantly,
both of them employ the same level of privacy protection
for all workers, which cannot satisfy the different privacy
demands of workers.

2.3 Personalized Privacy

Due to the different data owners have different expecta-
tions of privacy protection, personalized privacy has been
considered in many privacy-preserving mechanisms, such
as personalized privacy for k-anonymity [28]-[30], which
allows each user to specify the minimum k they are com-
fortable with. Recently, Alaggan et al. [31] proposed the
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concept of heterogeneous differential privacy to preserve
the privacy of personal data by considering users’ different
privacy expecations. Jorgensen et al. proposed the personal-
ized differential privacy to protect the aggregated number of
datasets (e.g., count and median) [32], which is not suitable
for the location privacy protection.

In this paper, we focus on preserving location privacy
of workers in task allocation of mobile crowdsensing, and
propose a personalized privacy-preserving task allocation
framework, which can allocate tasks effectively while pro-
viding personalized location privacy protection.

3 SYSTEM OVERVIEW AND PROBLEM STATEMENT

In this section, we first introduce the concept of generalized
differential privacy, and then present the proposed frame-
work of the personalized privacy-preserving task allocation
in mobile crowdsensing systems based on the concept of
generalized differential privacy. Finally, we describe the
key problems during the task allocation process: the winner
selection problem and the payment determination problem.

3.1 Generalized Differential Privacy

In [23], the authors proposed that a mechanism K is e-
differential private if for any two adjacent databases z, 2/,
and any output Z, the probability distributions K (z), K (')
differ on Z at most by ef, namely, K(z)(Z) < eK(2')(Z).
Andres et. al [12] generalized the notion of differential pri-
vacy with the Euclidean metric and applied it into scenarios
when z, 2’ are not databases at all, but belong to an arbitrary
domain of secrets x. For instance, it can be applied to deal
with geographic locations, which performs as a probabilistic
geo-obfuscation process that obfuscates the actual location
to another one [26]. For any z, 2/, if the Euclidean distance
d(z,x") < r, the difference between the distribution K ()
and K (z') should be at most er, where K is the obfuscation
mechanism and e denotes the level of privacy at one unit
of distance. In this way, the adversary cannot distinguish
the actual secrete value of individuals even he/she knows
the obfuscation mechanism K. The definition of d,-privacy
mechanism is as follows.

Definition 1. (d,-privacy [12]) A mechanism K satisfies d.-
privacy iff for all x, 2’ € X:

K(z)(Z) < e K(2')(Z)

where K (x)(Z) denotes the probability that the reported value
belongs to the set Z C Z. d, = ed(z,2’') and € is the
privacy budget, the smaller €, the better privacy protection within
d(x,a’).

Definition 2. (Laplace Mechanism [12]) Let X, Z be two sets
where X C R, Z = R, and let dx be a metric on X U Z.
D(z)(2) = Sexp(—dx(x,z2)) is a pdf for all x € X where
dx = edgr(z,2) (dr(x,z) = |x — z|). Then the mechanism K:
X — P(Z2) is called a Laplace mechanism from (X, dx) to Z
and it satisfies d x —privacy.

Intuitively, when X and Z are one-dimensional values,
the Laplace Mechanism denotes that the reported value z
can be obtained by adding Laplace noise on x where A = 1/¢
and p = 0, and it satisfies dx —privacy where dx = €|z — z|.
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Proposition 1. If d, < d\, d,-privacy implies d\ -privacy [12].

That is, for a mechanism K which satisfies d, -privacy, it
also satisfies d) -privacy if d, < d.

3.2 System Overview

We consider mobile crowdsensing applications which lever-
age the power of the crowd to collect massive spatio-
temporal information. In general, the typical commercial
mobile crowdsensing system consists of three parties: the
server, the data requesters and the workers with mobile
devices.

It is worth noting that the worker’s travel distance is an
important metric in task allocation which can be denoted by
d(ly, 1), where l,,, l; represent the locations of a worker and
a task, respectively, and d(l,,[:) is the Euclidean distance
between the locations [,, and [;. Instead of submitting its
actual location, a worker can submit the distance between
itself and an interested task to the server, so that the server
can accurately and efficiently allocate tasks. However, the
location privacy can also be leaked by the true distance if the
adversary has the prior knowledge about the worker, know-
ing that the distribution of places 7(z) which denotes the
frequency of worker visiting x. Therefore, in this paper, we
propose that each worker uploads the obfuscated distances
to its interested tasks to the server, instead of uploading its
true location or the true distances to the interested tasks, to
protect the worker’s location privacy.

Figure 1 shows the proposed personalized privacy-
preserving task allocation framework in mobile crowdsens-
ing systems with distance obfuscation. The data requesters
create spatial-temporal tasks on the server which then pub-
lishes tasks to workers. Workers can obtain the accurate
locations of tasks so that they can determine whether to
apply for tasks. Instead of applying for the interested tasks
using the actual locations or actual distances, the workers
can use Laplace mechanism to obfuscate the distance with
their personalized privacy budget €. Note that € can be dif-
ferent for different workers which depends on the privacy
protection requirement of each worker. The server selects
the winner for each task (winner selection process) and gives
the winners payments once their uploaded data are certified
(payment determination process).

Moreover, we assume that each task can be completed
once it is assigned to one worker, unless the worker cannot
upload the useful data, which is out of the scope of this
paper. A worker can apply for multiple tasks so that it
can have more opportunities to be selected as a winner
by the server, but it can be assigned at most one task. It
is challenging to select winners for tasks and determines
the payment for winners as the server is only aware of the
obfuscated distances but not the true distances.

3.3 Problem Formulation

We use W = {wy,ws,...,w,} to denote the set of workers
and T = {t1,t2,...,tm} to denote the set of tasks, where n
and m are the numbers of workers and tasks, respectively.
The data collected by each task ¢; € T has a value v; for
the data requesters and the payment of the task cannot
exceed the value. Moreover, each task is associated with
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a geographical publishing region and only those workers
within the region can receive the task information and can
apply for it. The publishing region of task ¢; is the circular
region with the location of ¢; as the center and r; as the
radius. Let d;; denote the actual distance of worker w; to
task ¢;, while d;; denotes the obfuscated distance obtained
by adding the Laplace noise to d;;. Each worker w; can
select some tasks he/she is interested in and then submits
the tuples (¢;,d;;) and its own privacy budget ¢; to the
server, where t; € T; is a task in the set of interested
tasks of worker w;. Upon receiving the applications from
workers, the server needs to select the winner for each task
and determines the payment for each winner w;.

3.3.1  Winner Selection Problem

The server aims to find the winner for each task, with the
obfuscated information, so that the total travel distance for
all tasks can be minimized. Let 2(w;, t;) denote the state of
task assignment, where z(w;,t;) = 1 means that task ¢; has
been allocated to worker w;, otherwise x(w;, t;) = 0. Hence,
the winner selection problem is formulated as follows.

Z Z x(wi, tj)dij

t; €T w; €W
st. x(w;,t;) ={0,1}
Z l‘(wi,t]‘) S 1,

t;eT

S ow(wit;) =1, Vji=12,...

w;eW

min

Vi=1,2,...,n )
,m

The objective is to minimize the total travel distance to
all tasks. The second constraint indicates that each worker
will be assigned to at most one task, and the third constraint
indicates that each task will be assigned to one worker.

The formulated problem is an Integer Linear Programming
problem, which could be easily solved if the actual distances
d;; is known. However, in order to protect the location
privacy, only the obfuscated distances d;; and personal
privacy protection level are uploaded to the server, which
makes the winner selection problem difficult to solve.

3.3.2 Payment Determination Problem

The server needs to determine the appropriate payments
for the winners by considering the travel costs and privacy
protection levels.

If worker w; is selected as the winner for task ¢;. The
utility of worker w; can be denoted by

vy =10
ij — 0’

where P;; and C}; are the payment and the cost for worker
w; performing task ¢;, respectively. The cost C;; is mainly
incurred by traveling to the location of t; (movement cost
Cf?) and privacy leakage (privacy cost C}). Intuitively, the
larger of the travel distance d;;, the larger of the movement
cost C77. The larger of the privacy budget €;, the smaller of
the added noise and the larger of the privacy leakage C?.
Hence, we have

Cij, if x(wi7 tj) =1

otherwise

@)

Cij = O 4 CP

= ad;; + Be; ®)
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where « and [ are coefficients that scale the value of
movement cost and privacy cost. The proposed payment
determination mechanism should satisfy the following three
desirable properties [33]:

o Individual Rationality: A worker will have a non-
negative utility when performing a task.

o Profitability: The value of each task should be at least
as large as the payment paid to the winner so that the
data requesters can benefit from the data.

e Truthfulness: A mechanism is truthful if no worker
can improve its utility by cheating its travel distance,
no matter what others do.

Note that we assume the workers have no motivation to
cheat their privacy budget because the Laplace mechanism
will sanitize their travel distance according to their selected
privacy budget and directly upload the sanitized distance
and privacy budget to server, which makes them cannot
get any excessive utility by doing that. It is challenging to
design a payment determination mechanism satisfying the
above three properties simultaneously without knowing the
actual distances of workers.

4 PROBABILISTIC WINNER SELECTION MECHA-
NISM

In this section, we focus on the winner selection problem
and propose the Probabilistic Winner Selection Mechanism
(PWSM) to minimize the total travel distance for task allo-
cation without knowing the true distances to tasks.

As shown in Figure 2(a), each worker can choose a
set of tasks from the published tasks. Let Ap’ denote the
uploaded application from work w; that contains the worker
ID, privacy budget ¢; and (task-distance) tuples. Anonymity
or pseudonym techniques can be used for worker ID to
protect the Identity information of each user. Note that
identity protection is not the focus of this paper, any suit-
able identity protection techniques can be adopted into our
framework. The workers upload the applications as shown
in Figure 2(b). Upon receiving Ap’, the server aims to find
the winner for each task so that the total travel distance can
be minimized.

However, without knowing the true distances, it is d-
ifficult to find the optimal task allocation to minimize the
total travel distance. To solve this problem, we propose a
suboptimal solution that finds the winner of a task as the
worker who has the largest probability of being closest
to the task. In particular, some workers may be selected
as the winners of multiple tasks, so we also propose a
conflict elimination algorithm (CEA) to solve the conflicts.
In the following, we introduce the proposed mechanisms
starting from the single task scenario, and then moving to
the multiple tasks scenario.

4.1 Single Task Scenario

We start from the single task scenario where the server
publishes only one task ¢;, and there are multiple workers
applying for it. The objective is to find the closest worker
to the task, given the obfuscated distances and personal
privacy budgets, which is difficult as the true distances are

SC-server

Tasks

Task sets

a0 )8 [, d) [ @, d]

Ap?| ID: [€2T<f:v J:1)T([:<’ J’J)-I

(b) Task Application

(a) Task Selection

Fig. 2. The selection and application process of workers in our proposed
task allocation model.

unknown. To solve this problem, we transform the problem
to finding the worker with the largest probability of being
closest to the task.

Let us start from the special case that only two workers
w; and w; applying for the task, and then extend it to a more
general case. Worker w; uploads ¢; and dm, and worker w;
uploads ¢; and d;. The server aims to obtain the probability
of d;; smaller than djk, denoted by P(dix < dji). The
worker w; gets the sanitized distance d;; by adding the
Laplace noise on d;;, hence we have

di, = dig =i, m; ~ Laplace(0,1/e;) )
Similarly we have
djr = djx —n;,  n; ~ Laplace(0, 1/¢;) ®)

where 7); and 7); are variables that follow the Laplace distri-
bution. Note that the smaller of ¢;, the larger of the added
noise, and the stronger the privacy protection level. Then

we have
P(dix < dji,) = P(dg, —m; < dji

= P(dix — djx <mi

- 77j) ©)
- 77j)

where Jlk — Jj % is known by the server. The above equation
can be seen as a probability problem about two-dimensional
continuous variables (7;,7;) in the plane set D, denoted by
P((n; —n;) € D). The plane D can be denoted by

D = {(ni,nj) : mi —n; > dig — dj} (7)

The double integral operation can be used for solving this
problem, we have

P(di, — dji, < mi — n;) € D)

/ f( iy 15 dnzdm

where f(n;,7;) denotes the joint probability density function
of (n;,7;). Since the variables 7;, 1; are independent from
each other, we have

/ J( iy 15 dnzdnj / fni)f 77] dmdm

773)
(8)

00 ni—(dix—djr)
-/ 1)y, ),
&)
Note that
i€ o= (eilmil+e;lm; )

fmi)f(n;) = 1

(10)
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Equation (9) can be seen as a function, where the inputs
of the function are (ciik?cfjk,ei?ej), and the output is the
probability of d;;, smaller than d;. We call this function as
the Probability Compare Function (PCF). Combining Equation-
s (6) and (9), we have

P(de' < djk,) POF lkvdjk7617€])

// f(ni,m;)dnidn;

If P(dix < dji) > 1/2, we can say that worker w; will
be closer than worker w; with a larger probability. Based on
this principle, we can compare any two workers who apply
the task and finally find the worker who has the largest
probability of being closest to the task.

(11

4.2 Multiple Tasks Scenario

Next we focus on the multiple tasks scenario. As shown in
Figure 2, we assume there are n workers applying for m
tasks. For each task, there are at most n workers applying
for it. To solve the winner selection problem, for each task,
we utilize the proposed PCF to determine which worker
is closer and sort them in descending order in terms of
probability. We use a matrix A,,x, to denote the sorted
indices of workers for all tasks, which is

a1 a2 a1n
a21  A22 A2n
Am1  Am2 Amn
where a;; is the index of a worker, a;; € {1,2,...,n}. For

example, a;; = k means that worker w; who applies task
t; is ranked at the jth position. If there are only p ( p < n)
workers applying for task ¢;, a;; will be co for any j > p.

Let A; denote the ith row of matrix A, which is the
sorted indices of workers who apply for task t;. Let S =
[s1, 82, .., Sm] denote the set of winners for all tasks, where
s; denotes the winner for task ¢;. In general, the expected
winner should be 4;[1] for task ¢;, thatis, s; = A;[1] = a;1.
If each expected winner is allocated with at most one task,
the winner selection process is completed.

However, there may exist some workers who are selected
as the winners of multiple tasks, while each worker can be
allocated with at most one task. We call this as the winner
conflict problem. Given the vector S, the winner conflict
happens if there exist i and j satisfying S[i] = S[j].

4.2.1 Conflict Elimination Algorithm (CEA)

We propose the CEA to solve the winner conflict problem.
The key idea is that, for any conflict, say w, is selected as
the winner of ¢ tasks, we allocate only one task to w. and
find another candidate other than w,. for each of the rest
¢ — 1 conflicted tasks, with the objective of minimizing the
total travel distance. We repeat this process until there is no
conflict in the final winner vector S.

In the following, we use an example shown in Figure
3 to better explain the conflict elimination process when
worker w, is selected as the winners by ¢ tasks. The best
candidate beside w, is the one who has the second largest
probability of being closest to the each task. That is, the
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candidate for task ¢; is a;2 if a;1 = c. Note that this example
only shows how to eliminate the conflicts of w,, and new
conflicts may happen for the new winners, and the proposed
CEA will iteratively solve the conflict until no conflict exists.
For the example in Figure 3, we present all possible conflicts
elimination situations for w, as follows.

Cl : D7 :D(a“) + D(&jg) + ...+ D(akg)
C2 : Dj :D(aig) + D(ajl) + ...+ D(akg)

(13)
Cgo : Dy, :D(aig) + D(ajg) + ...+ D(akl)

where D(a;;) denotes the actual travel distance for the
worker with index a;; to task t;. D; denotes the travel
distance for the ¢ conflicted tasks when ¢; is assigned to
w. and the other tasks are assigned to the corresponding
candidates who rank behind the winners. The objective is
to find the minimum travel distance from all situations
in Equation (13). Hence, we need to compare the travel
distance for any two situations.

D; — Dj = D(ai1) + D(aj2) — D(ai2) — D(a;1) (14

Since a;1 = aj1 = ¢, D(a;1) and D(a;1) can be replaced
by d.; and d.;, respectively. We assume that a;» denotes the
index of w,, aj2 denotes the index of wy. Then D(a,2) and
D(ajg) can be replaced by d,; and dy;, respectively. Hence
the above Equation can be represented by

D; — Dj =de + dpj — dag — dej (15)

However, the server cannot obtain the actual travel dis-
tance of workers and only knows the sanitized distance dcz,
db s dm and alC j- Therefore, the objective to compare D; and
D; will be converted to find the probability of D; — D; < 0.

P(D; — D; < 0) = P(de; + dy; — dgi — dej < 0) (16)
== P(dm - dcj S dai - dbj)
Based on Equation (6), we have
P(de; — dej < dai — dpj) = P(de; + dpj — dai — dej < 0)
= P(dcz —TNey — dcj + Ne, <dgi — Ta — dbj + nb)
Ne, ~ Laplace(0,1/¢e.), 7., ~ Laplace(0,1/¢.)
ne ~ Laplace(0,1/¢e,), ny ~ Laplace(0,1/ep) )

where there exist four variables 7.,, 7¢,, 7 and 7, so that
we cannot get the result until more constraints about those
variables are known. To solve this problem, we roughly
assume that the difference between the travel distances for
different tasks is relatively small if those tasks are applied
for by the same worker. That is, d.; can be thought close to
d.;. Hence we have

P(D; < D;) = P(da; — dy; > 0)
= P(da; > dij)

P(D; < Dj) can be calculated by the proposed PCEF. If
P(dq; > dpj) > 1/2, D; has a larger probability of being
smaller than Dj, so task ¢; should be assigned to w. and
task t; will be assigned to the candidate.

We can see that the problem to compare D; and D; has
been converted to compare dy; and dp;, which are travel

(18)
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Fig. 3. lllustration of the conflict elimination process when worker w. is selected as the winners of ¢ tasks. a;; denotes the expected winner of task
t; after sorting, and a2 is the candidate with the second largest probability of being closest to ¢;.

distances of candidates for task ¢; and task t;, respective-
ly. The comparison for all the conflicts can be compared
similarly. Note that conflicts would not happen commonly
in practice because tasks are usually distributed sparsely.
Moreover, the number of tasks each worker can apply for
are limited, which further reduces the occurrence of winner
conflict.

4.22 PWSM

The key idea of PWSM is firstly using the PCF to find a
winner for each task from workers who apply for it, and
then using the CEA to eliminate the winner conflicts. The
procedures are descried as follow:

1) Use the PCF to construct the matrix A,, «,, that denotes
the sorted probabilities of workers for m tasks.

2) Pick up the first element in each row as the winner for
each task, and put them into .S.

3) If S contains the same element, winner conflict happens
and repeatedly apply the CEA to eliminate conflicts
until there is no conflict in S.

Theorem 2. The complexity of the proposed PWSM is O(/@Q%z—i—
mzn), where m and n are the number of tasks and workers,

respectively, and k is the largest number of tasks a worker can
apply for.

Proof. The PWSM mainly contains the sorting process and
the conflict elimination process. The average number of ap-
plications each task has is kn/m, so that sorting the workers
with the typical bubble sorting algorithm takes O((kn/m)?)
for each task. For all m tasks, the complexity of obtaining
Apxn will be O(k? ’;72) As for the conflict elimination
process, the worst-case to eliminate conflicts is that it takes
O(k(kn/m) for each task to eliminate conflicts. Since there
are m tasks, the complexity of C EA will be O(x?n). Hence

the complexity of PWSM is O(RQ%Z + K2n). O

5 VICKREY PAYMENT DETERMINATION MECHA-
NISM

In this section, we propose the vickrey payment determi-
nation mechanism (VPDM) to determine the appropriate

payment by considering its travel distance and privacy
level, which should satisfy the truthfulness, profitability and
probabilistic individual rationality.

In payment determination, the payment paid to the
winner cannot exceed the value of the task itself. That is
the payment P;; of winner w; for task ¢; cannot exceed the
task value v;. The server can use the parameters o and 3
to control the payment and use them to assess the value of
moving distance and privacy. For example, if the winner w;
applies for task ¢; with the privacy budget ¢; and the actual
distance is d;;. The cost C;; of w; for performing task ¢; is

Cij = adij + Be; (19)

where the larger of ¢;, the smaller of the added noise and the
larger of the privacy leakage. Since the cost is incurred by
two aspects, we determine the payment from compensating
the movement cost and privacy cost, respectively. We have

Pyj = Pjj + P (20)

where P;; is the payment for winner w; performing task ;.
P/ and Pilj denote the payment for the movement cost and
privacy leakage, respectively.

We use r; to denote the radius of the task publishing
region, hence the true distances of workers who apply for
task ¢; cannot exceed 7. Let €,,4, denote the largest privacy
budget that workers can use for protecting their locations.
Then we have

o,ry + /Bjemaw = Uy

21
o — (21)

where r is the parameter to scale the difference of «; and
B;. In order to guarantee that the cost of all the tasks cannot
exceed their values, we have

B = min(f;),

As for the payment Pilj, the server can straightly pay
the winner according to the submitted privacy budget ¢;
and parameter /3. It’s simple to see that the Pl-lj = fe; will
satisfy the individual rationality and truthfulness, because
the utility of workers is always 0 and can be non-negative.
Moreover, the workers have no motivation to cheat their

a = min(q;), 1,7 € [1,m] (22)
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privacy budget because the uploaded sanitized distances are
generated by the selected privacy budget.

While for the determination of the payment P, it
is challenging to guarantee the individual rationality and
truthfulness because d;; is only known to the worker itself.
Hence the server aims to find cfl-j (cfl-j > d;;) and then
calculate P{J'-L = adij, so that the utility of a worker would
not be negative. From Equation (4), we have

where 7; ~ Laplace(0, 1/¢;). Hence the server can use the
above equation to find d;; that guarantees the probability of
d;; — d;; > 0 at least be P.

Definition (P-Individual Rationality) A Mechanism M sat-
isfies P-Individual Rationality if each worker has a non-
negative utility with a probability of at least P.

Suppose we find a cfij, Py = aczij + PBe; satisfies the
P-Individual Rationality, however, it may not satisfy the
truthfulness. Worker w; who applies for task t; can calculate
czij using a fake distance Jij instead of true distance d;;,
where min(d,ij) > czij > d;;. d_;; denotes the distance
of other workers who apply task t; except worker w;. We
can see that worker w; can still be the winner and acquire
more payment by cheating his/her actual distance. Inspired
by the Vickrey Auction (a truthful auction mechanism) where
the highest bidder wins but the price paid is the second-
highest bid, we use the candidate’s distance to determine
the payment for the winner. Suppose the candidate for task
t; is w,, then we can use d.; to replace d;; in Equation (23),
and we have

P(dij —de; >0) > P (24)

where d.; is the actual distance of candidate w. for task ¢;.
According to Equation (4) and the symmetry of Laplace
distribution, we have

dej = dej+ e, ne ~ Laplace(0,1/ec)  (25)
Then we have
dej ~ Laplace(cicj, 1/e.) (26)
The Equation (24) can be converted to
P(dij —dej > 0) > P & P(de; < dij) > P @)

where F(x) is the distribution function of d.; and can be
represented by

F(x):/ %6_(€C‘m_ch‘)

Note that the server needs to give more payment to the
winner for a larger cfz ;- In order to save the cost of the server,
d;; should be the threshold that satisfies F'(d;;) = P, which
can be calculated based on Equation (27) and Equation (28),
given that €. and dcj are known by the server. Moreover, Ciij
should not be larger than r;. If no candidate can be found,
we also let zfij = r;. Hence the payment F;; of worker w;
performing task t; is

(28)

P = Oétiij + fe; (29)
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where o and 3 are galculated from Equation (22), and cfl-j is
calculated from F'(d;;) = P.

Theorem 3. The proposed VPDM is PP(d.; > d;;)-Individual
Rationality.

Proof. Based on Equation (3) and Equation (29), the utility
of worker wj for task t; is

Uij = (OéC?ij + Be;) — (adij + Be;) (30)
= a(dij — dij)

Therefore, the probability of the winner receiving a non-
negative utility can be converted to the probability of d;;
larger than d;;, which is

P(dij — dij > 0) = P(dyj — dej > 0)P(de; > dij) 31)
> PP(dc; > dij)

That is, each winner has a non-negative utility with a

probability of at least PP(d.; > d;;), where P(d.; > d;j)

can be calculated by the PCF. O

Theorem 4. The proposed VPDM is truthful.

Proof. The VPDM can be truthful if and only if the winner
cannot improve its utility by unilaterally cheating its true
distance (e.g., adds Laplace noise to a fake distance d;;
instead of the true distance d;;). We discuss the problem
from the following situations:

. (CL‘7 < dij): If dij < min(d,ij), w; is still the
winner and the payment does not change. If d;; >
min(d_;;) > Jl-j, w; becomes the winner by cheating
but the payment is decided by min(d_;;), so the liar
will obtain a negative utility.

. (min(d_ij) > Jij > dij): Worker w; is still the
winner but his/her utility does not change.

e (dij > min(d_;;)): If d;; < min(d_;;), worker
w; was the winner but now is not the winner after
cheating, so its utility becomes 0. If d;; > min(d,ij),
w; is always not selected as the winner.

Based on the above analysis, we can see that workers
cannot improve their utility by unilaterally cheating its true
distance, which means that workers will be truthful in the
process of task allocation. O

Theorem 5. The proposed VPDM is profitable.

Proof. We have czij < r; and ¢ < €pqq- According to
Equation (21), we have

Oéjdij + ﬂjei < vj (32)
Since o < a; and 3 < 3, we have
pij = adij + Be; < v (33)

Therefore, the proposed payment determination mecha-
nism is profitable. O



IEEE TRANSACTIONS ON MOBILE COMPUTING

6 PRIVACY ANALYSIS

Theorem 6. Let X; € R* denote the set of actual distances of
worker w; to its interested tasks T; where |T;| = k, and M be a
mechanism where M (X;) = X; + Lap(1/e;). Then, M satisfies
€ Xy e, Ty-privacy where r; is the publishing region of t;.

Proof. For any X;, X! € R* where z;; € X;, ri; € X
denote the actual distance of worker w; to task ¢; and
d(xij,2};) < rj. Z; € RF denotes the set of reported dis-
tances of worker wj to tasks in T;. Z; = X; + (1, M2, - . ., Nk)
where 7); are i.i.d random variables drawn from Lap(1/e;).

Hence we have,

P(X; = Z;) _ H (exp(—ei\zij — sz|))
P(Xi=2i) o, exp(=eilziy —zj])
= I expleillziy — il =235 — 2;1))
Con (34)
< H exp(e;|zij — ;)
t; €T;

= exp(& | Xs — X;[h)

Note that each task ?; is associated with a geographi-
cal publishing region with the radius of r;. Hence the
k o
||XZ — Xillh < >Zj_1 7. Hence M satisfies €; >, o1, 1j—

privacy.

From Theorem 6, we can see that different workers can
have different privacy levels and the privacy level of each
worker is related to its selected privacy budget and applied
tasks. The smaller of the privacy budget ¢;, the better of the
privacy protection. The smaller of the number of applied
tasks and r;, the higher of the privacy protection. This is
because more information about the location of worker w;
will be exposed with the increase of the number of applied
tasks, which means higher probability of privacy leakage.
Moreover, d(z;;,x;;) will increase with the increase of 7;,
which means higher distinguishability or lower privacy
protection. Note that the location of worker w; would not
be leaked even with a very large r;. For instance, when
r; = 1000 km, dx becomes large so that the sever can infer
whether the worker w; is located in Paris or London with a
high probability, but it still cannot infer the actual location
of w; in the city.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
PWSM and VPDM on a real-world check-in dataset. We
implement the mechanisms in Python and compare its
performance with two benchmark mechanisms.
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We use the dataset collected from Foursquare in [34], which
includes long-term (about 10 months) check-in data in New
York and Tokyo from 12 April 2012 to 16 February 2013.
The data of New York contains 227428 check-ins and Tokyo
contains 573708 check-ins. The density of check-ins in 10
months is shown in Figure 4. We can see that most of the
check-in events happened in the central urban areas, hence
we distribute the tasks in these areas and users in these areas
can be seen as the workers. The tasking area of Tokyo is

Dataset
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Fig. 4. The density of check-ins in two cities.

(b) New York

(a) Tokyo

Fig. 5. The distribution of tasks on the real map in two cities.

within longitude (139.68, 139.80) and latitude (35.62, 35.74),
and the tasking area of New York is within longitude (-74.04,
-73.93) and latitude (40.69, 40.80).

7.2 Setup and Metrics

In order to evaluate the winner selection accuracy of the
proposed mechanisms, we conduct experiments on datasets
from two representative cities Tokyo and New York. The
data collection scenario can be taking pictures at the subway
stations. We set the locations of tasks based on the subway
stations and the locations of workers based on the office
locations of users in datasets. There are 325 subway stations
in Tokyo and 142 in New York, and there are 503 offices in
Tokyo and 492 in New York. Note that the number of offices
is the result after removing the situation that each user ID
has multiple offices with different locations.

In the experiments, we randomly select a certain number
of subway stations as the locations of tasks and office
locations as the locations of workers. First, we evaluate
the performance of the proposed mechanisms based on the
different task distribution shown in Figure 5 when there are
100 tasks and 400 workers. Second, we mainly use the Tokyo
dataset to investigate how our proposed mechanisms per-
form when the different key parameters (e.g., task number)
vary. The number of tasks ranges from 40 to 140 and the
number of workers ranges from 400 to 500. The publishing
region r; ranges from 0.8km to 1.8km and the default value
is 1.5km. The privacy budget of workers ranges from 1 to 5.
Each worker will apply for at most 3 tasks that are closest to
him/her.

We use two metrics to evaluate the effectiveness of the
proposed mechanisms: the average travel distance (ATD) for
PWSM and the satisfactory rate (SR) for VPDM.

e ATD: the real total travel distance of the winners di-
vided by the number of successfully allocated tasks.
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Fig. 7. The performance of payment determination mechanism on the satisfactory rate.

e SR: the ratio of the number of winners who receive
the non-negative payment to the number of total
winners.

We compare PWSM with two benchmarks.

e No-Privacy: The optimal winner selection mechanis-
m when workers’ real locations are reported to the
server without any privacy protection.

e Same-Privacy (PWSM-Same): The winner selection
mechanism based on the PWSM when the privacy
budgets of all workers are the same. We set the
privacy budget € as 1 for all workers.

7.3 Evaluation on PWSM

Figures 6 shows the performance comparison of three win-
ner selection mechanisms on the average travel distance
(ATD) under different parameters. “PWSM-Pers” means
that each worker randomly selects its personal privacy level
€; from [1,5], while “PWSM-Same” means that all workers
adopt the same privacy level of € = 1.

Figure 6(a) shows the ATD of three winner selection
mechanisms against the city when there are 400 workers
and 100 tasks. We can see that workers take a larger ATD
to finish tasks in Tokyo than New York. This is because
the task distribution in Tokyo is sparser than that in New
York. Figure 6(b) shows the ATD of three winner selection
mechanisms against the number of tasks when there are
400 workers. We can see that the ATD decreases with
the increase of task number, which is because the average
travel distance to tasks is smaller with higher density of
tasks. Figure 6(c) shows the ATD of three winner selection
mechanisms against the number of workers when there
are 100 tasks. We can see that the ATD does not change
significantly with the increase of worker number. Figure

6(d) shows the ATD of three winner selection mechanisms
against the radius of publishing region when there are 400
workers and 100 tasks. We can see that the ATD increases
for larger size of the task publishing regions. This is because
that, when the size of the publishing region increases, some
far away tasks that were not allocated to any worker are
now allocated to workers. Since the distances between the
workers and far away tasks are large, the ATD of all workers
increases when the size of publishing region increases.

From Figure 6, we can see that the PWSM always has a
larger ATD than No-privacy, which is because the latter can
optimally allocate tasks to workers with the true locations of
workers. However, PWSM provides strongly personalized
location privacy protection for workers. We can also observe
that the ATD of PWSM with different protection levels is
smaller than that of PWSM with the same largest protection
level, which is because the true distances are obfuscated
with larger noise when the strongest protection level is
adopted by all workers.

7.4 Experiments for VPDM

Figures 7(a-c) show the performance of the proposed VPDM
on the satisfactory rate (SR) when P is 0.9. We can see that
the VPDM always has a SR higher than 96%, which is larger
than P = 0.9. Figure 7(a) shows the SR against the number
of tasks when there are 400 workers. We can see that the SR
increases from 96% to 99% when task number increases from
40 to 60, and thereafter SR does not increase significantly.
This is because the number of total winners is small when
there are 40 tasks so that one or two winner who receive
the negative payment will decrease the SR sharply. Figure
7(b) shows the SR against the number of workers when
there are 100 tasks. We can see that the SR increases slightly
with the increase of the number of workers. This is because
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the effect of winners who receive the negative payment will
decrease with the increase of the number of total winners.
Figure 7(c) shows the SR against the radius of the publishing
region when there are 100 tasks and 400 workers. We can see
that the SR does not change with the increase of publishing
region size.

Figure 7(d) shows the SR against the parameter P when
there are 100 tasks and 400 workers. We can see that the
SR increases with the increase of parameter P. This is be-
cause workers has a larger probability to get a non-negative
payment with the increase of parameter P. We can also
observe that SR is always larger than P, which validates
the correctness of the proposed payment determination
mechanism.

8 CONCLUSIONS

In this paper, we proposed a personalized privacy-
preserving task allocation framework for mobile crowdsens-
ing systems. Each worker uploads the obfuscated distances
and personal privacy budget to the server instead of upload-
ing its true location or true distances to tasks. In particular,
we proposed the PWSM that allocates tasks to workers with
only the obfuscated information while minimizing the total
travel distance. We also proposed the VPDM to determine
the appropriate payment to each winner by considering its
movement cost and privacy leakage. We proved that the
proposed framework provides personalized privacy protec-
tion, and satisfies the truthfulness, profitability and proba-
bilistic individual rationality. Moreover, we proved that each
worker can have ¢; th T rj-privacy in our framework,
which is related to its personal privacy budget and interest-
ed tasks. Extensive experiments on the read-world datasets
demonstrate the effectiveness of the proposed mechanisms.
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